
UNIVERSITY OF WEST ATTICA

FACULTY OF ENGINEERING

DEPARTMENT OF INFORMATICS

AND COMPUTER ENGINEERING


DIPLOMA THESIS


Creating an Educational Application using the principles 
of Responsive Web Design for optimal user experience


Author: Dionisis Nikolopoulos 
Register Number: 18390126


Supervisor: Christos Troussas 

Athens, March 2024




ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΑΤΤΙΚΗΣ

ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ


ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ

 ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ


ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ 

Δημιουργία Εκπαιδευτικής Εφαρμογής με τις αρχές της 
Προσαρμοστικής Σχεδίασης για την βέλτιστη εμπειρία χρηστών


Συγγραφέας: Διονύσης Νικολόπουλος 
Αριθμός Μητρώου: 18390126


Επιβλέπων: Χρήστος Τρούσσας 

Αθήνα, Μάρτιος 2024 



Creating an Educational Application using the principles of Responsive Web Design for optimal user experience


 Dionisis Nikolopoulos - ice18390126 
￼ 


ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ 

Δημιουργία εκπαιδευτικής εφαρμογής με τις αρχές της Προσαρμοστικής Σχεδίασης για την 

βέλτιστη εμπειρία χρηστών


Διονύσης Νικολόπουλος

Α.Μ. 18390126 

Μέλη Εξεταστικής Επιτροπής, συμπεριλαμβανομένου και του Εισηγητή:


    Χρήστος Τρούσσας 
    Ακριβή Κρούσκα 

    Παναγιώτα Τσελέντη 

Ημερομηνία εξέτασης: 
Σεπτέμβριος 2024  

     
I
 University of West Attica, Information and Computer Engineering, Athens, March 2024



Creating an Educational Application using the principles of Responsive Web Design for optimal user experience


 Dionisis Nikolopoulos - ice18390126 
￼ 


     
II
 University of West Attica, Information and Computer Engineering, Athens, March 2024



Creating an Educational Application using the principles of Responsive Web Design for optimal user experience


 Dionisis Nikolopoulos - ice18390126 
￼ 


ΔΗΛΩΣΗ ΣΥΓΓΡΑΦΕΑ ΔΙΠΛΩΜΑΤΙΚΗΣ ΕΡΓΑΣΙΑΣ


Ο κάτωθι υπογεγραμμένος Διονύσης Νικολόπουλος του Σπυρίδωνα, με αριθμό 
μητρώου ice18390126, φοιτητής του Πανεπιστημίου Δυτικής Αττικής, της Σχολής 
Μηχανικών του Τμήματος Μηχανικών Πληροφορικής και Υπολογιστών, δηλώνω 
υπεύθυνα ότι:


«Βεβαιώνω ότι είμαι συγγραφέας αυτής της Διπλωματικής εργασίας και κάθε βοήθεια 
την οποία είχα για την προετοιμασία της, είναι πλήρως αναγνωρισμένη και 
αναφέρεται στην εργασία. Επίσης, οι όποιες πηγές από τις οποίες έκανα χρήση 
δεδομένων, ιδεών ή λέξεων, είτε ακριβώς είτε παραφρασμένες,  αναφέρονται στο 
σύνολό τους, με πλήρη αναφορά στους συγγραφείς, τον εκδοτικό οίκο ή το 
περιοδικό , συμπεριλαμβανομένων και των πηγών που ενδεχομένως 
χρησιμοποιήθηκαν από το διαδίκτυο. Επίσης, βεβαιώνω ότι αυτή η εργασία έχει 
συγγραφεί από μένα αποκλειστικά και αποτελεί προϊόν πνευματικής ιδιοκτησίας τόσο 
δικής μου, όσο και του Ιδρύματος. 

Παράβαση της ανωτέρω ακαδημαϊκής μου ευθύνης αποτελεί ουσιώδη λόγο για την 
ανάκληση του πτυχίου μου».


Ο Δηλών 

     
III
 University of West Attica, Information and Computer Engineering, Athens, March 2024

Highlight



Creating an Educational Application using the principles of Responsive Web Design for optimal user experience


 Dionisis Nikolopoulos - ice18390126 
￼ 


ΕΥΧΑΡΙΣΤΙΕΣ


Η εκπόνηση της παρούσας διπλωματικής εργασίας πραγματοποιήθηκε πάνω σε 
ένα θέμα το οποίο είναι τόσο ενδιαφέρον, όσο είναι και επίκαιρο, κοινωνικά αλλά και 
επαγγελματικά. Σημαντική αρωγή στην προσπάθεια αυτή αποτέλεσε ο επιβλέπων 
καθηγητής μου, Χρήστος Τρούσσας, τον οποίο θα ήθελα να ευχαριστήσω θερμά για 
τις άμεσες και κατατοπιστικές απαντήσεις του σε ζητήματα της εργασίας αλλά και 
της υλοποίησης της εφαρμογής. 


Ακόμα, θα ήθελα να ευχαριστήσω τους φίλους και την οικογένειά μου για τη 
συμπαράσταση κατά τη διάρκεια των σπουδών μου, ιδιαίτερα τον πατέρα μου, που 
αποτελεί την έμπνευση αλλά και το πρότυπο μου για να επιλέξω τον προγραμματισμό 
ως επάγγελμα, όπως επίσης και την μητέρα μου, που πάντα υποστήριζε τις επιλογές 
μου. Τέλος, θα ήθελα να ευχαριστήσω την Έλλη, για την σημαντικότατη στήριξη που 
μου προσφέρει πρόθυμα και απλόχερα πάντοτε. 

     
IV
 University of West Attica, Information and Computer Engineering, Athens, March 2024



Creating an Educational Application using the principles of Responsive Web Design for optimal user experience


 Dionisis Nikolopoulos - ice18390126 
￼ 


Abstract


The present thesis is about creating an educational Web Application following the modern 
guidelines of the Responsive Web Design pattern. This pattern allows for an easier 
customisation of the functionality of the Application on demand, according to the user’s wishes 
and needs. Thus, it results on the optimisation of the user experience. The user experience 
therefore is unhindered by the type of device of the end user, or the size of the screen of the 
device in question. The creation of this Web Application also follows industry-standard 
methodology and utilises tools that are commonplace in the web development space 
nowadays. 


Scientific Field: Web Applications

Keywords: Web Appication, Educational Application, React, JavaScript, Responsive Web 	   

	 	 Design


Περίληψη


Η παρούσα διπλωματική ασχολείται με την σύγχρονη προσέγγιση της αρχιτεκτονικής μιας 
διαδικτυακής εφαρμογής, ακολουθώντας τις αρχές της προσαρμοστικής σχεδίασης. Η 
προσαρμοστική σχεδίαση επιτρέπει την εύκολη εξατομίκευση της λειτουργίας της εφαρμογής 
ανάλογα με τις ανάγκες και επιθυμίες του χρήστη, οδηγώντας στην βελτιστοποίηση της 
εμπειρίας του. Η εμπειρία χρήστη, επομένως, δεν επηρεάζεται από τον τύπο της συσκευής 
του τελικού χρήστη ή το μέγεθος της οθόνης της εκάστοτε συσκευής. Κατά την διάρκεια  της 
ανάπτυξης αυτής της διαδικτυακής εφαρμογής τηρήθηκαν μεθοδολογίες που θεωρούνται 
πλέον βιομηχανικά πρότυπα στον προγραμματισμό διαδικτυακών εφαρμογών και έγινε χρήση  
εργαλείων που είναι ευρέως διαδεδομένα στον γενικότερο χώρο της ανάπτυξης ιστοσελίδων 
των τελευταίων ετών.


Επιστημονική Περιοχή: Διαδικτυακές Εφαρμογές

Λέξεις Κλειδιά: Διαδικτυακή Εφαρμογή, Εκπαιδευτική Εφαρμογή, React, JavaScript, 	 	

	 	         Προσαρμοστική Σχεδίαση 

     
V
 University of West Attica, Information and Computer Engineering, Athens, March 2024



Creating an Educational Application using the principles of Responsive Web Design for optimal user experience


 Dionisis Nikolopoulos - ice18390126 
￼ 


Table of Contents


ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ￼
....................................................................................................I

ΔΗΛΩΣΗ ΣΥΓΓΡΑΦΕΑ ΔΙΠΛΩΜΑΤΙΚΗΣ ΕΡΓΑΣΙΑΣ ￼ 
.......................................................III

ΕΥΧΑΡΙΣΤΙΕΣ ￼ 
....................................................................................................................IV

Abstract ￼ 
.............................................................................................................V

Περίληψη ￼ 
...........................................................................................................................V

Table of Contents ￼ 
................................................................................................................VI

List of Abbreviations ￼ 
.........................................................................................................VIII

List of Figures ￼ 
......................................................................................................................IX

1. Introduction ￼ 
...................................................................................................1

1.1. Historical Retrospective ￼ 
................................................................................................1

1.2. Problem Statement ￼ 
........................................................................................................1

1.3. Thesis Objectives ￼ 
..........................................................................................................2

2. Technical Background ￼ 
....................................................................................3

2.1. Programming & Markup Languages, the Building Blocks of the Modern Web ￼ 
...............3

2.1.1.HTML ￼ 
...................................................................................................................................3

2.1.2.CSS ￼ 
.......................................................................................................................................3

2.1.3.JavaScript ￼ 
..............................................................................................................................4

2.2. Frameworks & Runtime Environments, the Foundation of Web-based systems ￼ 
...............6

2.2.1.Web Frameworks ￼ 
..................................................................................................................6

2.2.2.Runtime Environments ￼ 
..........................................................................................................7

2.2.2.1. What are Runtime Environments in general? ￼ 
...............................................................................7

2.2.2.2. The Node.js runtime environment ￼ 
...............................................................................................7

2.2.2.3. The NPM package manager ￼ 
........................................................................................................8

2.3. Libraries, the Power Tools of Web app Building ￼ 
.............................................................9

2.3.1.React ￼ 
....................................................................................................................................9

2.3.2. Create React App ￼ 
..............................................................................................................11

3. Configuration of the Application ￼ 
..................................................................12

3.1. Forking from myUOM project ￼ 
.....................................................................................12

3.2. What is Open Source? ￼ 
.................................................................................................12

3.2.1.Source Code, Machine Code, Bytecode ￼ 
..............................................................................13

3.3. What is a git & what is a fork? ￼ 
.....................................................................................14

     
VI
 University of West Attica, Information and Computer Engineering, Athens, March 2024



Creating an Educational Application using the principles of Responsive Web Design for optimal user experience


 Dionisis Nikolopoulos - ice18390126 
￼ 


3.3.1.Version Control Systems ￼ 
.....................................................................................................14

3.3.1.1. Early VCS: Local & File-centric ￼ 
..................................................................................................14

3.3.1.2. Middle VCS: Networked & Project-centric ￼ 
.................................................................................14

3.3.1.3. Modern VCS: Distributed & Fully Commercial ￼ 
..........................................................................15

3.3.2.Git ￼ 
......................................................................................................................................15

3.3.3.Fork ￼ 
....................................................................................................................................17

4. Implementation of the Application ￼ 
..............................................................18

4.1. Initial Setup ￼ 
.................................................................................................................18

4.2. Coding ￼ 
........................................................................................................................18

4.2.1.index.js, Context and Provider Concepts ￼ 
............................................................................18

4.2.1.1. Providers and Contexts, the case of DepartmentProvider ￼ 
...........................................................19

4.2.1.2. Hooks in general, the case of useLocalStorage Hook ￼ 
.................................................................20

4.2.2.App.js & Routing Concepts ￼ 
.................................................................................................22

4.2.3.HomePage.jsx, Rendering & Configuration Concepts ￼ 
..........................................................23

4.2.3.1. Preparing and processing the data ￼ 
.............................................................................................24

4.2.3.2. Rendering the processed data to the UI ￼ 
.....................................................................................26

5. Functionality of the Application ￼ 
...................................................................29

5.1. Home Page ￼ 
.................................................................................................................29

5.2. Internal Pages accessible through the settings menu ￼ 
....................................................31

5.2.1.FAQ Page ￼ 
............................................................................................................................31

5.2.2.About Page ￼ 
.........................................................................................................................31

