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ITEPIAHYH

H mapovoa d1daxtopikn dtotpiPr] peuvd ta 0pEAN TOL TPOKVTTOVV GO TOV GUVOIVLUGHO
TEYVOAOYIOV 0mtd TOVG akOAovOoLE Topeic: o) oudomovon pabnon (Federated Learning,
B) texvoloyieg kataveunuévov kabolkov (Distributed Ledger Technologies) 6w sivan
ta Blockchain diktva kot y) fropnyavikéc epappoyéc.

H ocvveyag av&avopevn ypnon €Qoppoymdv TEXVNTAG VONUOCULVNG €XEL KOTAGTNGEL
EUQOVES OTL 1] TOLOTNTA TOV UEYOA®MV OEGOUEVOV Y10 EKTOIOEVOT) LOVIEAMV UNYOVIKNG
pdonong emnpedler v amdooon TV TEAK®OV poviédwv. [Ma 10 okomd avtd, m
opdoTovon Habnon amocsKonel 6T GLUUETOYN TOAAATADY OVIOTHTMOV TOL GLUPAGALOLY
o™ Swdikacio pabnong pe TomiKd dES0UEVE, XWPIG VO OTALTEITOL 1] KOWVY XPIOT TOV
TPAYLOTIKOV OEOOUEVOV. ZE TPUYUOTIKEG TEPUTMGELS YPNONS, Ol avTapolBEg Tov
Aapupdvovv ot xpnotes yw tn GLUPOAN Tovg ot dwdikacio puadnong Bo mpémer va
eCaptovior omd T mowdtnTa G ovpuPoing tovc. ‘Eyovtoc Aowmdv vmdywv
omovdaldTTe. TOV dedopévev ekpddnong, n oTpiPny oxedlace Kol OT GUVEXELL
vAomoinoce pnyoviopd opdomovong pabnong o omoiog ocvvroviletoar amd dikTvLO
blockchain. Xt cuvéyeia, eotidlel 6g TPOTOVE EVIGYLLONG TG OPOGIVONG TV XPNOTAOV,
npocPEpovtag "dikoeg" avtapolBéc, avaroyeg e T Tpaypatikn BeATioon Tov povtELov
(og mpog Vv akpifewr) mwov mpoceépovv. EmmAéov, yu va kotactel dvvarn m
OVTIKEWEVIKN Kpiom NG MOWOTNTOS TNG GLVEICPOPAS, oxeddoTnKay €01KE EEvmva
cupuporaia mov Agttovpyohv mivew o€ teyvoroyieg blockchain. TTo cuykekpyéva, €xet
avantvydel Evag adyopBuog erainbevong mov ypnoyoroteital yio v aSloAdynomn g
amdO0GNG TOV GLUVEIGPOPADV TV YPNOTAV, GUYKPIVOVTAS TNV 0KPIBEI TOV GLVOAIKOD
LOVTEAOVL e €va GUVOAO dedopévmv emainBevonc. O aiyopBuog éxel oxedlaoTel yio va
exteAeitan péoa og éva EEuTVo GLUPOANLO Kot VO, KATOYPAPEL TIG EMOOCELS (e TN LOPPT|
GUOTHLOTOG TOVTWV) GE EVO KATAVEUNUEVO E0APLO.

H moapovoa datpipr] avéntuEe Adoelg v v Pedtioon ac@dielog oe Propnyovikovg
wpoypappotiiopevovg Aoyikovg eheyktéc (PLC), emurpémovidg tovg va Aapfdvovv
EVTOAEC KO TapapéTpoug and éva diktvo blockchain. To diktvo 6g avt) ™ nepintwon
avolopupavel dVo pOLOLS: YPNOUELEL MG OUETAPANTN Pdom KATAYPUPNS EVEPYELDV
eréyyov (audit trails) xobBdc ko ¢ afomiot mYH Yoo Kpiowwes €VIOAES Kot
TapopéTpoug. Ze avtifeon pe tov copPotikd Ereyyxo tov PLC and cuokevéc diemapng
avOporov-pnyavng (HMI), vt n véa mpocéyyion dev amattel TpdcPacn yypaens 6to

eninedo Tov PLC, elayiotomoimvtog €161 TNV em@iveln nifeong Tov kol cupPailovtog



oTNV TPOoTOCin 0md YVOOTEG EVTADEIES Ko VEEG evTtabeleg (zero day) mov sugaviCovtat
ovyvh oe kvPepvoemiBécels. To diktvo blockchain ypnoipomoleiton emiong g Paon
dedopévov mov vmootnpilel yvnAdInon Yoo TIG EVEPYELES TV YPNOTAV, 1WL0iTEP
YPNOLLO Y10 EPAPUOYES TTOV EMPAAAOVY TNV KOTAYPOPT TOV EVEPYELDV TOV YPNOTOV N

Yo Tapddery o, OTmg opifovv ot KoAéG TpaxTikég mapoywyns (GMP).

OEMATIKH IEPIOXH: Topeig ypnong texvoroyidv opdomovong pabnong (Federated
Learning) oe cuvdvacud pe texvoroyieg katavepnuévov kabolkov (Distributed Ledger
Technologies). Avamtoén AMoewv pe ypnon é€vmveov cvpPoraiov yior TV avtoOHOTH
amodoon emPpaPedcewv Ge YPNOTEG MOV GLVEICOEPOVY TOLOTIKG OedoUEVa Yol TNV
ekpudinon poviéAwv unyovikng pddnonc. Xpnomn TtV TEYVOAOYIOV OVTOV GE

Bropnyavikég eQaproYES TOV oTanToVV OKEPULOTNTO OEGOUEVMV Kot ALENUEVT ACPAAELD.

AEEEIX KAEIAIA: blockchain, federated learning, industrial applications, PLC and
SCADA devices, smart contract, ethereum networks, machine

learning, rewarding algorithms, audit trail databases, security



ABSTRACT

This PhD thesis explores the benefits arising from the combining technologies from the
following areas: a) Federated Learning, b) Distributed Ledger Technologies (DLTSs) such
as blockchains and c) Industrial applications.

The ever-increasing use of Artificial Intelligence applications has made apparent that the
quality of the training datasets affects the performance of the models. To this end,
Federated Learning aims to engage multiple entities to contribute to the learning process
with locally maintained data, without requiring them to share the actual datasets. In real
use cases, the rewards that users get for their contribution to the learning process should
depend on the characteristics/quality of their contribution. With this in mind, the thesis
first designed and implemented a Federated Learning process that can operate on a
blockchain network. The thesis then focuses on ways to strengthen user engagement by
offering “fair” rewards, proportional to the model improvement (in terms of accuracy)
they offer. Furthermore, to enable objective judgement of the quality of contribution,
special smart contracts have been designed that operate on blockchain technologies. More
precisely, a verification algorithm has been developed that is used to evaluate the
performance of users’ contributions by comparing the resulting accuracy of the global
model against a verification dataset. The algorithm is designed to run inside a smart
contract and record performance (in the form of a point system) on a distributed ledger.
This thesis later investigates solutions that can empower Programmable Logic Controllers
(PLCs) by enabling them to query a blockchain infrastructure for commands and
setpoints. The blockchain assumes a dual role in this context: serving as an immutable
audit trail database as well as a trusted source for critical commands and setpoints. In
contrast to the conventional paradigm of controlling PLCs through Human Machine
Interface devices (HMIs), this novel approach does not require write access at the PLC
level, thus minimizes its attack surface and helps protect against known and zero-day
vulnerabilities often used in cyberwarfare such as in the case of the notorious Stuxnet
worm. The blockchain network is used as an audit trail database for user actions, useful
for applications that enforce the logging of user operations as Good Manufacturing
Practices (GMP) or when required for compliance reasons. Any attempt to maliciously
circumvent the logging operation would not affect the operation of a critical process.

Real-world applica-tions and use cases are explored to demonstrate the tangible benefits



of this approach in industrial settings. Additionally, a prototype implementation is
developed in order to examine the feasibility and collect performance indicators.

SUBJECT AREA: Exploration of Federating Learning techniques. Coordination
through blockchain networks and the use of smart contracts in order to offer fair rewards
to users contributing quality data for machine learning. How these technologies can offer
advantages in industrial applications to build upon integrity in audit trail databases and

improve security.

KEYWORDS: blockchain, federated learning, industrial applications, PLC and
SCADA devices, smart contract, ethereum networks, machine

learning, rewarding algorithms, audit trail databases, security
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1. Introduction

1.1 Machine Learning and Federated Learning Systems

Federated Learning (FL) [1], [2] is a relatively new field of study, whereby collaborating
parties can jointly improve a model which is maintained by the coordinator (usually a
central server). In this setup, the training is performed individually using locally available
data, and the participating entities transmit their model updates to the coordinator. The
entities (either end-devices such as mobile phones, or businesses contributing with their
data) usually share the same goal, i.e. to make use of the trained model or can otherwise
be motivated by financial rewards.

Machine Learning (ML) aims to build a mathematical model by inference, using training
data. ML can either be supervised or unsupervised, depending on whether the training
data set is labeled or not [3]. In a typical centralized Machine Learning setup, the training
data needs to be collected at a central location, which can pose security and privacy risks.
Other concerns include the unavailability of training data of good quality, either because
of data protection regulations or because of the unwillingness of users to share their
private data due to privacy concerns.

Today, large amounts of data are being generated at the edge. FL overcomes the need to
transfer user data to central servers, at the same time safeguarding user privacy. Practical
implementations of FL already exist, such as the FL powered application Gboard [4], a
keyboard from Google for Android devices, which is used to predict words based on
previous input and is improved by the small contributions of each device. With the advent
of edge computing, it is foreseen that more machine learning applications will run on
edge devices. This is evident by the use of Artificial Intelligence (Al)-specific CPUs in
the latest mobile devices from manufacturers, such as Apple and Samsung.

FL improves on privacy, since participating entities contribute with model updates rather
than raw data, however as training is performed at the edge, a new attack surface is
created. An adversary may intentionally send false model updates in order to affect its
performance, a method known as model poisoning [5]. Since high quality datasets are an
important factor in training, it may be beneficial to reward users whose model updates
improve the overall model performance.

However, a set of security attacks have already been witnessed and countermeasures
either rely on adding intelligence or resort to Blockchain technology. Blockchain belongs

to the family of Distributed Ledger Technologies (DLT) and as such allows for the



operation of an immutable database which can be distributed (and replicated) among
multiple nodes. These types of databases offer improvements on security and trust, and
offer a high level of transparency. For these reasons, they can be exploited to defend
against FL-targeting attacks.

1.2 Federated Learning and associated security aspects

In contrast to the centralized nature of traditional ML where data is collected in a large
dataset (typically in the cloud) and the model is trained centrally, FL proposes that the
ML model can reside on client devices and be trained locally. An aggregation server is
required in order to transmit the global model and receive the model updates. Although
the individual models being trained on each end-device may have an incomplete picture,
considering that the insights of all participating parties are accumulated and that this
process is repeated on several rounds, the end model tends to be of high quality. Figure 1
shows the steps involved in FL. The workflow starts by transmitting the initial model
(initialized with either random or proxy data) to end devices (blue arrow). The end devices
can now perform local training using locally available data (yellow arrow). During the
training process, gradients are computed e.g. through a variant of Stochastic Gradient
Descent (SGD)[6] on a random portion of the training dataset. In the end, these updates
are received by the aggregation server (orange arrow), which in turn computes the
updated model, typically by aggregating the model updates. This process is repeated until

predefined criteria are met.
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Figure 1 - Federated Learning Process

A major benefit of FL is that the end device is able to use the model even when offline.
Although the learning process will be affected, the latest version of the global model will
still be available. In an FL setup, the data is kept at end devices and never shared with the
server. This alone offers a huge improvement in privacy and helps meet requirements of
Regulations such as GDPR [7]. However, since even the model update parameters can
reveal sensitive information [8], [9], ongoing research is focused on mitigating privacy
concerns. Itis also worth mentioning that anonymization alone is not an adequate measure
for privacy. The process of anonymization is usually carried out by the server and this
trust relationship is not always present. Furthermore, researchers have been able to de-
anonymize datasets by using external knowledge [10], [11].

