

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΑΤΤΙΚΗΣ

ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ

 ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΚΗΣ ΣΧΕΔΙΑΣΗΣ ΚΑΙ ΠΑΡΑΓΩΓΗΣ

ΠΡΟΓΡΑΜΜΑ ΔΙΔΑΚΤΟΡΙΚΩΝ ΣΠΟΥΔΩΝ

 ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ

Τεχνολογίες κατανεμημένου καθολικού (DLT) και

Μηχανική Μάθηση (Machine Learning)

Ανδρέας Ρόναλντ Σορτ

ΑΙΓΑΛΕΩ

Ιούνιος 2024

UNIVERSITY OF WEST ATTICA

DEPARTMENT OF INDUSTRIAL DESIGN AND PRODUCTION

ENGINEERING

PROGRAM OF DOCTORAL STUDIES

 PhD THESIS

Distributed Ledger Technologies (DLT) and Machine

Learning

Andrew Ronald Short

ATHENS - EGALEO

JUNE 2024

ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ

Τεχνολογίες κατανεμημένου καθολικού (DLT) και Μηχανική Μάθηση (Machine

Learning)

Ανδρέας Ρ. Σορτ

ΕΠΙΒΛΕΠΟΥΣΑ ΚΑΘΗΓΗΤΡΙΑ: Ελένη Αικατερίνη Λελίγκου, Καθηγήτρια Τμ. ΜΒΣΠ,

ΠαΔΑ

ΤΡΙΜΕΛΗΣ ΕΠΙΤΡΟΠΗ ΠΑΡΑΚΟΛΟΥΘΗΣΗΣ:

Ελένη Αικατερίνη Λελίγκου, Καθηγήτρια Τμ. ΜΒΣΠ, ΠαΔΑ

Παναγιώτης Καρκαζής, Αναπληρωτής Καθηγητής, Τμ. ΜΠΥ, ΠαΔΑ

Παναγιώτης Τρακάδας, Αναπληρωτής Καθηγητής, Εθνικό Καποδιστριακό

Πανεπιστήμιο Αθηνων

ΕΠΤΑΜΕΛΗΣ ΕΞΕΤΑΣΤΙΚΗ ΕΠΙΤΡΟΠΗ

(Υπογραφή)

Ελένη Αικατερίνη Λελίγκου,

 Καθηγήτρια ΠαΔΑ

(Υπογραφή)

Παναγιώτης Καρκαζής,

 Αν. Καθηγητής ΠαΔΑ

(Υπογραφή)

Παναγιώτης Τρακάδας,

 Αν. Καθηγητής ΕΚΠΑ

(Υπογραφή)

Ευάγγελος Πάλλης,

 Καθηγητής ΠΑΔΑ

(Υπογραφή)

Μιχαήλ Παπουτσιδάκης,

 Καθηγητής ΠαΔΑ

(Υπογραφή)

Θεοφάνης Ορφανουδάκης,

 Καθηγητής ΕΑΠ

(Υπογραφή)

Ανδρέας Παπαδάκης,

 Καθηγητής ΑΣΠΑΙΤΕ

Ημερομηνία εξέτασης ----

PhD THESIS

Τεχνολογίες κατανεμημένου καθολικού (DLT) και Μηχανική Μάθηση (Machine

Learning)

Andrew Ronald Short

SUPERVISOR: Helen Catherine Leligou, Professor, Department of IDPE,

UniWA

THREE-MEMBER ADVISORY COMMITTEE:

Helen Catherine Leligou, Professor, Dep. IDPE, UniWA

Panagiotis Karkazis, Associate Professor, Dep. ICE, UniWA

Panagiotis Trakadas, Associate Professor, National and Kapodestrian

University of Athens

SEVEN-MEMBER EXAMINATION COMMITTEE

(Signature)

Helen Catherine Leligou,

Professor UniWA

(Signature)

Panagiotis Karkazis,

Assoc. Professor UniWA

(Signature)

Panagiotis Trakadas,

Associate Professor UoA

(Signature)

Evangelos Pallis,

Professor UniWA

(Signature)

Michael Papoutsidakis,

Professor UniWA

(Signature)

Theofanis Orfanoudakis,

Professor EAP

(Signature)

Andreas Papadakis,

Professor ASPETE

Examination Date ----

Copyright © Με επιφύλαξη παντός δικαιώματος. All rights reserved.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΑΤΤΙΚΗΣ και ΑΝΔΡΕΑΣ ΡΟΝΑΛΝΤ ΣΟΡΤ,

ΙΟΥΝΙΟΣ, 2024

Η παρούσα διδακτορική διατριβή καλύπτεται από τους όρους της άδειας χρήσης Creative

Commons «Αναφορά Δημιουργού Μη Εμπορική Χρήση Όχι Παράγωγα Έργα 4.0

Διεθνές» (CC BY-NC-ND 4.0). Συνεπώς, το έργο είναι ελεύθερο για διανομή

(αναπαραγωγή, διανομή και παρουσίαση του έργου στο κοινό), υπό τις ακόλουθες

προϋποθέσεις:

α. Αναφορά δημιουργού: Ο χρήστης θα πρέπει να κάνει αναφορά στο έργο με τον τρόπο

που έχει οριστεί από το δημιουργό ή τον χορηγούντα την άδεια.

β. Μη εμπορική χρήση: Ο χρήστης δεν μπορεί να χρησιμοποιήσει το έργο αυτό για

εμπορικούς σκοπούς.

γ. Όχι Παράγωγα Έργα: Ο Χρήστης δεν μπορεί να αλλοιώσει, να τροποποιήσει ή να

δημιουργήσει νέο υλικό που να αξιοποιεί το συγκεκριμένο έργο (πάνω από το έργο αυτό).

Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή της παρούσας εργασίας, εξ

ολοκλήρου ή τμήματος αυτής, για εμπορικό σκοπό. Επιτρέπεται η ανατύπωση,

αποθήκευση και διανομή για σκοπό μη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής

φύσης, υπό την προϋπόθεση να αναφέρεται η πηγή προέλευσης και να διατηρείται το

παρόν μήνυμα. Ερωτήματα που αφορούν τη χρήση της εργασίας για κερδοσκοπικό

σκοπό πρέπει να απευθύνονται προς τους συγγραφείς. Οι απόψεις και τα συμπεράσματα

που περιέχονται σε αυτό το έγγραφο εκφράζουν τον/την συγγραφέα του και δεν πρέπει

να ερμηνευθεί ότι αντιπροσωπεύουν τις θέσεις του επιβλέποντος, της επιτροπής εξέτασης

ή τις επίσημες θέσεις του Τμήματος και του Ιδρύματος.

ΔΗΛΩΣΗ ΣΥΓΓΡΑΦΕΑ ΔΙΔΑΚΤΟΡΙΚΗΣ ΔΙΑΤΡΙΒΗΣ

Ο/η κάτωθι υπογεγραμμένος Ανδρέας Ρόναλντ Σορτ του Δαυίδ, υποψήφιος διδάκτορας

του Τμήματος Μηχανικών Βιομηχανικής Σχεδίασης και Παραγωγής της Σχολής

Μηχανικών του Πανεπιστημίου Δυτικής Αττικής, δηλώνω ότι:

«Είμαι συγγραφέας και δικαιούχος των πνευματικών δικαιωμάτων επί της διατριβής και

δεν προσβάλω τα πνευματικά δικαιώματα τρίτων. Για τη συγγραφή της διδακτορικής μου

διατριβής δεν χρησιμοποίησα ολόκληρο ή μέρος έργου άλλου δημιουργού ή τις ιδέες και

αντιλήψεις άλλου δημιουργού χωρίς να γίνεται αναφορά στην πηγή προέλευσης (βιβλίο,

άρθρο από εφημερίδα ή περιοδικό, ιστοσελίδα κ.λπ.). Επίσης, βεβαιώνω ότι αυτή η

εργασία έχει συγγραφεί από μένα αποκλειστικά και αποτελεί προϊόν πνευματικής

ιδιοκτησίας τόσο δικής μου, όσο και του Ιδρύματος. Παράβαση της ανωτέρω

ακαδημαϊκής μου ευθύνης αποτελεί ουσιώδη λόγο για την ανάκληση του πτυχίου μου».

Ο Δηλών

ΠΕΡΙΛΗΨΗ

Η παρούσα διδακτορική διατριβή ερευνά τα οφέλη που προκύπτουν από τον συνδυασμό

τεχνολογιών από τους ακόλουθους τομείς: α) ομόσπονδη μάθηση (Federated Learning,

β) τεχνολογίες κατανεμημένου καθολικού (Distributed Ledger Technologies) όπως είναι

τα Blockchain δίκτυα και γ) βιομηχανικές εφαρμογές.

Η συνεχώς αυξανόμενη χρήση εφαρμογών τεχνητής νοημοσύνης έχει καταστήσει

εμφανές ότι η ποιότητα των μεγάλων δεδομένων για εκπαίδευση μοντέλων μηχανικής

μάθησης επηρεάζει την απόδοση των τελικών μοντέλων. Για το σκοπό αυτό, η

ομόσπονδη μάθηση αποσκοπεί στη συμμετοχή πολλαπλών οντοτήτων που συμβάλλουν

στη διαδικασία μάθησης με τοπικά δεδομένα, χωρίς να απαιτείται η κοινή χρήση των

πραγματικών δεδομένων. Σε πραγματικές περιπτώσεις χρήσης, οι ανταμοιβές που

λαμβάνουν οι χρήστες για τη συμβολή τους στη διαδικασία μάθησης θα πρέπει να

εξαρτώνται από τη ποιότητα της συμβολής τους. Έχοντας λοιπόν υπόψιν τη

σπουδαιότητα των δεδομένων εκμάθησης, η διατριβή σχεδίασε και στη συνέχεια

υλοποίησε μηχανισμό ομόσπονδης μάθησης ο οποίος συντονίζεται από δίκτυο

blockchain. Στη συνέχεια, εστιάζει σε τρόπους ενίσχυσης της αφοσίωσης των χρηστών,

προσφέροντας "δίκαιες" ανταμοιβές, ανάλογες με τη πραγματική βελτίωση του μοντέλου

(ως προς την ακρίβεια) που προσφέρουν. Επιπλέον, για να καταστεί δυνατή η

αντικειμενική κρίση της ποιότητας της συνεισφοράς, σχεδιάστηκαν ειδικά έξυπνα

συμβόλαια που λειτουργούν πάνω σε τεχνολογίες blockchain. Πιο συγκεκριμένα, έχει

αναπτυχθεί ένας αλγόριθμος επαλήθευσης που χρησιμοποιείται για την αξιολόγηση της

απόδοσης των συνεισφορών των χρηστών, συγκρίνοντας την ακρίβεια του συνολικού

μοντέλου με ένα σύνολο δεδομένων επαλήθευσης. Ο αλγόριθμος έχει σχεδιαστεί για να

εκτελείται μέσα σε ένα έξυπνο συμβόλαιο και να καταγράφει τις επιδόσεις (με τη μορφή

συστήματος πόντων) σε ένα κατανεμημένο εδάφιο.

Η παρούσα διατριβή ανέπτυξε λύσεις για την βελτίωση ασφάλειας σε βιομηχανικούς

προγραμματιζόμενους λογικούς ελεγκτές (PLC), επιτρέποντάς τους να λαμβάνουν

εντολές και παραμέτρους από ένα δίκτυο blockchain. Το δίκτυο σε αυτή τη περίπτωση

αναλαμβάνει δύο ρόλους: χρησιμεύει ως αμετάβλητη βάση καταγραφής ενεργειών

ελέγχου (audit trails) καθώς και ως αξιόπιστη πηγή για κρίσιμες εντολές και

παραμέτρους. Σε αντίθεση με τον συμβατικό έλεγχο των PLC από συσκευές διεπαφής

ανθρώπου-μηχανής (HMI), αυτή η νέα προσέγγιση δεν απαιτεί πρόσβαση εγγραφής στο

επίπεδο του PLC, ελαχιστοποιώντας έτσι την επιφάνεια επίθεσής του και συμβάλλοντας

στην προστασία από γνωστές ευπάθειες και νέες ευπάθειες (zero day) που εμφανίζονται

συχνά σε κυβερνοεπιθέσεις. Το δίκτυο blockchain χρησιμοποιείται επίσης ως βάση

δεδομένων που υποστηρίζει ιχνηλάτηση για τις ενέργειες των χρηστών, ιδιαίτερα

χρήσιμο για εφαρμογές που επιβάλλουν την καταγραφή των ενεργειών των χρηστών ή

για παράδειγμα όπως ορίζουν οι καλές πρακτικές παραγωγής (GMP).

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Τομείς χρήσης τεχνολογιών ομόσπονδης μάθησης (Federated

Learning) σε συνδυασμό με τεχνολογίες κατανεμημένου καθολικού (Distributed Ledger

Technologies). Ανάπτυξη λύσεων με χρήση έξυπνων συμβολαίων για την αυτόματη

απόδοση επιβραβεύσεων σε χρήστες που συνεισφέρουν ποιοτικά δεδομένα για την

εκμάθηση μοντέλων μηχανικής μάθησης. Χρήση των τεχνολογιών αυτών σε

βιομηχανικές εφαρμογές που απαιτούν ακεραιότητα δεδομένων και αυξημένη ασφάλεια.

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: blockchain, federated learning, industrial applications, PLC and

SCADA devices, smart contract, ethereum networks, machine

learning, rewarding algorithms, audit trail databases, security

ABSTRACT

This PhD thesis explores the benefits arising from the combining technologies from the

following areas: a) Federated Learning, b) Distributed Ledger Technologies (DLTs) such

as blockchains and c) Industrial applications.

The ever-increasing use of Artificial Intelligence applications has made apparent that the

quality of the training datasets affects the performance of the models. To this end,

Federated Learning aims to engage multiple entities to contribute to the learning process

with locally maintained data, without requiring them to share the actual datasets. In real

use cases, the rewards that users get for their contribution to the learning process should

depend on the characteristics/quality of their contribution. With this in mind, the thesis

first designed and implemented a Federated Learning process that can operate on a

blockchain network. The thesis then focuses on ways to strengthen user engagement by

offering “fair” rewards, proportional to the model improvement (in terms of accuracy)

they offer. Furthermore, to enable objective judgement of the quality of contribution,

special smart contracts have been designed that operate on blockchain technologies. More

precisely, a verification algorithm has been developed that is used to evaluate the

performance of users’ contributions by comparing the resulting accuracy of the global

model against a verification dataset. The algorithm is designed to run inside a smart

contract and record performance (in the form of a point system) on a distributed ledger.

This thesis later investigates solutions that can empower Programmable Logic Controllers

(PLCs) by enabling them to query a blockchain infrastructure for commands and

setpoints. The blockchain assumes a dual role in this context: serving as an immutable

audit trail database as well as a trusted source for critical commands and setpoints. In

contrast to the conventional paradigm of controlling PLCs through Human Machine

Interface devices (HMIs), this novel approach does not require write access at the PLC

level, thus minimizes its attack surface and helps protect against known and zero-day

vulnerabilities often used in cyberwarfare such as in the case of the notorious Stuxnet

worm. The blockchain network is used as an audit trail database for user actions, useful

for applications that enforce the logging of user operations as Good Manufacturing

Practices (GMP) or when required for compliance reasons. Any attempt to maliciously

circumvent the logging operation would not affect the operation of a critical process.

Real-world applica-tions and use cases are explored to demonstrate the tangible benefits

of this approach in industrial settings. Additionally, a prototype implementation is

developed in order to examine the feasibility and collect performance indicators.

SUBJECT AREA: Exploration of Federating Learning techniques. Coordination

through blockchain networks and the use of smart contracts in order to offer fair rewards

to users contributing quality data for machine learning. How these technologies can offer

advantages in industrial applications to build upon integrity in audit trail databases and

improve security.