5.3. Semester Schedule Page ￼ 
..............................................................................................32

5.4. Exam Schedule Page ￼ 
...................................................................................................33

5.5. Restaurant Page ￼ 
...........................................................................................................34

5.6. Library Page ￼ 
................................................................................................................35

5.7. Student Care Page ￼ 
.......................................................................................................36

5.8. Services Page ￼ 
..............................................................................................................37

5.9. External Pages & Homepage Map ￼ 
................................................................................38

5.10.Additional Responsive Features ￼ 
..................................................................................39

5.10.1.Responsive Dark and Light mode theme ￼ 
...........................................................................39

5.10.2.Disabled Options on Missing Selection of Department ￼ 
.....................................................41

5.10.3.General Responsiveness on Smaller Screens ￼ 
.....................................................................42

5.10.4.Additional Features on Mobile Devices ￼ 
............................................................................43

Appendix ￼.........................................................................................................46

     
VII
 University of West Attica, Information and Computer Engineering, Athens, March 2024



Creating an Educational Application using the principles of Responsive Web Design for optimal user experience


 Dionisis Nikolopoulos - ice18390126 
￼ 


List of Abbreviations


App: Application

CERN: European Organization for Nuclear Research (in French: Conseil européen pour la Recherche nucléaire)

CSS: Cascading Style Sheets

CVS: Concurrent Versions System

DOM: Document Object Model 

FAQ: Frequently Asked Questions

HTML: HyperText Markup Language

HTTP: HyperText Transfer Protocol

JS: JavaScript

JSON: JavaScript Object Notation

ms: Milliseconds

NPM: npm is not an acronym (Literally, since ‘npm’ is a recursive bacronymic abbreviation)

OLED: Organic Light-Emitting Diode

PWA : Progressive Web Applications

Repo: Repository

RTE: Runtime Environment

SCCS: Source Code Control System

SVN: (Apache) Subversion

Tech: Technological (Used as “Technological Sector” or “Technology Industry”)

TV: Television

UI: User Interface

UniWA: University of West Attica

UOM: University of Macedonia

UX: User Experience

VCS: Version Control System

Zsh: Z Shell

     
VIII
 University of West Attica, Information and Computer Engineering, Athens, March 2024



Creating an Educational Application using the principles of Responsive Web Design for optimal user experience


 Dionisis Nikolopoulos - ice18390126 
￼ 


List of Figures


Figure 1: A simple HTML code snippet representing two paragraphs with a heading of level 1.	 ￼ 
................3

Figure 2: A simple CSS code snippet styling some elements selected using different identifiers	 ￼ 
...............4

Figure 3: A JS code snippet manipulating the DOM, in order to render a count up from 0 on a number 
contained in an element of class “counter”, every 50ms.	 ￼ 
..........................................................................5

Figure 4: A simple HTTP server code snippet on Node.js.	 ￼ 
........................................................................7

Figure 5: A code snippet from a package.json	 ￼ 
.........................................................................................8

Figure 6: A “VideoList" component that counts and displays “Video” components in React	 ￼ 
...................10

Figure 7: A “Video" component in React	 ￼ 
................................................................................................11

Figure 8: All the commands needed to create a React application through create-react-app	 ￼ 
.................11

Figure 9: The general structure of the simple React app made with create-react-app	 ￼ 
.............................12

Figure 10: Process of cloning repo locally, installing dependencies via NPM and running the app.	 ￼ 
..........18

Figure 11: The index.js file, the “root” of our application.	 ￼ 
........................................................................18

Figure 12: The DepartmentProvider component code.	 ￼ 
...........................................................................20

Figure 13: The useLocalStorage hook code.	 ￼ 
..........................................................................................21

Figure 14: The App.js component code with all the routes (comments removed for brevity).	 ￼ 
..................22

Figure 15: The HomePage.jsx component code as a whole (imports removed for brevity).	 ￼ 
.....................23

Figure 16: HomePage.jsx snippet in function body and before return (imports removed for brevity).	 ￼ 
.......24

Figure 17:  HomePage.jsx snippet from the import section of the file.	 ￼ 
.....................................................24

Figure 18:  HomePage.jsx snippet about the department information indices.	 ￼ 
........................................25

Figure 19:  HomePage.jsx snippet about the population of the URLs into the Categories object.	 ￼ 
...........25

Figure 20:  HomePage.jsx snippet with the returned JSX markup.	 ￼ 
.........................................................26

Figure 21:  HomePage.jsx segment of the returned JSX markup .	 ￼ 
..........................................................27

Figure 22:  The theme.js file contents, where some constants related to UI of the app are set .	 ￼ 
..............27

Figure 23:  HomePage.jsx segment that is responsible for the category rendering on homepage .	 ￼ 
.........28

Figure 24:  The Homepage of the application upon navigation.	 ￼ 
..............................................................29

Figure 25:  The Homepage of the application upon clicking on the settings button.	 ￼ 
...............................30

Figure 26:  The FAQ page of the application, accessible through the settings menu.	 ￼ 
..............................31

Figure 27:  The Information page of the application, accessible through the settings menu.	 ￼ 
...................31

Figure 28:  Navigation to the Semester Schedule page.	 ￼ 
.........................................................................32

Figure 29:  The Semester Schedule page upon navigation through the Home page.	 ￼ 
..............................32

Figure 30:  Navigation to the Exam Schedule page.	 ￼ 
...............................................................................33

Figure 31:  The Exam Schedule page, zoomed in to the exam information table.	 ￼ 
...................................33

Figure 32:  Navigation to the Restaurant page.	 ￼ 
......................................................................................34
     
IX

 University of West Attica, Information and Computer Engineering, Athens, March 2024



Creating an Educational Application using the principles of Responsive Web Design for optimal user experience


 Dionisis Nikolopoulos - ice18390126 
￼ 


Figure 33:  The Restaurant, zoomed in to the menu information table.	 ￼ 
...................................................34

Figure 34:  Navigation to the Library page.	 ￼ 
.............................................................................................35

Figure 35:  The library page, zoomed in to the information elements.	 ￼ 
.....................................................35

Figure 36:  Navigation to the Student Care page.	 ￼ 
...................................................................................36

Figure 37:  All the Student Care page external links, zoomed in.	 ￼ 
............................................................36

Figure 38:  Navigation to the Services page.	 ￼ 
..........................................................................................37

Figure 39:  “Offices” tab on the Services Page, zoomed in.	 ￼ 
....................................................................37

Figure 40:  “Student Groups” tab on the Services Page, zoomed in.	 ￼ 
......................................................37

Figure 41:  “Rest of Services” tab on the Services Page, zoomed in.	 ￼ 
......................................................38

Figure 42:  All the links in the homepage explained.	 ￼ 
...............................................................................38

Figure 43: Light and Dark mode and the visual change their enabling typically makes. Image Credit:	 ￼ 
.....39

Figure 44: Dark and Light mode and the visual change in the Homepage	 ￼ 
..............................................40

Figure 45: Dark and Light mode and the visual change in the Restaurant Page	 ￼ 
......................................40

Figure 46: Screen upon first navigation (or) with no cookies. Notice disabled buttons.	 ￼ 
...........................41

Figure 47: Warning upon clicking disabled button.	 ￼ 
.................................................................................41

Figure 48: Restaurant and Home Page when viewed by a smaller screen.	 ￼ 
.............................................42

Figure 49: Home Page when viewed by a mobile device, notice the navbar at the bottom.	 ￼ 
....................43

Figure 50: Settings Menu when Settings button is clicked on a mobile device	 ￼ 
........................................44

Figure 51: Screen right after clicking the emergency button on iOS	 ￼........................................................45

     
X
 University of West Attica, Information and Computer Engineering, Athens, March 2024



Creating an Educational Application using the principles of Responsive Web Design for optimal user experience


 Dionisis Nikolopoulos - ice18390126 
￼ 


1. Introduction


1.1. Historical Retrospective

Amidst the recent decade’s digital revolution’s numerous protagonists, there has been a 

sector even more rapidly evolving than its peers. This sector is of course the Web. Only fifteen 
years ago, a typical website was a file written in simple HTML markup and served as a 
straightforward way, akin to a Word document or Plaintext file, to communicate information 
remotely, with little functionality available beyond text formatting. That all changed with the 
introduction of complex stylesheet and scripting languages like JavaScript and CSS, evolving to 
the point where today, we have what we call “Web Applications”. 


Web Applications now serve purposes so distant and so much more intricate than these 
simple HTML files, that currently Web Apps, as they are called, are replacing a plethora of 
native applications. Nobody has elucidated this point better and earlier than Apple’s Founder, 
Steve Jobs, when in the presentation of the original iPhone, as early as 2007, mentioned:


 “The full Safari engine is inside of iPhone and it gives us tremendous capability, more than 
there's ever been in a mobile device to this date, and so you can write amazing Web 2.0 and 
Ajax apps that look exactly and behave exactly like apps on the iPhone!” 
1

 For context, Safari is Apple’s Web Browser. Since then, smartphones, tablets and 
computers are everywhere and accessing web applications is now part of everyday life, 
synonymous with browsing the web.


Due to this meteoric rise that followed the rise of the smartphone, advanced software tooling 
was needed, since now websites were taking the form of an application. Applications required 
programmers, or, as they were beginning to be known as, developers. Thus, the birth of the 
Web Applications, birthed Web Developers. The streamlining of the development of a Web App 
through the community of Web Developers brought about a diverse range of architectures, 
approaches and unique software solutions in order to supply for a newly found ever-growing 
demand. Web Frameworks, meaning software designed to support and accelerate a web app’s 
construction, were now a staple among developers, allowing them to design software on a high 
level, grasping advanced design principles with relative ease. With the communities’ 
programming experience of the past decades, web programming seemed to catch up to the 
polyphony of the tools, philosophies and languages of native application programming at a 
blistering pace.


1.2. Problem Statement

During the course of attending the University of West Attica in the department of information 

and computer engineering, signing up for classes and services on campus necessitated 
navigation upon a myriad of different websites. This was party caused by the relatively recent  
foundation of the Institute in 2018, through the merging process of the former Technological 

 “Steve Jobs iPhone Introduction in 2007 (Complete)  : Apple : Free Download, Borrow, and Streaming”, Internet Archive, January 1

7, 2007, https://archive.org/details/original-iphone-keynote. 
     
1

 Athens, March 2024, University of West Attica, Information and Computer Engineering

https://archive.org/details/original-iphone-keynote


Creating an Educational Application using the principles of Responsive Web Design for optimal user experience


 Dionisis Nikolopoulos - ice18390126 
￼ 


Educational Institute of Athens and Piraeus University of Applied Sciences. In 2019, the 
National School of Public Health joined the newly established university . It is easy to imagine 2

that a multitude of protocols, websites, databases and digital tools had to be altered or re-
created to accommodate for this merging. The functionality of the existing infrastructure was 
not constructed with the same design in mind, especially as far as user experience and 
interface is concerned. Furthermore, the commonly agreed consensus among students was 
that the sheer number of sites with seemingly no centralisation made tracking time-sensitive 
information, like pending applications, grades, curriculums and timetables a challenge. In 
addition, a increasing number of sites had not been updated for some time. These were not 
following the principles of responsive web design, simply because they were not the standard 
at the time of the development, leading to a substandard user experience when viewing from a 
mobile or tablet device.


In response to this, there was an initiative of three students, under the guidance of professor 
Christos Troussas, for a centralised hub to be created in order to overcome this impediment. 
Apart from being mobile-friendly and thus responsive, this hub needed to be customised 
dynamically and on-the-fly by the department the user chooses on-site, since some websites 
are particular to a specific department of the university. The former mandated the development 
of a web application, built upon the modern principles and design philosophy of responsive 
web design.


1.3. Thesis Objectives

The main goal of the current thesis is to basically, simplify and streamline the process that 

the students go though when using the digital infrastructure, as outlined in Chapter 1.2. This 
entails the following specific objectives:


• Composition and organisation of a dedicated team of Web Developers with experience in 
designing and coding a Responsive Web Application, in order to speed up the development 
process.


• Software Architecture of the technologies used in the web app, taking into consideration  
multiple factors like the scaling of the project, the upgradeability and maintenance, as well as 
the compatibility with the already existing hardware whereupon the web application will be 
hosted.