Two of the most widely adopted approaches regarding privacy are Secure Multiparty
Computation (MPC) [12] and Differential Privacy [13],[14],[15]. MPC enables
participating parties to jointly compute an output of a shared function based on their
inputs in a way that no information on the inputs is revealed to each other. Several MPC
protocols and their effectiveness under different threat models are analyzed in a study by
D. Evans 2018 [16]. Differential Privacy aims to conceal personal information in client
model update contributions by adding a small amount of noise. In this approach, there is
a trade-off between privacy and model accuracy.

With respect to the security aspects of FL, the main vulnerabilities of this scheme stem
from the fact that the learning process occurs on the edge, typically on users’ devices.
This has created a new attack surface where a compromised device could be manipulated
in a way to affect the learning process. Specifically, an adversary could either attack the
training data (data poisoning) or the model updates, with the intention of affecting the
global model (model poisoning) so that its performance deteriorates and ultimately lead
to denial of service [17] or in order to make it perform a certain way. It has been
demonstrated that an attacker may use malicious model updates in order to alter the
behavior of a global model and be able to control its behavior when certain triggers appear
(e.g. certain words in word prediction applications), without otherwise affecting the
performance of the model on its main task [5]. Because the model still performs well on
its main task, this type of attack cannot be easily detected by the aggregation server. In
the worst case, when MPC is used, the source of the attack cannot be identified since the

server does not have access to the individual model updates. The same study [5] shows



that the attack is possible even with a 1% of compromised devices and can survive

multiple training rounds.

1.3 The potential benefits of Blockchain adoption in Federated Learning

Distributed Ledger Technologies are a type of distributed databases collaboratively built
(many entities contribute data) and replicated in a number of nodes (replicas of the whole
database are kept in many nodes). In essence, they provide a shared and consistent data
store. In contrast to traditional databases, the individual data records cannot be updated
or deleted and are usually cryptographically interconnected. Most common categories of
DLTs are Blockchains and Directed Acyclic Graphs (DAG). Although both of these
technologies record transactions in the distributed ledger, they do so in different ways. In
a blockchain network, the blocks form a linear chain of transactions in a chronological
order [18]. By comparison, new transactions in a DAG network can link to multiple
previous transactions. When this link is established, the previous transactions get verified.
Due to this branching of existing transactions, the DAG usually resembles a tree.
Furthermore, variants of DLT technologies can be further classified as permissioned or
permission-less and public or private.

The concept of smart contracts first appeared in 1997 [30] as a way to formalize and
secure relationships on public networks. They are formed by machine executable code
which is able to release digital assets to untrusted parties when certain pre-defined rules
have been met. Although first generation blockchain networks such as Bitcoin [18] are
not designed for such use cases, later public and private blockchain technologies such as
Ethereum [31] and HyperLedger Fabric are designed to support the development and
execution of customized smart contracts [32].

Figure 2 depicts how users of a blockchain network do not directly interact with the
distributed ledger; instead, a smart contract is used in order to make queries or add/append
data to it.
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Figure 2 - Smart contract operation principle

It is anticipated the following solutions offer advancements in the following areas:

Data integrity: FL describes a process for collaboratively improving a shared model and
does not deal with security aspects. In its basic implementation, the process is coordinated
from a single central server. The entity hosting the solution, could alter the data, either
with malicious intent or unintentionally. Blockchain networks on the other hand are a
proven technology that is inherently secure. All blocks are cryptographically
interconnected, so in the case that a block is altered, this would be easily identifiable. In
addition to this, due to the decentralized nature of blockchain technologies, the original
data will be accessible from the rest of the healthy nodes.

Reliability: Since a blockchain network is decentralized, full copies of the ledger are
maintained by multiple nodes. For this reason, there is no single point of failure since the
ledger will be available elsewhere in case of a node failure. This is not the case with a
minimal FL setup with only one parameter server. Instead, a suitable failover design
would need to be implemented. Traditional failover solutions involve the deployment of
redundant servers (VMSs, Kubernetes), and mechanisms for data replication. We
anticipate that the use of a BC network in a FL process will offer improvements in terms
of reliability.

Trust: In many cases, the participants in an FL setup might be corporations that wish to
work collaboratively to build Al models in either a horizontal or vertical FL system. In a
Horizontal FL System, the entities contribute with data of the same structure such as
banks contributing with their client lists for fraud detection or the case of hospitals

contributing with patient data. In the case of Vertical FL, the entities contribute with



datasets containing different features, as in the case of a bank and an e-commerce
company. As a part of the fourth industrial revolution, Industry 4.0 embraces data
exchange and the creation of digital twins of the manufacturing processes is at its hype.
Therefore, it is very likely that FL will become a priority for manufacturing industries.
Both of the above learning systems usually require a trusted third party to coordinate the
FL process and create the model. A blockchain is a good candidate to act as a trusted
coordinator, because of its security and traceability properties. Blockchain solutions make
use of a consensus algorithm, which guarantees that all nodes in a distributed ledger will
reach an agreement and converge.

Potential for incentives or rewards: In a FL setup, it is important to incentivize users
that contribute with quality data. This is crucial as the accuracy of the global model is
directly proportional to the quality of the training data. Blockchain is the perfect medium
to provide incentives in the form of tokens, which can be exchanged for services or
financial rewards.

Auditability - Traceability — Accountability: Every time a piece of data on a blockchain
network is updated, this is stored as a new transaction in a separate block. Previous blocks
cannot be altered (or deleted). In the context of FL, this can be beneficial, especially in
applications that require high level of trust on Al decisions such as in the military sector.
Since the blocks on the network include the signature of the user initiating the transaction,
the user cannot deny the authorship of this transaction. This property known as non-

repudiation, can be used for accountability.

1.4 Blockchain technologies in the context of improving industrial applications

In the era of Industry 4.0 and the ongoing digital transformation, Supervisory Control and
Data Acquisition systems (SCADA), Human-Machine Interface devices (HMI), and
Programmable Logic Controllers (PLCs) play essential roles in reshaping industrial
processes and operations. SCADA systems serve as data hubs that aggregate data from
various sensors and machines. HMI devices provide the operator with the ability to
interact with complex systems and make informed decisions. PLCs are designed to
communicate with a wide range of devices and systems. They serve as the "brains™ of
automation, orchestrating processes and responding to real-time data. PLCs have
limitations in terms of computing resources and processing power, which can make them

less suitable for heavy computational tasks compared to more powerful computing



platforms. They are primarily designed for real-time control and automation in industrial
environments, focusing on reliability, determinism, and stability rather than raw
computing power.

SCADA, HMI, and PLCs collectively enable data-driven decision-making by providing
real-time insights into operational performance, equipment health, and quality metrics
and are integral components of the digital transformation in Industry 4.0.

Audit trail logs

Certain industries such as the pharmaceutical, biotechnology, and medical device
industries are required to apply regulations such as those described by the Food and Drug
Administration (FDA) in 21 CFR Part 11 [19]. This regulation outlines the criteria under
which electronic records and signatures are considered trustworthy, reliable, and legally
equivalent to paper records and handwritten signatures. An audit trail is defined as: “A
secure, computer-generated, time-stamped electronic record that allows reconstruction of
the course of events relating to the creation, modification, and deletion of an electronic
record” [20]. In more detail, the logging process should record the user’s identity, time-
stamps and actions. Additionally, the system should be resilient to tampering and preserve
the recorded information for compliance.

A typical architecture describing the flow of information within the components of an

industrial application is depicted in Figure 3 below.
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Figure 3 - Typical architecture of industrial applications built upon SCADA/HMI and PLC devices.

Security Considerations

Considering that these systems become more interconnected, cybersecurity is paramount.
Industry 4.0 initiatives emphasize robust cybersecurity practices to protect against cyber
threats and data breaches.

Many industrial control systems, including SCADA and PLCs, have long lifecycles that
can span decades. This means that older hardware and software versions are still in
operation, even after newer, more secure alternatives have become available. Some
manufacturers discontinue support, focusing their efforts on newer products. As a result,
users of these legacy systems are left without access to security patches. In some cases,
upgrading to newer SCADA or PLC systems may not even be feasible due to
compatibility issues with existing infrastructure, cost constraints, or the need for
extensive reconfiguration. Smaller organizations or those with limited resources may
struggle to keep pace with technology updates and may continue to use older SCADA
and PLC systems. Even when updates are available, organizations may be reluctant to

apply them for fear of disrupting critical processes.



In 2010, a highly sophisticated computer worm was discovered that gained international
attention for its unprecedented level of complexity and its specific target: industrial
control systems, particularly Siemens programmable logic controllers PLCs at the Iranian
nuclear program. Once deployed, Stuxnet does not require Internet access for command-
and-control. Instead, it is designed to inject rogue code inside PLC devices [21]. Many
other exploits compromising legacy SCADA systems have also been well documented
[22].

SCADA systems operate by sending data (such as setpoint updates, operator commands)
directly to the PLC device and naturally the devices are required to allow such incoming
connections. This requirement forms a large attack vector due to the security issues
arising from compromised SCADA systems, malware. Because of these security
concerns, such deployments usually reside in isolated internal networks without internet
connectivity.

Blockchain-based audit trail databases

Blockchain networks make a great medium for audit trail databases. The most compelling
reasons are the following:

Compliance: For industries subject to regulatory compliance, blockchain-based audit
trail logs can simplify compliance efforts by providing a tamper-resistant and easily
auditable record of activities.

Immutability: Once data is recorded on the blockchain, it becomes nearly impossible to
alter or delete it. Each new block in the chain contains a cryptographic hash of the
previous block, creating a secure and immutable ledger. This feature ensures that audit
trail logs remain tamper-proof, providing a reliable historical record of activities.
Security: Blockchain networks employ strong cryptographic techniques to secure data.
Public and private keys, digital signatures, and consensus mechanisms help protect the
integrity of audit trail logs. Unauthorized access and alterations are exceedingly difficult,
if not impossible.

Permanent Records: Audit trail logs on a blockchain can be stored indefinitely. This
ensures that historical data is always accessible for compliance, forensic analysis and
trend monitoring.

Traceability: Blockchain provides a detailed history of data changes and transactions.
Each entry in the audit trail can be traced back to its origin, making it easier to identify
the source of any unauthorized actions or anomalies. In the context of audit trails, each

action (e.g., setpoint change) can be mapped to a single user.



1.5 Incentive Schemes
In the context of a blockchain assisted FL process, designing effective incentive schemes

plays a crucial role in fostering participation and cooperation among competing entities
in FL. The utilization of smart contracts within a blockchain network enables the
transparent and decentralized recording of each participant's performance metrics. This
approach ensures that rewards are allocated fairly and in accordance with predefined
criteria, thereby enhancing trust and accountability in the collaborative learning process.
The distributed ledger technology of blockchain, and centralized platforms like
Hyperledger Fabric (HLF), support some sort of consensus mechanisms where e.g. a
specified percentage of network nodes must agree on transaction validity. By embedding
verification algorithms within smart contracts, we can achieve an unprecedented level of
transparency. This transparency is especially critical in our context, where algorithmic
outputs directly influence incentive calculations, ensuring that rewards are distributed
equitably based on measurable contributions.

We believe that incentive schemes are particularly advantageous in environments where
trust is paramount, such as collaborative research consortia or industrial alliances
engaging in FL. These schemes not only encourage active participation but also
incentivize entities to contribute quality data and algorithms, thereby improving the
overall performance and accuracy of shared machine learning models.

The deployment strategy for blockchain nodes is adaptable to different FL use cases. In
scenarios involving a limited number of participating industries or associations, each
entity may opt to host a blockchain node to maintain proximity to their respective data
sources and stakeholders. Alternatively, a trusted third-party host may be chosen to
oversee the governance and operational integrity of the incentive scheme, ensuring
impartiality and adherence to predefined rules.