KEYWORDS: blockchain, federated learning, industrial applications, PLC and

SCADA devices, smart contract, ethereum networks, machine

learning, rewarding algorithms, audit trail databases, security

ACKNOWLEDGMENTS

I would like to express my deepest gratitude to my thesis advisor, Dr Helen C. Leligkou,

for the invaluable guidance, unwavering support, and insightful feedback throughout the

entire research process. Her expertise, patience, and encouragement have been

instrumental in shaping this thesis.

Special thanks go to the University of West Attica, where much of the research was

conducted, for providing access to resources, facilities, and the necessary infrastructure

for this study as well as to the Greek Universities Special Account for Research Funding

for funding part of this research.

I am indebted to my family for their unconditional love, understanding, and constant

encouragement during this journey. Their belief in my abilities has been a constant source

of motivation. Special thanks to my children Daphne and Steve for the happy breaks!

I would also like to acknowledge the support of my friends and colleagues who have

provided valuable insights and encouragement throughout this thesis project.

Finally, I am grateful to all the participants and fellow PhD students who generously

shared their time and expertise, without whom this research would not have been possible.

Λίστα Δημοσιεύσεων / List of Publications

• Andrew R. Short, Τheofanis G. Orfanoudakis, Helen C. Leligou. (2024).

PLCBlox: Using blockchain-based audit trails to generate secure PLC commands.

International Journal of Innovative Research and Scientific Studies, doi:

10.53894/ijirss.v7i4.3449

• Theocharis E, Papoutsidakis Michail, Short, Andrew, Zisimou, Konstantia.

(2023). Low-Cost Solution for Adding Safety Functions to Programmable Logic

Controllers (PLCs), WSEAS TRANSACTIONS ON SYSTEMS AND

CONTROL. 18, doi: 10.37394/23203.2023.18.28

• Short Andrew, Orfanoudakis Τheofanis, Helen, Leligou. (2021). Improving

Security and Fairness in Federated Learning Systems. International Journal of

Network Security & Its Applications, doi:10.5121/ijnsa.2021.13604

• A. R. Short, H. C. Leligou and E. Theocharis, "Execution of a Federated Learning

process within a smart contract", 2021 IEEE International Conference on

Consumer Electronics (ICCE), Las Vegas, NV, USA, 2021, pp. 1-4, doi:

10.1109/ICCE50685.2021.9427734

• A. R. Short, H. C. Leligou, M. Papoutsidakis and E. Theocharis, "Using

Blockchain Technologies to Improve Security in Federated Learning Systems",

2020 IEEE 44th Annual Computers, Software, and Applications Conference, doi:

10.1109/COMPSAC48688.2020.00-96

Table of Contents

1. Introduction ... 28

1.1 Machine Learning and Federated Learning Systems ... 28

1.2 Federated Learning and associated security aspects .. 29

1.3 The potential benefits of Blockchain adoption in Federated Learning 31

1.4 Blockchain technologies in the context of improving industrial applications 33

1.5 Incentive Schemes .. 37

1.6 Research aims and objectives ... 37

2. State of the art and related work ... 40

2.1 Blockchain-based Federated Learning approaches .. 40

2.2 Benefits of using blockchain-based audit trails to generate secure PLC

commands. ... 42

3. Design of Federated Learning Systems on blockchain networks 46

3.1 Implementation of an algorithm to assess the quality of contributed model

updates ... 46

3.1.1 Algorithm 1 – Discarding of unreliable model updates .. 48

3.1.2 Experimental setup and simulation results ... 50

3.2 Design of a Federated Learning process that is able to execute inside a smart

contract .. 52

3.2.1 Verification of contributions... 52

3.2.2 Overview of the learning process (Workflow) ... 53

3.2.3 Smart Contract Functionality .. 54

3.2.4 Distributed Ledger operations and data structure ... 56

3.3 Improving Security and Fairness in Federated Learning Systems 57

3.3.1 The rewarding algorithm .. 57

3.3.2 Smart contract specifications .. 62

3.3.3 Testbed ... 65

4. PLCBlox, a blockchain based secure source of commands for PLC devices 72

4.1 Principle of operation ... 73

4.2 Prototype implementation ... 76

4.3 Measurements ... 79

5. Conclusions and future work .. 82

5.1 Federated Learning process coordinated by a blockchain network rewarding

capabilities ... 82

5.2 Blockchain in industrial applications ... 83

5.3 Future Work ... 84

6. References .. 88

APPENDIX A - Improving Security and Fairness in Federated Learning Systems

Python Code ... 94

APPENDIX B – PLCBlox, Smart contract code .. 99

APPENDIX C – PLCBlox, PLC Code .. 101

List of Figures

Figure 1 - Federated Learning Process ... 30

Figure 3 - Smart contract operation principle ... 32

Figure 2 - Typical architecture of industrial applications built upon SCADA/HMI and

PLC devices. ... 35

Figure 4 - Steps involved in the proposed algorithm ... 47

Figure 5 - Performance with traditional FL algorithm in the presence of adversaries ... 51

Figure 6 - Performance with model update protection in the presence of adversaries ... 52

Figure 7 - Interactions between users, smart contract and the distributed ledger –

Request of current model version (model weights) .. 54

Figure 8 - Interactions between users, smart contract and the distributed ledger –

Submission of model weights (user .. 55

Figure 9 - Interactions between smart contract and the distributed ledger for the creation

of the next model version (end of training round) .. 56

Figure 10 - Operations that access/modify the distributed ledger 57

Figure 11 - Rewarding algorithm, principle of operation ... 59

Figure 12 - Blockchain FL, relationships between users, the smart contract and the

distributed ledger .. 62

Figure 13- Distributed Ledger operations .. 64

Figure 14 - Performance with traditional FL algorithm in the presence of adversaries . 66

Figure 15 - Performance with model update protection in the presence of adversaries. 67

Figure 16 - Training images with gaussian noise applied .. 68

Figure 17 - Difference in accuracy of each contribution .. 68

Figure 18 - Normalized values, used for rewards ... 70

Figure 19 - Flow of information within PLCBlox .. 74

Figure 20 - Latency metrics over a period of 100 measurement points 80

List of Tables

Table 1 - Resources Requirements for Functions ... 56

Table 2 - Key-value pairs for the FL process ... 57

Table 3 - Distributed Ledger Structure ... 65

Table 4 - Key differences between typical industrial application architectures and

PLCBlox ... 75

Table 5 - List of hardware and software tools .. 77

Table 6 - Utilization figures and performance indicators ... 80

List of Algorithms

Algorithm 1 - Discarding of unreliable model updates .. 49

Algorithm 2 - Reward Calculation inside the FL process .. 61

ΠΙΝΑΚΑΣ ΟΡΟΛΟΓΙΑΣ

Ξενόγλωσσος όρος Ελληνικός Όρος

Blockchain network Δίκτυο κατανεμημένου καθολικού

Distributed Ledger Technologies Τεχνολογίες κατανεμημένου καθολικού

Federated Learning Ομόσπονδη μάθηση

Machine Learning Μηχανική μάθηση

Programmable Logic Controller (PLC) Προγραμματιζόμενος λογικός ελεγκτής

Human Machine Interface (HMI) Διεπαφή ανθρώπου μηχανής

Smart Contract Έξυπνο συμβόλαιο

ΣΥΝΤΜΗΣΕΙΣ – ΑΡΚΤΙΚΟΛΕΞΑ – ΑΚΡΩΝΥΜΙΑ - ACRONYMS

AI Artificial Inteligence

API Application Programming Interface

BC Blockchain

CFR Code of Federal Regulations

CPU Central Processing Unit

DAG Directed Acyclic Graph

DDoS Distributed Denial of Service

DLT Distributed Ledger Technologies

DP Differential Privacy

FDA Food and Drug Administration

FL Federated Learning

GDPR General Data Protection Regulation

HLF Hyperledger Fabric

HMI Human Machine Interface

HTTP HyperText Transfer Protocol

IDE Integrated Development Interface

IP Internet Protocol

JSON JavaScript Object Notation

ML Machine Learning

MNIST Modified National Institute of Standards and Technology

MPC Secure Multiparty Computation

OPC Open Platform Communications Unified Architecture

pBFT Practical Byzantine Fault Tolerance

PLC Programmable Logic Controllers

PoS Proof of Stake

PoW Proof of Work

RAM Random Access Memory

ReLU Rectified linear unit

ROM Read only memory

SCADA Supervisory Control and Data Acquisition

SD card Secure Digital Card

SGD Stochastic Gradient Descent

VM Virtual Machine

1. Introduction

1.1 Machine Learning and Federated Learning Systems

Federated Learning (FL) [1], [2] is a relatively new field of study, whereby collaborating

parties can jointly improve a model which is maintained by the coordinator (usually a

central server). In this setup, the training is performed individually using locally available

data, and the participating entities transmit their model updates to the coordinator. The

entities (either end-devices such as mobile phones, or businesses contributing with their

data) usually share the same goal, i.e. to make use of the trained model or can otherwise

be motivated by financial rewards.

Machine Learning (ML) aims to build a mathematical model by inference, using training

data. ML can either be supervised or unsupervised, depending on whether the training

data set is labeled or not [3]. In a typical centralized Machine Learning setup, the training

data needs to be collected at a central location, which can pose security and privacy risks.

Other concerns include the unavailability of training data of good quality, either because

of data protection regulations or because of the unwillingness of users to share their

private data due to privacy concerns.

Today, large amounts of data are being generated at the edge. FL overcomes the need to

transfer user data to central servers, at the same time safeguarding user privacy. Practical

implementations of FL already exist, such as the FL powered application Gboard [4], a

keyboard from Google for Android devices, which is used to predict words based on

previous input and is improved by the small contributions of each device. With the advent

of edge computing, it is foreseen that more machine learning applications will run on

edge devices. This is evident by the use of Artificial Intelligence (AI)-specific CPUs in

the latest mobile devices from manufacturers, such as Apple and Samsung.

FL improves on privacy, since participating entities contribute with model updates rather

than raw data, however as training is performed at the edge, a new attack surface is

created. An adversary may intentionally send false model updates in order to affect its

performance, a method known as model poisoning [5]. Since high quality datasets are an

important factor in training, it may be beneficial to reward users whose model updates

improve the overall model performance.

However, a set of security attacks have already been witnessed and countermeasures

either rely on adding intelligence or resort to Blockchain technology. Blockchain belongs

to the family of Distributed Ledger Technologies (DLT) and as such allows for the

operation of an immutable database which can be distributed (and replicated) among

multiple nodes. These types of databases offer improvements on security and trust, and

offer a high level of transparency. For these reasons, they can be exploited to defend

against FL-targeting attacks.

1.2 Federated Learning and associated security aspects

In contrast to the centralized nature of traditional ML where data is collected in a large

dataset (typically in the cloud) and the model is trained centrally, FL proposes that the

ML model can reside on client devices and be trained locally. An aggregation server is

required in order to transmit the global model and receive the model updates. Although

the individual models being trained on each end-device may have an incomplete picture,

considering that the insights of all participating parties are accumulated and that this

process is repeated on several rounds, the end model tends to be of high quality. Figure 1

shows the steps involved in FL. The workflow starts by transmitting the initial model

(initialized with either random or proxy data) to end devices (blue arrow). The end devices

can now perform local training using locally available data (yellow arrow). During the

training process, gradients are computed e.g. through a variant of Stochastic Gradient

Descent (SGD)[6] on a random portion of the training dataset. In the end, these updates

are received by the aggregation server (orange arrow), which in turn computes the

updated model, typically by aggregating the model updates. This process is repeated until

predefined criteria are met.

Figure 1 - Federated Learning Process

A major benefit of FL is that the end device is able to use the model even when offline.

Although the learning process will be affected, the latest version of the global model will

still be available. In an FL setup, the data is kept at end devices and never shared with the

server. This alone offers a huge improvement in privacy and helps meet requirements of

Regulations such as GDPR [7]. However, since even the model update parameters can

reveal sensitive information [8], [9], ongoing research is focused on mitigating privacy

concerns. It is also worth mentioning that anonymization alone is not an adequate measure

for privacy. The process of anonymization is usually carried out by the server and this

trust relationship is not always present. Furthermore, researchers have been able to de-

anonymize datasets by using external knowledge [10], [11].

Two of the most widely adopted approaches regarding privacy are Secure Multiparty

Computation (MPC) [12] and Differential Privacy [13],[14],[15]. MPC enables

participating parties to jointly compute an output of a shared function based on their

inputs in a way that no information on the inputs is revealed to each other. Several MPC

protocols and their effectiveness under different threat models are analyzed in a study by

D. Evans 2018 [16]. Differential Privacy aims to conceal personal information in client

model update contributions by adding a small amount of noise. In this approach, there is

a trade-off between privacy and model accuracy.

With respect to the security aspects of FL, the main vulnerabilities of this scheme stem

from the fact that the learning process occurs on the edge, typically on users’ devices.

This has created a new attack surface where a compromised device could be manipulated

in a way to affect the learning process. Specifically, an adversary could either attack the

training data (data poisoning) or the model updates, with the intention of affecting the

global model (model poisoning) so that its performance deteriorates and ultimately lead

to denial of service [17] or in order to make it perform a certain way. It has been

demonstrated that an attacker may use malicious model updates in order to alter the

behavior of a global model and be able to control its behavior when certain triggers appear

(e.g. certain words in word prediction applications), without otherwise affecting the

performance of the model on its main task [5]. Because the model still performs well on

its main task, this type of attack cannot be easily detected by the aggregation server. In

the worst case, when MPC is used, the source of the attack cannot be identified since the

server does not have access to the individual model updates. The same study [5] shows

that the attack is possible even with a 1% of compromised devices and can survive

multiple training rounds.

1.3 The potential benefits of Blockchain adoption in Federated Learning

Distributed Ledger Technologies are a type of distributed databases collaboratively built

(many entities contribute data) and replicated in a number of nodes (replicas of the whole

database are kept in many nodes). In essence, they provide a shared and consistent data

store. In contrast to traditional databases, the individual data records cannot be updated

or deleted and are usually cryptographically interconnected. Most common categories of

DLTs are Blockchains and Directed Acyclic Graphs (DAG). Although both of these

technologies record transactions in the distributed ledger, they do so in different ways. In

a blockchain network, the blocks form a linear chain of transactions in a chronological

order [18]. By comparison, new transactions in a DAG network can link to multiple

previous transactions. When this link is established, the previous transactions get verified.

Due to this branching of existing transactions, the DAG usually resembles a tree.

Furthermore, variants of DLT technologies can be further classified as permissioned or

permission-less and public or private.

The concept of smart contracts first appeared in 1997 [30] as a way to formalize and

secure relationships on public networks. They are formed by machine executable code

which is able to release digital assets to untrusted parties when certain pre-defined rules

have been met. Although first generation blockchain networks such as Bitcoin [18] are

not designed for such use cases, later public and private blockchain technologies such as

Ethereum [31] and HyperLedger Fabric are designed to support the development and

execution of customized smart contracts [32].

Figure 2 depicts how users of a blockchain network do not directly interact with the

distributed ledger; instead, a smart contract is used in order to make queries or add/append

data to it.

Figure 2 - Smart contract operation principle

It is anticipated the following solutions offer advancements in the following areas:

Data integrity: FL describes a process for collaboratively improving a shared model and

does not deal with security aspects. In its basic implementation, the process is coordinated

from a single central server. The entity hosting the solution, could alter the data, either

with malicious intent or unintentionally. Blockchain networks on the other hand are a

proven technology that is inherently secure. All blocks are cryptographically

interconnected, so in the case that a block is altered, this would be easily identifiable. In

addition to this, due to the decentralized nature of blockchain technologies, the original

data will be accessible from the rest of the healthy nodes.

Reliability: Since a blockchain network is decentralized, full copies of the ledger are

maintained by multiple nodes. For this reason, there is no single point of failure since the

ledger will be available elsewhere in case of a node failure. This is not the case with a

minimal FL setup with only one parameter server. Instead, a suitable failover design

would need to be implemented. Traditional failover solutions involve the deployment of

redundant servers (VMs, Kubernetes), and mechanisms for data replication. We

anticipate that the use of a BC network in a FL process will offer improvements in terms

of reliability.