• Coding the application with strict adherence to the principles of Responsive Web Design, 
following widespread industry code standards.


• Deploying the application on the already mentioned hardware and making sure it is 
maintainable, through the documentation and code commenting quality.


 “History - University of West Attica.” University of West Attica - University of West Attica, September 17, 2022. https://2

www.uniwa.gr/en/the-university/history/.


     
2
 University of West Attica, Information and Computer Engineering, Athens, March 2024

https://www.uniwa.gr/en/the-university/history/
https://www.uniwa.gr/en/the-university/history/


Creating an Educational Application using the principles of Responsive Web Design for optimal user experience


 Dionisis Nikolopoulos - ice18390126 
￼ 


2. Technical Background


2.1. Programming & Markup Languages, the Building Blocks of the 
Modern Web


The changing environment in the tech sphere, now increasingly and aggressively including  
the Web, brought upon entirely new paradigms. It was only natural that new programming 
languages arise and existing ones would be moulded accordingly. On this chapter, the focus is 
on the ones used in this thesis.


2.1.1. HTML

HTML, or HyperText Markup Language, is the standard markup language of the Internet. A 

markup language is a standard text-encoding system consisting of a set of symbols inserted in 
a text document to control its structure, formatting, or the relationship between its parts . 3

Specifically HTML is used to control the structure and formatting of documents, named HTML 
Documents, that are then parsed and rendered by Web Browsers. Its origins can be traced 
back to CERN, with the first proposal of the standard being in 1989 .
4

Figure 1: A simple HTML code snippet representing two paragraphs with a heading of level 1. 


2.1.2. CSS

With plain HTML, very basic formatting and styling of HTML pages can be applied. However, 

very soon after people started to write HTML, there was a demand for more complicated 
display settings than headings, paragraphs and text alignment.


 “Markup Language Definition.” Encyclopædia Britannica. Accessed May 26, 2024.https://www.britannica.com/technology/markup-3

language.

 “Information Management: A Proposal.” The original proposal of the WWW, HTMLized. Accessed May 26, 2024. https://4

www.w3.org/History/1989/proposal.html.
     
3

 University of West Attica, Information and Computer Engineering, Athens, March 2024

<!DOCTYPE html>


<html>


<body>


<h1>A heading of level 1!</h1>


<p class=“name-of-an-html-class”>


	 A paragraph with really interesting content.


</p>


<p id=“nameOfAnHtmlElementID”>


	 A second paragraph with really boring content.


</p>


</body>

https://www.britannica.com/technology/markup-language
https://www.britannica.com/technology/markup-language
https://www.w3.org/History/1989/proposal.html
https://www.w3.org/History/1989/proposal.html


Creating an Educational Application using the principles of Responsive Web Design for optimal user experience


 Dionisis Nikolopoulos - ice18390126 
￼ 


With the establishment of a non-profit organisation named World Wide Web Consortium in 
1994 , a standard to style web pages (plain HTML documents up until that point) was 5

designed, based upon logic-less and simple documents named style sheets. These files, called 
CSS files, or Cascading Style Sheets files, contained CSS rules, meaning simple lists of 
attributes that were applied to specific HTML elements upon rendering on the browser. Users 
could now apply complex formatting on their web pages in a more organised manner. CSS 
could apply styling settings to multiple elements at a time, based on different kinds of identifiers 
that HTML elements have, like a class or an id.


Figure 2: A simple CSS code snippet styling some elements selected using different identifiers


2.1.3. JavaScript

One of the most poignant examples of an internet born and bred programming language is 

none other than JavaScript. No discussion of web-centered programming languages would be 
complete without mentioning it, being as it was originally created with the thought of adopting 
the newly-born, at the time, Java , for use in the Internet.
6

In the 1990s, the proprietary web browser Netscape Navigator was a pioneer and the first 
massively popular browser of its kind. Created by a company called Netscape in 1994 , it 7

quickly needed to include features that escaped concept of static HTML markup & CSS pages. 
Thus, in 1995, through a collaboration with Sun Microsystems, an effort was made by 
Netscape for the Java Programming language, as well as the Scheme  Programming Language 8

(a Lisp-like language), to be embedded into Netscape Navigator. 


 “About Us - World Wide Web Consortium.” W3C. Accessed May 26, 2024. https://www.w3.org/about/.5

 “What Is Java Technology and Why Do I Need It?” Java.com. Accessed May 26, 2024. https://www.java.com/en/download/help/6

whatis_java.html.

 “Netscape Communications Ships Release 1.0 of Netscape Navigator and Netscape Servers”, Netscape Communications 7

News Release, December 15, 1994, https://web.archive.org/web/20050326152726/http://wp.netscape.com/newsref/pr/
newsrelease8.html.

 “Scheme.” The Scheme Programming Language. Accessed May 26, 2024. https://www.scheme.org/.8

     
4
 University of West Attica, Information and Computer Engineering, Athens, March 2024

/*Heading Level 1 HTML elements on HTML will have a font size of 35px */


h1 { font-size: 35px; }


/*HTML Elements with id “nameOfAnHtmlElementID” will have the color green*/


#nameOfAnHtmlElementID { color: green; }


/*HTML Elements with class “name-of-an-html-class” will have a cyan background 

and padding of 20px*/


.name-of-an-html-class {


    background: cyan;


    padding: 20px;


}


https://web.archive.org/web/20050326152726/http://wp.netscape.com/newsref/pr/
https://www.scheme.org/
https://www.w3.org/about/
https://www.java.com/en/download/help/whatis_java.html
https://www.java.com/en/download/help/whatis_java.html


Creating an Educational Application using the principles of Responsive Web Design for optimal user experience


 Dionisis Nikolopoulos - ice18390126 
￼ 


At first, JavaScript was named “Mocha”, pointing to its roots in Java. During the course of 
the development however, only the basic syntax of Java was integrated and much of the 
functionality was borrowed by Scheme, while the object-oriented elements were added from 
Self , another popular Smalltallk -family language of the period. Fast-forward to today, 9 10

JavaScript (or JS as it is often abbreviated as) is used in 99% of all webpages on the internet . 11

It is also the language upon which most Web Frameworks, as outlined in Chapter 1.1, are built. 
In current day, its popularity seems unwavering still, since 63% of developers in the Stack 
Overflow Developer Survey of 2023 noted they used JS, marking the eleventh year in a row JS 
is the most used programming language among programmers . 
12

Figure 3: A JS code snippet manipulating the DOM , in order to render a count up from 0 on a number 13

contained in an element of class “counter”, every 50ms.


 “Self Language.” Self. Accessed May 26, 2024. https://selflanguage.org/.9

"Squeak/Smalltalk”. Squeak.org. Accessed May 26, 2024. https://squeak.org/.10

 “Usage Statistics of JavaScript as Client-Side Programming Language on Websites.” W3Techs. Accessed May 26, 2024. 11

https://w3techs.com/technologies/details/cp-javascript.

 “Stack Overflow Developer Survey 2023.” Stack Overflow. Accessed May 27, 2024. https://survey.stackoverflow.co/2023/12

#section-most-popular-technologies-programming-scripting-and-markup-languages.

 MozDevNet. “Introduction to the DOM - Web Apis: MDN.” MDN Web Docs. Accessed May 27, 2024. https://13

developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction.


     
5
 University of West Attica, Information and Computer Engineering, Athens, March 2024

function countTheCounters () {


    // Get every counter on HTML file (elements with class name ‘counter’)


    const everyCounter = document.getElementsByClassName(‘counter’);


    // Iterate over every such element


    for (const counter of everyCounter) {


	  // Get number contained in element


        let upto = parseInt(counter.innerHTML);


        if (upto) {


            let from = 0;


	      // Store function that counts up by 1 into variable ‘updated’ 


            const updated = () => {


                let count = counter;


                count.innerHTML = ++from;


                if (from === upto) {


                    clearInterval(counts);


                }


            };


	      // Execute function contained in variable “updated” every 50ms


            let counts = setInterval(updated, 50);


        }


https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction
https://w3techs.com/technologies/details/cp-javascript
https://squeak.org/
https://selflanguage.org/
https://survey.stackoverflow.co/2023/#section-most-popular-technologies-programming-scripting-and-markup-languages
https://survey.stackoverflow.co/2023/#section-most-popular-technologies-programming-scripting-and-markup-languages


Creating an Educational Application using the principles of Responsive Web Design for optimal user experience


 Dionisis Nikolopoulos - ice18390126 
￼ 


The most common use case for JS, as highlighted above, is to manipulate the DOM, or 
Document Object Model, of a web document dynamically. The DOM is a programming 
interface that represents the page, so that programs can change the document structure, style, 
and content. It represents the document as nodes and objects; that way, programming 
languages can interact with the page. But JS is not only used on the user interface, or the 
front-end, as the industry calls it, of our apps. It is also used on the non-observable, from the 
user’s perspective, processes that operate in the background of an app. This is called the 
back-end. JavaScript is a multi-paradigm language; meaning a language that not ‘opinionated’  
or ‘strict’ as far as its structure (or even syntax on some cases) is concerned. It is object-
oriented, but also can accommodate procedural, functional and imperative programming. This 
means that, by nature, it is extremely flexible insofar its use cases and the approach the user 
chooses.


 Perhaps lacking originality, we chose JavaScript as our language of choice in building our 
Web App for University of West Attica too. Its versatility on building web software, the gigantic 
community that has been built around it and the seemingly never-ending supply of developers 
who are proficient in it are simply unparalleled.


2.2. Frameworks & Runtime Environments, the Foundation of Web-
based systems


2.2.1. Web Frameworks

Constructing a small-scale web page by writing a few HTML, CSS and JS files and bundling  

them is a trivial process. However, things are not so simple constructing a web application. 
Significant thought must be put in dealing with purely programming matters, like the dynamic 
rendering of a user account page when fetching data from a database. Not unlike building a 
house, the programmer has to start from the ground up, while having infinite options for the 
architecture, the building blocks and the underlying functions of the project. Fortunately, no 
‘reinventing of the wheel’ is necessary, since these infinite options have been condensed into   
a, admittedly vast, number of Web Frameworks. 


Each Web Framework can have a radically different philosophy on the architectural 
approach and function of a web app. Most frameworks operate in the back-end, others in both 
the front and back-end, making them full stack frameworks. Some even utilise more than one 
programming language, like Ruby on Rails , that uses the Ruby Programming language along 14

JS, or Django , that opts for using Python along JS instead. 
15

Of course, choosing a framework is not mandatory; software tools nowadays might not 
even need a framework in order to make a complete application. For the purposes of this 
thesis, no tool explicitly labeled as a “framework” was necessary to be used.


 “Getting Started with Rails.” Ruby on Rails Guides. Accessed May 27, 2024. https://guides.rubyonrails.org/getting_started.html.14

 “Django.” Django Project. Accessed May 27, 2024.https://www.djangoproject.com/.15

     
6
 University of West Attica, Information and Computer Engineering, Athens, March 2024

https://guides.rubyonrails.org/getting_started.html
https://www.djangoproject.com/


Creating an Educational Application using the principles of Responsive Web Design for optimal user experience


 Dionisis Nikolopoulos - ice18390126 
￼ 


2.2.2. Runtime Environments

Earlier, it was mentioned that JavaScript is used both in the front and on the back end of 

web apps. It was mentioned that the browser is the interpreter of JS; and since the end user 
interacts with the browser, that naturally places anything that is processed on it the front-end. 
So how can JS run on the back end? This is where runtime environments come in.


2.2.2.1. What are Runtime Environments in general?


A runtime environment (or runtime system) in programming is a generally lower-level system 
that enables the instructions written in a program to be executed, while dealing with concepts 
like parallelism and memory-management. The runtime environment is more complex the 
higher the level of the language is. Meaning, a high-level language like JavaScript, Python or 
Ruby has a more extensive runtime than a lower-level one, like C.


2.2.2.2. The Node.js runtime environment


In the case of JavaScript, the most popular runtime environment by far is Node.js . It is a 16

cross-platform and open-source RTE which enables the user to run JS without the need of a 
browser. This enables the use of JS for tasks like database querying, HTTP server creation and 
test software implementation, which were previously not possible due to the front-end only 
nature of vanilla JS.