By integrating robust incentive mechanisms into our FL framework, we aim to create a
conducive environment where multiple end users can collaborate effectively, driving
innovation and advancing the state-of-the-art in distributed machine learning

technologies.

1.6 Research aims and objectives



The primary aim of this thesis is to investigate how Distributed Ledger Technologies and
Machine Learning can be integrated to develop innovative solutions that enhance data
security, operational efficiency, and collaborative learning in industrial applications.
Firstly, the thesis aims to explore how FL, a decentralized approach to ML model training,
can be effectively coordinated using blockchain technology. This includes investigating
the mechanisms by which blockchain can facilitate secure and efficient data sharing and
model training across multiple entities, ensuring transparency and integrity in the process.
Secondly, the research aims to identify and evaluate the potential industrial applications
of DLT and ML, focusing on areas where their synergy can provide significant
operational improvements. By examining real-world scenarios, the thesis seeks to
demonstrate the practical benefits and address the challenges of implementing these
technologies in industrial contexts.

The thesis also aims to optimize user engagement and data contribution quality in FL
systems coordinated by blockchain. This involves designing and implementing incentive
mechanisms and engagement strategies that encourage high-quality data contributions
and active participation from users.

Another aim is to enhance the security and functionality of industrial systems, such as
programmable logic controllers (PLCs), through the application of blockchain
technologies. This includes developing blockchain-based solutions that can serve as
immutable audit trails and command sources for PLCs, reducing their vulnerability to

cyber-attacks and improving operational reliability.



The roadmap of this research thesis is outlined below:

1) Develop a framework for the integration of FL and blockchain that ensures secure,
transparent, and efficient coordination of model training across multiple entities.

2) Design and implement smart contracts that facilitate the management of FL
processes, including data sharing, model aggregation, and reward distribution.

3) Design and implement incentive mechanisms, such as token rewards and
reputation systems, to encourage high-quality data contributions in FL systems.

4) Investigate the use of blockchain as an immutable audit trail for programmable
logic controllers (PLCs), enhancing their security and traceability.

5) Develop and test a blockchain-based command and control system for PLCs to

reduce vulnerability to cyber-attacks and improve operational reliability.



2. State of the art and related work

Researchers are exploring the integration of Federated Learning (FL) and blockchain
because it addresses critical challenges in privacy, security, and data integrity, particularly
in an era where data is increasingly decentralized and sensitive. Traditional machine
learning requires large amounts of centralized data, which can pose risks to privacy and
compliance with regulations like GDPR. FL enables training models without sharing raw
data, but it is still vulnerable to issues like data poisoning and trust concerns among
participants.

Blockchain’s decentralized, secure, and transparent nature makes it a natural complement
to FL. It ensures the integrity of model updates, prevents tampering, and provides an
auditable record of contributions. Additionally, blockchain allows the creation of smart
contracts and incentive mechanisms, motivating participants to contribute high-quality
data. This combination is particularly valuable in sensitive fields like healthcare, finance,

and industrial applications, where security, transparency, and privacy are paramount.

2.1 Blockchain-based Federated Learning approaches

H. Kim et al [23] have proposed a solution (BlockFL), where a blockchain network is
used instead of a central server to facilitate sharing of model updates from client devices.
The proposed consensus algorithm is based on Proof of Work (PoW). The blocks on the
network contain the model updates and miners are used to verify them and add them to
the network. The advantages include incentives for devices that contribute to the training
process with larger amounts of data, as well as solving the single point of failure in the
case of a central server outage. They also study the effects of a miner’s malfunction,
imposed energy constraints and number of participating devices in respect to end-to-end
latency and robustness. This work has been extended to offer rewards to valuable updates
with smart contracts, using a Cross-Sampled Validation-Error Scheme (CSVES) [33].

U. Majeed et al [24] have proposed a similar architecture (FLchain) that includes features
from Hyperledger Fabric and Ethereum, in which a separate fabric channel is used for
each global learning model. The global model state is calculated after each new block
generation. The suggested consensus algorithm is a modified version of Practical
Byzantine Fault Tolerance (pBFT) and Proof-of-Word (PoW). The main focus in this

solution is to improve auditability and governance.



D. Preuveneers et al [25] have implemented FL on a blockchain solution for intrusion
detection systems in computer networks, in order to explore auditability and
accountability. Their setup relies on a permissioned block-chained network, in order to
orchestrate machine learning models using FL. These models are then used to classify
traffic for Intrusion Detection. The non-repudiation property of the blockchain network
allows for enhanced accountability of contributing parties. The implementation is based
on MultiChain, an opensource blockchain platform. The calculated overhead of the
proposed solution in relation to traditional FL is estimated between 5%-15%.

More recently, similar research was performed by J. Weng et al [26] who implemented a
blockchain assisted FL that focuses on incentive mechanisms and auditability. The setup
is implemented on Corda V3.0 (a blockchain network sharing features of Bitcoin and
Ethereum) and uses a custom consensus protocol based on the work of Algorand [27].
The learning environment is based on TensorFlow and the results show how the training
accuracy increases with more participating parties.

Kang et al [28] have proposed a reputation-based approach that acts as an incentive
mechanism in a FL setup. A reputation blockchain network is utilized in order to store
weighting reputation opinions from recommenders. Based on these reputation weights
and contract theory, an incentive mechanism is designed in order to motivate high
reputation workers.

FedCoin [34] has been recently proposed by Liu et al, where a blockchain network is used
in order to offer incentives for miners that verify blocks on the network. Specifically, a
proprietary consensus protocol is developed based on Shapley Values, in order to promote
high quality data from participants, and provide incentives.

Although researchers are focusing on methods to offer incentives to participants [23],
[26], [28], [34], these are not calculated based on the actual value of model updates. The
work of I. Martinez et al. [33] calculates rewards based on the performance of
contributions, however the scheme used (CSVES) offers the same rewards to all users
that achieve a performance above a specific threshold. The solution proposed in this
paper, is able to adjust the size of the reward based on the improvement that it offers to
the joint global model and to our knowledge is unique.

The main contributions of this paper can be summarized as follows: a) It extends the
capabilities of our (previous) model update verification algorithm (presented in [35]) in
order to provide a metric proportional to the model update contribution and therefore
increase fairness in reward allocation. b) it described the mplementation of the



aforementioned verification algorithm in a simulation environment in order to verify
feasibility and provide baseline results, based on previous work regarding the

specifications of executing a FL process within a smart contract [36].

2.2 Benefits of using blockchain-based audit trails to generate secure PLC
commands.

In a recent study, researchers introduced BlockTrail as an innovative blockchain
architecture designed to address the space and time complexity challenges inherent in
traditional blockchain systems [37], [38]. They employed a hierarchical structure in
BlockTrail, utilizing the nature of transactions to partition the system into multiple layers
capable of processing transactions simultaneously. This architectural approach aimed to
reduce space overhead and accelerate the validation process by minimizing the number
of active replicas. The researchers also implemented additional security measures in
BlockTrail to strengthen defense capabilities and facilitate the detection of faulty replicas.
Researchers C. Regueiro et al [39] enhanced current audit trail solutions by developing a
Blockchain-based mechanism that prioritizes security and usability. They leveraged
Blockchain's intrinsic security features, including integrity, traceability, availability, and
non-repudiation, to ensure a high level of security in audit trails. To enhance usability,
they incorporated a Blockchain monitor, isolating users from the complexities of
Blockchain use. The resulting prototype contributes to more reliable, secure, and user-
friendly audit trails, with identified improvements over existing methods. The mechanism
is designed for general-purpose use, applicable across various ecosystems.

Authors S. Suzuki and J Murai [40] have proposed a scheme using blockchain technology
for applications requiring strict access control and auditing, such as medical record
queries. Traditional server-side logging is deemed insecure due to potential tampering,
leading to the proposal of a blockchain-based request-response channel for client-server
systems. A proof-of-concept system is implemented on a public blockchain testbed,
demonstrating the viability of using blockchain transactions as an auditable
communication channel. The authors suggest broad applicability, including shared key
delivery mechanisms, content encryption key delivery, and envision extending the
scheme to smart contracts for multi-party conditional schemes and access delegation in

healthcare systems.



Researchers W. Pourmajidi and A. Miranskyy [41] address the challenge of log tampering
in Cloud solutions by proposing a blockchain-based log system named Logchain. They
emphasize the critical nature of logs during incidents and propose immutability through
blockchain to ensure the integrity of log data. Logchain, as a Log Chain as a Service
(LCaaS), cryptographically seals logs and adds them to a hierarchical ledger, preventing
tampering and providing an immutable platform for log storage. The system aims to
establish trust among Cloud participants (providers and users) by offering verifiable logs
through a hierarchical ledger.

Factom, introduced in a whitepaper by P. Snow et al. [42], addresses the scarcity of trust
in the global economy by offering a precise, verifiable, and immutable audit trail,
reducing the need for blind trust and enhancing efficiency. Factom introduces a solution
by leveraging blockchains to lock in data, providing a distributed and independently
auditable mechanism. While Bitcoin's blockchain is a trusted immutable data store,
Factom extends blockchain technology to businesses without the complexities associated
with cryptocurrencies.

Recent work by P. Schmid et al. [43] addresses security and privacy issues in the Internet
of Things (10T) networks, particularly focusing on Programmable Logic Controller (PLC)
systems. Acknowledging the potential of blockchain technology to enhance security,
resilience, and trustless authentication in 10T ecosystems, the paper proposes a novel
approach. The suggested model integrates a proof-of-work-based blockchain into the
PLC loT ecosystem, facilitating the secure transmission and data logging of binary data
from PLC networks. This method aims to address issues like memory, tracing problems,
and resource efficiency. The authors highlight the security challenges of integrating
blockchain into 10T systems and suggest evaluating alternative consensus mechanisms,
managing storage requirements, and exploring integration with emerging technologies
like edge computing and machine learning for improved efficiency. They also emphasize
the importance of interoperability and standardization efforts for broader adoption.
Researchers A. Vick et al. [44] have explored the integration of blockchain technology,
specifically Solana, into Industrial Robot Control systems using a virtual PLC with OPC
UA interface. They propose a software gateway connecting Solana Blockchain Cluster
and OPC UA server, enabling data exchange between blockchain and industrial
equipment. The smart contract deployed on Solana implements control logic,
demonstrated by driving an Industrial Robot Handling Process in a laboratory setting.

Test results reveal varying runtimes for different steps, influenced by network latency and



transaction processing. The cost analysis shows acceptable expenses for implementing a
trusted third-party industrial robot control service on Solana. The blockchain ensures end-
to-end data security, allowing deployment of third-party control services as smart
contracts securely. Additional data security measures are recommended for
communication between the gateway client, shop-floor, and automation system operator,
especially when not in the same segment or location.

A recent study by S. Loss et al. [45] addresses the regulatory challenges faced by
pharmaceutical manufacturing in Brazil, particularly the requirements set by the National
Health Surveillance Agency (ANVISA) that mandates that pharmaceutical systems
ensure the integrity, security, and traceability of product information to safeguard
consumers. The paper proposes a blockchain-based microservice for audit trail
management, aiming to automatically record and secure all pharmaceutical system
operations, ensuring data immutability. A case study is presented, demonstrating the
applicability of the proposed microservice in pharmaceutical systems. The results indicate
the microservice's capability to handle 100 to 200 simultaneous users with good
throughput, making it suitable for small or medium-sized companies.






3. Design of Federated Learning Systems on blockchain

networks

During this part of the research, we introduced an algorithm that evaluates each model
update against a known verification dataset before it is aggregated into the global model.
The verification process does not rely on the size of the training dataset, which is often
unknown or can be falsified by adversaries. Using the MNIST dataset, simulations show
that the proposed algorithm effectively identifies and discards malicious updates. The
global model maintains high accuracy and convergence even with a significant
percentage of adversaries participating.
By using this approach, we show that the proposed scheme improves on the following
aspects:
e Ensures data integrity and reliability by leveraging the immutability and
traceability features of blockchain.
e Provides a decentralized and transparent method to secure FL processes,
eliminating the need for a trusted central server.
e Offers potential for incentive mechanisms using blockchain tokens to reward
participants for quality contributions.