Trust: In many cases, the participants in an FL setup might be corporations that wish to

work collaboratively to build AI models in either a horizontal or vertical FL system. In a

Horizontal FL System, the entities contribute with data of the same structure such as

banks contributing with their client lists for fraud detection or the case of hospitals

contributing with patient data. In the case of Vertical FL, the entities contribute with

datasets containing different features, as in the case of a bank and an e-commerce

company. As a part of the fourth industrial revolution, Industry 4.0 embraces data

exchange and the creation of digital twins of the manufacturing processes is at its hype.

Therefore, it is very likely that FL will become a priority for manufacturing industries.

Both of the above learning systems usually require a trusted third party to coordinate the

FL process and create the model. A blockchain is a good candidate to act as a trusted

coordinator, because of its security and traceability properties. Blockchain solutions make

use of a consensus algorithm, which guarantees that all nodes in a distributed ledger will

reach an agreement and converge.

Potential for incentives or rewards: In a FL setup, it is important to incentivize users

that contribute with quality data. This is crucial as the accuracy of the global model is

directly proportional to the quality of the training data. Blockchain is the perfect medium

to provide incentives in the form of tokens, which can be exchanged for services or

financial rewards.

Auditability - Traceability – Accountability: Every time a piece of data on a blockchain

network is updated, this is stored as a new transaction in a separate block. Previous blocks

cannot be altered (or deleted). In the context of FL, this can be beneficial, especially in

applications that require high level of trust on AI decisions such as in the military sector.

Since the blocks on the network include the signature of the user initiating the transaction,

the user cannot deny the authorship of this transaction. This property known as non-

repudiation, can be used for accountability.

1.4 Blockchain technologies in the context of improving industrial applications

In the era of Industry 4.0 and the ongoing digital transformation, Supervisory Control and

Data Acquisition systems (SCADA), Human-Machine Interface devices (HMI), and

Programmable Logic Controllers (PLCs) play essential roles in reshaping industrial

processes and operations. SCADA systems serve as data hubs that aggregate data from

various sensors and machines. HMI devices provide the operator with the ability to

interact with complex systems and make informed decisions. PLCs are designed to

communicate with a wide range of devices and systems. They serve as the "brains" of

automation, orchestrating processes and responding to real-time data. PLCs have

limitations in terms of computing resources and processing power, which can make them

less suitable for heavy computational tasks compared to more powerful computing

platforms. They are primarily designed for real-time control and automation in industrial

environments, focusing on reliability, determinism, and stability rather than raw

computing power.

SCADA, HMI, and PLCs collectively enable data-driven decision-making by providing

real-time insights into operational performance, equipment health, and quality metrics

and are integral components of the digital transformation in Industry 4.0.

Audit trail logs

Certain industries such as the pharmaceutical, biotechnology, and medical device

industries are required to apply regulations such as those described by the Food and Drug

Administration (FDA) in 21 CFR Part 11 [19]. This regulation outlines the criteria under

which electronic records and signatures are considered trustworthy, reliable, and legally

equivalent to paper records and handwritten signatures. An audit trail is defined as: “A

secure, computer-generated, time-stamped electronic record that allows reconstruction of

the course of events relating to the creation, modification, and deletion of an electronic

record” [20]. In more detail, the logging process should record the user’s identity, time-

stamps and actions. Additionally, the system should be resilient to tampering and preserve

the recorded information for compliance.

A typical architecture describing the flow of information within the components of an

industrial application is depicted in Figure 3 below.

Figure 3 - Typical architecture of industrial applications built upon SCADA/HMI and PLC devices.

Security Considerations

Considering that these systems become more interconnected, cybersecurity is paramount.

Industry 4.0 initiatives emphasize robust cybersecurity practices to protect against cyber

threats and data breaches.

Many industrial control systems, including SCADA and PLCs, have long lifecycles that

can span decades. This means that older hardware and software versions are still in

operation, even after newer, more secure alternatives have become available. Some

manufacturers discontinue support, focusing their efforts on newer products. As a result,

users of these legacy systems are left without access to security patches. In some cases,

upgrading to newer SCADA or PLC systems may not even be feasible due to

compatibility issues with existing infrastructure, cost constraints, or the need for

extensive reconfiguration. Smaller organizations or those with limited resources may

struggle to keep pace with technology updates and may continue to use older SCADA

and PLC systems. Even when updates are available, organizations may be reluctant to

apply them for fear of disrupting critical processes.

In 2010, a highly sophisticated computer worm was discovered that gained international

attention for its unprecedented level of complexity and its specific target: industrial

control systems, particularly Siemens programmable logic controllers PLCs at the Iranian

nuclear program. Once deployed, Stuxnet does not require Internet access for command-

and-control. Instead, it is designed to inject rogue code inside PLC devices [21]. Many

other exploits compromising legacy SCADA systems have also been well documented

[22].

SCADA systems operate by sending data (such as setpoint updates, operator commands)

directly to the PLC device and naturally the devices are required to allow such incoming

connections. This requirement forms a large attack vector due to the security issues

arising from compromised SCADA systems, malware. Because of these security

concerns, such deployments usually reside in isolated internal networks without internet

connectivity.

Blockchain-based audit trail databases

Blockchain networks make a great medium for audit trail databases. The most compelling

reasons are the following:

Compliance: For industries subject to regulatory compliance, blockchain-based audit

trail logs can simplify compliance efforts by providing a tamper-resistant and easily

auditable record of activities.

Immutability: Once data is recorded on the blockchain, it becomes nearly impossible to

alter or delete it. Each new block in the chain contains a cryptographic hash of the

previous block, creating a secure and immutable ledger. This feature ensures that audit

trail logs remain tamper-proof, providing a reliable historical record of activities.

Security: Blockchain networks employ strong cryptographic techniques to secure data.

Public and private keys, digital signatures, and consensus mechanisms help protect the

integrity of audit trail logs. Unauthorized access and alterations are exceedingly difficult,

if not impossible.

Permanent Records: Audit trail logs on a blockchain can be stored indefinitely. This

ensures that historical data is always accessible for compliance, forensic analysis and

trend monitoring.

Traceability: Blockchain provides a detailed history of data changes and transactions.

Each entry in the audit trail can be traced back to its origin, making it easier to identify

the source of any unauthorized actions or anomalies. In the context of audit trails, each

action (e.g., setpoint change) can be mapped to a single user.

1.5 Incentive Schemes
In the context of a blockchain assisted FL process, designing effective incentive schemes

plays a crucial role in fostering participation and cooperation among competing entities

in FL. The utilization of smart contracts within a blockchain network enables the

transparent and decentralized recording of each participant's performance metrics. This

approach ensures that rewards are allocated fairly and in accordance with predefined

criteria, thereby enhancing trust and accountability in the collaborative learning process.

The distributed ledger technology of blockchain, and centralized platforms like

Hyperledger Fabric (HLF), support some sort of consensus mechanisms where e.g. a

specified percentage of network nodes must agree on transaction validity. By embedding

verification algorithms within smart contracts, we can achieve an unprecedented level of

transparency. This transparency is especially critical in our context, where algorithmic

outputs directly influence incentive calculations, ensuring that rewards are distributed

equitably based on measurable contributions.

We believe that incentive schemes are particularly advantageous in environments where

trust is paramount, such as collaborative research consortia or industrial alliances

engaging in FL. These schemes not only encourage active participation but also

incentivize entities to contribute quality data and algorithms, thereby improving the

overall performance and accuracy of shared machine learning models.

The deployment strategy for blockchain nodes is adaptable to different FL use cases. In

scenarios involving a limited number of participating industries or associations, each

entity may opt to host a blockchain node to maintain proximity to their respective data

sources and stakeholders. Alternatively, a trusted third-party host may be chosen to

oversee the governance and operational integrity of the incentive scheme, ensuring

impartiality and adherence to predefined rules.

By integrating robust incentive mechanisms into our FL framework, we aim to create a

conducive environment where multiple end users can collaborate effectively, driving

innovation and advancing the state-of-the-art in distributed machine learning

technologies.

1.6 Research aims and objectives

The primary aim of this thesis is to investigate how Distributed Ledger Technologies and

Machine Learning can be integrated to develop innovative solutions that enhance data

security, operational efficiency, and collaborative learning in industrial applications.

Firstly, the thesis aims to explore how FL, a decentralized approach to ML model training,

can be effectively coordinated using blockchain technology. This includes investigating

the mechanisms by which blockchain can facilitate secure and efficient data sharing and

model training across multiple entities, ensuring transparency and integrity in the process.

Secondly, the research aims to identify and evaluate the potential industrial applications

of DLT and ML, focusing on areas where their synergy can provide significant

operational improvements. By examining real-world scenarios, the thesis seeks to

demonstrate the practical benefits and address the challenges of implementing these

technologies in industrial contexts.

The thesis also aims to optimize user engagement and data contribution quality in FL

systems coordinated by blockchain. This involves designing and implementing incentive

mechanisms and engagement strategies that encourage high-quality data contributions

and active participation from users.

Another aim is to enhance the security and functionality of industrial systems, such as

programmable logic controllers (PLCs), through the application of blockchain

technologies. This includes developing blockchain-based solutions that can serve as

immutable audit trails and command sources for PLCs, reducing their vulnerability to

cyber-attacks and improving operational reliability.

The roadmap of this research thesis is outlined below:

1) Develop a framework for the integration of FL and blockchain that ensures secure,

transparent, and efficient coordination of model training across multiple entities.

2) Design and implement smart contracts that facilitate the management of FL

processes, including data sharing, model aggregation, and reward distribution.

3) Design and implement incentive mechanisms, such as token rewards and

reputation systems, to encourage high-quality data contributions in FL systems.

4) Investigate the use of blockchain as an immutable audit trail for programmable

logic controllers (PLCs), enhancing their security and traceability.

5) Develop and test a blockchain-based command and control system for PLCs to

reduce vulnerability to cyber-attacks and improve operational reliability.

2. State of the art and related work

Researchers are exploring the integration of Federated Learning (FL) and blockchain

because it addresses critical challenges in privacy, security, and data integrity, particularly

in an era where data is increasingly decentralized and sensitive. Traditional machine

learning requires large amounts of centralized data, which can pose risks to privacy and

compliance with regulations like GDPR. FL enables training models without sharing raw

data, but it is still vulnerable to issues like data poisoning and trust concerns among

participants.

Blockchain’s decentralized, secure, and transparent nature makes it a natural complement

to FL. It ensures the integrity of model updates, prevents tampering, and provides an

auditable record of contributions. Additionally, blockchain allows the creation of smart

contracts and incentive mechanisms, motivating participants to contribute high-quality

data. This combination is particularly valuable in sensitive fields like healthcare, finance,

and industrial applications, where security, transparency, and privacy are paramount.

2.1 Blockchain-based Federated Learning approaches

H. Kim et al [23] have proposed a solution (BlockFL), where a blockchain network is

used instead of a central server to facilitate sharing of model updates from client devices.

The proposed consensus algorithm is based on Proof of Work (PoW). The blocks on the

network contain the model updates and miners are used to verify them and add them to

the network. The advantages include incentives for devices that contribute to the training

process with larger amounts of data, as well as solving the single point of failure in the

case of a central server outage. They also study the effects of a miner’s malfunction,

imposed energy constraints and number of participating devices in respect to end-to-end

latency and robustness. This work has been extended to offer rewards to valuable updates

with smart contracts, using a Cross-Sampled Validation-Error Scheme (CSVES) [33].

U. Majeed et al [24] have proposed a similar architecture (FLchain) that includes features

from Hyperledger Fabric and Ethereum, in which a separate fabric channel is used for

each global learning model. The global model state is calculated after each new block

generation. The suggested consensus algorithm is a modified version of Practical

Byzantine Fault Tolerance (pBFT) and Proof-of-Word (PoW). The main focus in this

solution is to improve auditability and governance.

D. Preuveneers et al [25] have implemented FL on a blockchain solution for intrusion

detection systems in computer networks, in order to explore auditability and

accountability. Their setup relies on a permissioned block-chained network, in order to

orchestrate machine learning models using FL. These models are then used to classify

traffic for Intrusion Detection. The non-repudiation property of the blockchain network

allows for enhanced accountability of contributing parties. The implementation is based

on MultiChain, an opensource blockchain platform. The calculated overhead of the

proposed solution in relation to traditional FL is estimated between 5%-15%.

More recently, similar research was performed by J. Weng et al [26] who implemented a

blockchain assisted FL that focuses on incentive mechanisms and auditability. The setup

is implemented on Corda V3.0 (a blockchain network sharing features of Bitcoin and

Ethereum) and uses a custom consensus protocol based on the work of Algorand [27].

The learning environment is based on TensorFlow and the results show how the training

accuracy increases with more participating parties.

Kang et al [28] have proposed a reputation-based approach that acts as an incentive

mechanism in a FL setup. A reputation blockchain network is utilized in order to store

weighting reputation opinions from recommenders. Based on these reputation weights

and contract theory, an incentive mechanism is designed in order to motivate high

reputation workers.

FedCoin [34] has been recently proposed by Liu et al, where a blockchain network is used

in order to offer incentives for miners that verify blocks on the network. Specifically, a

proprietary consensus protocol is developed based on Shapley Values, in order to promote

high quality data from participants, and provide incentives.

Although researchers are focusing on methods to offer incentives to participants [23],

[26], [28], [34], these are not calculated based on the actual value of model updates. The

work of I. Martinez et al. [33] calculates rewards based on the performance of

contributions, however the scheme used (CSVES) offers the same rewards to all users

that achieve a performance above a specific threshold. The solution proposed in this

paper, is able to adjust the size of the reward based on the improvement that it offers to

the joint global model and to our knowledge is unique.

The main contributions of this paper can be summarized as follows: a) It extends the

capabilities of our (previous) model update verification algorithm (presented in [35]) in

order to provide a metric proportional to the model update contribution and therefore

increase fairness in reward allocation. b) it described the mplementation of the

aforementioned verification algorithm in a simulation environment in order to verify

feasibility and provide baseline results, based on previous work regarding the

specifications of executing a FL process within a smart contract [36].

2.2 Benefits of using blockchain-based audit trails to generate secure PLC

commands.

In a recent study, researchers introduced BlockTrail as an innovative blockchain

architecture designed to address the space and time complexity challenges inherent in

traditional blockchain systems [37], [38]. They employed a hierarchical structure in

BlockTrail, utilizing the nature of transactions to partition the system into multiple layers

capable of processing transactions simultaneously. This architectural approach aimed to

reduce space overhead and accelerate the validation process by minimizing the number

of active replicas. The researchers also implemented additional security measures in

BlockTrail to strengthen defense capabilities and facilitate the detection of faulty replicas.

Researchers C. Regueiro et al [39] enhanced current audit trail solutions by developing a

Blockchain-based mechanism that prioritizes security and usability. They leveraged

Blockchain's intrinsic security features, including integrity, traceability, availability, and

non-repudiation, to ensure a high level of security in audit trails. To enhance usability,

they incorporated a Blockchain monitor, isolating users from the complexities of

Blockchain use. The resulting prototype contributes to more reliable, secure, and user-

friendly audit trails, with identified improvements over existing methods. The mechanism

is designed for general-purpose use, applicable across various ecosystems.

Authors S. Suzuki and J Murai [40] have proposed a scheme using blockchain technology

for applications requiring strict access control and auditing, such as medical record

queries. Traditional server-side logging is deemed insecure due to potential tampering,

leading to the proposal of a blockchain-based request-response channel for client-server

systems. A proof-of-concept system is implemented on a public blockchain testbed,

demonstrating the viability of using blockchain transactions as an auditable

communication channel. The authors suggest broad applicability, including shared key

delivery mechanisms, content encryption key delivery, and envision extending the

scheme to smart contracts for multi-party conditional schemes and access delegation in

healthcare systems.