Figure 4: A simple HTTP server code snippet on Node.js.


 “Node.Js - Run JavaScript Everywhere.” Node.js -. Accessed May 27, 2024. https://nodejs.org/en.16

     
7
 University of West Attica, Information and Computer Engineering, Athens, March 2024

// server.mjs

import { createServer } from 'node:http';


const server = createServer((req, res) => {

    res.writeHead(200, { 'Content-Type': 'text/plain' });

    res.end('Hello World!\n');

});


// starts a simple http server locally on port 3000

server.listen(3000, '127.0.0.1', () => {

    console.log('Listening on 127.0.0.1:3000');

});


// run with `node server.mjs`


https://nodejs.org/en


Creating an Educational Application using the principles of Responsive Web Design for optimal user experience


 Dionisis Nikolopoulos - ice18390126 
￼ 


2.2.2.3. The NPM package manager


The Node.js runtime environment is the de-facto standard when it comes to writing JS on 
the back-end. However, the default functionality of Node.js could not possibly (and shouldn’t) 
cover every single use case of its nearly 10 million (as of 2018) users. Most of the advanced 
features used by modern web apps are relying on the use of additional code that extends the  
ecosystem, written by users, for users. The additional code, neatly organised into a format 
called a package, is available for download publicly by users of node.js.


At times, even institutional users, like companies, make and publish packages. Such is the 
case the subsequent React library, which is made by Meta . Nevertheless, there have been 17

cases where so much as two or a single programmer have published a package that is later 
used by millions of people around the world, for example the core-js  package. All these 18

packages are shared through NPM, which is the default package manager of the Node.js 
ecosystem.


A package manager is a tool which stores and distributes the aforementioned packages to 
users who need to include them in their programs with the use of specific commands and 
automated install scripts. The package manager also takes care of the dependencies of 
downloaded packages on other packages in the NPM registry, while making sure the different 
software versions are compatible with each other. Such tasks would be tremendously difficult 
to maintain manually, especially when diving into the more advanced NPM features like 
software security vulnerabilities reports, dependency cycle resolving and even package funding. 


The web app this thesis is based on is a package by its very nature. Every app built using 
the NPM package manager stores the packages it depends on, its name and other identifying 
info like the package creator name on a file named package.json, where all this info is available 
in JSON format.


Figure 5: A code snippet from a package.json  

 “Social Metaverse Company.” Meta. Accessed June 4, 2024. https://about.meta.com/.17

 “Core-JS.” npm. Accessed June 4, 2024. https://www.npmjs.com/package/core-js.18

     
8
 University of West Attica, Information and Computer Engineering, Athens, March 2024

{

  "name": "studentsapp",

  "version": "0.1.0",

  "private": true,

  "dependencies": {

    "@chakra-ui/icons": "^2.0.4",

    "@chakra-ui/react": "^2.2.4",

	 …

    "react-router-dom": "^6.3.0",

    "react-scripts": "5.0.1",

    "react-social-icons": "^5.14.0",

    "web-vitals": "^2.1.4"

 …

}

https://www.npmjs.com/package/core-js
https://about.meta.com/


Creating an Educational Application using the principles of Responsive Web Design for optimal user experience


 Dionisis Nikolopoulos - ice18390126 
￼ 


2.3. Libraries, the Power Tools of Web app Building

Just like power tools can be used in conjunction with one another to accomplish the task of 

building a house, so can software tools, as more than one is likely required to make a web app. 
Libraries are, essentially, collections of software tools that share similar functionality and use 
philosophy. The use of multiple libraries is also not uncommon. Also just like “power” tools, the 
exact definition of a “library” is up for interpretation. Where does a very extensive library 
become a framework? It is generally agreed throughout the industry that a framework must 
include all the necessary resources that a large-scale application would likely need. This, albeit 
trivial, definition does not automatically lead to the conclusion that multiple libraries can’t be 
used together in order to facilitate a web app creation. This approach was used in the current 
thesis’ web application, where the back-end of the app was not extensive enough to warrant 
the usage of a web framework.


The two main libraries upon which the app was built were React  and Create React App , 19 20

on the Node.js runtime environment.


2.3.1. React

React is massively popular JavaScript library that is used to build complex user interfaces.  It 

is part of the Meta Open Source  initiative, from Meta. The central idea of React is the concept 21

of a component. A component is essentially a JS function that returns markup similar to HTML 
and custom to React, called JSX. This markup is not logic-less, like HTML, enabling it to 
conditionally and dynamically render UI elements on the client. Components are usually 
interactive too, which means their behaviour to user input can be programmed through the use 
of JSX, letting the “lower-level” functions be transpiled into vanilla JS. Thus, the programmer is 
not required to manual tweak and tinker with every single fine aspect of the UI, instead 
adopting a “higher-level” approach, which saves time, effort and makes the application scaling 
easier.


Lets assume, for example, that a list of videos needs to be placed in our web application. In 
React, the solution could be something similar to: 

 “React” React Blog RSS. Accessed May 27, 2024. https://react.dev/.19

 “Create React App” Create React App. Accessed May 27, 2024. https://create-react-app.dev/.20

 “Projects.” Meta Open Source. Accessed June 4, 2024. https://opensource.fb.com/projects/.21

     
9
 University of West Attica, Information and Computer Engineering, Athens, March 2024

https://react.dev/
https://create-react-app.dev/
https://opensource.fb.com/projects/


Creating an Educational Application using the principles of Responsive Web Design for optimal user experience


 Dionisis Nikolopoulos - ice18390126 
￼ 




Figure 6: A “VideoList" component that counts and displays “Video” components in React 


 


The end result on the UI side would be something akin to: 


But what does the “Video” in the return of the function render as? Of course, it is also a 
component, which would also be coded in a similar way to Figure 5. For example: 

     
10
 University of West Attica, Information and Computer Engineering, Athens, March 2024

function VideoList({ videos, emptyHeading }) {

    // Count the videos and form heading accordingly

    const count = videos.length;

    let heading = emptyHeading;

    if (count > 0) {

        const noun = count > 1 ? 'Videos' : 'Video';

        heading = count + ' ' + noun;

    }

    // Return JSX markup to render on UI, notice the multiple Video components.

    return (

        <section>

            <h2>{heading}</h2>

            {videos.map(video =>

                <Video key={video.id} video={video} />

            )}

        </section>

    );

}




Creating an Educational Application using the principles of Responsive Web Design for optimal user experience


 Dionisis Nikolopoulos - ice18390126 
￼ 


Figure 7: A “Video" component in React 


Within our Video component, we also have components like Thumbnail and LikeButton. This 
captures the essence of the React library. Rather than trying to maintain and change a large 
codebase, which is a large problem to solve, the process is broken down into solving small 
problems by breaking down the codebase into manageable, streamlined and  reusable pieces 
of code. 


The process might seem over-engineered at first. After all, web apps were getting made 
long before React came around! However, when a team of developers need to cooperate and 
communicate, especially new developers are introduced to the codebase, it is greatly 
facilitating to have strict and universal standards which the code adheres to. This could be one 
of the reasons React is so widely used within the industry, where developers rapidly program 
apps without the need to study every single aspect of the, sometimes giant, codebase.


2.3.2. Create React App

It has been mentioned that React does not offer a coherent way to build and deploy a web 

application, since it is better categorised as a library, rather than a framework. Create-react-app 
is another library that offers pre-configuration of modern build setup for a web application. By 
downloading the library through an npm package and running some simple commands:


Figure 8: All the commands needed to create a React application through create-react-app  


The application would be stored under the directory my-app/, where a pre-configured build 
system with other libraries and tools would provide everything a programmer needs to continue 
development without the need of any boilerplate code. Functionality like the bundling of static 
assets like client side JS files, CSS files, images and auto-fixes on compatibility of JS are 
already handled with no configuration needed.


     
11
 University of West Attica, Information and Computer Engineering, Athens, March 2024

function Video({ video }) {

    return (

        <div>

            <Thumbnail video={video} />

            <a href={video.url}>

                <h3>{video.title}</h3>

                <p>{video.description}</p>

            </a>

            <LikeButton video={video} />

        </div>

    );

}

npm install create-react-app


npx create-react-app my-app


cd my-app


npm start



Creating an Educational Application using the principles of Responsive Web Design for optimal user experience


 Dionisis Nikolopoulos - ice18390126 
￼ 


The previous commands in Figure 8, would result in the downloading of the following files:


Figure 9: The general structure of the simple React app made with create-react-app


This is the general layout of the application too, since create-react-app was used to initialize 
its fundamentals.


3. Configuration of the Application


3.1. Forking from myUOM project

The demand for a centralised point, on which students can access University resources, is 

understandably not unique to the University of West Attica. During research for the design of 
the application, a project by the University of Macedonia  surfaced. It is an Open Source 22

Project by the  open source team of UOM built on a React stack with create-react-app, so it 
constituted a perfect fit for the purposes of this thesis. Furthermore, the project was hosted on 
GitLab with the use of git, which simplified the forking process greatly. 


3.2. What is Open Source?

There are two types of programs in this world. Proprietary, or “non-free” software and (free 

and) open source software. The important distinction here is that the word “free” does not refer 
to the monetary cost of the software, rather the fact that the licensing permits more freedoms 
to the user. Or as a popular saying goes on the open source community: “Free as in freedom, 
not free beer” . This open source software can be licensed in many different ways, but the 23

common attribute is, without exception, unhindered access to the source code of the program. 


 “University of Macedonia”. Accessed June 13, 2024. https://www.uom.gr/en.22

 “What Is Free Software? - GNU Project - Free Software Foundation,”  https://www.gnu.org/philosophy/free-sw.en.html.23

     
12
 University of West Attica, Information and Computer Engineering, Athens, March 2024

my-app

├── README.md ← Information about the project in MarkDown format.

├── package.json ← The dependencies on external libraries and tools this app has.

├── .gitignore ← Selectors of files that need to be ignored from version control 
system.

├──  node_modules ← The external dependencies that are downloaded.

├──  public ← Images, thumbnail files, metadata files, etc. that are going to be 
publicly available. 

│   ├──  favicon.ico

│   ├──  index.html

│   ├──  logo192.png

│   ├──  logo512.png

│   ├──  manifest.json

│   └──  robots.txt

└── src ← Source code of the application, JS and CSS files mostly.

    ├──  App.css

    ├──  App.js

    ├──  App.test.js

    ├──  index.css

    ├──  index.js

    ├──  logo.svg

    ├──  serviceWorker.js

    └── � setupTests.js

https://www.uom.gr/en
https://www.gnu.org/philosophy/free-sw.en.html


Creating an Educational Application using the principles of Responsive Web Design for optimal user experience


 Dionisis Nikolopoulos - ice18390126 
￼ 


3.2.1. Source Code, Machine Code, Bytecode

The source code of a program is all the files containing programming language scripts and 

instructions that constitute the program as it is released by developers. Access to the source 
code enables anyone who possesses it to use tools to rebuild or run the program using their 
own computer. In interpreted languages, source code is just ran by a tool named the interpreter 
and no translation to machine or bytecode needs to happen. In contrast to this, a compiled 
language is first translated to bytecode or machine code, usually into a binary file, meaning a  
file that is not a text file . Machine code is encompassed by instructions that can be ran 24

directly by the computer, whereas byte code is either directly ran by an interpreter, or 
sometimes further translated to machine code and ran on. Programming languages like C  25

and C++  use machine code, while languages like Java  and Lua  use bytecode to run.
26 27 28

These distinctions are relevant because the specific instructions of the machine code differ 
from CPU to CPU, making the binary files sometimes inefficient or even incompatible when 
running on computers different than the one they were originally compiled in. Bytecode, on the 
other hand, is higher level than machine code but lower level than source code, making the 
translation to machine code or interpretation more efficient. So why do compiled languages 
even exist if they make portability so complex? Could the world just run on interpreted 
languages?