3.1 Implementation of an algorithm to assess the quality of contributed

model updates

In this section, we propose an algorithm for FL, that can be incorporated in a blockchain
environment and run inside a smart contract, in order to facilitate the learning process and
provide protection against model poisoning. We are also presenting a high-level
description of the algorithm and results based on its implementation in open-source tools:
Keras and TensorFlow.

The steps involved in the operation of the algorithm are shown in Figure 4. As in the case
of traditional FL, the process starts with the initialization of the global model and its
relevant weights (with either random values or using proxy data). The global model is
then distributed to participating parties. Local training is performed on end devices
resulting in the generation of model updates in the form of weights. The coordinator upon
receiving the updates, evaluates each update separately against a known good validation
data set and records the accuracy. If the accuracy increases, the specific model update is
considered reliable. If the accuracy decreases, the update is discarded. A qualitative



measure for each update can be derived by measuring the distance between the global

model accuracy and the accuracy of the global model when averaged with the update.
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Figure 4 - Steps involved in the proposed algorithm

The pseudocode in Algorithm 1 is a high-level overview of the implementation, based on
the FL algorithm and the use of stochastic gradient descent (SGD). During averaging, it
intentionally does not take into consideration the clients’ data sample size, since in real
use cases this would not be known by the server and could be easily falsified by an
adversary in order to maximize his effect on the global model. This approach does not
measure the quality of each update; instead it only measures if each update increases
accuracy in a Boolean logic. Further improvements could be made in order to measure

the quality and use this as a metric for an incentive or rewards mechanism.



3.1.1 Algorithm 1 — Discarding of unreliable model updates

Variables used in the algorithm:

e W the weights of the initial model

e A the learning rate of the global model
e 1 the learning rate of the local model
e K contains all Clients

e Pk contains all data samples of client k
e B the local batch size

e GetAccuracy a function which returns the accuracy of the specified model
against the verification dataset

o i, the received (candidate) update from end-device k to be used in the
next model update

Wt the weighted average of all verified updates.

procedure SERVER
initialize wo
for eachroundt=1,2,... do
for each client k in parallel do
rk , « ClientUpdate(w,)

if VerifyUpdate(w,,rk ;) then

k _ ..k
Wit1 = Tt

end if
end for
Werr = Awg + (1 — ) KL, —whiy
end for
end procedure
procedure ClientUpdate(w;)
B < split Pk to smaller sets
forallb € B do
Wew-nVi(w,,b)
end for
return W (computed weights obtained by minimizing loss function f(w,,b))

end procedure



procedure VerifyUpdate(w,,r ;)
Pesr = Awg + (1 = Drfs4
a = GetAccuracy(p;4+1)
b = GetAccuracy(w;)
if a> b then
return True
else
return False
end if

end procedure

Algorithm 1 - Discarding of unreliable model updates

The SERVER procedure initializes the module weights by either random numbers, or
created using proxy data. Then, for each round, it distributes the current model version
(wy) to all clients. After the local training process is finished, the individual candidate
model updates %, are retrieved and verified by the procedure VerifyUpdate. In the
simplest form, this procedure will return a Boolean value, depending on whether the
model update improved the overall model performance against a verification dataset. The
new model version w,,, is calculated by averaging all the model updates for which the
VerifyUpdate procedure returned True. The configurable parameter A is used to specify
the learning rate, affecting the impact of the training round on the global model.

The ClientUpdate procedure is responsible for the local training process. First, the data
samples Pk are split into smaller batches of size B, which are then used to minimize a loss
function f. The reason for choosing a smaller batch size for training is because it speeds
up the training process significantly, especially when the end device is low powered such
as a mobile phone. The method of splitting a large sample size in smaller batch sizes for
training is known as Stochastic Gradient Descend (SGD)[6]. The configurable parameter
m, is used to specify the local learning rate, and affects the impact of the training process
on the specific model update.

The VerifyUpdate procedure is used to compare the performance of the current model w,,
against the performance of the weighted average of w, with the candidate update +%,. The
performance is evaluated against a verification dataset which is chosen before-hand, and
remains the same throughout all rounds.

The novelties of the proposed scheme are:



a) we propose an alternative way to evaluate the model updates, i.e. based on the accuracy
improvements they bring, which obviates the need to know the dataset size each device
possesses which can be falsified,

b) due to the execution of the logic in a smart contract, the logic cannot be compromised,
c) we exploit the traceability capacity of the blockchain to discourage malicious users
which could try to poison the model.

When implementing the algorithm inside a smart contract, the following should be
considered with respect to the blockchain framework:

a) the smart contract must be able to execute external tools, such as libraries used for
model evaluation,

b) all nodes must have access to the same verification dataset and

c) this dataset should be kept private from clients.

The above requirements suggest that a private permissioned blockchain network such as

Hyperledger Fabric is a better candidate.

3.1.2 Experimental setup and simulation results
The following simulation uses Tensorflow and Keras to measure the effectiveness of the
above algorithm. We perform FL using the popular MNIST database consisting of a
database of 60.000 handwritten digit images and 10.000 verification images and
corresponding labels. The model consists of an input layer (receives flattened images of
size 28x28), a fully connected layer, and an output layer of size 10 which is used as the
classifier. The optimizer selected is Adam[46], an adaptive learning rate algorithm that is
based on SGD with default base learning rate of 0.001. The simulation assumes 10
participating parties. In each simulation round, a (changing) subset of the nodes are honest
and the rest are adversaries. The training images are first split into 10 chunks which are
used by the 10 parties respectively. While both honest and adversaries train on their
corresponding training images, the honest use the correct training labels while the
adversaries use an altered label set. The labels in this malformed set were assigned to a
static number. The intention of the adversary in this scenario is to make the global model
always predict this number. During simulation, we experimented with additional
malformed label sets such as randomly chosen labels; however, the static number

approach was found to have greater negative impact on the model accuracy. Each



simulation runs for 10 rounds and each local training is performed over 1 epoch. After
each round, the model weights are averaged and distributed to the other parties.

Figure 5 - Performance with traditional FL algorithm in the presence of adversariesshows
the degradation of accuracy in this FL setup with varying percentage of adversaries when
individual updates are not verified (traditional FL). We notice degraded model
performance, both in terms of speed (training rounds) and convergence. Specifically,
when more than 10% of participants are adversaries, the model accuracy is below 90%,

with little or no convergence.
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Figure 5 - Performance with traditional FL algorithm in the presence of adversaries
Figure 6 shows how the algorithm has correctly identified the falsified model updates and
the model accuracy is able to converge in the presence of 30% adversaries. During the
first 2 rounds, the difference in accuracy levels is noticeable and is attributed to the fact
that the model is trained with less data (since a considerable amount is discarded). The

situation is rectified with each successive round.
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Figure 6 - Performance with model update protection in the presence of adversaries

3.2 Design of a Federated Learning process that is able to execute inside a
smart contract

3.2.1 Verification of contributions
The calculation of the next global model version in a FL process typically involves
averaging the model weights received from all contributions while also taking into
account the number of samples that each client possesses [47]. However, since training
in a FL process is performed at the edge, data is not transmitted and is not collected at a
central location. It is therefore challenging to assess the honesty of a user’s statement
regarding the amount of data used during the training process. An attacker may take
advantage of this inability, falsely report that he used large data samples, in order to
maximize his influence on the global model. It has been demonstrated that a known-good
verification data set (kept private from end users) along with a verification algorithm can
be used to evaluate individual model contributions, without relying on data sample size
numbers, thus providing a level of protection from the aforementioned type of attack [48].
Our proposed solution also uses the verification algorithm in the decision-making
process, depending on the incentive scheme used. In the simplest form, we can offer

rewards to users, whose contributions were able to pass the verification tests.



3.2.2 Overview of the learning process (Workflow)
Each training round comprises of three main processes. During the first process,
participating users request and receive the weights of the current model version. During
this step, the smart contract is invoked, which in turn queries the ledger for the relevant
data. It should be noted that the ledger is not altered at this stage.
After downloading the latest model version, the end-user is able to use it, as well as to
perform local training. The resulting gradients (in the form of model weights) are then
sent back to the blockchain network. During this step, a function of the smart contract is
invoked, which is responsible for the following tasks:
a) receives the gradients as an input from the end-user,
b) verifies the quality of the update by executing a model update verification algorithm,
c¢) depending on the results of the verification algorithm, either discard or save user
contributions on the ledger.
The last process in the FL workflow is to perform federated aggregation e.g. by averaging
all meaningful contributions stored in the ledger and use the result to create the next model
version. This process should be triggered to execute at pre-defined intervals depending
on the specific use-case e.g. when a certain contribution goal has been reached or when a
certain time has elapsed. If the training round is very short, there might not be enough
contributions to produce a model with significant improvements. On the other hand, if
the training round is very long, users will be delayed in downloading a better-performing
version of the model and as a consequence the learning performance will decrease. This
last process concludes the training round.
Possibilities for Rewards
After each training round is complete, it is possible to record the performance of each
user (in terms of useful contributions) in the ledger. During the training process, user
contributions are evaluated against a verification algorithm. The output of this verification
function can be used as a metric of users’ performance. In the simplest form, the
distributed ledger will store increments, that represent the number of successful
contributions (i.e. model updates that were deemed useful by the verification algorithm).
These scores can be perceived the same way as cryptocurrency tokens, in the sense that
they are stored on a secure medium, and can be exchanged for rewards. In a commercial
setting, the tokens can be exchanged with money in order to compensate the user for his

effort in performing local training and for supplying the FL process with useful model



updates. In other use cases, tokens could be exchanged for additional services e.g. access
to download and use supplementary Machine Learning (ML) models. Alternatively, the
lack of tokens could be perceived as an indication of misbehaving or unproductive users
and therefore potentially be used to prohibit them from further participating in the FL

process.

3.2.3  Smart Contract Functionality

This section discusses the functionality that should be implemented in the smart contract
as a minimum, in order to support the workflow discussed in the previous section.

The first function is responsible for enabling participating users to acquire the latest model
version, during the first phase of the training round. The function is defined as
GetLatestModelParameters(), queries the ledger and returns a multidimensional table of
weights corresponding to the latest model version. This function is invoked once by each
participating user. However, since only a simple query is performed against the ledger,
we expect that the computational requirements will be low.

Figure 7 below shows interactions between users, smart contract and the distributed
ledger during the early stages of the training round (download of model weights).

User n GetlLatestModelParameters() Distributed Ledger
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Figure 7 - Interactions between users, smart contract and the distributed ledger — Request of current model version
(model weights)

The second smart contract function SubmitModelWeights(weights) is required to
facilitate the functions of the second step of the training round (i.e. when a training round
is active). When executed, it will receive model updates from the user as an input (in the
form of weights), it will then run the verification algorithm, and finally store the
contributions to the ledger. We define “weights” in the function above as a
multidimensional table of the model weights, corresponding to an individual contribution.
This function is also invoked by the user, and can optionally return the contribution
assessment result which is derived by the verification algorithm. Two approaches are

considered for storing contributions to the ledger. The first approach involves only storing



successful contributions i.e. those that improve the accuracy of the model. Another option
is to store all contributions along with a metric (derived by the verification algorithm).
Depending on the specific use case, we may choose the first approach because it offers
performance benefits (since the ledger is being written less often), or the second method
which offers higher auditability. In both of these cases, it is anticipated that a moderate
amount of computational resources will be required, since the function is called by each
participating user, calls external CPU-intensive ML verification libraries, and is expected
to affect the state of the ledger.

Figure 8 below shows interactions between users, smart contract and the distributed

ledger during the submission of model updates from the users.
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Figure 8 - Interactions between users, smart contract and the distributed ledger — Submission of model weights (user

contributions)

The last function CalculateNextModelVersion() is required in order to create the next
model version and by doing so, end the current training round. Unlike the previous two
functions, it is not invoked by an end user. For this reason, an external trigger should be
created as discussed in the previous section. The next model version is created by
performing federated averaging among contributions saved in the ledger. The resulted
multidimensional matrix is stored in the ledger in order for it to be used during the next
training round. Although this function writes to the ledger, it is called only once every
training round. Along with the fact that it uses simple mathematical matrix calculations,
it is not anticipated to require many computational resources.