Researchers W. Pourmajidi and A. Miranskyy [41] address the challenge of log tampering

in Cloud solutions by proposing a blockchain-based log system named Logchain. They

emphasize the critical nature of logs during incidents and propose immutability through

blockchain to ensure the integrity of log data. Logchain, as a Log Chain as a Service

(LCaaS), cryptographically seals logs and adds them to a hierarchical ledger, preventing

tampering and providing an immutable platform for log storage. The system aims to

establish trust among Cloud participants (providers and users) by offering verifiable logs

through a hierarchical ledger.

Factom, introduced in a whitepaper by P. Snow et al. [42], addresses the scarcity of trust

in the global economy by offering a precise, verifiable, and immutable audit trail,

reducing the need for blind trust and enhancing efficiency. Factom introduces a solution

by leveraging blockchains to lock in data, providing a distributed and independently

auditable mechanism. While Bitcoin's blockchain is a trusted immutable data store,

Factom extends blockchain technology to businesses without the complexities associated

with cryptocurrencies.

Recent work by P. Schmid et al. [43] addresses security and privacy issues in the Internet

of Things (IoT) networks, particularly focusing on Programmable Logic Controller (PLC)

systems. Acknowledging the potential of blockchain technology to enhance security,

resilience, and trustless authentication in IoT ecosystems, the paper proposes a novel

approach. The suggested model integrates a proof-of-work-based blockchain into the

PLC IoT ecosystem, facilitating the secure transmission and data logging of binary data

from PLC networks. This method aims to address issues like memory, tracing problems,

and resource efficiency. The authors highlight the security challenges of integrating

blockchain into IoT systems and suggest evaluating alternative consensus mechanisms,

managing storage requirements, and exploring integration with emerging technologies

like edge computing and machine learning for improved efficiency. They also emphasize

the importance of interoperability and standardization efforts for broader adoption.

Researchers A. Vick et al. [44] have explored the integration of blockchain technology,

specifically Solana, into Industrial Robot Control systems using a virtual PLC with OPC

UA interface. They propose a software gateway connecting Solana Blockchain Cluster

and OPC UA server, enabling data exchange between blockchain and industrial

equipment. The smart contract deployed on Solana implements control logic,

demonstrated by driving an Industrial Robot Handling Process in a laboratory setting.

Test results reveal varying runtimes for different steps, influenced by network latency and

transaction processing. The cost analysis shows acceptable expenses for implementing a

trusted third-party industrial robot control service on Solana. The blockchain ensures end-

to-end data security, allowing deployment of third-party control services as smart

contracts securely. Additional data security measures are recommended for

communication between the gateway client, shop-floor, and automation system operator,

especially when not in the same segment or location.

A recent study by S. Loss et al. [45] addresses the regulatory challenges faced by

pharmaceutical manufacturing in Brazil, particularly the requirements set by the National

Health Surveillance Agency (ANVISA) that mandates that pharmaceutical systems

ensure the integrity, security, and traceability of product information to safeguard

consumers. The paper proposes a blockchain-based microservice for audit trail

management, aiming to automatically record and secure all pharmaceutical system

operations, ensuring data immutability. A case study is presented, demonstrating the

applicability of the proposed microservice in pharmaceutical systems. The results indicate

the microservice's capability to handle 100 to 200 simultaneous users with good

throughput, making it suitable for small or medium-sized companies.

3. Design of Federated Learning Systems on blockchain

networks

During this part of the research, we introduced an algorithm that evaluates each model

update against a known verification dataset before it is aggregated into the global model.

The verification process does not rely on the size of the training dataset, which is often

unknown or can be falsified by adversaries. Using the MNIST dataset, simulations show

that the proposed algorithm effectively identifies and discards malicious updates. The

global model maintains high accuracy and convergence even with a significant

percentage of adversaries participating.

By using this approach, we show that the proposed scheme improves on the following

aspects:

• Ensures data integrity and reliability by leveraging the immutability and

traceability features of blockchain.

• Provides a decentralized and transparent method to secure FL processes,

eliminating the need for a trusted central server.

• Offers potential for incentive mechanisms using blockchain tokens to reward

participants for quality contributions.

3.1 Implementation of an algorithm to assess the quality of contributed

model updates

In this section, we propose an algorithm for FL, that can be incorporated in a blockchain

environment and run inside a smart contract, in order to facilitate the learning process and

provide protection against model poisoning. We are also presenting a high-level

description of the algorithm and results based on its implementation in open-source tools:

Keras and TensorFlow.

The steps involved in the operation of the algorithm are shown in Figure 4. As in the case

of traditional FL, the process starts with the initialization of the global model and its

relevant weights (with either random values or using proxy data). The global model is

then distributed to participating parties. Local training is performed on end devices

resulting in the generation of model updates in the form of weights. The coordinator upon

receiving the updates, evaluates each update separately against a known good validation

data set and records the accuracy. If the accuracy increases, the specific model update is

considered reliable. If the accuracy decreases, the update is discarded. A qualitative

measure for each update can be derived by measuring the distance between the global

model accuracy and the accuracy of the global model when averaged with the update.

Figure 4 - Steps involved in the proposed algorithm

The pseudocode in Algorithm 1 is a high-level overview of the implementation, based on

the FL algorithm and the use of stochastic gradient descent (SGD). During averaging, it

intentionally does not take into consideration the clients’ data sample size, since in real

use cases this would not be known by the server and could be easily falsified by an

adversary in order to maximize his effect on the global model. This approach does not

measure the quality of each update; instead it only measures if each update increases

accuracy in a Boolean logic. Further improvements could be made in order to measure

the quality and use this as a metric for an incentive or rewards mechanism.

3.1.1 Algorithm 1 – Discarding of unreliable model updates

Variables used in the algorithm:

• w0 the weights of the initial model

• λ the learning rate of the global model

• η the learning rate of the local model

• K contains all Clients

• Pk contains all data samples of client k

• B the local batch size

• GetAccuracy a function which returns the accuracy of the specified model

against the verification dataset

• 𝑟𝑡+1
𝑘 the received (candidate) update from end-device k to be used in the

next model update

• 𝑤𝑡+1 the weighted average of all verified updates.

procedure SERVER

 initialize w0

 for each round t = 1,2,… do

 for each client k in parallel do

 𝑟𝑡+1
𝑘 ← 𝐶𝑙𝑖𝑒𝑛𝑡𝑈𝑝𝑑𝑎𝑡𝑒(𝑤𝑡)

 if VerifyUpdate(𝑤𝑡,𝑟𝑡+1
𝑘) then

 𝑤𝑡+1
𝑘 = 𝑟𝑡+1

𝑘

 end if

 end for

 𝑤𝑡+1 = 𝜆𝑤𝑡 + (1 − 𝜆)∑
1

𝐾

𝐾
𝑘=1 𝑤𝑡+1

𝑘

 end for

end procedure

procedure ClientUpdate(𝑤𝑡)

 B ← split Pk to smaller sets

 for all b ∈ B do

 W←w-η∇f(𝑤𝑡,b)

 end for

 return W (computed weights obtained by minimizing loss function f(𝑤𝑡,b))

end procedure

procedure VerifyUpdate(𝑤𝑡,𝑟𝑡+1
𝑘)

 𝑝𝑡+1 = 𝜆𝑤𝑡 + (1 − 𝜆)𝑟𝑡+1
𝑘

 a = GetAccuracy(𝑝𝑡+1)

 b = GetAccuracy(𝑤𝑡)

 if a > b then

 return True

else

return False

end if

end procedure

Algorithm 1 - Discarding of unreliable model updates

The SERVER procedure initializes the module weights by either random numbers, or

created using proxy data. Then, for each round, it distributes the current model version

(wt) to all clients. After the local training process is finished, the individual candidate

model updates 𝑟𝑡+1𝑘 are retrieved and verified by the procedure VerifyUpdate. In the

simplest form, this procedure will return a Boolean value, depending on whether the

model update improved the overall model performance against a verification dataset. The

new model version 𝑤𝑡+1 is calculated by averaging all the model updates for which the

VerifyUpdate procedure returned True. The configurable parameter λ is used to specify

the learning rate, affecting the impact of the training round on the global model.

The ClientUpdate procedure is responsible for the local training process. First, the data

samples Pk are split into smaller batches of size B, which are then used to minimize a loss

function f. The reason for choosing a smaller batch size for training is because it speeds

up the training process significantly, especially when the end device is low powered such

as a mobile phone. The method of splitting a large sample size in smaller batch sizes for

training is known as Stochastic Gradient Descend (SGD)[6]. The configurable parameter

η, is used to specify the local learning rate, and affects the impact of the training process

on the specific model update.

The VerifyUpdate procedure is used to compare the performance of the current model 𝑤𝑡,

against the performance of the weighted average of 𝑤𝑡 with the candidate update 𝑟𝑡+1𝑘 . The

performance is evaluated against a verification dataset which is chosen before-hand, and

remains the same throughout all rounds.

The novelties of the proposed scheme are:

a) we propose an alternative way to evaluate the model updates, i.e. based on the accuracy

improvements they bring, which obviates the need to know the dataset size each device

possesses which can be falsified,

b) due to the execution of the logic in a smart contract, the logic cannot be compromised,

c) we exploit the traceability capacity of the blockchain to discourage malicious users

which could try to poison the model.

When implementing the algorithm inside a smart contract, the following should be

considered with respect to the blockchain framework:

a) the smart contract must be able to execute external tools, such as libraries used for

model evaluation,

b) all nodes must have access to the same verification dataset and

c) this dataset should be kept private from clients.

The above requirements suggest that a private permissioned blockchain network such as

Hyperledger Fabric is a better candidate.

3.1.2 Experimental setup and simulation results

The following simulation uses Tensorflow and Keras to measure the effectiveness of the

above algorithm. We perform FL using the popular MNIST database consisting of a

database of 60.000 handwritten digit images and 10.000 verification images and

corresponding labels. The model consists of an input layer (receives flattened images of

size 28x28), a fully connected layer, and an output layer of size 10 which is used as the

classifier. The optimizer selected is Adam[46], an adaptive learning rate algorithm that is

based on SGD with default base learning rate of 0.001. The simulation assumes 10

participating parties. In each simulation round, a (changing) subset of the nodes are honest

and the rest are adversaries. The training images are first split into 10 chunks which are

used by the 10 parties respectively. While both honest and adversaries train on their

corresponding training images, the honest use the correct training labels while the

adversaries use an altered label set. The labels in this malformed set were assigned to a

static number. The intention of the adversary in this scenario is to make the global model

always predict this number. During simulation, we experimented with additional

malformed label sets such as randomly chosen labels; however, the static number

approach was found to have greater negative impact on the model accuracy. Each

simulation runs for 10 rounds and each local training is performed over 1 epoch. After

each round, the model weights are averaged and distributed to the other parties.

Figure 5 - Performance with traditional FL algorithm in the presence of adversariesshows

the degradation of accuracy in this FL setup with varying percentage of adversaries when

individual updates are not verified (traditional FL). We notice degraded model

performance, both in terms of speed (training rounds) and convergence. Specifically,

when more than 10% of participants are adversaries, the model accuracy is below 90%,

with little or no convergence.

Figure 5 - Performance with traditional FL algorithm in the presence of adversaries

Figure 6 shows how the algorithm has correctly identified the falsified model updates and

the model accuracy is able to converge in the presence of 30% adversaries. During the

first 2 rounds, the difference in accuracy levels is noticeable and is attributed to the fact

that the model is trained with less data (since a considerable amount is discarded). The

situation is rectified with each successive round.

Figure 6 - Performance with model update protection in the presence of adversaries

3.2 Design of a Federated Learning process that is able to execute inside a

smart contract

3.2.1 Verification of contributions

The calculation of the next global model version in a FL process typically involves

averaging the model weights received from all contributions while also taking into

account the number of samples that each client possesses [47]. However, since training

in a FL process is performed at the edge, data is not transmitted and is not collected at a

central location. It is therefore challenging to assess the honesty of a user’s statement

regarding the amount of data used during the training process. An attacker may take

advantage of this inability, falsely report that he used large data samples, in order to

maximize his influence on the global model. It has been demonstrated that a known-good

verification data set (kept private from end users) along with a verification algorithm can

be used to evaluate individual model contributions, without relying on data sample size

numbers, thus providing a level of protection from the aforementioned type of attack [48].

Our proposed solution also uses the verification algorithm in the decision-making

process, depending on the incentive scheme used. In the simplest form, we can offer

rewards to users, whose contributions were able to pass the verification tests.

3.2.2 Overview of the learning process (Workflow)

Each training round comprises of three main processes. During the first process,

participating users request and receive the weights of the current model version. During

this step, the smart contract is invoked, which in turn queries the ledger for the relevant

data. It should be noted that the ledger is not altered at this stage.

After downloading the latest model version, the end-user is able to use it, as well as to

perform local training. The resulting gradients (in the form of model weights) are then

sent back to the blockchain network. During this step, a function of the smart contract is

invoked, which is responsible for the following tasks:

a) receives the gradients as an input from the end-user,

b) verifies the quality of the update by executing a model update verification algorithm,

c) depending on the results of the verification algorithm, either discard or save user

contributions on the ledger.

The last process in the FL workflow is to perform federated aggregation e.g. by averaging

all meaningful contributions stored in the ledger and use the result to create the next model

version. This process should be triggered to execute at pre-defined intervals depending

on the specific use-case e.g. when a certain contribution goal has been reached or when a

certain time has elapsed. If the training round is very short, there might not be enough

contributions to produce a model with significant improvements. On the other hand, if

the training round is very long, users will be delayed in downloading a better-performing

version of the model and as a consequence the learning performance will decrease. This

last process concludes the training round.

Possibilities for Rewards

After each training round is complete, it is possible to record the performance of each

user (in terms of useful contributions) in the ledger. During the training process, user

contributions are evaluated against a verification algorithm. The output of this verification

function can be used as a metric of users’ performance. In the simplest form, the

distributed ledger will store increments, that represent the number of successful

contributions (i.e. model updates that were deemed useful by the verification algorithm).

These scores can be perceived the same way as cryptocurrency tokens, in the sense that

they are stored on a secure medium, and can be exchanged for rewards. In a commercial

setting, the tokens can be exchanged with money in order to compensate the user for his

effort in performing local training and for supplying the FL process with useful model

updates. In other use cases, tokens could be exchanged for additional services e.g. access

to download and use supplementary Machine Learning (ML) models. Alternatively, the

lack of tokens could be perceived as an indication of misbehaving or unproductive users

and therefore potentially be used to prohibit them from further participating in the FL

process.

3.2.3 Smart Contract Functionality

This section discusses the functionality that should be implemented in the smart contract

as a minimum, in order to support the workflow discussed in the previous section.

The first function is responsible for enabling participating users to acquire the latest model

version, during the first phase of the training round. The function is defined as

GetLatestModelParameters(), queries the ledger and returns a multidimensional table of

weights corresponding to the latest model version. This function is invoked once by each

participating user. However, since only a simple query is performed against the ledger,

we expect that the computational requirements will be low.

Figure 7 below shows interactions between users, smart contract and the distributed

ledger during the early stages of the training round (download of model weights).

Figure 7 - Interactions between users, smart contract and the distributed ledger – Request of current model version

(model weights)

The second smart contract function SubmitModelWeights(weights) is required to

facilitate the functions of the second step of the training round (i.e. when a training round

is active). When executed, it will receive model updates from the user as an input (in the

form of weights), it will then run the verification algorithm, and finally store the

contributions to the ledger. We define “weights” in the function above as a

multidimensional table of the model weights, corresponding to an individual contribution.

This function is also invoked by the user, and can optionally return the contribution

assessment result which is derived by the verification algorithm. Two approaches are

considered for storing contributions to the ledger. The first approach involves only storing

successful contributions i.e. those that improve the accuracy of the model. Another option

is to store all contributions along with a metric (derived by the verification algorithm).

Depending on the specific use case, we may choose the first approach because it offers

performance benefits (since the ledger is being written less often), or the second method

which offers higher auditability. In both of these cases, it is anticipated that a moderate

amount of computational resources will be required, since the function is called by each

participating user, calls external CPU-intensive ML verification libraries, and is expected

to affect the state of the ledger.