Of course interpreted languages are more easily portable, needing no intermediate 
compilation or installation, but that is not the whole story. There are certain tradeoffs to consider 
too. The interpreter that operates on source code, like the one on Python and JavaScript, 
which are both considered interpreted languages, still needs to translate the instructions of 
human-readable form to a machine-readable one. This process looks remarkably similar to a 
compilation from afar. It just happens on demand, while the compiled languages just have 
ready-to-run files from the get-go. However, this process takes time and it not as optimised and 
as closely tailored as specific machine code instructions for ones specific CPU. While this 
additional time is imperceptible to humans when writing simple programs, when the complexity 
of the algorithms written begins to grow, the choice of a specific language is of paramount 
importance. That is not to say all compiled languages are quicker than interpreted ones in all 
use cases, but that a fair amount of nuance must be present when considering which is the 
right tool for the job. The web app of this thesis is built on JavaScript exclusively, which falls 
squarely in the realm of interpreted languages.


 “Binary File Definition by the Linux Information Project (LINFO),” https://www.linfo.org/binary_file.html.24

 Kernighan, Brian W., and Dennis M. Ritchie. “The ANSI C Programming Language : Brian W. Kernighan, Dennis M. Ritchie  ” 25

Internet Archive, January 1, 1978. https://archive.org/details/the-ansi-c-programming-language-by-brian-w.-kernighan-dennis-m.-ritchie.org.

 Stroustrup, Bjarne. “The C Programming Language : Bjarne Stroustrup” Internet Archive, January 1, 1997. https://archive.org/26

details/cprogramminglang00stro_0.

 Lindholm, Tim, Frank Yellin, Gilad Bracha, and Alex Buckley. “The Java® Virtual Machine Specification.” The Java® Virtual Machine 27

specification, February 13, 2015. https://docs.oracle.com/javase/specs/jvms/se8/html/.

 “The Implementation of Lua 5.0.” Journal of Universal Computer Science, 2005. https://www.jucs.org/jucs_11_7/28

the_implementation_of_lua/jucs_11_7_1159_1176_defigueiredo.html.
     
13

 University of West Attica, Information and Computer Engineering, Athens, March 2024

https://www.jucs.org/jucs_11_7/the_implementation_of_lua/jucs_11_7_1159_1176_defigueiredo.html
https://www.jucs.org/jucs_11_7/the_implementation_of_lua/jucs_11_7_1159_1176_defigueiredo.html
https://archive.org/details/the-ansi-c-programming-language-by-brian-w.-kernighan-dennis-m.-ritchie.org
https://www.linfo.org/binary_file.html.
https://archive.org/details/cprogramminglang00stro_0
https://archive.org/details/cprogramminglang00stro_0
https://docs.oracle.com/javase/specs/jvms/se8/html/


Creating an Educational Application using the principles of Responsive Web Design for optimal user experience


 Dionisis Nikolopoulos - ice18390126 
￼ 


3.3. What is a git & what is a fork?

Since programming started to pick up steam during the end of the 70s and in the start of 

the 80s, teams of programmers started to increase in size, making working in a complex 
application with a cornucopia of disparate files increasingly harder too. It is of no surprise that 
these programmers were required to work on the same source code and sometimes even in 
the same file simultaneously. Each one of them needed to copy the file in their own computer in 
order to make the changes and then communicate to merge the changes onto the same 
location. Such process was beginning to grow extremely tedious and difficult, since conflicting 
changes could sometimes be entangled in a way that took up precious development time to 
resolve. Naturally, organisational tools to simplify and optimise this process arose, satisfying this 
demand, named Version Control Systems.


3.3.1. Version Control Systems

Versions of software are distinct states on which the program or application has changed 

from its previous state, apropos of its source code and usually features added and removed or 
bugs resolved. Each version of the source code is a state on which the version control system 
references in order to detect intermediate or later changes by developers and if necessary, 
merge these concurrent changes or revert back to a previous state in part or as a whole.


3.3.1.1. Early VCS: Local & File-centric


One of the earliest and most common tools that are used for this purpose was the Source 
Code Control System (SCCS)  from Bell Labs , which implemented a simple system, 29 30

contrasted with contemporary implementations. Each change was stored in a discrete delta, 
which is then applied to every new iteration of the source code. This core premise is still 
present on modern Version Control Systems. Building and improving upon the principles of 
SCCS, other version control systems were surfacing, like RCS in 1982, or Revision Control 
System . Here, the idea of reverse-deltas was cultivated. A reverse-delta, in comparison with a 31

forward-delta, previously mentioned as plain delta, is a record that instead of storing 
information about what has changed (i.e. forward), stores information about how to go back to 
the previous state (i.e. reverse) the reverse-delta describes. Thus, reverting source code to a 
previous version becomes a trivial operation.


3.3.1.2. Middle VCS: Networked & Project-centric


The internet brought massive changes to all software, VCS were not an exception. 
Developers were now managing projects, not a selection of files. The earliest VCS that had 

 Rochkind, Marc J. “Source Code Control System.” Internet Archive, IEEE Transactions on Software Engineering, Vol. SE-1, No. 4, 29

December 1975. https://web.archive.org/web/20110525193926/http://basepath.com/aup/talks/SCCS-Slideshow.pdf.

 “Bell Labs Site - 1997.” History of Bell Laboratories, 1997. https://web.archive.org/web/19961030004652/http://www.bell-30

labs.com/geninfo/history/.

 Tichy, Walter F. RCS—a system for version control, January 3, 1991. http://www.cs.umsl.edu/~schulte/cs2750/docs/rcs.pdf.31

     
14
 University of West Attica, Information and Computer Engineering, Athens, March 2024

http://www.cs.umsl.edu/~schulte/cs2750/docs/rcs.pdf
https://web.archive.org/web/19961030004652/http://www.bell-labs.com/geninfo/history/
https://web.archive.org/web/19961030004652/http://www.bell-labs.com/geninfo/history/
https://web.archive.org/web/20110525193926/http://basepath.com/aup/talks/SCCS-Slideshow.pdf


Creating an Educational Application using the principles of Responsive Web Design for optimal user experience


 Dionisis Nikolopoulos - ice18390126 
￼ 


project-centric features was the notorious Concurrent Versions System (CVS)  in 1986. CVS 32

was heavily reliant on RCS, using it to introduce changes and handling all the project-centric 
features with concepts like branching (independent string of versions) which are still used today. 
A bit later and with a number of commercial projects developed over the years to improve upon 
CVS, like the even more notorious Subversion (SVN). SVN was released in 2004 , integrating 33

with the Apache Suite of products ,  later on.
34 35

3.3.1.3. Modern VCS: Distributed & Fully Commercial


Through the course of history of VCS, it is apparent that these tools were beginning to grow 
more commercial and enterprise grade with each new tool released. Dozens of commercial 
products were released before and after Subversion, like ClearCase of IBM  origins and 36

Perforce (now named Helix Core) . All of the successful ones were rapidly commercialised, due 37

to the even more rampant need of smooth collaboration of developers that were now not only 
working with multiple people, but were working on multiple projects. Thus, the developer to 
project ratio was shrinking and the market had to respond. But the problem with the 
aforementioned tools was that they were providing a solution to an issue of booming 
complexity which was now, additionally, changing form. Distribution and Scaling was of utmost 
importance now, something that was not designed in the time period that these tools were 
created.


This was the motivator for the creator (and benevolent dictator) of Linux, Linus Torvalds, to 
create Git , released in 2005 , the tool that overwhelmingly is the standard for VCS 38 39

nowadays. 


3.3.2. Git

A part of the motivation of Linus Torvalds to even start to make Git was the echoed 

sentiment of growing resentment with certain difficulties CVS and by extension Subversion 
were causing programmers working in the modern landscape. Linus was in the midst of 
managing one of the most prolific and complex repositories of a project at the time, the Linux 
Kernel , which he was the creator of. 
40

 CVS - Concurrent Versions System. Accessed June 15, 2024. https://cvs.nongnu.org/.32

 Zeiss, Benjamin. “Subversion 1.0 Is Released.” Subversion 1.0 is released [LWN.net] (Mailing List), February 23, 2004. https://lwn.net/33

Articles/72498/.

 Hyrum. “Subversion Is Now Apache Subversion.” Wayback Machine, February 18, 2010. https://web.archive.org/web/34

20110512171259/http://subversion.wandisco.com/component/content/article/1/43.html.

 “Apache® Subversion®.” Subversion (SVN). Accessed June 15, 2024. https://subversion.apache.org/.35

 “DevOps ClearCase.” IBM. Accessed June 15, 2024. https://www.ibm.com/products/devops-code-clearcase.36

 “Perforce Helix Core.” Perforce. Accessed June 15, 2024. https://www.perforce.com/products/helix-core.37

 Git. Accessed June 15, 2024. https://git-scm.com/.38

 Torvalds, Linus. “Initial Revision of ‘Git’, the Information Manager from Hell · Git/Git@e83c516.” GitHub, April 8, 2005. https://39

web.archive.org/web/20151116175401/https://github.com/git/git/commit/e83c5163316f89bfbde7d9ab23ca2e25604af290.

 “The Linux Kernel Archives - About.”  Accessed June 15, 2024. https://www.kernel.org/category/about.html.40

     
15
 University of West Attica, Information and Computer Engineering, Athens, March 2024

https://www.ibm.com/products/devops-code-clearcase
https://web.archive.org/web/20151116175401/https://github.com/git/git/commit/e83c5163316f89bfbde7d9ab23ca2e25604af290
https://web.archive.org/web/20151116175401/https://github.com/git/git/commit/e83c5163316f89bfbde7d9ab23ca2e25604af290
https://lwn.net/Articles/72498/
https://lwn.net/Articles/72498/
https://web.archive.org/web/20110512171259/http://subversion.wandisco.com/component/content/article/1/43.html
https://web.archive.org/web/20110512171259/http://subversion.wandisco.com/component/content/article/1/43.html
https://www.perforce.com/products/helix-core
https://subversion.apache.org/
https://git-scm.com/
https://cvs.nongnu.org/
https://www.kernel.org/category/about.html


Creating an Educational Application using the principles of Responsive Web Design for optimal user experience


 Dionisis Nikolopoulos - ice18390126 
￼ 


Other developers were beginning to see the weaknesses of already existing VCS as early as 
1997 , as evident by the numerous changes the VCS of the Linux Kernel underwent, as well 41

as Linus’s less than favourable comments about CVS and SVN in 2007 , :
42 43

“When I say I hate CVS with a passion, I have to also say that if there any SVN users 
(Subversion users) in the audience, you might want to leave. Because my hatred of CVS has 
meant that I see Subversion as being the most pointless project ever started, because the 
whole slogan for the Subversion for a while was 'CVS done right' or something like that. And if 
you start with that kind of slogan, there is nowhere you can go. It's like, there is no way to do 
CVS right.”


Linus’ instinct, although absolutist in nature, proved to be correct. As early as 2010, git was 
taking up a significant share of nearly 11.3% of all repositories publicly available, while SVN was 
taking up 60.8% (SVN and SVNSync combined share) . Since then, the tide has shifted, with 44

Git gradually thriving more and more. In 2016, Git took up 39% and SVN 47% , while in the 45

present day, SVN takes up 22%, while Git takes up 74% . Even though the number of 46

repositories grew in number from 142k in 2010 to roughly 350k in 2024, Git repositories went 
from 116k to 1 million in the same time period. In fact, SVN’s growth seems to have been 
largely stagnant since 2014, where it hit the milestone of 325k , while Git’s has skyrocketed. 47

Of course, these are only the publicly available repositories, but a clear enough conclusion can 
be drawn from these results. Git is the de-facto standard of the industry in regards to VCS. 
New software seems to be developed mostly using Git, while SVN is left for maintaining large 
projects whose migration is not feasible. 93% of Stack Overflow developers seem to favour Git 
over other versioning systems, a percentage which does not seem to be changing any time 
soon .
48

Git has become so instrumental for the development of modern software, that entire 
companies have been founded on the basis of providing hosting for the central point on which 
the current state of the source code is stored, called the repository. Companies like the one 
with the leading market share, called GitHub, that was acquired by Microsoft in 2000 for $7.5 

 McVoy, Larry. “A Solution for Growing Pains.” lkml.org, September 30, 1998. https://lkml.org/lkml/1998/9/30/122.41

 “Linus Torvalds on Git (Tech Talk) : Google Talks.” Internet Archive, May 14, 2007. https://archive.org/details/42

LinusTorvaldsOnGittechTalk.