Figure 9 below illustrates the interaction between the smart contract and the distributed

ledger during the creation of the next model version.
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Figure 9 - Interactions between smart contract and the distributed ledger for the creation of the next model version

(end of training round)

Table 1 below summarizes the characteristics of the smart contract functions, which are

used to predict resources requirements. TR denotes the Training Round.

Resources Requirements for Functions

Attributes

Function Execution Alters  the | Anticipation of
Frequency ledger resources required
once per user

GetLatestModelParameters . NO Low
per TR

) _ once per user

SubmitModelWeights . YES HIGH
per TR

CalculateNextModelVersion | once per TR™ | ves Low

*Training Round

Table 1 - Resources Requirements for Functions

3.2.4 Distributed Ledger operations and data structure

The proposed architectural diagram is based on the concept of key-value pair databases.

Such type is used as a state database by HyperLedger Fabric (HLF). Smart contract

operations are used to read or write to the current state of the database. Each ledger

transaction will either create, update or delete (and therefore modify) key-value pairs in

the ledger. However, since HLF belongs to the blockchain family, an immutable sequence

of blocks contains all transactions that have affected the current state of the database. The

copy of the ledger is propagated to all network members.
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Figure 10 - Operations that access/modify the distributed ledger

Table 2 below summarizes the key-value pairs that will be required as a minimum for the
operation of the FL process as well as for recording rewards. The key “identity” below
refers to array values. For example, we will provision one key-value pair of ModelUpdate

and Reward variables for each participating user.

Key Value

. Multidimensional matrix containing weights for current model
ModelWeights g Welg

version

Multidimensional matrix containing weights (one for each

[identity])
Value proportional to quantity/quality of user contribution

ModelUpdate(identity)

Reward(identity)

(one for each [identity])

Table 2 - Key-value pairs for the FL process

3.3 Improving Security and Fairness in Federated Learning Systems

3.3.1 The rewarding algorithm

Building upon previous work [35], [36], we design a rewarding algorithm in order to
provide incentives and therefore promote participants with higher quality data. Although
our motivation is in line with related work analyzed in section 11, we approach this directly
from the standpoint of a smart contract so that consensus will be required among multiple
nodes. The benefits are twofold: first, the security aspect of the verification algorithm is
enforced by all blockchain nodes and trust of the verification algorithm decision is
enhanced due to the distributed nature of the architecture. In more detail, we anticipate
that the proposed solution will offer advantages in the following areas:

Security enhancements: It is possible that a threat actor may be actively pursuing to
degrade the performance of the global model, by either training with malformed data, or
transmitting malicious model updates. The solution proposed assumes that a known-good

verification dataset is readily available on each blockchain node. Then, we can compute



the effectiveness of each model update in terms of accuracy against the verification
dataset and conclude weather the individual contribution should be taken into account.
We demonstrate that the approach is highly effective against label-flipping attacks, and
we intend to assess its performance against other types of attacks (such as backdoor-based
attacks or data-poisoning).

Reward calculation on multiple nodes: We propose that the reward calculation is executed
inside a smart contact. These will, depending on the blockchain solution used, most likely
be run on multiple nodes which will need to reach consensus regarding the reward
calculation. Since the rewards will represent the effort of each individual in a FL system,
and in some use-cases might be exchanged for money or other services, it is imperative
for a user to rest assured that no single network node can alter the ledger where the
rewards are kept (either intentionally or due to an error).

Rewards proportional to quality of contributions: Since the parameter server in FL
does not have access to the actual data, there is no practical and secure way to acquire or
assess the dataset size. In real use cases we cannot assume that a user is honest and will
provide the server with a number representing the real amount of data owned, as assumed
in other works. Moreover, larger training datasets do not necessarily lead to better models.
Instead, we measure the efficiency of each model update by comparing the accuracy of
the resulting model against a verification dataset which is used for reference, in order to
measure the improvement of the global model performance. The main objective of the
rewarding algorithm is to offer fair rewards to participating entities of FL, i.e., analogous
to the quality of their model updates.

Principle of Operation

The steps in the federation process and the operation of the algorithm are outlined in
Figure 11. The training is performed in rounds. At the beginning of each training round,
the current model weights are distributed among all participants. As a result, the
participants are able to use the model and perform training using locally available data.
During a predefined time, participants are expected to share the derived model weights

with the blockchain network.
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Figure 11 - Rewarding algorithm, principle of operation

At this stage, all model updates are verified individually in order to calculate rewards.
The main steps involved in the process are

a) the model weights are fused with the global model weights,

b) the derived model weights are evaluated against a verification data set and the
difference of accuracy is recorded for reward calculation,

c) if the accuracy increases, the specific model update is saved, otherwise it is discarded.
Saved contributions are used during global averaging, a process that prepares the model
weights for the next global model version which in turn is redistributed in the next training
round. This process is repeated for all subsequent training rounds, until a predefined

condition is met (e.g., a number of training rounds has elapsed, or the global model



accuracy is above a threshold). At the end of the learning process, the metrics stored for
each user are normalized, in order to aid reward allocation.

The Algorithm 1 (shown in the sequel) depicts a high-level representation of the FL
process using stochastic gradient descent (SGD). Before the training rounds start, the
global model weights wo as well as the table holding user rewards R, are initialized.
During each training round t, the current model weights w; are distributed to all
participating users k, that perform local training, resulting in individual model updates
rk .. By using a learning rate A, the individual model weights are averaged with the global
model, and form temporary model weights p,.,,. The accuracy of this temporary model
is evaluated (using Acclmp) against the accuracy of the global model wrand the difference
is integrated in table R. Federated Averaging (FedAvg) is then performed, and the model
weights w;,, = are prepared for the next training round. Once all training rounds are

completed, the rewards table R is normalized.

Algorithm 2 - Reward Calculation inside the FL process

Wo is the initialized model weights, A is the learning rate of the global model, 1 is the
learning rate of the local model, K contains all Clients, Pk contains all data samples of
user k, Rk holds reward points for user k, B is the local batch size and GetAccuracy is a

function which returns the accuracy of the specified model against the verification dataset.



procedure Server
initialize wo
initialize R
for eachroundt=1,2,... do
for each client k in parallel do
rk | « ClientUpdate(w,)
R 1= Acclmp(wy,rfs,)

If R, ;> 0 then

k _ ..k
Wit1 = Tt

end if
R¥ = R¥ + Ry,

end for

K
1
Wi = Awe + (1 - 1) Z waﬂ
k=1

end for
normalize(R)

end procedure

procedure ClientUpdate(w)
B « split Pk to smaller sets
forallb € B do
Wew-nVi(w,b)
end for
return W
end procedure
procedure Acclmp(w,,r ;)
Pes1 = Awg + (1= Drfs4
a = GetAccuracy(ps4+1)
b = GetAccuracy(w;)
return a-b

end procedure

Algorithm 2 - Reward Calculation inside the FL process



Normalization is performed in order to differentiate between user contributions. During
training, it is possible that the reward points collected by a user is a negative value. This
occurs when the submitted model updates were determined to affect the global model in
a negative way. For testing purposes, negative values are first zeroed out. Then, the
following formula is used on all values:

X — Xmin

Xnorm = —
Xmax Xmin

3.3.2 Smart contract specifications
In the blockchain part of the proposed solution, the users could either be user owned
devices (such as mobile phones), machines operating autonomously (for example in
industries), or data providers meaning that these could be organizations that are willing
to make use of their data in order to assist the training process. The blockchain network

further comprises of the smart contract and distributed ledger.
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Figure 12 - Blockchain FL, relationships between users, the smart contract and the distributed ledger

Furthermore, Figure 12 depicts in further detail the relationships between users, the smart
contract and the distributed ledger, in order to implement the three main processes that
occur in a training round when FL is executed inside a blockchain solution. In order to
support these main processes, the following three smart contract functions have been

considered accordingly. When describing the smart contract functions below as well as



the structure of the distributed ledger, we might use some terminology specific to
HyperLedger Fabric (opensource private blockchain solution). However, these are
included for completeness and should be substituted if implemented on different
blockchain technologies.

The first function enables users to asynchronously ask for and retrieve the current model
version. Upon being triggered by the user, the function GetLatestModelParameters()
queries the distributed ledger for the weights of the current model version which are in
turn returned to the user. It is expected that this function will be executed once for every
participating user. Since only a query operation is performed against the distributed
ledger, the operation is not expected to require many resources.

The next function is responsible for evaluating and storing verified model updates. The
function SubmitModelWeights() is once again triggered by the user, as soon as local
training is complete. The smart contract at this point invokes the verification algorithm
and receives the result. Depending on the result, the smart contract will need to either
store the individual contribution to the ledger or discard it. Failed contributions can also
be recorded in the ledger, even if they are not used in the next model version, for use
cases requiring increased auditability and accountability. This will, however, incur
performance costs, as changes made to the ledger will need to be propagated and agreed
upon all network nodes.

The last function is required in order to end the training round and prepare the model
weights for the next round. Rather than being triggered by a user, the function
CalculateNextModelVersion() is triggered by an event. Events are predefined criteria
such as when a certain number of contributions is reached, or a predefined time has
elapsed or a combination of the two conditions. When the function is triggered, the ledger
is queried, and all useful contributions are retrieved. Federated Averaging [49] is then
performed and the resulting weights are stored in the distributed ledger. The process of
federated averaging is executed once per training round, and therefore it is not anticipated
that it will induce a large overhead.

In order to support the aforementioned functionality, some values need to be stored in the
ledger. For this reason, we assume a key-value pair database which is common in many
private and public blockchain network solutions and we describe its structure. In this type
of database, each value is referred to by a unique key (Figure 13). The first key value pair
is required in order to store the weights of the current model version. It is a multi-

dimensional array, is preset before the first training round starts, and is updated at the end



of each training round. Specifically, it is referenced by the GetLatestModelParameters()
function and updated when CalculateNextModelVersion() is invoked.

Another key value pair is defined in order to store contributions from participants. Since
the number of received contributions is dynamic, we define it as an array. This array does
not need to be persistent across training rounds. It can either be deleted or preserved
according to specific use case requirement. In order to calculate user ratings, we need
another array which will keep a count of all contributions per user or a value that is
proportional to the quality of each user’s contributions. This key can be used in order to

offer rewards, e.g., in the form of tokens to be exchanged for services.

Smart Operations Ledger
Contract
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GetState(key)
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Figure 13- Distributed Ledger operations

For some use cases, it might be desirable to limit access to individual functions
beforehand, so only specific users have access. This will most likely increase security and
can apply to both private and public blockchain technologies. However, this implies that
a central administrating authority will be required in order to select the identities that are
able to participate. The following authorization levels are supported:

e No Access — The user is not able to access any smart contract function, and
therefore cannot use the global model nor participate with model updates.

e Model use only — The user is granted access to GetLatestModelParameters()
function, but is denied access to SubmitModelWeights(). Therefore, he is able to
download the weight of the current model version and use it offline. It is not
possible for the user to contribute with model updates.

e Full Access — Access is allowed to all functions and therefore the user is able to
use and improve the shared global mode.



It is also possible for the authorizations to be assigned dynamically depending on varying
attributes. One of these could be user performance. In this scenario, the verification
algorithm may be used in order to keep count of the contributions of each user thereby
creating a rating. Subsequently, the rating can be used in order to maintain access to the
global shared model. For instance, a user may initially have full access, but because he
has not participated in the last predefined number of training rounds, he may have his
access revoked. As a consequence, he will lose access to new versions of the global
model. In other words, this can support use cases where a user is permitted to use the
global model as long as he makes meaningful contributions. In a commercial

environment, access can be granted on a subscription basis in exchange for money.