Figure 8 below shows interactions between users, smart contract and the distributed

ledger during the submission of model updates from the users.

Figure 8 - Interactions between users, smart contract and the distributed ledger – Submission of model weights (user

contributions)

The last function CalculateNextModelVersion() is required in order to create the next

model version and by doing so, end the current training round. Unlike the previous two

functions, it is not invoked by an end user. For this reason, an external trigger should be

created as discussed in the previous section. The next model version is created by

performing federated averaging among contributions saved in the ledger. The resulted

multidimensional matrix is stored in the ledger in order for it to be used during the next

training round. Although this function writes to the ledger, it is called only once every

training round. Along with the fact that it uses simple mathematical matrix calculations,

it is not anticipated to require many computational resources.

Figure 9 below illustrates the interaction between the smart contract and the distributed

ledger during the creation of the next model version.

Figure 9 - Interactions between smart contract and the distributed ledger for the creation of the next model version

(end of training round)

Table 1 below summarizes the characteristics of the smart contract functions, which are

used to predict resources requirements. TR denotes the Training Round.

Resources Requirements for Functions

Function

Attributes

Execution

Frequency

Alters the

ledger

Anticipation of

resources required

GetLatestModelParameters

once per user

per TR*
NO LOW

SubmitModelWeights
once per user

per TR*
YES HIGH

CalculateNextModelVersion once per TR* YES LOW

*Training Round

Table 1 - Resources Requirements for Functions

3.2.4 Distributed Ledger operations and data structure

The proposed architectural diagram is based on the concept of key-value pair databases.

Such type is used as a state database by HyperLedger Fabric (HLF). Smart contract

operations are used to read or write to the current state of the database. Each ledger

transaction will either create, update or delete (and therefore modify) key-value pairs in

the ledger. However, since HLF belongs to the blockchain family, an immutable sequence

of blocks contains all transactions that have affected the current state of the database. The

copy of the ledger is propagated to all network members.

Figure 10 - Operations that access/modify the distributed ledger

Table 2 below summarizes the key-value pairs that will be required as a minimum for the

operation of the FL process as well as for recording rewards. The key “identity” below

refers to array values. For example, we will provision one key-value pair of ModelUpdate

and Reward variables for each participating user.

Key Value

ModelWeights
Multidimensional matrix containing weights for current model

version

ModelUpdate(identity)
Multidimensional matrix containing weights (one for each

[identity])

Reward(identity)
Value proportional to quantity/quality of user contribution

(one for each [identity])

Table 2 - Key-value pairs for the FL process

3.3 Improving Security and Fairness in Federated Learning Systems

3.3.1 The rewarding algorithm

Building upon previous work [35], [36], we design a rewarding algorithm in order to

provide incentives and therefore promote participants with higher quality data. Although

our motivation is in line with related work analyzed in section II, we approach this directly

from the standpoint of a smart contract so that consensus will be required among multiple

nodes. The benefits are twofold: first, the security aspect of the verification algorithm is

enforced by all blockchain nodes and trust of the verification algorithm decision is

enhanced due to the distributed nature of the architecture. In more detail, we anticipate

that the proposed solution will offer advantages in the following areas:

Security enhancements: It is possible that a threat actor may be actively pursuing to

degrade the performance of the global model, by either training with malformed data, or

transmitting malicious model updates. The solution proposed assumes that a known-good

verification dataset is readily available on each blockchain node. Then, we can compute

the effectiveness of each model update in terms of accuracy against the verification

dataset and conclude weather the individual contribution should be taken into account.

We demonstrate that the approach is highly effective against label-flipping attacks, and

we intend to assess its performance against other types of attacks (such as backdoor-based

attacks or data-poisoning).

Reward calculation on multiple nodes: We propose that the reward calculation is executed

inside a smart contact. These will, depending on the blockchain solution used, most likely

be run on multiple nodes which will need to reach consensus regarding the reward

calculation. Since the rewards will represent the effort of each individual in a FL system,

and in some use-cases might be exchanged for money or other services, it is imperative

for a user to rest assured that no single network node can alter the ledger where the

rewards are kept (either intentionally or due to an error).

Rewards proportional to quality of contributions: Since the parameter server in FL

does not have access to the actual data, there is no practical and secure way to acquire or

assess the dataset size. In real use cases we cannot assume that a user is honest and will

provide the server with a number representing the real amount of data owned, as assumed

in other works. Moreover, larger training datasets do not necessarily lead to better models.

Instead, we measure the efficiency of each model update by comparing the accuracy of

the resulting model against a verification dataset which is used for reference, in order to

measure the improvement of the global model performance. The main objective of the

rewarding algorithm is to offer fair rewards to participating entities of FL, i.e., analogous

to the quality of their model updates.

Principle of Operation

The steps in the federation process and the operation of the algorithm are outlined in

Figure 11. The training is performed in rounds. At the beginning of each training round,

the current model weights are distributed among all participants. As a result, the

participants are able to use the model and perform training using locally available data.

During a predefined time, participants are expected to share the derived model weights

with the blockchain network.

Figure 11 - Rewarding algorithm, principle of operation

At this stage, all model updates are verified individually in order to calculate rewards.

The main steps involved in the process are

a) the model weights are fused with the global model weights,

b) the derived model weights are evaluated against a verification data set and the

difference of accuracy is recorded for reward calculation,

c) if the accuracy increases, the specific model update is saved, otherwise it is discarded.

Saved contributions are used during global averaging, a process that prepares the model

weights for the next global model version which in turn is redistributed in the next training

round. This process is repeated for all subsequent training rounds, until a predefined

condition is met (e.g., a number of training rounds has elapsed, or the global model

accuracy is above a threshold). At the end of the learning process, the metrics stored for

each user are normalized, in order to aid reward allocation.

The Algorithm 1 (shown in the sequel) depicts a high-level representation of the FL

process using stochastic gradient descent (SGD). Before the training rounds start, the

global model weights w0 as well as the table holding user rewards R, are initialized.

During each training round t, the current model weights wt are distributed to all

participating users k, that perform local training, resulting in individual model updates

𝑟𝑡+1
𝑘 . By using a learning rate λ, the individual model weights are averaged with the global

model, and form temporary model weights 𝑝𝑡+1. The accuracy of this temporary model

is evaluated (using AccImp) against the accuracy of the global model wt and the difference

is integrated in table R. Federated Averaging (FedAvg) is then performed, and the model

weights 𝑤𝑡+1 = are prepared for the next training round. Once all training rounds are

completed, the rewards table R is normalized.

Algorithm 2 - Reward Calculation inside the FL process

w0 is the initialized model weights, λ is the learning rate of the global model, η is the

learning rate of the local model, K contains all Clients, Pk contains all data samples of

user k, Rk holds reward points for user k, B is the local batch size and GetAccuracy is a

function which returns the accuracy of the specified model against the verification dataset.

procedure Server

initialize w0

initialize R

for each round t = 1,2,… do

 for each client k in parallel do

 𝑟𝑡+1
𝑘 ← 𝐶𝑙𝑖𝑒𝑛𝑡𝑈𝑝𝑑𝑎𝑡𝑒(𝑤𝑡)

 𝑅𝑡+1
𝑘 = AccImp(𝑤𝑡,𝑟𝑡+1

𝑘)

 If 𝑅𝑡+1
𝑘 > 0 then

 𝑤𝑡+1
𝑘 = 𝑟𝑡+1

𝑘

 end if

 𝑅𝑘 = 𝑅𝑘 + 𝑅𝑡+1
𝑘

 end for

𝑤𝑡+1 = 𝜆𝑤𝑡 + (1 − 𝜆)∑
1

𝐾

𝐾

𝑘=1

𝑤𝑡+1
𝑘

end for

normalize(R)

end procedure

procedure ClientUpdate(w)

 B ← split Pk to smaller sets

 for all b ∈ B do

 W←w-η∇f(w,b)

 end for

 return W

end procedure

procedure AccImp(𝑤𝑡,𝑟𝑡+1
𝑘)

 𝑝𝑡+1 = 𝜆𝑤𝑡 + (1 − 𝜆)𝑟𝑡+1
𝑘

 a = GetAccuracy(𝑝𝑡+1)

 b = GetAccuracy(𝑤𝑡)

return a-b

end procedure

Algorithm 2 - Reward Calculation inside the FL process

Normalization is performed in order to differentiate between user contributions. During

training, it is possible that the reward points collected by a user is a negative value. This

occurs when the submitted model updates were determined to affect the global model in

a negative way. For testing purposes, negative values are first zeroed out. Then, the

following formula is used on all values:

𝑥𝑛𝑜𝑟𝑚 =
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛

3.3.2 Smart contract specifications

In the blockchain part of the proposed solution, the users could either be user owned

devices (such as mobile phones), machines operating autonomously (for example in

industries), or data providers meaning that these could be organizations that are willing

to make use of their data in order to assist the training process. The blockchain network

further comprises of the smart contract and distributed ledger.

Figure 12 - Blockchain FL, relationships between users, the smart contract and the distributed ledger

Furthermore, Figure 12 depicts in further detail the relationships between users, the smart

contract and the distributed ledger, in order to implement the three main processes that

occur in a training round when FL is executed inside a blockchain solution. In order to

support these main processes, the following three smart contract functions have been

considered accordingly. When describing the smart contract functions below as well as

the structure of the distributed ledger, we might use some terminology specific to

HyperLedger Fabric (opensource private blockchain solution). However, these are

included for completeness and should be substituted if implemented on different

blockchain technologies.

The first function enables users to asynchronously ask for and retrieve the current model

version. Upon being triggered by the user, the function GetLatestModelParameters()

queries the distributed ledger for the weights of the current model version which are in

turn returned to the user. It is expected that this function will be executed once for every

participating user. Since only a query operation is performed against the distributed

ledger, the operation is not expected to require many resources.

The next function is responsible for evaluating and storing verified model updates. The

function SubmitModelWeights() is once again triggered by the user, as soon as local

training is complete. The smart contract at this point invokes the verification algorithm

and receives the result. Depending on the result, the smart contract will need to either

store the individual contribution to the ledger or discard it. Failed contributions can also

be recorded in the ledger, even if they are not used in the next model version, for use

cases requiring increased auditability and accountability. This will, however, incur

performance costs, as changes made to the ledger will need to be propagated and agreed

upon all network nodes.

The last function is required in order to end the training round and prepare the model

weights for the next round. Rather than being triggered by a user, the function

CalculateNextModelVersion() is triggered by an event. Events are predefined criteria

such as when a certain number of contributions is reached, or a predefined time has

elapsed or a combination of the two conditions. When the function is triggered, the ledger

is queried, and all useful contributions are retrieved. Federated Averaging [49] is then

performed and the resulting weights are stored in the distributed ledger. The process of

federated averaging is executed once per training round, and therefore it is not anticipated

that it will induce a large overhead.

In order to support the aforementioned functionality, some values need to be stored in the

ledger. For this reason, we assume a key-value pair database which is common in many

private and public blockchain network solutions and we describe its structure. In this type

of database, each value is referred to by a unique key (Figure 13). The first key value pair

is required in order to store the weights of the current model version. It is a multi-

dimensional array, is preset before the first training round starts, and is updated at the end

of each training round. Specifically, it is referenced by the GetLatestModelParameters()

function and updated when CalculateNextModelVersion() is invoked.

Another key value pair is defined in order to store contributions from participants. Since

the number of received contributions is dynamic, we define it as an array. This array does

not need to be persistent across training rounds. It can either be deleted or preserved

according to specific use case requirement. In order to calculate user ratings, we need

another array which will keep a count of all contributions per user or a value that is

proportional to the quality of each user’s contributions. This key can be used in order to

offer rewards, e.g., in the form of tokens to be exchanged for services.

Figure 13- Distributed Ledger operations

For some use cases, it might be desirable to limit access to individual functions

beforehand, so only specific users have access. This will most likely increase security and

can apply to both private and public blockchain technologies. However, this implies that

a central administrating authority will be required in order to select the identities that are

able to participate. The following authorization levels are supported:

• No Access – The user is not able to access any smart contract function, and

therefore cannot use the global model nor participate with model updates.

• Model use only – The user is granted access to GetLatestModelParameters()

function, but is denied access to SubmitModelWeights(). Therefore, he is able to

download the weight of the current model version and use it offline. It is not

possible for the user to contribute with model updates.

• Full Access – Access is allowed to all functions and therefore the user is able to

use and improve the shared global mode.

It is also possible for the authorizations to be assigned dynamically depending on varying

attributes. One of these could be user performance. In this scenario, the verification

algorithm may be used in order to keep count of the contributions of each user thereby

creating a rating. Subsequently, the rating can be used in order to maintain access to the

global shared model. For instance, a user may initially have full access, but because he

has not participated in the last predefined number of training rounds, he may have his

access revoked. As a consequence, he will lose access to new versions of the global

model. In other words, this can support use cases where a user is permitted to use the

global model as long as he makes meaningful contributions. In a commercial

environment, access can be granted on a subscription basis in exchange for money.

3.3.3 Testbed

This section includes a description of the tools used for simulating the FL process and

collecting measurements. In order to simulate the FL process, we developed scripts in

Python and made use of opensource frameworks and libraries such as TensorFlow and

Keras, as well as publicly available reference datasets from the MNIST database. Before

the process starts, the model is setup using the opensource Keras libraries with random

values. Model initialization needs to be performed only once, before the first training

round, however, the next steps described here are repeated for each subsequent training

round. The MNIST database consists of 70,000 images of handwritten digits. The images

are 28 by 28 pixels in size and are grayscale. The images belong to 10 classes representing

the ten number 0-9 and the set is usually divided into smaller sets for training and

validating. This database is publicly available and used by machine learning developers

and researchers in order to record baseline performance.

The developed scripts simulate the FL process and are used to collect the measurements

presented in this paper. They also handle necessary functions such as model initialization,

DISTRIBUTED LEDGER STRUCTURE

Key Value

ModelWeights Multidimensional matrix containing weights for

current model version

ModelUpdate(identity) Multidimensional matrix containing weights (one for

each [identity])

Reward(identity) Value proportional to quantity/quality of user

contribution (one for each [identity])

Table 3 - Distributed Ledger Structure

model training and the model update aggregation. The model used throughout this paper

is initialized using Keras, has an input layer of 28x28 in order to receive the handwritten

digit images, a dense layer of size 128 with ReLU (rectified linear unit) activation and an

output layer of size 10, used as the classifier.

We first concentrate on the defense against the malicious nodes. For this reason, during

this specific simulation, a FL process (against the MNIST database) was first run for a

duration of 10 training rounds and a varying percentage of malicious participants

(following similar strategies applied in other contexts [50]. Figure 14 and Figure 15 show

how the global model performs in the presence malicious participants when protections

is disabled and enabled respectively. Not surprisingly, when malicious updates are taken

into account during model aggregation (Figure 14), the rate of accuracy improvement

decreases. Most importantly, in the presence of 20% or more adversarial activity, the

model accuracy is not able to converge. This can be attributed to the fact that in label-

flipping attacks, the attacker is actively training the model with incorrect labels i.e.,

aiming to change the direction of the global model predictions.

Figure 14 - Performance with traditional FL algorithm in the presence of adversaries

When the verification algorithm is configured to discard useless model updates (Figure

15) we can observe that it is able to differentiate between useful/harmful model updates

and offer a substantial protection against this type of attack.

Figure 15 - Performance with model update protection in the presence of adversaries.

Then, we turn our attention of the evaluation of rewards analogous to the model

improvement brought by each entity. A simulation of Algorithm 2 has been run using the

tools described earlier in this section. In this particular setup, 10 participants participate

in the FL process which lasts for 10 training rounds. For training and validation data, we

use the popular MNIST database of handwritten images. The training data is further split

into smaller chunks, which are allocated to the participants. In order to simulate varying

levels of data quality, we create distorted images for training data (Figure 16). Participant

1 receives unmodified training images, whereas participants 2-7 receive images with

varying levels of gaussian noise. The variance of the noise ranges between 0.45 and 1.2

and a mean of 0. Participants 8-10 perform label-flipping attack and are actively trying to

degrade the performance of the model.