 “Linus Google Tech Talk Transcript.” Gist. Accessed June 15, 2024. https://gist.github.com/dukeofgaming/2150263.43

 Compare Repositories - Ohloh, August 2011. https://web.archive.org/web/20100821122603/http://www.ohloh.net/repositories/44

compare.

 Openhub.net. Compare repositories - open hub, September 3, 2016. https://web.archive.org/web/20160903120733/https://45

www.openhub.net/repositories/compare.

 Openhub.net. Compare repositories - open hub. May 15, 2024  Accessed June 15, 2024. https://web.archive.org/web/46

20240515114715/https://openhub.net/repositories/compare.

 Openhub.net. “Tools.” Compare Repositories - Open Hub, September 7, 2014. https://web.archive.org/web/20140907051024/47

https://www.openhub.net/repositories/compare.

 Donovan, Ryan. “Beyond Git: The Other Version Control Systems Developers Use.” Stack Overflow, January 9, 2023. https://48

stackoverflow.blog/2023/01/09/beyond-git-the-other-version-control-systems-developers-use/.
     
16

 University of West Attica, Information and Computer Engineering, Athens, March 2024

https://web.archive.org/web/20100821122603/http://www.ohloh.net/repositories/compare
https://web.archive.org/web/20100821122603/http://www.ohloh.net/repositories/compare
https://archive.org/details/LinusTorvaldsOnGittechTalk
https://archive.org/details/LinusTorvaldsOnGittechTalk
https://stackoverflow.blog/2023/01/09/beyond-git-the-other-version-control-systems-developers-use/
https://stackoverflow.blog/2023/01/09/beyond-git-the-other-version-control-systems-developers-use/
https://lkml.org/lkml/1998/9/30/122
https://gist.github.com/dukeofgaming/2150263
https://web.archive.org/web/20160903120733/https://www.openhub.net/repositories/compare
https://web.archive.org/web/20160903120733/https://www.openhub.net/repositories/compare
https://web.archive.org/web/20240515114715/https://openhub.net/repositories/compare
https://web.archive.org/web/20240515114715/https://openhub.net/repositories/compare
https://web.archive.org/web/20140907051024/https://www.openhub.net/repositories/compare
https://web.archive.org/web/20140907051024/https://www.openhub.net/repositories/compare


Creating an Educational Application using the principles of Responsive Web Design for optimal user experience


 Dionisis Nikolopoulos - ice18390126 
￼ 


billion , or GitLab, another publicly traded company, with a $7 billion market cap as of June 49

2024 .
50

3.3.3. Fork

A project fork in software development is the act of starting to develop a project while 

starting with source code of another project as a basis. In open source software, this practice is 
commonplace, since the licensing encourages programmers to customise or even make a 
different product based on code of the given licensed software. Using git in conjunction with 
repository-hosting sites like GitHub and GitLab makes forking a project a matter of making an 
account and clicking a button that reads “Fork Project”. The application is a fork project itself as 
mentioned previously, with changes that make the original project (myUoM ) and this 51

application significantly different structurally and functionally, albeit familiar to each other.

Countless applications and programs have been initially launched as forks. One of the most 

compelling examples is Apple’s open source  browser engine, called WebKit , which was 52 53

forked  from KHTML  (and KJS ), a now discontinued project for a browser engine in KDE, a 54 55 56

popular Linux Desktop Environment . 57

 “Microsoft Acquires GitHub.” Microsoft Announcements, September 3, 2020. https://news.microsoft.com/announcement/microsoft-49

acquires-github/.

 “GTLB.” Nasdaq. Accessed June 16, 2024. https://www.nasdaq.com/market-activity/stocks/gtlb.50

 “MyUoM.” myUoM. Accessed June 15, 2024. https://my.uom.gr/.51

 WebKit. “WebKit/Webkit: Home of the Webkit Project, the Browser Engine Used by Safari, Mail, App Store and Many Other Applications 52

on Macos, IOS and Linux.” GitHub. Accessed June 16, 2024. https://github.com/WebKit/WebKit.

 WebKit. Accessed June 16, 2024. https://webkit.org/.53

 Melton, Don. “‘(FWD) Greetings from the Safari Team at Apple Computer.’” MARC, January 7, 2003. https://marc.info/?54

m=104197092318639.

 Kde. “KDE/KHTML at KF5.” GitHub. Accessed June 16, 2024. https://github.com/KDE/khtml/tree/kf5.55

 Stachowiak, Maciej. [KDE-darwin] javascriptcore, Apple’s JavaScript framework based on KJS, June 13, 2002. https://56

web.archive.org/web/20070310215550/http://www.opendarwin.org/pipermail/kde-darwin/2002-June/000034.html.

 “KDE - Home.” KDE Community. Accessed June 16, 2024. https://kde.org/.57

     
17
 University of West Attica, Information and Computer Engineering, Athens, March 2024

https://github.com/KDE/khtml/tree/kf5
https://github.com/WebKit/WebKit
https://news.microsoft.com/announcement/microsoft-acquires-github/
https://news.microsoft.com/announcement/microsoft-acquires-github/
https://web.archive.org/web/20070310215550/http://www.opendarwin.org/pipermail/kde-darwin/2002-June/000034.html
https://web.archive.org/web/20070310215550/http://www.opendarwin.org/pipermail/kde-darwin/2002-June/000034.html
https://webkit.org/
https://kde.org/
https://www.nasdaq.com/market-activity/stocks/gtlb
https://my.uom.gr/
https://marc.info/?m=104197092318639
https://marc.info/?m=104197092318639


Creating an Educational Application using the principles of Responsive Web Design for optimal user experience


 Dionisis Nikolopoulos - ice18390126 
￼ 


4. Implementation of the Application


4.1. Initial Setup

After forking the project of myUoM, the initial step was to clone the repository of the project 

locally. Then, installing the necessary files with the help of NPM was necessary. Finally, when 
the installation finishes, the app is ready to be ran. This process carried out with four simple 
shell commands (on zsh , under MacOS):
58

Figure 10: Process of cloning repo locally, installing dependencies via NPM and running the app.


4.2. Coding

The source code was ready to be edited freely now! The actual transformation of the original 

myUoM project to fit UniWA’s specific requirements and services was underway.


4.2.1. index.js, Context and Provider Concepts

This file is the root point of the application. Every other file written as source code, excluding 

dependencies is related to this file, or is related to a descendant of it. 


Figure 11: The index.js file, the “root” of our application.


 Zsh. Accessed June 16, 2024. https://www.zsh.org/.58

     
18
 University of West Attica, Information and Computer Engineering, Athens, March 2024

git clone git@gitlab.com:nionios/my-uniwa.git 


npm install


cd my-uniwa


npm start

import {StrictMode} from "react";

import {ChakraProvider, ColorModeScript} from "@chakra-ui/react";

import ReactDOM from "react-dom/client";

import "./index.css";

import theme from "./theme/theme";

import App from "./App";

import reportWebVitals from "./reportWebVitals";

import {BrowserRouter} from "react-router-dom";

import {DepartmentProvider} from "./contexts/departmentContext";


const root = ReactDOM.createRoot(document.getElementById("root"));

root.render(

  <StrictMode>

    <BrowserRouter>

      <DepartmentProvider>

        <ChakraProvider theme={theme}>

          {/*ColorModeScript needed to set the theme according to OS*/}

          <ColorModeScript initialColorMode={theme.config.initialColorMode}/>

          <App/>

        </ChakraProvider>

      </DepartmentProvider>

    </BrowserRouter>

  </StrictMode>

);


https://www.zsh.org/


Creating an Educational Application using the principles of Responsive Web Design for optimal user experience


 Dionisis Nikolopoulos - ice18390126 
￼ 


As is evident, a method of ReactDOM is called, which is the part of the react ecosystem 
responsible for the interaction with the Document Object Model of the client. This method is 
createRoot , that spawns the first markup element of the application onto the virtual DOM. In 59

this case, an element named “<root>".

At this point it is important to note how dedicated React apps are to the concept of 

components that were previously mentioned in Section 2.3.1. Even the “strict mode” helper is a 
component, named StrictMode  that is first imported and then wrapped around the app, in 60

order to facilitate warnings and errors during development regarding best React practices. 
BrowserRouter  closely follows suit, in order for the app to store the current location in the 61

browser's address bar and navigate using the browser's built-in history stack. Then, the first 
Provider comes up, DepartmentProvider. After that provider, another one wraps around 
following components, named ChakraProvider, relating to the UI library this web app uses, 
named ChakraUI . Finally, a ColorModeScript component is placed, relating to the detection 62

and switching of light and dark UI mode within the application, along with the App component, 
which will be explained later in detail. But, this begs the question, what is a provider?


4.2.1.1. Providers and Contexts, the case of DepartmentProvider


A provider is a component that utilises React’s Context API to assist with data sharing while 
managing a deeply nested component structure. Due to the components’ inherent ambiguity 
when observing them by themselves, a context is a component that can be wrapped around 
components to provide the necessary data for their functionality. Minimal changes are 
necessary when readjusting them to use their strengths like portability (each component is a file 
or a small selection of files) and reusability, if this approach is followed.


To showcase the importance of Providers in the app and in React at large, the 
DepartmentProvider is a succinct example. This provider lives inside a file named 
DepartmentContext.jsx, which houses the following contents: 

 React Documentation - createRoot. Accessed June 16, 2024. https://react.dev/reference/react-dom/client/createRoot59

 React Documentation - StrictMode. Accessed June 16, 2024. https://react.dev/reference/react/StrictMode.60

 “BrowserRouter v6.23.1.” BrowserRouter v6.23.1 | React Router. Accessed June 16, 2024. https://reactrouter.com/en/main/router-61

components/browser-router.

 “Chakra UI - a Simple, Modular and Accessible Component Library That Gives You the Building Blocks You Need to Build Your React 62

Applications.” Accessed June 17, 2024. https://v2.chakra-ui.com/.
     
19

 University of West Attica, Information and Computer Engineering, Athens, March 2024

https://react.dev/reference/react-dom/client/createRoot
https://v2.chakra-ui.com/
https://react.dev/reference/react/StrictMode
https://reactrouter.com/en/main/router-components/browser-router
https://reactrouter.com/en/main/router-components/browser-router


Creating an Educational Application using the principles of Responsive Web Design for optimal user experience


 Dionisis Nikolopoulos - ice18390126 
￼ 


Figure 12: The DepartmentProvider component code.


The first function being imported here is createContext . With this function, a JSON object 63

is being created, that has a object key named depName, signifying a department name. When 
initialised, it’s value is an empty String, as evident by the “”. Practically, the objective of this 
provider is to supply the nested components with this department name that the user will select 
on the UI of the application later. This name will mutate certain department-specific information 
on numerous components of the application, such as links to the given department’s site or 
links to the personnel pages of the department. The available department names are loaded 
using the useLocalStorage function, which is a hook, another especially noteworthy concept of 
the React Ecosystem.


4.2.1.2. Hooks in general, the case of useLocalStorage Hook


One of the overarching concepts of React is the management of state. It is most accurately 
and succinctly explained through examples. When a user of the application selects their desired 
department from the UI, the state of the program changes, describing that a department is now 
selected and the name of the department. The components of the app react to the state of the 
application and immediately mutate according to the change. This management of “stateful 
logic” happens through the use of multiple tools, one of them being Hooks. Hooks are just like 
most tools in react. At their core, they are functions. What makes them a “hook” is their design 
and handling of the stateful logic. There exist only two rules for Hooks in React. “Only call 
hooks on the Top level", meaning not inside conditions, loops, try/catch blocks etc, and “Only 
call hooks from React functions”, which is self-explanatory .
64

There are several built-in hooks in React and their use is more than commonplace. So 
commonplace, in fact, that even custom hooks include built-in ones in their functions. For 
example, the useLocalStorage custom hook from the codebase: 

 React Documentation - createContext. Accessed June 16, 2024. https://react.dev/reference/react/createContext63

 React Documentation - Rules of Hooks. Accessed June 16, 2024. https://react.dev/reference/rules/rules-of-hooks64

     
20
 University of West Attica, Information and Computer Engineering, Athens, March 2024

import {createContext} from "react";

import {useLocalStorage} from "../hooks/useLocalStorage";


export const DepartmentContext = createContext({

  depName: "",

});


export const DepartmentProvider = ({children}) => {

  const [depName, setDepName] = useLocalStorage('depName', null);


  function changeDepartmentName(departmentToBeSet) {

    setDepName(departmentToBeSet);

  }


  const value = {depName, changeDepartmentName};

  return (

    <DepartmentContext.Provider value={value}>

      {children}

    </DepartmentContext.Provider>

  );

};


https://react.dev/reference/rules/rules-of-hooks
https://react.dev/reference/react/createContext


Creating an Educational Application using the principles of Responsive Web Design for optimal user experience


 Dionisis Nikolopoulos - ice18390126 
￼ 


Figure 13: The useLocalStorage hook code.