DISTRIBUTED LEDGER STRUCTURE

Key Value

ModelWeights Multidimensional matrix containing weights for
current model version

ModelUpdate(identity) Multidimensional matrix containing weights (one for
each [identity])

Reward(identity) Value proportional to quantity/quality of user
contribution (one for each [identity])

Table 3 - Distributed Ledger Structure

3.3.3 Testbed

This section includes a description of the tools used for simulating the FL process and
collecting measurements. In order to simulate the FL process, we developed scripts in
Python and made use of opensource frameworks and libraries such as TensorFlow and
Keras, as well as publicly available reference datasets from the MNIST database. Before
the process starts, the model is setup using the opensource Keras libraries with random
values. Model initialization needs to be performed only once, before the first training
round, however, the next steps described here are repeated for each subsequent training
round. The MNIST database consists of 70,000 images of handwritten digits. The images
are 28 by 28 pixels in size and are grayscale. The images belong to 10 classes representing
the ten number 0-9 and the set is usually divided into smaller sets for training and
validating. This database is publicly available and used by machine learning developers
and researchers in order to record baseline performance.

The developed scripts simulate the FL process and are used to collect the measurements
presented in this paper. They also handle necessary functions such as model initialization,



model training and the model update aggregation. The model used throughout this paper
is initialized using Keras, has an input layer of 28x28 in order to receive the handwritten
digit images, a dense layer of size 128 with ReL U (rectified linear unit) activation and an
output layer of size 10, used as the classifier.

We first concentrate on the defense against the malicious nodes. For this reason, during
this specific simulation, a FL process (against the MNIST database) was first run for a
duration of 10 training rounds and a varying percentage of malicious participants
(following similar strategies applied in other contexts [50]. Figure 14 and Figure 15 show
how the global model performs in the presence malicious participants when protections
is disabled and enabled respectively. Not surprisingly, when malicious updates are taken
into account during model aggregation (Figure 14), the rate of accuracy improvement
decreases. Most importantly, in the presence of 20% or more adversarial activity, the
model accuracy is not able to converge. This can be attributed to the fact that in label-
flipping attacks, the attacker is actively training the model with incorrect labels i.e.,

aiming to change the direction of the global model predictions.
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Figure 14 - Performance with traditional FL algorithm in the presence of adversaries
When the verification algorithm is configured to discard useless model updates (Figure
15) we can observe that it is able to differentiate between useful/harmful model updates

and offer a substantial protection against this type of attack.
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Figure 15 - Performance with model update protection in the presence of adversaries.

Then, we turn our attention of the evaluation of rewards analogous to the model
improvement brought by each entity. A simulation of Algorithm 2 has been run using the
tools described earlier in this section. In this particular setup, 10 participants participate
in the FL process which lasts for 10 training rounds. For training and validation data, we
use the popular MNIST database of handwritten images. The training data is further split
into smaller chunks, which are allocated to the participants. In order to simulate varying
levels of data quality, we create distorted images for training data (Figure 16). Participant
1 receives unmodified training images, whereas participants 2-7 receive images with
varying levels of gaussian noise. The variance of the noise ranges between 0.45 and 1.2
and a mean of 0. Participants 8-10 perform label-flipping attack and are actively trying to

degrade the performance of the model.
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Figure 16 - Training images with gaussian noise applied

Figure 17 depicts the difference in accuracy between the evaluation model (temporary
model p,,, in Algorithm 2) and the global model i.e., the result of function Acclmp. Even
in this simulation with mixed types of participants, the accuracy of the resulting model is
still able to reach more that 90% accuracy. In the graph, we can distinguish two different
trends. The higher ones show the performance of the honest participants, while the lower
ones (overlapping each other) show the performance of the threat actors (participants 8-
10).
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Figure 17 - Difference in accuracy of each contribution



In more detail, we can also extract the following information:

We can observe that the accuracy gains (in terms of accuracy difference against the
validation dataset) is high for participants 1-7 during the first training rounds and tend to
level off during the end. This curve matches the inverse typical curve of machine learning,
i.e., accuracy gains are higher when a machine learning model is untrained and tend to
decrease when the performance of the model is higher.

Even participants that used very noisy data (such as 6 and 7), contribute positively to the
FL process as evident by the high performance shown in the figure during at least the first
4 rounds. In further rounds, and as the model has become more mature, the model updates
of the least performing participants (e.g., participants 6-7) become redundant, the
accuracy improvement becomes negative (in terms of the Acclmp function) and, as a
consequence, are discarded during model aggregation.

Participants with the healthiest data (such as participants 1-2), contributed positively until
the last training round. Their contributions improved the accuracy of the global model in
respect to the verification dataset, which was correctly identified by the verification
algorithm (Acclmp function returned positive numbers) and as a consequence all model
updates of these participants were used during model aggregation.

Participants 8-10 on the other hand only have zero and negative values. This is attributed
to the fact that their model updates test badly against the verification set. So as the global
model accuracy improves, the difference in accuracy (Acclmp function) becomes
negative.

The performance difference between participants 1-7 is not readily distinguishable in the
above figure. For this precise reason, we need to perform normalization of all values when
the training process is finished.

Figure 18 depicts the points accumulated by each participant, after the values have been
normalized on a scale of 0-1. The best performing participant (participant 1) is awarded
the highest value 1, while the worst performing participant (participant 7) is assigned the
lowest value 0. Participants 2-6 have values in-between, proportional to their
contribution. What is interesting here, is that these results correctly correlate to the
quality of the training data used. Conveniently, adversaries have been correctly identified
(result of Acclmp function is negative) and have received no rewards. The malicious
model updates were not used during the generation of the global model since this would
require the satisfaction of the condition (r%,,>0). Such a fair reward scheme is necessary

both for consumer owned devices and industrial organizations owned devices where the



current challenge is to collaboratively train digital twin models of the industrial processes

(as discussed in [51]).
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Figure 18 - Normalized values, used for rewards

The initial results demonstrate the effectiveness of the blockchain-based scheme in
protecting against model poisoning. Future work includes extensive testing and
implementation in open-source blockchain platforms, as well as exploring reward

mechanisms based on the quality of contributions.






4. PLCBlox, a blockchain based secure source of commands for

PLC devices

Motivated by the fact that industrial applications (machines and processes) generate large
amount of data which are potentially valuable for training ML models, the research
focused on ways to interconnect these with blockchain assisted FL processes such as those
described in chapter 3. It quickly became apparent that an interface would need to be
developed in order to allow communication between industrial devices and blockchain
networks.

This section introduces PLCBIox, a novel integration of Programmable Logic Controllers
(PLCs) with blockchain technology aimed at enhancing security and audit trail
capabilities in industrial applications. It begins by contextualizing the roles of SCADA
systems, HMI devices, and PLCs in Industry 4.0, emphasizing their critical functions in
data aggregation, operator interaction, and real-time control. Security challenges,
including the historical Stuxnet worm incident, underscore the vulnerabilities of legacy
SCADA and PLC systems, necessitating robust cybersecurity measures.

The proposed PLCBIlox scheme innovates by leveraging blockchain networks as secure
audit trail databases. Blockchain's immutability and cryptographic security make it ideal
for recording and verifying transactional data, ensuring compliance with regulatory
standards such as FDA's 21 CFR Part 11. Key benefits outlined include enhanced data
integrity, traceability, and resistance to tampering, which are crucial for industries like
pharmaceuticals and biotechnology.

PLCBIox operates by enabling PLCs to interact directly with blockchain nodes via smart
contracts. This approach decentralizes user authentication and authorization, traditionally
managed by SCADA systems, to enhance security. The integration ensures that all
changes to PLC parameters and commands are logged immutably on the blockchain,
forming a transparent and auditable record.

The research outlines a prototype implementation using Siemens PLCs and an Ethereum-
based blockchain network (Ganache), demonstrating feasibility and performance metrics.
It addresses resource constraints of PLC devices and evaluates latency and throughput in
a simulated industrial environment. Results indicate that PLCBIlox effectively minimizes
attack surfaces and operational risks associated with traditional SCADA architectures,

providing a foundation for further research and development.



We believe that PLCBIlox represents a significant advancement in industrial
cybersecurity, offering enhanced security, auditability, and compliance capabilities

through blockchain integration.

4.1 Principle of operation

The solution presented in this section builds upon the related work presented in the
previous section in order to enable PLC devices to query blockchain-based audit trail
database as a source for parameters and commands. This approach offers improvements
to typical HMI and SCADA applications and to our knowledge has not been already
researched.

For reading and displaying process data (information flow from CPU to HMI) the
procedure remains unchanged i.e., the CPU is read by the HMI device using vendor
specific libraries. In order to update values (parameters or commands) in the CPU area,
the user (operator) must first commit a transaction on the blockchain network using his
wallet. The CPU asynchronously queries a blockchain node for sets of parameters and
setpoints. When changes are identified, they are applied inside the device user memory.

The complete workflow is depicted in Figure 19 below.
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In contrary to traditional HMI systems, the user authentication and

authorization tasks are now coordinated by the blockchain network, the smart

contract and the user’s wallet. Moreover, by leveraging the underlying

technology of blockchain, the aspects of the audit trail database are self-

contained in the smart contract’s storage area. These concepts are summarized

in Table 4.

Function

Typical Architecures

PLCBIlox

User Authentication

Local Windows Accounts,
Domain Controller Accounts,
Accounts configured in SCADA
application

User’s wallet

User Authorization

Local Windows Groups, Domain
Controller Groups, Groups configured
in SCADA application

Smart contract




Audit logs Audit trail database Blockchain
The PLC device

Source of device Commands and setpoints/parameters |queries the
(PLC) commands andjare sent from the SCADA/HMI blockchain for
setpoints application to the PLC. commands and new

setpoints/parameters.

Required permissions _
) Read/Write Read only
on PLC device

Table 4 - Key differences between typical industrial application architectures and PLCBlox

Improvements

In addition to improvements in terms of scalability and secure audit logs already
demonstrated by researchers in the related work section, PLCBIlox by itself offers
advantages in the following areas:

Security improvements on the PLC device

PLCBIlox does not require write access to the PLC device. Updates of command statuses
and setpoints are initiated by the PLC device during the querying operation of the
blockchain node. It is therefore possible to completely disable write access at the device
level. This fact alone leads to a smaller attack surface and renders many known and zero-
day attacks unusable [21], [52].

Security improvements at the application layer (SCADA/HMI)

An attack on the device hosting the user application could circumvent the user
authentication and authorization checks, allowing anyone to control the end device. Even
further, a malicious threat actor could use the compromised operating system as an attack
vector, bypass the SCADA software entirely and use vendor specific libraries to
communicate with the end device directly as in the case of the Stuxnet worm [21]. With
PLCBIlox, the SCADA/HMI application is not able to control the PLC directly due to the
fact that write access has been disabled. Any compromise of its software components
would not affect the behavior of the PLC. Moreover, the authentication and authorization
tasks are now coordinated by the blockchain network which is an inherently more secure
platform.

Audit trail enforcement



A compromised or malfunctioning SCADA system could be altered in a way that all
components are functional except the audit trail logging aspects. In such a scenario a
malicious user (e.g., rogue employee) would be able to execute commands and alter
setpoints without his actions being recorded. With PLCBIox, any attempt to bypass the
audit trail would prove meaningless as it is the only source for command and setpoint

updates.

4.2 Prototype implementation

PLC devices are considered unsuitable for performing higher-level tasks such as
blockchain transactions due to their limited resources. Their work memory (equivalent to
RAM in computers) ranges from a few Kbytes to 32Mbytes for very large systems and
code storage is usually also limited. The process of querying a blockchain node does not
have high computational requirements such as those associated with the creation of signed
transactions. Instead, predefined Application Programming Interface (API) calls are used
such as those in the form of JSON-RPC documented for the Ethereum network®. Due to
the resource limitations of PLC devices, a prototype implementation was necessary to
first verify the feasibility of the solution, as well as to record real-world performance
indicators and to provide the base for further development.