Figure 16 - Training images with gaussian noise applied

Figure 17 depicts the difference in accuracy between the evaluation model (temporary

model 𝑝𝑡+1 in Algorithm 2) and the global model i.e., the result of function AccImp. Even

in this simulation with mixed types of participants, the accuracy of the resulting model is

still able to reach more that 90% accuracy. In the graph, we can distinguish two different

trends. The higher ones show the performance of the honest participants, while the lower

ones (overlapping each other) show the performance of the threat actors (participants 8-

10).

Figure 17 - Difference in accuracy of each contribution

In more detail, we can also extract the following information:

We can observe that the accuracy gains (in terms of accuracy difference against the

validation dataset) is high for participants 1-7 during the first training rounds and tend to

level off during the end. This curve matches the inverse typical curve of machine learning,

i.e., accuracy gains are higher when a machine learning model is untrained and tend to

decrease when the performance of the model is higher.

Even participants that used very noisy data (such as 6 and 7), contribute positively to the

FL process as evident by the high performance shown in the figure during at least the first

4 rounds. In further rounds, and as the model has become more mature, the model updates

of the least performing participants (e.g., participants 6-7) become redundant, the

accuracy improvement becomes negative (in terms of the AccImp function) and, as a

consequence, are discarded during model aggregation.

Participants with the healthiest data (such as participants 1-2), contributed positively until

the last training round. Their contributions improved the accuracy of the global model in

respect to the verification dataset, which was correctly identified by the verification

algorithm (AccImp function returned positive numbers) and as a consequence all model

updates of these participants were used during model aggregation.

Participants 8-10 on the other hand only have zero and negative values. This is attributed

to the fact that their model updates test badly against the verification set. So as the global

model accuracy improves, the difference in accuracy (AccImp function) becomes

negative.

The performance difference between participants 1-7 is not readily distinguishable in the

above figure. For this precise reason, we need to perform normalization of all values when

the training process is finished.

Figure 18 depicts the points accumulated by each participant, after the values have been

normalized on a scale of 0-1. The best performing participant (participant 1) is awarded

the highest value 1, while the worst performing participant (participant 7) is assigned the

lowest value 0. Participants 2-6 have values in-between, proportional to their

contribution. What is interesting here, is that these results correctly correlate to the

quality of the training data used. Conveniently, adversaries have been correctly identified

(result of AccImp function is negative) and have received no rewards. The malicious

model updates were not used during the generation of the global model since this would

require the satisfaction of the condition (𝑅𝑡+1𝑘 > 0). Such a fair reward scheme is necessary

both for consumer owned devices and industrial organizations owned devices where the

current challenge is to collaboratively train digital twin models of the industrial processes

(as discussed in [51]).

Figure 18 - Normalized values, used for rewards

The initial results demonstrate the effectiveness of the blockchain-based scheme in

protecting against model poisoning. Future work includes extensive testing and

implementation in open-source blockchain platforms, as well as exploring reward

mechanisms based on the quality of contributions.

4. PLCBlox, a blockchain based secure source of commands for

PLC devices

Motivated by the fact that industrial applications (machines and processes) generate large

amount of data which are potentially valuable for training ML models, the research

focused on ways to interconnect these with blockchain assisted FL processes such as those

described in chapter 3. It quickly became apparent that an interface would need to be

developed in order to allow communication between industrial devices and blockchain

networks.

This section introduces PLCBlox, a novel integration of Programmable Logic Controllers

(PLCs) with blockchain technology aimed at enhancing security and audit trail

capabilities in industrial applications. It begins by contextualizing the roles of SCADA

systems, HMI devices, and PLCs in Industry 4.0, emphasizing their critical functions in

data aggregation, operator interaction, and real-time control. Security challenges,

including the historical Stuxnet worm incident, underscore the vulnerabilities of legacy

SCADA and PLC systems, necessitating robust cybersecurity measures.

The proposed PLCBlox scheme innovates by leveraging blockchain networks as secure

audit trail databases. Blockchain's immutability and cryptographic security make it ideal

for recording and verifying transactional data, ensuring compliance with regulatory

standards such as FDA's 21 CFR Part 11. Key benefits outlined include enhanced data

integrity, traceability, and resistance to tampering, which are crucial for industries like

pharmaceuticals and biotechnology.

PLCBlox operates by enabling PLCs to interact directly with blockchain nodes via smart

contracts. This approach decentralizes user authentication and authorization, traditionally

managed by SCADA systems, to enhance security. The integration ensures that all

changes to PLC parameters and commands are logged immutably on the blockchain,

forming a transparent and auditable record.

The research outlines a prototype implementation using Siemens PLCs and an Ethereum-

based blockchain network (Ganache), demonstrating feasibility and performance metrics.

It addresses resource constraints of PLC devices and evaluates latency and throughput in

a simulated industrial environment. Results indicate that PLCBlox effectively minimizes

attack surfaces and operational risks associated with traditional SCADA architectures,

providing a foundation for further research and development.

We believe that PLCBlox represents a significant advancement in industrial

cybersecurity, offering enhanced security, auditability, and compliance capabilities

through blockchain integration.

4.1 Principle of operation

The solution presented in this section builds upon the related work presented in the

previous section in order to enable PLC devices to query blockchain-based audit trail

database as a source for parameters and commands. This approach offers improvements

to typical HMI and SCADA applications and to our knowledge has not been already

researched.

For reading and displaying process data (information flow from CPU to HMI) the

procedure remains unchanged i.e., the CPU is read by the HMI device using vendor

specific libraries. In order to update values (parameters or commands) in the CPU area,

the user (operator) must first commit a transaction on the blockchain network using his

wallet. The CPU asynchronously queries a blockchain node for sets of parameters and

setpoints. When changes are identified, they are applied inside the device user memory.

The complete workflow is depicted in Figure 19 below.

Figure 19 - Flow of information within PLCBlox

In contrary to traditional HMI systems, the user authentication and

authorization tasks are now coordinated by the blockchain network, the smart

contract and the user’s wallet. Moreover, by leveraging the underlying

technology of blockchain, the aspects of the audit trail database are self-

contained in the smart contract’s storage area. These concepts are summarized

in Table 4.

Function Typical Architecures PLCBlox

User Authentication

Local Windows Accounts,

Domain Controller Accounts,

Accounts configured in SCADA

application

User’s wallet

User Authorization

Local Windows Groups, Domain

Controller Groups, Groups configured

in SCADA application

Smart contract

Audit logs Audit trail database Blockchain

Source of device

(PLC) commands and

setpoints

Commands and setpoints/parameters

are sent from the SCADA/HMI

application to the PLC.

The PLC device

queries the

blockchain for

commands and new

setpoints/parameters.

Required permissions

on PLC device
Read/Write Read only

 Table 4 - Key differences between typical industrial application architectures and PLCBlox

Improvements

In addition to improvements in terms of scalability and secure audit logs already

demonstrated by researchers in the related work section, PLCBlox by itself offers

advantages in the following areas:

Security improvements on the PLC device

PLCBlox does not require write access to the PLC device. Updates of command statuses

and setpoints are initiated by the PLC device during the querying operation of the

blockchain node. It is therefore possible to completely disable write access at the device

level. This fact alone leads to a smaller attack surface and renders many known and zero-

day attacks unusable [21], [52].

Security improvements at the application layer (SCADA/HMI)

An attack on the device hosting the user application could circumvent the user

authentication and authorization checks, allowing anyone to control the end device. Even

further, a malicious threat actor could use the compromised operating system as an attack

vector, bypass the SCADA software entirely and use vendor specific libraries to

communicate with the end device directly as in the case of the Stuxnet worm [21]. With

PLCBlox, the SCADA/HMI application is not able to control the PLC directly due to the

fact that write access has been disabled. Any compromise of its software components

would not affect the behavior of the PLC. Moreover, the authentication and authorization

tasks are now coordinated by the blockchain network which is an inherently more secure

platform.

Audit trail enforcement

A compromised or malfunctioning SCADA system could be altered in a way that all

components are functional except the audit trail logging aspects. In such a scenario a

malicious user (e.g., rogue employee) would be able to execute commands and alter

setpoints without his actions being recorded. With PLCBlox, any attempt to bypass the

audit trail would prove meaningless as it is the only source for command and setpoint

updates.

4.2 Prototype implementation

PLC devices are considered unsuitable for performing higher-level tasks such as

blockchain transactions due to their limited resources. Their work memory (equivalent to

RAM in computers) ranges from a few Kbytes to 32Mbytes for very large systems and

code storage is usually also limited. The process of querying a blockchain node does not

have high computational requirements such as those associated with the creation of signed

transactions. Instead, predefined Application Programming Interface (API) calls are used

such as those in the form of JSON-RPC documented for the Ethereum network1. Due to

the resource limitations of PLC devices, a prototype implementation was necessary to

first verify the feasibility of the solution, as well as to record real-world performance

indicators and to provide the base for further development.

The complete design of PLCBlox solution consists of four elements, namely, the PLC

application, an Ethereum private blockchain network, a smart contract and an Ethereum

compatible wallet. A complete list of hardware and software tools used for the

development and execution of PLCBlox implementation is summarized in the following

table (Table 5).

1 Ethereum JSON-RPC API - https://ethereum.org/en/developers/docs/apis/json-rpc/

Component Tools

Development of PLC demo

application and reference blockchain

node client

Siemens TIA Portal V18 (Development

IDE for Siemens PLC devices)

PLC device Siemens S7-1511-1PN

HMI Device for acquiring results
HMI TP900 Comfort Panel (Simulated

HMI panel)

Blockchain Network
Ganache private Ethereum blockchain

environment

Authentication Metamask Ethereum Wallet

Ethereum Smart Contract
Remix IDE (Solidity programming

language)

Table 5 - List of hardware and software tools

PLC Application

The PLC application code incorporates a recently developed library designed for

interfacing with the Ethereum node. Additionally, it includes a demo application that

serves as an illustrative example of a streamlined industrial process, along with

supplementary code employed for gathering performance indicators. The Ethereum

interface library employs essential functions for executing HTTP API requests and

implements the Ethereum "eth_call" client-side JSON API.

The demo application presupposes that the PLC device oversees the control of a machine,

necessitating one temperature setpoint and one command to configure the operation

mode. Consequently, it is imperative to retrieve the following two variables from the

smart contract:

OperationMode: This variable signals the intended operational state of the machine.

Temperature: This variable represents the setpoint for the desired process temperature.

Smart Contract

The smart contract runs on the blockchain network and interfaces with the PLC device

through the blockchain node. It processes users’ requests for updating process parameters

which are received in the form of transactions. It needs to also support the authentication

and authorization functionality which would otherwise be handled by the SCADA device.

Authentication and Authorization

To showcase the authorization capabilities of PLCBlox, the smart contract incorporates

distinct authorization levels outlined as follows:

Administrator: By default, this role is assigned to the user that is deploying the smart

contract. This user is able to assign other users to roles but cannot modify any other

variables.

User: Users are restricted to modifying the machine's 'operationMode' variable

exclusively.

SuperUser: A super-user has the capability to alter both variables, namely

'operationMode' and 'Temperature'.

The smart contract employs three variables (admin, user, superuser) to store the public

addresses of users corresponding to their designated roles. Authentication relies on the

inherent functionality of the blockchain network and the user's wallet. New requests reach

the smart contract in the form of transactions which are signed with the user's wallet,

utilizing the associated private key. The smart contract then verifies these transactions

against known public keys, permitting functions to execute in accordance with the

specified authorization level.

Functions

The smart contract provides the following functions to facilitate interaction with the PLC

and enable user interactions:

ChangeUser and ChangeSuperUser: These functions are invoked by the admin to assign

user and super-user permissions, respectively. The blockchain network address of a new

user is passed in the function parameters.

SetTemperature: Super users utilize this function to modify temperature setpoints. The

new setpoint value is passed as the function parameter.

SwitchON and SwitchOFF: Users or super users can call these functions to modify the

desired operation mode.

Project Repository

In order to lay the ground for further research and development, all components of

PLCBlox have been uploaded to GitHub2, namely:

2 PLCBlox GitHub repository - https://github.com/andshort/PLCBlox

Controller-side code including opensource communication libraries, the newly developed

Ethereum client-side RPC library and the demo process application

Smart Contract source code (bloxtrail.sol)

4.3 Measurements

Developing the prototype implementation has been a vital phase of the research, serving

as a testing ground to evaluate feasibility, performance and to record resources consumed.

The complete solution, has been successful in verifying the complete feature set shown

in Table 4, namely user authentication, authorization, the usage of the blockchain network

as an audit trail database, as well as the interface between a PLC device with an Ethereum

node. Most importantly, it demonstrates that a set of setpoints and commands can be

updated without requiring direct access to the controller.

As discussed earlier, PLC devices are limited in resources. The most important metrics

are the size of the actual code as well as the size of work memory. Work memory is the

equivalent of RAM in computers but is a fraction of the size. The specific controller used

in the implementation has 300kb of work memory. Although the source code storage can

be extended by means of an SD card, the work memory cannot. The prototype

implementation including all necessary libraries consumes 260kb of storage, as well as

14,5kb of work memory (5% of available).

Regarding the performance and in order for the results to better reflect real-world

conditions, the CPU and blockchain network (Ganache) were located in separate locations

and were connected through the in-ternet across a link with a moderate network latency

of 12ms. Additionally, the Ethereum node calls were configured to run in a loop so as one

call finishes, the next one starts immediately. Each call duration is measured by the CPU

and an HMI device was configured to display the results. An example of 100

measurement points is shown in Figure 20. Each measurement point reflects the duration

of the Ethereum node call and is calculated when the call is finished. In summary, each

call completed within a time-frame of 17-28ms with a mean value of 22ms. Subtracting

the baseline network latency (12ms with no network load), we can attribute an average

cycle duration of 10ms to CPU computation and delays in the Ethereum network protocol.

Figure 20 - Latency metrics over a period of 100 measurement points

 The resource utilization figures and performance indicators are summarized in Table 6

bellow. The list focuses primarily on the PLC device, as this would act as the bottleneck

performance-wise.

Metric Value

PLC code size on PLC Device 260kb

Work memory (RAM) 14,5kb

Cycle duration (Request to response,

end to end)
22ms

Throughput (calculated) 45requests/sec
Table 6 - Utilization figures and performance indicators

Discussion

The innovative approach presented in this research has shown that modern PLC devices

are able to interface with common blockchain nodes, opening new possibilities for added

functionality and security improvements. Furthermore, it is demonstrated how PLCBlox

can take advantage of the intrinsic tamperproof characteristics of an Ethereum network

in order to facilitate the storage of audit trail records.

Security and policy enforcement (Audit trail logs)

Authentication and authorization tasks are now handled by the user’s wallet and the smart

contract respectively. These two components coupled with the underlying blockchain

network operation offer higher security standards which have been proven by their use in

the finance sector, especially when taking into account the security issues that exist in

typical industrial deployments.

Furthermore, by requiring less access permissions on the PLC device (Read only), it is

impossible for an outside process to intentionally or unintentionally alter its data, in effect

eliminating an attack surface that has been exploited over the years. Even further, due to

the design, a compromised SCADA system would not be able to adversely impact the

running process. Security requirements of these systems can therefore be relaxed.

The enforcement of the audit trail records, typically handled by the SCADA software on

the end device, is now part of the system design. Moreover, there is no meaningful way

to circumvent them, providing value to industries that require such policies.

Resource overhead and performance

It should be noted that the performance figures collected in the previous section reflect a

mostly ideal setup due to the usage of a local Ethereum network node installation and the

stable network connectivity. The authors argue that this setup more closely resembles

typical deployments in industries that use on-premises audit trail database servers.

Moreover, the small delay overhead imposed by the newly developed communication

cycle should not be a concern for most industrial applications. At the same time,

PLCBlox’s small PLC code footprint and RAM requirements leaves most of its resources

available for the operation of the main application.