We have two built in hooks being used in the code of Figure 13, highlighted in yellow. Hooks 
are by convention named with the combination of the word “use” and the word of the concept 
affected by their usage. Here, we see useState and useEffect being employed in the 
implementation of the custom hook:


• useState  is a function with that returns an array of two variables. The first is the stateful 65

variable, meaning the variable that signifies the state, followed by a second variable, which 
stores a function through which the first stateful value is changed. In JS, variables can hold 
functions. The parameter of useState is the initial state that will be stored into the first variable 
in index 0 of the returned array. In this case, it is the json object that is fetched using the 
storage key while calling the hook in the first place.


• useEffect ,  is a bit more complex. It’s usage is necessary when a React component 66 67

needs to exchange information with something that is not part of the React Ecosystem. In 
this case, the JSON file stored on disk with the department information. It is a function that 
always returns undefined and has two parameters, of which the second is optional. The first 
parameter is a function that implements the logic of the Effect. This function is ran on each 
render of the component if the second parameter is missing. The second parameter is an 
array of dependencies of the Effect. The dependencies are “reactive” values, meaning values 
defined in the component. If they were to be changed, the code of the setup function (the first 
parameter of useEffect) will be re-run. In this case, the inputted key (storageKey variable) is 
used to load into the memory the specific information under the key with the same name on 
the department JSON file on disk. These JSON files are loaded through React’s localStorage, 
which edits the browser’s Storage object .
68

 “useState.” React. Accessed June 17, 2024. https://react.dev/reference/react/useState.65

 “useEffect.” React. Accessed June 17, 2024. https://react.dev/reference/react/useEffect.66

 “Synchronizing with Effects.” React. Accessed June 17, 2024. https://react.dev/learn/synchronizing-with-effects.67

 MozDevNet. “Window: Localstorage Property - Web Apis: MDN.” MDN Web Docs. Accessed June 17, 2024. https://68

developer.mozilla.org/en-US/docs/Web/API/Window/localStorage.
     
21

 University of West Attica, Information and Computer Engineering, Athens, March 2024

import {useState, useEffect} from "react";


export const useLocalStorage = (storageKey, fallbackState) => {

  const [value, setValue] = useState(

    JSON.parse(localStorage.getItem(storageKey)) ?? fallbackState

  );


  useEffect(() => {

    localStorage.setItem(storageKey, JSON.stringify(value));

  }, [value, storageKey]);


  return [value, setValue];

};


https://react.dev/reference/react/useEffect
https://react.dev/reference/react/useState
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
https://react.dev/learn/synchronizing-with-effects


Creating an Educational Application using the principles of Responsive Web Design for optimal user experience


 Dionisis Nikolopoulos - ice18390126 
￼ 


4.2.2. App.js & Routing Concepts

The root point of the application might be index.js, but the part that might be more 

welcoming to a (human) eye is the the component of App.js. Here, the routing of the application 
is set up with the help of React Router, allowing for a quick overview of all the accessible pages 
of the application, coded in the “React way”, as nested components.





Figure 14: The App.js component code with all the routes (comments removed for brevity).


As is visible in Figure 14, every JS file that contains a page component is passed as a 
parameter to a Route component, accompanied by the path URL that leads to the given page. 
The Header component is the navigation bar and the Route with the index parameter passed is 
the index (or “home”) page of the application. 

     
22
 University of West Attica, Information and Computer Engineering, Athens, March 2024

import HomePage	 	 from "./pages/HomePage";

import Header	 	 	 from "./components/Header";

import RestaurantPage 		 from "./pages/RestaurantPage";

import { Routes, Route }	 from "react-router-dom";

import ServicesPage	 	 from "./pages/ServicesPage";

import GraduationPage	 	 from "./pages/GraduationPage";

import LibraryPage	 	 from "./pages/LibraryPage";

import FAQSettingsPage		 from "./pages/FAQSettingsPage";

import AboutSettingsPage	 from "./pages/AboutSettingsPage";

import SemesterSchedulePage	 from "./pages/SemesterSchedulePage";

import ExamsSchedulePage	 from "./pages/ExamsSchedulePage";


function App() {

  return (

    <>

      <Header />

      <Routes>

        <Route index 	 	 	 element={<HomePage />} />

        <Route path="/services" 	 element={<ServicesPage />} />

        <Route path="/restaurant"	 element={<RestaurantPage />} />

        <Route path="/graduationpage"	element={<GraduationPage />} />

        <Route path="/librarypage"	 element={<LibraryPage />} />

        <Route path="/faq"	 	 element={<FAQSettingsPage />} />

        <Route path="/about"	 	 element={<AboutSettingsPage />} />

        <Route path=“/semesterschedule" element={<SemesterSchedulePage />} />

        <Route path="/examsschedule"	 element={<ExamsSchedulePage />} />

      </Routes>

    </>

  );

}




Creating an Educational Application using the principles of Responsive Web Design for optimal user experience


 Dionisis Nikolopoulos - ice18390126 
￼ 


4.2.3. HomePage.jsx, Rendering & Configuration Concepts

A concise demonstration of Page creation in React can be had through the homepage. 

Following is the code of HomePage.jsx:


Figure 15: The HomePage.jsx component code as a whole (imports removed for brevity).


     
23
 University of West Attica, Information and Computer Engineering, Athens, March 2024

const stagger = {

  inView: {

    transition: {

      staggerChildren: 0.1,

    },

  },

};


export default function HomePage() {

  // Get the current department name set from settings

  const { depName } = useContext(DepartmentContext);

  // Get the page that lists the academic personnel for specific department

  const academicPersonnelSourceIndex = academicPersonnelPages.findIndex((i) => i.department === 
depName);

  // Replace the link on the categories json with the appropriate one each time

  const academicPersonnelIndex = Categories.findIndex((i) => i.title === "Ακαδηµαϊκό Προσωπικό");


  const announcementsSourceIndex = departmentAnnouncements.findIndex((i) => i.department === depName);


  const announcementsIndex = Categories.findIndex((i) => i.title === "Ανακοινώσεις");


  if (academicPersonnelIndex !== -1 && academicPersonnelSourceIndex !== -1) {

    Categories[academicPersonnelIndex].route = 
academicPersonnelPages[academicPersonnelSourceIndex].pageUrl;

  }


  if (announcementsIndex !== -1 && announcementsSourceIndex !== -1) {

    Categories[announcementsIndex].route = departmentAnnouncements[announcementsSourceIndex].pageUrl;

  }


  const [categoriesListForSearch, setCategoriesListForSearch] = useState(Categories);


  useEffect(() => {

    window.scrollTo(0, 0);

  }, []);

  return (

    <Flex

      id="main-grid"

      direction="column"

      alignItems="center"

      justifyContent="start"

      gap="3rem"

      h={{ sm: "100%", "2xl": "calc(var(--available-height)*0.9)" }}

      px={{ sm: "1rem", lg: "3rem" }}>

      <Grid

        as={motion.section}

        initial="initial"

        animate="inView"

        variants={stagger}

        className="home-grid"

        marginTop="20px"

        gap={{ sm: 2, md: 3, lg: 4, xl: 5, "2xl": 6, "3xl": 7 }}

        templateColumns={{

          sm: "repeat(3, 1fr)",

          md: "repeat(3, minmax(0, 1fr))",

          xl: "repeat(5, calc((var(--available-width) - 5rem) / 5))",

          xxl: "repeat(5, calc((var(--available-width) / 1.5) / 5))",

          "2xl": "repeat(5, calc((var(--available-width) / 1.75) / 5))",

          "3xl": "repeat(5, calc((2*var(--available-width)/3) / 5))",

        }}>

        {categoriesListForSearch.length === 0 ? (

          <Heading	 gridColumnStart={1}	 gridColumnEnd={3}

	 	 fontSize={{ sm: 11.95, md: 16, lg: 26, xl: 32 }}

	 	 w=“100%"

	 	 fontWeight={500}>

            Η αναζήτηση δεν επέστρεψε αποτελέσµατα. 

          </Heading>

        ) : null}

        {categoriesListForSearch.map((category) => (

          <MenuBox category={category} key={category.title} />

        ))}

      </Grid>

    </Flex>


<- “This search yielded no results.”



Creating an Educational Application using the principles of Responsive Web Design for optimal user experience


 Dionisis Nikolopoulos - ice18390126 
￼ 


4.2.3.1. Preparing and processing the data


The first part that will be explained in this chapter is the code snippet before the return of the 
JSX code, excluding imports for brevity:


Figure 16: HomePage.jsx snippet in function body and before return (imports removed for brevity).


Here, the application of theoretical background of hooks is applied. First, the 
DepartmentContext is used through the built-in hook useContext, which returns the 
department name if the variable depName. This keeps in memory the (reactive) name of the 
department the user clicked on, on the dropdown menu on the UI, which will be showcased 
later. At any point, the user can now click another name. The variable depName will then 
change accordingly. After importing the JSON files with the links of the announcement pages of 
each department, as well as the JSON file with the links for the personnel pages (in the import 
section of the file), highlighted in yellow here:


Figure 17:  HomePage.jsx snippet from the import section of the file.


     
24
 University of West Attica, Information and Computer Engineering, Athens, March 2024

export default function HomePage() {

  // Get the current department name set from settings

  const { depName } = useContext(DepartmentContext);

  // Get the page that lists the academic personnel for specific department

  const academicPersonnelSourceIndex = academicPersonnelPages.findIndex((i) => i.department === 
depName);

  // Replace the link on the categories json with the appropriate one each time

  const academicPersonnelIndex = Categories.findIndex((i) => i.title === "Ακαδηµαϊκό Προσωπικό");


  const announcementsSourceIndex = departmentAnnouncements.findIndex((i) => i.department === depName);


  const announcementsIndex = Categories.findIndex((i) => i.title === "Ανακοινώσεις");


  if (academicPersonnelIndex !== -1 && academicPersonnelSourceIndex !== -1) {

    Categories[academicPersonnelIndex].route = 
academicPersonnelPages[academicPersonnelSourceIndex].pageUrl;

  }


  if (announcementsIndex !== -1 && announcementsSourceIndex !== -1) {

    Categories[announcementsIndex].route = departmentAnnouncements[announcementsSourceIndex].pageUrl;

  }


  const [categoriesListForSearch, setCategoriesListForSearch] = useState(Categories);


  useEffect(() => {

    window.scrollTo(0, 0);

  }, []);

…


import { useState, useEffect, useContext } from "react";

import { Categories } from "../assets/categories";

import academicPersonnelPages from “../assets/academicPersonnelPages";

import departmentAnnouncements from "../assets/departmentAnnouncements";

import MenuBox from "../components/MenuBox";

import { Flex, Grid, Heading } from "@chakra-ui/react";

import { motion } from "framer-motion";

import Search from "../components/Search";

import { DepartmentContext } from "../contexts/departmentContext";




Creating an Educational Application using the principles of Responsive Web Design for optimal user experience


 Dionisis Nikolopoulos - ice18390126 
￼ 


The information is stored into the variables named: academicPersonnelPages and  
departmentAnnouncements. Then, a search is performed on the objects stored into these 
variables for the information pertaining to the chosen department name, which is stored into 
depName, with the help of findIndex :
69

Figure 18:  HomePage.jsx snippet about the department information indices.


The Categories object, which is another imported JSON file with information about the 
categories of links in the Homepage, is also searched for the indices where the academic 
personnel and the announcements info resides.