The complete design of PLCBIlox solution consists of four elements, namely, the PLC
application, an Ethereum private blockchain network, a smart contract and an Ethereum
compatible wallet. A complete list of hardware and software tools used for the
development and execution of PLCBlox implementation is summarized in the following
table (Table 5).

1 Ethereum JSON-RPC API - https://ethereum.org/en/developers/docs/apis/json-rpc/



Component Tools

Development of PLC demo )
o _ Siemens TIA Portal V18 (Development
application and reference blockchain ) )
IDE for Siemens PLC devices)

node client
PLC device Siemens S7-1511-1PN
) - HMI TP900 Comfort Panel (Simulated
HMI Device for acquiring results
HMI panel)

_ Ganache private Ethereum blockchain
Blockchain Network )
environment

Authentication Metamask Ethereum Wallet

Remix IDE (Solidity programming
Ethereum Smart Contract
language)

Table 5 - List of hardware and software tools

PLC Application

The PLC application code incorporates a recently developed library designed for
interfacing with the Ethereum node. Additionally, it includes a demo application that
serves as an illustrative example of a streamlined industrial process, along with
supplementary code employed for gathering performance indicators. The Ethereum
interface library employs essential functions for executing HTTP API requests and
implements the Ethereum "eth_call” client-side JSON API.

The demo application presupposes that the PLC device oversees the control of a machine,
necessitating one temperature setpoint and one command to configure the operation
mode. Consequently, it is imperative to retrieve the following two variables from the
smart contract:

OperationMode: This variable signals the intended operational state of the machine.
Temperature: This variable represents the setpoint for the desired process temperature.
Smart Contract

The smart contract runs on the blockchain network and interfaces with the PLC device

through the blockchain node. It processes users’ requests for updating process parameters



which are received in the form of transactions. It needs to also support the authentication
and authorization functionality which would otherwise be handled by the SCADA device.
Authentication and Authorization

To showcase the authorization capabilities of PLCBIlox, the smart contract incorporates
distinct authorization levels outlined as follows:

Administrator: By default, this role is assigned to the user that is deploying the smart
contract. This user is able to assign other users to roles but cannot modify any other
variables.

User: Users are restricted to modifying the machine's 'operationMode' variable
exclusively.

SuperUser: A super-user has the capability to alter both variables, namely
‘operationMode' and "Temperature'.

The smart contract employs three variables (admin, user, superuser) to store the public
addresses of users corresponding to their designated roles. Authentication relies on the
inherent functionality of the blockchain network and the user's wallet. New requests reach
the smart contract in the form of transactions which are signed with the user's wallet,
utilizing the associated private key. The smart contract then verifies these transactions
against known public keys, permitting functions to execute in accordance with the
specified authorization level.

Functions

The smart contract provides the following functions to facilitate interaction with the PLC
and enable user interactions:

ChangeUser and ChangeSuperUser: These functions are invoked by the admin to assign
user and super-user permissions, respectively. The blockchain network address of a new
user is passed in the function parameters.

SetTemperature: Super users utilize this function to modify temperature setpoints. The
new setpoint value is passed as the function parameter.

SwitchON and SwitchOFF: Users or super users can call these functions to modify the
desired operation mode.

Project Repository

In order to lay the ground for further research and development, all components of
PLCBIox have been uploaded to GitHub?, namely:

2 PLCBlox GitHub repository - https://github.com/andshort/PLCBlox



Controller-side code including opensource communication libraries, the newly developed
Ethereum client-side RPC library and the demo process application

Smart Contract source code (bloxtrail.sol)

4.3 Measurements

Developing the prototype implementation has been a vital phase of the research, serving
as a testing ground to evaluate feasibility, performance and to record resources consumed.
The complete solution, has been successful in verifying the complete feature set shown
in Table 4, namely user authentication, authorization, the usage of the blockchain network
as an audit trail database, as well as the interface between a PLC device with an Ethereum
node. Most importantly, it demonstrates that a set of setpoints and commands can be
updated without requiring direct access to the controller.

As discussed earlier, PLC devices are limited in resources. The most important metrics
are the size of the actual code as well as the size of work memory. Work memory is the
equivalent of RAM in computers but is a fraction of the size. The specific controller used
in the implementation has 300kb of work memory. Although the source code storage can
be extended by means of an SD card, the work memory cannot. The prototype
implementation including all necessary libraries consumes 260kb of storage, as well as
14,5kb of work memory (5% of available).

Regarding the performance and in order for the results to better reflect real-world
conditions, the CPU and blockchain network (Ganache) were located in separate locations
and were connected through the in-ternet across a link with a moderate network latency
of 12ms. Additionally, the Ethereum node calls were configured to run in a loop so as one
call finishes, the next one starts immediately. Each call duration is measured by the CPU
and an HMI device was configured to display the results. An example of 100
measurement points is shown in Figure 20. Each measurement point reflects the duration
of the Ethereum node call and is calculated when the call is finished. In summary, each
call completed within a time-frame of 17-28ms with a mean value of 22ms. Subtracting
the baseline network latency (12ms with no network load), we can attribute an average
cycle duration of 10ms to CPU computation and delays in the Ethereum network protocol.
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Figure 20 - Latency metrics over a period of 100 measurement points

The resource utilization figures and performance indicators are summarized in Table 6
bellow. The list focuses primarily on the PLC device, as this would act as the bottleneck

performance-wise.

Metric Value
PLC code size on PLC Device 260kb
Work memory (RAM) 14,5kb
Cycle duration (Request to response, 29ms
end to end)
Throughput (calculated) 45requests/sec

Table 6 - Utilization figures and performance indicators

Discussion

The innovative approach presented in this research has shown that modern PLC devices
are able to interface with common blockchain nodes, opening new possibilities for added
functionality and security improvements. Furthermore, it is demonstrated how PLCBIlox
can take advantage of the intrinsic tamperproof characteristics of an Ethereum network
in order to facilitate the storage of audit trail records.

Security and policy enforcement (Audit trail logs)

Authentication and authorization tasks are now handled by the user’s wallet and the smart
contract respectively. These two components coupled with the underlying blockchain

network operation offer higher security standards which have been proven by their use in



the finance sector, especially when taking into account the security issues that exist in
typical industrial deployments.

Furthermore, by requiring less access permissions on the PLC device (Read only), it is
impossible for an outside process to intentionally or unintentionally alter its data, in effect
eliminating an attack surface that has been exploited over the years. Even further, due to
the design, a compromised SCADA system would not be able to adversely impact the
running process. Security requirements of these systems can therefore be relaxed.

The enforcement of the audit trail records, typically handled by the SCADA software on
the end device, is now part of the system design. Moreover, there is no meaningful way
to circumvent them, providing value to industries that require such policies.

Resource overhead and performance

It should be noted that the performance figures collected in the previous section reflect a
mostly ideal setup due to the usage of a local Ethereum network node installation and the
stable network connectivity. The authors argue that this setup more closely resembles
typical deployments in industries that use on-premises audit trail database servers.
Moreover, the small delay overhead imposed by the newly developed communication
cycle should not be a concern for most industrial applications. At the same time,
PLCBIlox’s small PLC code footprint and RAM requirements leaves most of its resources
available for the operation of the main application.

Concerns when running PLCBIlox on a pubilc blockchain network

While the solution is expected to function on public blockchain networks that share a
similar RPC communications interface (such as the Ethereum Mainnet), one would need
to consider the following factors:

a) longer network delays attributed to both network latency as well as the fact that the
blockchain node is simultaneously catering to a wider audience,

b) reduced reliability due to the reliance on stable internet connectivity,

c¢) costs incurred during the deployment of the smart contract and the creation of
transactions (as would be the case when inserting audit trail entries) and

d) privacy concerns arising from the fact that sensitive process information (process
values, employee names or ids, justification of user actions) would be stored on a public
medium.

For the reasons stated above, the use of PLCBIlox in conjunction with public blockchain
networks would not meet the requirements of most industrial use cases and has therefore

not been examined in this research.



5. Conclusions and future work

The thesis successfully developed a framework for integrating FL with blockchain
technology, demonstrating how blockchain can coordinate secure and transparent model
training and data sharing across multiple entities. The implementation of smart contracts
to manage FL processes, including data contribution, model aggregation, and reward
distribution, proved effective in ensuring fairness and transparency. It designed and
implemented effective incentive mechanisms, such as token rewards and reputation
systems, to encourage high-quality data contributions in FL systems.

The research identified several industrial applications where the integration of DLT and
ML can provide substantial improvements. Prototypes developed for use cases such as
auditing showed that these technologies could significantly enhance operational
efficiency and security. The practical benefits observed in these applications validate the
potential of DLT and ML integration in real-world industrial scenarios. The study
demonstrated that blockchain technology could enhance the security and functionality of
programmable logic controllers (PLCs). By developing blockchain-based audit trails and
command systems, the research reduced the vulnerability of PLCs to cyber-attacks and
improved their operational reliability. This contribution is particularly valuable for

industries relying on PLCs for critical operations.

5.1 Federated Learning process coordinated by a blockchain network
rewarding capabilities

In the beginning of the research, we have examined the current work related to the use of
Blockchain Technologies in the field of FL and we have identified a potential for
blockchain technology to improve security of the FL process. We later on proposed an
algorithm that is able to run inside a smart contract of a blockchain network. In contrast
to the techniques currently available, where researchers relied on the use of data sample
size[23],[26] or reputation[28] as a quality metric, our solution measures the accuracy of
the model update directly. In this way, we do not need to assume that participants of the
FL process are honest. The first results show that the algorithm provides a high level of
protection against model poisoning attacks. We anticipate that results obtained can be

considered as a baseline when implementing the algorithm on various blockchain



technologies and that the algorithm can be extended in order to offer rewards on a
blockchain network, relative to the quality of each contribution.

We lated build the specifications of a blockchain network and associated smart contracts
that would allow a private blockchain network to be used in a unique way in order to
support a FL process. We showed how it improves trust and security by running a
verification algorithm within a smart contract which is executed amongst multiple nodes.
The network can be configured to require consensus among a certain percentage of nodes.
In a later stage of this research we designed a FL model update assessment algorithm,
designed in a way to be able to run inside of a smart contract and offer rewards. We
extended the functionality of the algorithm in order to create a useful metric that can be
used for reward allocation. We successfully verified the feasibility of the solution, by
performing simulations with specially crafted images, representing datasets of varying
quality. The results show that the algorithm is able to record user performance while at
the same time makes the system resilient to label-flipping attacks.

The outcome of the devised point system makes it easy to rank participants. More
importantly, adversaries are correctly identified and given no points, while the best
performing user is ranked first. Although the verification algorithm is designed to run
inside a smart contract, the simulations were run off-chain.

Researchers could verify how well the rewarding algorithm would behave in actual
blockchain networks, more importanly to verify feasibility and measure the overhead

imposed by the blockchain network.

5.2 Blockchain in industrial applications
The latest work focused on security issues with current deployments of Programmable

Logic Controllers (PLCs) and Supervisory Control and Data Acquisition Systems
(SCADA) in the industry and developed a solution that enables PLC devices to query a
blockchain infrastructure for commands and setpoints.

The innovative approach (PLCBIox) presented in this research shows that modern PLC
devices are able to interface with common blockchain nodes, opening new possibilities
for added functionality and security improvements. Furthermore, it is has been
demonstrated how PLCBlox can take advantage of the intrinsic tamperproof
characteristics of an Ethereum network in order to facilitate the storage of audit trail
records.

Security and Policy Enforcement (Audit Trail Logs)



Authentication and authorization tasks are now handled by the user’s wallet and the smart
contract, respectively. These two components, coupled with the underlying blockchain
network operation, offer higher security standards, which have been proven by their use
in the finance sector, especially when taking into account the security issues that exist in
typical industrial deployments.

Furthermore, by requiring fewer access permissions on the PLC device (read only), it is
impossible for an outside process to intentionally or unintentionally alter its data,
effectively eliminating an attack surface that has been exploited over the years. Even
further, due to the design, a compromised SCADA system would not be able to adversely
impact the running process. Security requirements of these systems can therefore be
relaxed.