Concerns when running PLCBlox on a pubilc blockchain network

While the solution is expected to function on public blockchain networks that share a

similar RPC communications interface (such as the Ethereum Mainnet), one would need

to consider the following factors:

a) longer network delays attributed to both network latency as well as the fact that the

blockchain node is simultaneously catering to a wider audience,

b) reduced reliability due to the reliance on stable internet connectivity,

c) costs incurred during the deployment of the smart contract and the creation of

transactions (as would be the case when inserting audit trail entries) and

d) privacy concerns arising from the fact that sensitive process information (process

values, employee names or ids, justification of user actions) would be stored on a public

medium.

For the reasons stated above, the use of PLCBlox in conjunction with public blockchain

networks would not meet the requirements of most industrial use cases and has therefore

not been examined in this research.

5. Conclusions and future work

The thesis successfully developed a framework for integrating FL with blockchain

technology, demonstrating how blockchain can coordinate secure and transparent model

training and data sharing across multiple entities. The implementation of smart contracts

to manage FL processes, including data contribution, model aggregation, and reward

distribution, proved effective in ensuring fairness and transparency. It designed and

implemented effective incentive mechanisms, such as token rewards and reputation

systems, to encourage high-quality data contributions in FL systems.

The research identified several industrial applications where the integration of DLT and

ML can provide substantial improvements. Prototypes developed for use cases such as

auditing showed that these technologies could significantly enhance operational

efficiency and security. The practical benefits observed in these applications validate the

potential of DLT and ML integration in real-world industrial scenarios. The study

demonstrated that blockchain technology could enhance the security and functionality of

programmable logic controllers (PLCs). By developing blockchain-based audit trails and

command systems, the research reduced the vulnerability of PLCs to cyber-attacks and

improved their operational reliability. This contribution is particularly valuable for

industries relying on PLCs for critical operations.

5.1 Federated Learning process coordinated by a blockchain network
rewarding capabilities

In the beginning of the research, we have examined the current work related to the use of

Blockchain Technologies in the field of FL and we have identified a potential for

blockchain technology to improve security of the FL process. We later on proposed an

algorithm that is able to run inside a smart contract of a blockchain network. In contrast

to the techniques currently available, where researchers relied on the use of data sample

size[23],[26] or reputation[28] as a quality metric, our solution measures the accuracy of

the model update directly. In this way, we do not need to assume that participants of the

FL process are honest. The first results show that the algorithm provides a high level of

protection against model poisoning attacks. We anticipate that results obtained can be

considered as a baseline when implementing the algorithm on various blockchain

technologies and that the algorithm can be extended in order to offer rewards on a

blockchain network, relative to the quality of each contribution.

We lated build the specifications of a blockchain network and associated smart contracts

that would allow a private blockchain network to be used in a unique way in order to

support a FL process. We showed how it improves trust and security by running a

verification algorithm within a smart contract which is executed amongst multiple nodes.

The network can be configured to require consensus among a certain percentage of nodes.

In a later stage of this research we designed a FL model update assessment algorithm,

designed in a way to be able to run inside of a smart contract and offer rewards. We

extended the functionality of the algorithm in order to create a useful metric that can be

used for reward allocation. We successfully verified the feasibility of the solution, by

performing simulations with specially crafted images, representing datasets of varying

quality. The results show that the algorithm is able to record user performance while at

the same time makes the system resilient to label-flipping attacks.

The outcome of the devised point system makes it easy to rank participants. More

importantly, adversaries are correctly identified and given no points, while the best

performing user is ranked first. Although the verification algorithm is designed to run

inside a smart contract, the simulations were run off-chain.

Researchers could verify how well the rewarding algorithm would behave in actual

blockchain networks, more importanly to verify feasibility and measure the overhead

imposed by the blockchain network.

5.2 Blockchain in industrial applications
The latest work focused on security issues with current deployments of Programmable

Logic Controllers (PLCs) and Supervisory Control and Data Acquisition Systems

(SCADA) in the industry and developed a solution that enables PLC devices to query a

blockchain infrastructure for commands and setpoints.

The innovative approach (PLCBlox) presented in this research shows that modern PLC

devices are able to interface with common blockchain nodes, opening new possibilities

for added functionality and security improvements. Furthermore, it is has been

demonstrated how PLCBlox can take advantage of the intrinsic tamperproof

characteristics of an Ethereum network in order to facilitate the storage of audit trail

records.

Security and Policy Enforcement (Audit Trail Logs)

Authentication and authorization tasks are now handled by the user’s wallet and the smart

contract, respectively. These two components, coupled with the underlying blockchain

network operation, offer higher security standards, which have been proven by their use

in the finance sector, especially when taking into account the security issues that exist in

typical industrial deployments.

Furthermore, by requiring fewer access permissions on the PLC device (read only), it is

impossible for an outside process to intentionally or unintentionally alter its data,

effectively eliminating an attack surface that has been exploited over the years. Even

further, due to the design, a compromised SCADA system would not be able to adversely

impact the running process. Security requirements of these systems can therefore be

relaxed.

The enforcement of the audit trail records, typically handled by the SCADA software on

the end device, is now part of the system design. Moreover, there is no meaningful way

to circumvent them, providing value to industries that require such policies.

Resource Overhead and Performance

It should be noted that the performance figures collected in the previous section reflect a

mostly ideal setup due to the usage of a local Ethereum network node installation and the

stable network connectivity. The authors argue that this setup more closely resembles

typical deployments in industries that use on-premises audit trail database servers.

Moreover, the small overhead delay imposed by the newly developed communication

cycle should not be a concern for most industrial applications. At the same time,

PLCBlox’s small PLC code footprint and RAM requirements leave most of its resources

available for the operation of the main application.

5.3 Future Work
Regarding the proposed solutions for running FL processes in blockchain networks, as

well as the algorithms for rewarding functionality, we believe that researchers can extend

this research in the following areas:

• Implement the FL and blockchain-based reward system in real-world scenarios

across various industries to test its effectiveness and scalability. This will help

identify practical challenges and refine the solution.

• Develop and integrate more sophisticated verification algorithms to better assess

the quality of contributions. These could include mechanisms to detect and

mitigate fraudulent behavior or poor-quality data submissions.

• Investigate advanced privacy-preserving techniques such as differential privacy

or homomorphic encryption to further protect user data while maintaining high

model performance.

• Explore and implement dynamic reward mechanisms that can adapt to changing

data contributions and model requirements. This could include machine learning

techniques to predict optimal rewards based on historical data.

• Focus on optimizing the scalability and performance of the solution, particularly

in terms of processing speed and resource consumption. This includes testing with

larger datasets and more complex models.

• Research and implement additional strategies to enhance user engagement and

participation in FL, such as gamification elements or community-building

initiatives.

Regarding the published work of PLCBlox as well as general blockchain use in industrial

applications, we believe that researchers can conduct extensive scalability testing to

evaluate the performance of the blockchain network under varying loads and transaction

volumes. This includes simulating high-traffic scenarios to identify potential bottlenecks

and optimizing the system to handle increased demands efficiently. The integration of

PLCBlox with different blockchain protocols beyond Ethereum, such as Hyperledger

Fabric, Corda, or other emerging technologies could further be studied, as it would help

determine the most suitable blockchain infrastructure for various industrial applications

based on specific needs and constraints. Further studies could focus on investigating

advanced security measures to offer additional protection to the blockchain network and

to PLC interactions. This could include the implementation of multi-factor authentication,

hardware security modules (HSMs), and quantum-resistant cryptographic algorithms.

We also believe that there is space for study in the development of methods to ensure

seamless interoperability between PLCBlox and existing legacy systems in industrial

environments. This involves creating standardized interfaces and protocols that allow

smooth integration without extensive modifications to current infrastructure.

We see benefit also in researchers conducting a comprehensive economic analysis to

assess the cost-benefit ratio of implementing blockchain technology in industrial

automation. This includes evaluating initial setup costs, operational expenses, and

potential savings from enhanced security and reduced downtime.

Conducting a comprehensive economic analysis to assess the cost-benefit ratio of

implementing blockchain technology in industrial automation, could also be meaningful,

especially if the initial setup costs, operational expenses, and potential savings from

enhanced security and reduced downtime are evaluated.

Future work will focus on scaling the proposed solution, optimizing performance, and

expanding its application to a wider range of industrial and collaborative environments.

By doing so, this research paves the way for more robust, secure, and efficient systems in

both machine learning and industrial automation.

6. References

[1] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated Machine Learning,” ACM

Trans Intell Syst Technol, vol. 10, no. 2, pp. 1–19, Jan. 2019, doi:

10.1145/3298981.

[2] J. Konečný, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and D. Bacon,

“Federated Learning: Strategies for Improving Communication Efficiency,” pp.

1–10, 2016.

[3] Z. Ghahramani, “LNAI 3176 - Unsupervised Learning,” pp. 72–112, 2004.

[4] A. Hard et al., “Federated Learning for Mobile Keyboard Prediction,” 2018.

[5] E. Bagdasaryan, A. Veit, Y. Hua, D. Estrin, and V. Shmatikov, “How To

Backdoor Federated Learning,” Jul. 2018.

[6] L. Bottou, “Large-Scale Machine Learning with Stochastic Gradient Descent,”

COMPSTAT, vol. 19th Inter, 2010, doi: 10.1007/978-3-7908-2604-3_16.

[7] European Parliament and Council of the European Union, “Regulation on the

protection of natural persons with regard to the processing of personal data and

on the free movement of such data, and repealing Directive 95/46/EC (Data

Protection Directive),” Official Journal of the European Union, vol. L 119, pp.

1–88, 2016.

[8] M. Nasr, R. Shokri, and A. Houmansadr, “Comprehensive Privacy Analysis of

Deep Learning: Passive and Active White-box Inference Attacks against

Centralized and Federated Learning,” Sp, pp. 1–15, Dec. 2018, doi:

10.1109/SP.2019.00065.

[9] L. Melis, C. Song, E. De Cristofaro, and V. Shmatikov, “Exploiting unintended

feature leakage in collaborative learning,” Proc IEEE Symp Secur Priv, vol.

2019-May, pp. 691–706, 2019, doi: 10.1109/SP.2019.00029.

[10] A. Narayanan and V. Shmatikov, “How To Break Anonymity of the Netflix Prize

Dataset,” 2006.

[11] A. Narayanan and V. Shmatikov, “Robust de-anonymization of large sparse

datasets,” Proc IEEE Symp Secur Priv, pp. 111–125, 2008, doi:

10.1109/SP.2008.33.

[12] K. Bonawitz et al., “Practical Secure Aggregation for Privacy-Preserving

Machine Learning,” in Proceedings of the 2017 ACM SIGSAC Conference on

Computer and Communications Security - CCS ’17, New York, New York, USA:

ACM Press, 2017, pp. 1175–1191. doi: 10.1145/3133956.3133982.

[13] M. Abadi et al., “Deep learning with differential privacy,” Proceedings of the

ACM Conference on Computer and Communications Security, vol. 24-28-Octo,

no. Ccs, pp. 308–318, 2016, doi: 10.1145/2976749.2978318.

[14] R. C. Geyer, T. Klein, and M. Nabi, “Differentially Private Federated Learning:

A Client Level Perspective,” no. Nips, pp. 1–7, 2017.

[15] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating Noise to

Sensitivity in Private Data Analysis,” Journal of Privacy and Confidentiality, vol.

7, no. 3, pp. 17–51, May 2017, doi: 10.29012/jpc.v7i3.405.

[16] D. Evans, V. Kolesnikov, and M. Rosulek, “A Pragmatic Introduction to Secure

Multi-Party Computation,” Foundations and Trends® in Privacy and Security,

vol. 2, no. 2–3, pp. 70–246, 2018, doi: 10.1561/3300000019.

[17] M. Fang, X. Cao, J. Jia, and N. Z. Gong, “Local Model Poisoning Attacks to

Byzantine-Robust Federated Learning,” USENIX Security Symposium, no.

November, 2019, doi: https://doi.org/10.48550/arXiv.1911.11815.

[18] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” in 21st Century

Economics, 2008.

[19] U.S. Department of Health and Human Services Food and Drug Administration,

“Part 11, Electronic Records; Electronic Signatures — Scope and Application,”

Guidance for Industry. Accessed: Nov. 26, 2023. [Online]. Available:

https://www.fda.gov/regulatory-information/search-fda-guidance-

documents/part-11-electronic-records-electronic-signatures-scope-and-

application

[20] U.S. Food & Drug Administration, “Computerized Systems used in Clinical

Trials,” Guidance for Industry. Accessed: Nov. 26, 2023. [Online]. Available:

https://www.fda.gov/inspections-compliance-enforcement-and-criminal-

investigations/fda-bioresearch-monitoring-information/guidance-industry-

computerized-systems-used-clinical-trials

[21] R. Langner, “Stuxnet: Dissecting a Cyberwarfare Weapon,” IEEE Security &

Privacy Magazine, vol. 9, no. 3, pp. 49–51, May 2011, doi:

10.1109/MSP.2011.67.

[22] D. Pliatsios, P. Sarigiannidis, T. Lagkas, and A. G. Sarigiannidis, “A Survey on

SCADA Systems: Secure Protocols, Incidents, Threats and Tactics,” IEEE

Communications Surveys & Tutorials, vol. 22, no. 3, pp. 1942–1976, Jul. 2020,

doi: 10.1109/COMST.2020.2987688.

[23] H. Kim, J. Park, M. Bennis, and S.-L. Kim, “Blockchained On-Device Federated

Learning,” IEEE Communications Letters, vol. PP, no. c, pp. 1–1, 2019, doi:

10.1109/LCOMM.2019.2921755.

[24] U. Majeed and C. S. Hong, “FLchain: Federated Learning via MEC-enabled

Blockchain Network,” in 2019 20th Asia-Pacific Network Operations and

Management Symposium (APNOMS), IEEE, Sep. 2019, pp. 1–4. doi:

10.23919/APNOMS.2019.8892848.

[25] D. Preuveneers, V. Rimmer, I. Tsingenopoulos, J. Spooren, W. Joosen, and E.

Ilie-Zudor, “Chained Anomaly Detection Models for Federated Learning: An

Intrusion Detection Case Study,” Applied Sciences, vol. 8, no. 12, p. 2663, Dec.

2018, doi: 10.3390/app8122663.

[26] J. Weng, J. Weng, J. Zhang, M. Li, Y. Zhang, and W. Luo, “DeepChain:

Auditable and Privacy-Preserving Deep Learning with Blockchain-based

Incentive,” IEEE Trans Dependable Secure Comput, vol. PP, no. 8, pp. 1–1,

2019, doi: 10.1109/tdsc.2019.2952332.

[27] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich, “Algorand : Scaling

Byzantine Agreements for Cryptocurrencies,” 2017.

[28] J. Kang, Z. Xiong, and D. Niyato, “Incentive Mechanism for Reliable Federated

Learning : A Joint Optimization Approach to Combining Reputation and

Contract Theory,” IEEE Internet Things J, vol. PP, no. c, p. 1, 2019, doi:

10.1109/JIOT.2019.2940820.

[29] D. N. Dillenberger et al., “Blockchain analytics and artificial intelligence,” IBM J

Res Dev, vol. 63, no. 2, 2019, doi: 10.1147/JRD.2019.2900638.

[30] N. Szabo, “Formalizing and Securing Relationships on Public Networks,” First

Monday, vol. 2, no. 9, Sep. 1997, doi: 10.5210/fm.v2i9.548.

[31] D. Wood, “ETHEREUM: A SECURE DECENTRALISED GENERALISED

TRANSACTION LEDGER,” Ethereum Project Yellow Paper, 2014.

[32] E. Androulaki et al., “Hyperledger fabric,” in Proceedings of the Thirteenth

EuroSys Conference, New York, NY, USA: ACM, Apr. 2018, pp. 1–15. doi:

10.1145/3190508.3190538.

[33] I. Martinez, S. Francis, and A. S. Hafid, “Record and Reward Federated Learning

Contributions with Blockchain,” in 2019 International Conference on Cyber-

Enabled Distributed Computing and Knowledge Discovery (CyberC), IEEE, Oct.