The enforcement of the audit trail records, typically handled by the SCADA software on
the end device, is now part of the system design. Moreover, there is no meaningful way
to circumvent them, providing value to industries that require such policies.

Resource Overhead and Performance

It should be noted that the performance figures collected in the previous section reflect a
mostly ideal setup due to the usage of a local Ethereum network node installation and the
stable network connectivity. The authors argue that this setup more closely resembles
typical deployments in industries that use on-premises audit trail database servers.
Moreover, the small overhead delay imposed by the newly developed communication
cycle should not be a concern for most industrial applications. At the same time,
PLCBIlox’s small PLC code footprint and RAM requirements leave most of its resources

available for the operation of the main application.

5.3 Future Work
Regarding the proposed solutions for running FL processes in blockchain networks, as

well as the algorithms for rewarding functionality, we believe that researchers can extend
this research in the following areas:

e Implement the FL and blockchain-based reward system in real-world scenarios
across various industries to test its effectiveness and scalability. This will help
identify practical challenges and refine the solution.

e Develop and integrate more sophisticated verification algorithms to better assess
the quality of contributions. These could include mechanisms to detect and

mitigate fraudulent behavior or poor-quality data submissions.



e Investigate advanced privacy-preserving techniques such as differential privacy
or homomorphic encryption to further protect user data while maintaining high
model performance.

e Explore and implement dynamic reward mechanisms that can adapt to changing
data contributions and model requirements. This could include machine learning
techniques to predict optimal rewards based on historical data.

e Focus on optimizing the scalability and performance of the solution, particularly
in terms of processing speed and resource consumption. This includes testing with
larger datasets and more complex models.

e Research and implement additional strategies to enhance user engagement and
participation in FL, such as gamification elements or community-building

initiatives.

Regarding the published work of PLCBIlox as well as general blockchain use in industrial
applications, we believe that researchers can conduct extensive scalability testing to
evaluate the performance of the blockchain network under varying loads and transaction
volumes. This includes simulating high-traffic scenarios to identify potential bottlenecks
and optimizing the system to handle increased demands efficiently. The integration of
PLCBIlox with different blockchain protocols beyond Ethereum, such as Hyperledger
Fabric, Corda, or other emerging technologies could further be studied, as it would help
determine the most suitable blockchain infrastructure for various industrial applications
based on specific needs and constraints. Further studies could focus on investigating
advanced security measures to offer additional protection to the blockchain network and
to PLC interactions. This could include the implementation of multi-factor authentication,
hardware security modules (HSMs), and quantum-resistant cryptographic algorithms.
We also believe that there is space for study in the development of methods to ensure
seamless interoperability between PLCBIlox and existing legacy systems in industrial
environments. This involves creating standardized interfaces and protocols that allow
smooth integration without extensive modifications to current infrastructure.

We see benefit also in researchers conducting a comprehensive economic analysis to
assess the cost-benefit ratio of implementing blockchain technology in industrial
automation. This includes evaluating initial setup costs, operational expenses, and

potential savings from enhanced security and reduced downtime.



Conducting a comprehensive economic analysis to assess the cost-benefit ratio of
implementing blockchain technology in industrial automation, could also be meaningful,
especially if the initial setup costs, operational expenses, and potential savings from
enhanced security and reduced downtime are evaluated.

Future work will focus on scaling the proposed solution, optimizing performance, and
expanding its application to a wider range of industrial and collaborative environments.
By doing so, this research paves the way for more robust, secure, and efficient systems in

both machine learning and industrial automation.
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APPENDIX A - Improving Security and Fairness in Federated
Learning Systems Python Code

try:
# %tensorflow version only exists in Colab.
$tensorflow version 2.x

except Exception:

pass

from  future  import absolute import, division, print function,

unicode literals

# TensorFlow and tf.keras
import tensorflow as tf

from tensorflow import keras

# Helper libraries
import numpy as np

import matplotlib.pyplot as plt

print (tf. version )

from keras.datasets import mnist
(train images, train labels), (test images, test labels) =
mnist.load dataf()

class_names= [VO',VlV,'2V,'3V,'4V,'5V,'6','7','8','9']

from keras.datasets import mnist

import random

(train _images, train labels), (test images, test labels) =
mnist.load data()

train images = train images / 255.0

test images = test images / 255.0

train labels adversary = np.array([random.randint (2, 2) for x in

train labels])

train images split = np.array split (np.array(train images), 10)



train labels

train labels

np.array spli

average model

split = np.array split(np.array(train labels), 10)
adversary split =

t(np.array(train labels adversary),10)

= keras.Sequential ()

flmodel = 1list ()

average model

keras

keras.

keras.

1)

average model.

loss=tf.keras

)y

= keras.Sequential ([
.layers.Flatten (input shape=(28, 28)),
layers.Dense (128, activation='relu'),
layers.Dense (10)

compile (optimizer="adam',

.losses.SparseCategoricalCrossentropy (from logits=True

metrics=['accuracy'])

#average model.fit (train images, train labels random, epochs=1)

average model

.save weights ('model2.h5")

flmodel = 1list ()

for x in range (10) :

flmodel
keras
keras
keras

1))
flmodel

loss=tf.keras

)y

.append (keras.Sequential ([
.layers.Flatten (input shape=(28, 28)),
.layers.Dense (128, activation='relu'),
.layers.Dense (10)

[x] .compile (optimizer="'adam',

.losses.SparseCategoricalCrossentropy (from logits=True

metrics=['accuracy'])

accuracy = [list ()]

loss = [list ()]

accuracy.append (list())

loss.append (list())

for adversaries in range(0,4):



average model.load weights('model2.h5")
for x in flmodel:

x.load weights('model2.h5")

for x in range (1) :
newround (average model.get weights(), adversaries)
weights = list ()
for model in flmodel:

if
evaluatemodel (average model.get weights(),model.get weights()):
weights.append (model.get weights())

#weights = [model.get weights() for model in flmodel]

mean weights = list()
for weights list tuple in zip (*weights):
mean weights.append (
np.array([np.array(w) .mean(axis=0) for w in
zip (*weights list tuple)])
)

avg model weights = average model.get weights|()
new weights = [0.8*x + 0.2*y for x, y in zip(avg model weights,

mean weights) ]

average model.set weights(new weights)

test loss, test acc = average model.evaluate (test images,
test labels)

accuracy [adversaries] .append(test acc)

loss[adversaries] .append(test loss)

accuracy.append (list())

loss.append (list ())

print ('\nTest accuracy:', test acc, 'Adversaries:',

adversaries, 'round:', Xx)

import matplotlib.pyplot as plt
for i in range(4):
plt.plot (accuracy[i], label = '$s%% Adversaries'$(i*10))

plt.xlabel ("Rounds")



plt.ylabel ("Accuracy")
plt.legend()

plt.

plt.grid()

fig size = plt.rcParams["figure.figsize"]

fig size[0] = 20
fig size[l] = 16
plt.rcParams["figure.figsize"] = fig size

plt.show ()

def newround(global model, adversaries):

for x in range (0, adversaries):
print ('adversary', x)
flmodel[x].set weights (global model)
flmodel[x].fit (train images split([x],

train labels adversary split([x] , epochs=1)

for x in range (adversaries , 10):
print ('honest', x)
flmodel[x] .set weights (global model)
flmodel[x].fit (train images split[x], train labels split([x],

epochs=1)

def evaluatemodel (global model weights, model update):

average model.save weights('pre.h5")

average model.set weights (global model weights)
test loss, test acc = average model.evaluate (test images,

test labels)

new weights2 = [0.8*x + 0.2*y for x, y in
zip(global model weights, model update)]

average model.set weights(new weights2)

test loss candidate, test acc candidate =

average model.evaluate (test images, test labels)



average model.load weights('pre.h5")
if test acc candidate>test acc:
print ('Model Update is Healthy')
return True
else:
print ('Model Update should be discarded')

return False



APPENDIX B — PLCBlox, Smart contract code
/l SPDX-License-Identifier: GPL-3.0

pragma solidity >=0.7.0 <0.9.0;

import "hardhat/console.sol";

contract BloxTrail {

address private admin;
address private user;

address private superuser;

int16 public Temperature;
bool public OperationMode;

modifier isAdmin() {
require(msg.sender == admin, "Caller is not the admin");

}

modifier isUser() {
require(msg.sender == user, "Invalid Permissions™);

}
modifier isSuperUser() {

require((msg.sender == user) || (msg.sender == superuser) , "Invalid Permissions");

constructor() {
console.log("BloxTrail contract deployed by:", msg.sender);
admin = msg.sender; // 'msg.sender’ is sender of current call, contract deployer for
a constructor

user = admin;



superuser = admin;

function changeUser(address newUser) public isAdmin {
user = newuUser;
}
function changeSuperUser(address newSuperUser) public isAdmin {

superuser = newSuperUser;

function SetTemperature(int16 newTemperature) public isSuperUser {
Temperature = newTemperature;

}

function SwitchON() public isUser {
OperationMode = true;

¥

function SwitchOFF() public isUser {

OperationMode = false;



APPENDIX C - PLCBlox, PLC Code

Totally Integrated
Automation Portal

plcblox / PLCBlox [CPU 1511-1 PN]/Program blocks

Main [OB1]

Main Properties

Name Main Number 1 Type OB
Language LAD i
Title "Main Program Sweep Author Comment
(Cycle)"
Family Version 0.1 User-defined
ID

Network 1:

%DB1

"BC2PLC_DB"
%FB2
"BC2PLC"
EN ENO

'http://10.0.200.

'0X6ED7a415

Eb81F984401848

FedbA93F5f9
Contract
Aa68421" __ pddress

‘0x7152afa3" — Value

2:7545]" — NodeRPCUrI

Value_Float — 0.0

Connected —ifalse
Response_
Time_ms — 0

ParameterABI




Totaly Ivreypured
Avrop ety Topralk

plcblox / PLCBlox [CPU 1511-1 PN]/Program blocks

BC2PLC [FB2]

BC2PLC Properties

Name BX2MAX Number 2 Type OB
Language ey Numbering  Avrtop wry

Title Author Comment
Family Version 0.1 User-defined
ID
Network 1:
CONCAT CONCAT
Tepvy Ttpvy
EN — ENO EN*ENO
0YT —fotet_root_data #otet_toot_date =N | 0YT —¢#otwt_no0t_duta
3{¥ge0 v pr g ¥: 12 B .
A i =N 1
Dy
FXovrpuytAddpros —N2
CONCAT CONCAT
vy Tty
ST — i B — BN ——t
fotwr_toar_Satw =N 0YT —#otur oot _date Fotar_toot_fate =N | 0YT —#owt_to0t_dutn
#Mapuy et pA Bl W =—1N2
culve —N1

Network 2:




Totally Integrated
Automation Portal

#stan_hitp_post

%FBG
“LHTTF_Post™
EN ENQ =i
#stan_hitp_post. Bslal_hitp_post dine == a0
dare BrTor busy —F
L/‘, H execule erpar =i ol
hwiD tatusiD
wannlD status
#NodeRPOUN — ud responseCode
#ulal_past_data — data length
#stan_ts s
=responde
#ulal_response — Data
i " #slal_hitp_post w2
#stat_http_past. responselode
dane | | “LHTTP_ExtractSiringF ramArtay™
I} ==
1T T uint | EN EHCI—-
200 “result:=" 0x0000 #tmp_ward
00000000000000 "
LI Ar
0000000000000 extractedStang — Himp-string
Q0000000000000
00000000000000
ATH
E—E" END EN — EN
#rp_string IN  RET_VAL #trnp_word Fimp_int M1 #Value_Float
N OUT — #trogp_int 100.0 — NZ

Network 3: Connected

Betat_hitp_post
dane

#itat_hitp_past.
respanseCode

11 | une |

200

Birnr_pannection.
ET

#imr_connedion

TOF
Tirse: #Connected

N £oum

#Response_Time,_
ms

N g—— }—

PT ET
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