2019, pp. 50–57. doi: 10.1109/CyberC.2019.00018.

[34] Y. Liu, Z. Ai, S. Sun, S. Zhang, Z. Liu, and H. Yu, “FedCoin: A Peer-to-Peer

Payment System for Federated Learning,” 2020, pp. 125–138. doi: 10.1007/978-

3-030-63076-8_9.

[35] A. R. Short, H. C. Leligou, M. Papoutsidakis, and E. Theocharis, “Using

Blockchain Technologies to Improve Security in Federated Learning Systems,”

in Proceedings - 2020 IEEE 44th Annual Computers, Software, and Applications

Conference, COMPSAC 2020, IEEE, Jul. 2020, pp. 1183–1188. doi:

10.1109/COMPSAC48688.2020.00-96.

[36] A. R. Short, H. C. Leligou, and E. Theocharis, “Execution of a Federated

Learning process within a smart contract,” in 39th International Conference on

Consumer Electronics IEEE ICCE2021, 2021, p. In Press.

[37] A. Ahmad, M. Saad, M. Al Ghamdi, D. H. Nyang, and D. Mohaisen,

“BlockTrail: A Service for Secure and Transparent Blockchain-Driven Audit

Trails,” in IEEE Systems Journal, Institute of Electrical and Electronics

Engineers Inc., Mar. 2022, pp. 1367–1378. doi: 10.1109/JSYST.2021.3097744.

[38] A. Ahmad, M. Saad, M. Bassiouni, and A. Mohaisen, “Towards Blockchain-

Driven, Secure and Transparent Audit Logs,” in Proceedings of the 15th EAI

International Conference on Mobile and Ubiquitous Systems: Computing,

Networking and Services, New York, NY, USA: ACM, Nov. 2018, pp. 443–448.

doi: 10.1145/3286978.3286985.

[39] C. Regueiro, I. Seco, I. Gutiérrez-Agüero, B. Urquizu, and J. Mansell, “A

blockchain-based audit trail mechanism: Design and implementation,”

Algorithms, vol. 14, no. 12, Dec. 2021, doi: 10.3390/a14120341.

[40] S. Suzuki and J. Murai, “Blockchain as an Audit-Able Communication Channel,”

in Proceedings - International Computer Software and Applications Conference,

IEEE Computer Society, Sep. 2017, pp. 516–522. doi:

10.1109/COMPSAC.2017.72.

[41] W. Pourmajidi and A. Miranskyy, “Logchain: Blockchain-Assisted Log

Storage,” in IEEE International Conference on Cloud Computing, CLOUD,

IEEE Computer Society, Sep. 2018, pp. 978–982. doi:

10.1109/CLOUD.2018.00150.

[42] P. Snow et al., “Factom Business Processes Secured by Immutable Audit Trails

on the Blockchain,” 2014. [Online]. Available: www.Factom.org

[43] P. Schmid, A. Schaffhäuser, and R. Kashef, “IoTBChain: Adopting Blockchain

Technology to Increase PLC Resilience in an IoT Environment,” Information,

vol. 14, no. 8, p. 437, Aug. 2023, doi: 10.3390/info14080437.

[44] A. Vick, W. Chen, and J. Krueger, “Using Solana Blockchain and OPC UA for

Trusted Third Party Industrial Robot Control Services,” ISR Europe 2023, 56th

International Symposium on Robotics, Stuttgart, pp. 332–337, 2023.

[45] S. Loss, L. Cardoso, N. Cacho, and F. Lopes, “Pharmaceutical Audit Trail

Blockchain-Based Microservice,” in Proceedings of the 16th International Joint

Conference on Biomedical Engineering Systems and Technologies,

SCITEPRESS - Science and Technology Publications, Mar. 2023, pp. 368–375.

doi: 10.5220/0011685100003414.

[46] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,” pp. 1–

15, Dec. 2014.

[47] F. Sattler, S. Wiedemann, K. R. Muller, and W. Samek, “Robust and

Communication-Efficient Federated Learning from Non-i.i.d. Data,” IEEE Trans

Neural Netw Learn Syst, vol. 31, no. 9, pp. 3400–3413, 2020, doi:

10.1109/TNNLS.2019.2944481.

[48] A. R. Short and H. C. Leligou, “Novel defense scheme against model poisoning

attack,” 2020.

[49] H. Brendan McMahan, E. Moore, D. Ramage, S. Hampson, and B. Agüera y

Arcas, “Communication-efficient learning of deep networks from decentralized

data,” Proceedings of the 20th International Conference on Artificial Intelligence

and Statistics, AISTATS 2017, vol. 54, 2017.

[50] T. Zahariadis, P. Trakadas, S. Maniatis, P. Karkazis, H. C. Leligou, and S.

Voliotis, “Efficient Detection of Routing Attacks in Wireless Sensor Networks,”

in 2009 16th International Conference on Systems, Signals and Image

Processing, IEEE, Jun. 2009, pp. 1–4. doi: 10.1109/IWSSIP.2009.5367775.

[51] P. Trakadas et al., “An artificial intelligence-based collaboration approach in

industrial iot manufacturing: Key concepts, architectural extensions and potential

applications,” Sensors (Switzerland), vol. 20, no. 19, pp. 1–20, 2020, doi:

10.3390/s20195480.

[52] X. Pan, Z. Wang, and Y. Sun, “Review of PLC Security Issues in Industrial

Control System,” Journal of Cyber Security, vol. 2, no. 2, pp. 69–83, 2020, doi:

10.32604/jcs.2020.010045.

APPENDIX A - Improving Security and Fairness in Federated
Learning Systems Python Code

try:

 # %tensorflow_version only exists in Colab.

 %tensorflow_version 2.x

except Exception:

 pass

from __future__ import absolute_import, division, print_function,

unicode_literals

TensorFlow and tf.keras

import tensorflow as tf

from tensorflow import keras

Helper libraries

import numpy as np

import matplotlib.pyplot as plt

print(tf.__version__)

from keras.datasets import mnist

(train_images, train_labels), (test_images, test_labels) =

mnist.load_data()

class_names = ['0','1','2','3','4','5','6','7','8','9']

from keras.datasets import mnist

import random

(train_images, train_labels), (test_images, test_labels) =

mnist.load_data()

train_images = train_images / 255.0

test_images = test_images / 255.0

train_labels_adversary = np.array([random.randint(2, 2) for x in

train_labels])

train_images_split = np.array_split(np.array(train_images),10)

train_labels_split = np.array_split(np.array(train_labels),10)

train_labels_adversary_split =

np.array_split(np.array(train_labels_adversary),10)

average_model = keras.Sequential()

flmodel = list()

average_model = keras.Sequential([

 keras.layers.Flatten(input_shape=(28, 28)),

 keras.layers.Dense(128, activation='relu'),

 keras.layers.Dense(10)

])

average_model.compile(optimizer='adam',

loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True

),

 metrics=['accuracy'])

#average_model.fit(train_images, train_labels_random, epochs=1)

average_model.save_weights('model2.h5')

flmodel = list()

for x in range(10):

 flmodel.append(keras.Sequential([

 keras.layers.Flatten(input_shape=(28, 28)),

 keras.layers.Dense(128, activation='relu'),

 keras.layers.Dense(10)

]))

 flmodel[x].compile(optimizer='adam',

loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True

),

 metrics=['accuracy'])

accuracy = [list()]

loss = [list()]

accuracy.append(list())

loss.append(list())

for adversaries in range(0,4):

 average_model.load_weights('model2.h5')

 for x in flmodel:

 x.load_weights('model2.h5')

 for x in range(1):

 newround(average_model.get_weights(), adversaries)

 weights = list()

 for model in flmodel:

 if

evaluatemodel(average_model.get_weights(),model.get_weights()):

 weights.append(model.get_weights())

 #weights = [model.get_weights() for model in flmodel]

 mean_weights = list()

 for weights_list_tuple in zip(*weights):

 mean_weights.append(

 np.array([np.array(w).mean(axis=0) for w in

zip(*weights_list_tuple)])

)

 avg_model_weights = average_model.get_weights()

 new_weights = [0.8*x + 0.2*y for x, y in zip(avg_model_weights,

mean_weights)]

 average_model.set_weights(new_weights)

 test_loss, test_acc = average_model.evaluate(test_images,

test_labels)

 accuracy[adversaries].append(test_acc)

 loss[adversaries].append(test_loss)

 accuracy.append(list())

 loss.append(list())

 print('\nTest accuracy:', test_acc, 'Adversaries:',

adversaries, 'round:', x)

import matplotlib.pyplot as plt

for i in range(4):

 plt.plot(accuracy[i],label = '%s%% Adversaries'%(i*10))

plt.xlabel("Rounds")

plt.ylabel("Accuracy")

plt.legend()

plt.

plt.grid()

fig_size = plt.rcParams["figure.figsize"]

fig_size[0] = 20

fig_size[1] = 16

plt.rcParams["figure.figsize"] = fig_size

plt.show()

def newround(global_model, adversaries):

 for x in range(0, adversaries):

 print('adversary', x)

 flmodel[x].set_weights(global_model)

 flmodel[x].fit(train_images_split[x],

train_labels_adversary_split[x] , epochs=1)

 for x in range(adversaries , 10):

 print('honest', x)

 flmodel[x].set_weights(global_model)

 flmodel[x].fit(train_images_split[x], train_labels_split[x],

epochs=1)

def evaluatemodel(global_model_weights, model_update):

 average_model.save_weights('pre.h5')

 average_model.set_weights(global_model_weights)

 test_loss, test_acc = average_model.evaluate(test_images,

test_labels)

 new_weights2 = [0.8*x + 0.2*y for x, y in

zip(global_model_weights, model_update)]

 average_model.set_weights(new_weights2)

 test_loss_candidate, test_acc_candidate =

average_model.evaluate(test_images, test_labels)

 average_model.load_weights('pre.h5')

 if test_acc_candidate>test_acc:

 print('Model Update is Healthy')

 return True

 else:

 print('Model Update should be discarded')

 return False

APPENDIX B – PLCBlox, Smart contract code
// SPDX-License-Identifier: GPL-3.0

pragma solidity >=0.7.0 <0.9.0;

import "hardhat/console.sol";

contract BloxTrail {

 address private admin;

 address private user;

 address private superuser;

 int16 public Temperature;

 bool public OperationMode;

 modifier isAdmin() {

 require(msg.sender == admin, "Caller is not the admin");

 _;

 }

 modifier isUser() {

 require(msg.sender == user, "Invalid Permissions");

 _;

 }

 modifier isSuperUser() {

 require((msg.sender == user) || (msg.sender == superuser) , "Invalid Permissions");

 _;

 }

 constructor() {

 console.log("BloxTrail contract deployed by:", msg.sender);

 admin = msg.sender; // 'msg.sender' is sender of current call, contract deployer for

a constructor

 user = admin;

 superuser = admin;

 }

 function changeUser(address newUser) public isAdmin {

 user = newUser;

 }

 function changeSuperUser(address newSuperUser) public isAdmin {

 superuser = newSuperUser;

 }

 function SetTemperature(int16 newTemperature) public isSuperUser {

 Temperature = newTemperature;

 }

 function SwitchON() public isUser {

 OperationMode = true;

 }

 function SwitchOFF() public isUser {

 OperationMode = false;

 }

}

APPENDIX C – PLCBlox, PLC Code

Tot a lly In t e gra t e d

Aut om a t ion Port a l

p lcb lo x / PLCBlo x [CPU 1 5 1 1 -1 PN] / Pro g ra m b lo cks

Ma in [OB1]

Ma in Pro p e rt ie s

Ge n e ra l

Na m e Ma in Nu m b e r 1 Typ e OB

La n g u a g e LAD Nu m b e rin g Au tom at ic

In fo rm a t io n

Tit le "Ma in Prog ram Sw e e p

(Cycle)"

Au t h o r Co m m e n t

Fa m ily Ve rs io n 0 .1 Use r-d e fin e d

ID

Ne t w o rk 1 :

"BC2 PLC"

%FB2%FB2

"BC2 PLC_DB"

%DB1%DB1

'h t t p : //1 0 .0 .2 0 0 .

2 :7 5 4 5 /'

' 0 x6 Eb 7 a 4 1 5
Eb 8 1F9 8 4 4 0 f8 4 8

Fe 4 b A9 3F5 f9
Aa 6 8 4 2 1 '

' 0 x7 1 5 2 a fa 3 '

0 .0

fa lse

0

EN

No d e RPCUrl

Co n t ra ct
Ad d re ss

Pa ra m e te rABI
Va lu e

ENO

Va lu e _Flo a t

Co n n e cte d

Re sp o n se _
Tim e _m s

EN

No d e RPCUrl

Co n t ra ct
Ad d re ss

Pa ra m e te rABI
Va lu e

ENO

Va lu e _Flo a t

Co n n e cte d

Re sp o n se _
Tim e _m s

T o t a lly I n t e g r a t e d

A u t o m a t i o n P o r t a l

p lcb lo x / PLCBlo x [CPU 1 5 1 1 -1 PN] / Pro g ra m b lo cks

BC2 PLC [FB2]

BC2PLC Pro p e rt ie s

Ge n e ra l

Na m e B C 2 P L C Nu m b e r 2 Typ e F B

La n g u a g e L A D Nu m b e rin g A u t o m a t i c

In fo rm a t io n

Tit le Au t h o r Co m m e n t

Fa m ily Ve rs io n 0 . 1 Use r-d e fin e d

ID

Ne t w o rk 1 :

CONCAT

S t r i n g

CONCAT

S t r i n g

CONCAT

S t r i n g

CONCAT

S t r i n g

1

1

' { "js o n r p c ": "2 .
0 ", "m e t h o d ": "e t h

_ c a ll", "p a r a m s ": [{
"t o ": "'

C o n t r a c t A d d r e s s

s t a t _ p o s t _ d a t a # s t a t _ p o s t _ d a t a

' ", "d a t a ": "'

s t a t _ p o s t _ d a t a

s t a t _ p o s t _ d a t a

P a r a m e t e r A B I

V a lu e

s t a t _ p o s t _ d a t a # s t a t _ p o s t _ d a t a

' "}] } '

s t a t _ p o s t _ d a t a

E N

I N 1

I N 2

E N O

O U T

S t r i n g

E N

I N 1

I N 2

E N O

O U T

S t r i n g

E N

I N 1

I N 2

E N O

O U T

S t r i n g

E N

I N 1

I N 2

E N O

O U T

S t r i n g

E N

I N 1

I N 2

E N O

O U T

S t r i n g

E N

I N 1

I N 2

E N O

O U T

S t r i n g

E N

I N 1

I N 2

E N O

O U T

S t r i n g

E N

I N 1

I N 2

E N O

O U T

S t r i n g

Ne t w o rk 2 :

		2024-10-02T14:45:47+0300
	ELENI AIKATERINI LELIGKOU

		2024-10-02T14:46:12+0300
	ELENI AIKATERINI LELIGKOU

		2024-10-05T11:33:15+0300
	ΜΙΧΑΗΛ ΠΑΠΟΥΤΣΙΔΑΚΗΣ

		2024-10-05T11:33:48+0300
	ΜΙΧΑΗΛ ΠΑΠΟΥΤΣΙΔΑΚΗΣ

		2024-10-09T10:56:16+0300

		2024-10-09T10:58:36+0300

		2024-10-09T12:20:42+0300

		2024-10-09T13:01:13+0300
	PANAGIOTIS KARKAZIS

		2024-10-09T16:11:20+0300
	PANAGIOTIS KARKAZIS

		2024-10-09T16:14:34+0300

		2024-10-09T16:15:36+0300

		2024-10-09T17:45:54+0300
	ΕΥΑΓΓΕΛΟΣ ΠΑΛΛΗΣ

		2024-10-09T17:46:19+0300
	ΕΥΑΓΓΕΛΟΣ ΠΑΛΛΗΣ

		2024-10-14T11:15:20+0300