Here, if the search is successful, then the index of the result will be returned into these four 
variables individually. Else, the number “-1” will be returned instead:


Figure 19:  HomePage.jsx snippet about the population of the URLs into the Categories object.


Is the indeces of the announcements and academic personnel info are found both on the 
Categories object and on the other info objects (academicPersonnelPages and  
departmentAnnouncements respectively), the information pertaining to the URL of the page 
searched is injected into the Categories object, which will then be used to display the  
homepage UI, after being loaded as a state. This will be the subject of the next chapter.


Acknowledgement: At this point, a case could (and should) be made, that the usage of a 
database would be preferable to reading off of filesystem-stored JSON files. However, a database 

structure was not implemented due to non-technical limitations on university databases and their 
creation and management. The JSON files are only used to read information and never edited, so a static 
implementation such as this is functional for the time being, but could be greatly improved by directly 
querying a central database for information like academic personnel and academic calendars. No such 
central database is available at the time of authoring this thesis.


 MozDevNet. “Array.Prototype.findIndex() - Javascript: MDN.” MDN Web Docs. Accessed June 18, 2024. https://69

developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/findIndex.
     
25

 University of West Attica, Information and Computer Engineering, Athens, March 2024

const academicPersonnelSourceIndex = academicPersonnelPages.findIndex((i) => 
i.department === depName);

// Replace the link on the categories json with the appropriate one each time

const academicPersonnelIndex = Categories.findIndex((i) => i.title === "Ακαδηµαϊκό 
Προσωπικό");

const announcementsSourceIndex = departmentAnnouncements.findIndex((i) => i.department 
=== depName);

const announcementsIndex = Categories.findIndex((i) => i.title === "Ανακοινώσεις");

const [categoriesListForSearch, setCategoriesListForSearch] = useState(Categories);


if (academicPersonnelIndex !== -1 && academicPersonnelSourceIndex !== -1) {

  Categories[academicPersonnelIndex].route = 

	 academicPersonnelPages[academicPersonnelSourceIndex].pageUrl;

}


if (announcementsIndex !== -1 && announcementsSourceIndex !== -1) {

  Categories[announcementsIndex].route = 	 

	 departmentAnnouncements[announcementsSourceIndex].pageUrl;

}


https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/findIndex
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/findIndex


Creating an Educational Application using the principles of Responsive Web Design for optimal user experience


 Dionisis Nikolopoulos - ice18390126 
￼ 


4.2.3.2. Rendering the processed data to the UI


After gathering and processing of all vital information, the return statement which contains 
the JSX markup needs to be returned, utilising the aforementioned info through the UI.


Figure 20:  HomePage.jsx snippet with the returned JSX markup.


The usage of several ChakraUI-specific components like Flex, Grid and Heading is on 
display here. The exact implementation of these components is not relevant in this thesis. What 
is relevant, however, is the showcasing of the flexibility React offers through the use of any 
components, especially in accordance with Responsive Design Principles. In the code snippet 
of Figure 20, multiple parameters passed to components relate to how the component will 
change form upon the transformation of the users viewport. The viewport is the user's visible 
area of a web page. The area in question is understandably different when viewing the page 
from a mobile device, a laptop, or a TV screen. In the snippet, the font size, gaps, columns of 
the elements change responsively, meaning as a response to the changes in viewport 
dimensions, in accord with the parameters provided.


     
26
 University of West Attica, Information and Computer Engineering, Athens, March 2024

return (

  <Flex

    id="main-grid"

    direction="column"

    alignItems="center"

    justifyContent="start"

    gap="3rem"

    h={{ sm: "100%", "2xl": "calc(var(--available-height)*0.9)" }}

    px={{ sm: "1rem", lg: "3rem" }}

  >

    <Grid

      as={motion.section}

      initial="initial"

      animate="inView"

      variants={stagger}

      className="home-grid"

      marginTop="20px"

      gap={{ sm: 2, md: 3, lg: 4, xl: 5, "2xl": 6, "3xl": 7 }}

      templateColumns={{

        sm: "repeat(3, 1fr)",

        md: "repeat(3, minmax(0, 1fr))",

        xl: "repeat(5, calc((var(--available-width) - 5rem) / 5))",

        xxl: "repeat(5, calc((var(--available-width) / 1.5) / 5))",

        "2xl": "repeat(5, calc((var(--available-width) / 1.75) / 5))",

        "3xl": "repeat(5, calc((2*var(--available-width)/3) / 5))",

      }}

    >

      {categoriesListForSearch.length === 0 ? (

        <Heading gridColumnStart={1}

	 	   gridColumnEnd={3}

	 	   fontSize={{ sm: 11.95, md: 16, lg: 26, xl: 32 }}

	 	   w=“100%" fontWeight={500}>

          Η αναζήτηση δεν επέστρεψε αποτελέσµατα.

        </Heading>

      ) : null}

      {categoriesListForSearch.map((category) => (

        <MenuBox category={category} key={category.title} />

      ))}

    </Grid>

  </Flex>

);


<- “This search yielded no results.”



Creating an Educational Application using the principles of Responsive Web Design for optimal user experience


 Dionisis Nikolopoulos - ice18390126 
￼ 


For a telling illustration, the focus is now placed on this segment of the code snippet on 
Figure 20:


Figure 21:  HomePage.jsx segment of the returned JSX markup .


Judging solely based on this segment and depending on what is present in the parameter 
fontSize, the Heading component’s return value can be safely assumed to be influenced. The 
exact influence, in this case, is that the {{ sm: 11.95, md: 16, lg: 26, xl: 32 }} part is setting the font 
size to 11.95, 16, 26 and 32 in accordance with the viewport size. When the viewport 
dimensions change, if the present dimensions are in the “zone” of what is configured to be, for 
example, size “sm” (shorthand for “small”), the font size changes to 11.95. If they are in the 
zone of “md” (shorthand for “medium”), the font size changes to 16. These specific zones can 
be configured in another file in the project directory. In this instance, it is the file theme.js:


Figure 22:  The theme.js file contents, where some constants related to UI of the app are set .

     
27

 University of West Attica, Information and Computer Engineering, Athens, March 2024

 <Heading gridColumnStart={1}

	 	   gridColumnEnd={3}

	 	   fontSize={{ sm: 11.95, md: 16, lg: 26, xl: 32 }}

	 	   w=“100%" fontWeight={500}>

…

import { extendTheme } from "@chakra-ui/react";


const config = {

  // The initial color mode is inherited from the OS, try to get it from the

  // localStorage also (for when the user has no cookies)

  //initialColorMode: localStorage.getItem('chakra-ui-color-mode') || 'system',

  initialColorMode: 'system',

  useSystemColorMode: true,

}


const theme = extendTheme({

  colors: {

    darkprimary: "#06273E",

    primary: "#094169",

    secondary: "#7FB6D5",

    lightBlue: "#DFE6EB",

    dark: "#1d2021",

    light: "#FEFEFE",

  },

  fonts: {

    heading: `'Comfortaa', sans-serif`,

    body: `'Comfortaa', sans-serif`,

  },

  fontSizes: {},

  breakpoints: {

    sm: "280px",

    md: "768px",

    lg: "960px",

    xl: "1200px",

    xxl: "1400px",

    "2xl": "1600px",

    "3xl": "1921px",

  },

  config

});


export default theme;


<- The breakpoints for viewport sizes!



Creating an Educational Application using the principles of Responsive Web Design for optimal user experience


 Dionisis Nikolopoulos - ice18390126 
￼ 


The theme.js file is part of ChakraUI's functionality that allows developers to customise and 
tweak the “out-of-the-box” theme with specific constants which can be used to globally 
change attributes like fonts, colours on specific colour modes (dark and light mode). Here, the 
breakpoints key in the theme JSON object stores the breakpoints set by developers to 
manipulate components based on various screen sizes. The “zone” where a screen would be 
considered to have triggered the “sm” breakpoint would be 280-767px in width, for example.


The substantial takeaway from this exhibit of Figure 22 is that, instead of being forced to edit 
multiple files stored in various directories, the control of the basic of the cohesion of the UI is 
centralised a handful or even a single file, potentially saving hours of development time and 
testing.


Another concept that is important to focus on is the one displayed in the following lines of 
Figure 20:


   Figure 23:  HomePage.jsx segment that is responsible for the category rendering on homepage .


We can see that within the brackets “{“, JS code is being executed, returning JSX markup in 
the process. 


• Firstly, with the code highlighted in blue, the JSX is being returned conditionally, by 
checking whether or not the categoriesListForSearch variable (which has the aforementioned 
Categories object stored into it as state (see Figure 20) has a length of 0 or not. If it does, null 
is returned, thus nothing is displayed there in the UI. If the length is indeed 0, then a heading 
component is rendered, with a message informing the user that their search has yielded no 
result. 


• Secondly, with the code highlighted in yellow, the JSX is being returned iteratively, (and 
conditionally, since if categoriesListForSearch.length === 0, the JSX would not be returned at 
all). Using the map  function too iterate over the object in the 70 va r i ab l e , f o r eve r y 
element (here named “category”) a MenuBox component is being rendered, with the category 
as a parameter, as well as the title as a key. It is good practice to have a key parameter while 
rendering multiple components in react. In turn, the MenuBox component returns JSX that is 
rendered with each individual category’s information onto the UI of the homepage.

  


 MozDevNet. “Array.Prototype.Map() - Javascript: MDN.” MDN Web Docs. Accessed June 18, 2024. https://developer.mozilla.org/70

en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map.
     
28

 University of West Attica, Information and Computer Engineering, Athens, March 2024

{categoriesListForSearch.length === 0 ? (

        <Heading gridColumnStart={1}

	 	   gridColumnEnd={3}

	 	   fontSize={{ sm: 11.95, md: 16, lg: 26, xl: 32 }}

	 	   w=“100%" fontWeight={500}>

          Η αναζήτηση δεν επέστρεψε αποτελέσµατα.

        </Heading>

) : null}

{categoriesListForSearch.map((category) => (

        <MenuBox category={category} key={category.title} />

))}

<- Conditional Rendering

<- Iterative Rendering

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map


Creating an Educational Application using the principles of Responsive Web Design for optimal user experience


 Dionisis Nikolopoulos - ice18390126 
￼ 


5. Functionality of the Application


The fine-grained control React provides over the development of the application, as well as 
the modularity of every component of it should hopefully be clear by now. The following chapter 
showcases the result of all the coding and data processing, the part that the end user 
experiences.


5.1. Home Page

The first screen that the user sees upon navigating onto the site is the following:


Figure 24:  The Homepage of the application upon navigation.


Here, every category of link to the services of the specific user’s department within the 
University of West Attica is visible. The buttons that display an arrow slanted to the top right (↗)  
are signifying the presence of an external link, while the ones displaying a middle right arrow 
(→) are signifying an internal link, meaning a link that leads to another page within the web 
application.


The links on this page are subject to change when the user selects a department from the 
dropdown menu that is visible when clicking on the settings button ( ) on the top left of the 
screen. When the settings button is pressed, the user is faced with the following screen: 

     
29
 University of West Attica, Information and Computer Engineering, Athens, March 2024



Creating an Educational Application using the principles of Responsive Web Design for optimal user experience


 Dionisis Nikolopoulos - ice18390126 
￼ 





Figure 25:  The Homepage of the application upon clicking on the settings button.


Zooming in to analyse the options one by one:

 

     
30
 University of West Attica, Information and Computer Engineering, Athens, March 2024

<- Link to FAQ page

<- Link to About page

<- License Agreement (GitLab Link)

<- Link to the Manual of this App (GitLab link)

<- Button to enable sharing

<- Link to the GitLab repository

<- Rating form (Google Sheets link)

<- Button to email the development team

Switch to turn dark mode on/off ->

Dropdown menu for department selection

↓



Creating an Educational Application using the principles of Responsive Web Design for optimal user experience


 Dionisis Nikolopoulos - ice18390126 
￼ 


5.2. Internal Pages accessible through the settings menu

There are two internal pages accessible through navigation upon the settings menu, which is 

in turn accessible through every internal page of the application. The FAQ and the About page.


5.2.1. FAQ Page


Figure 26:  The FAQ page of the application, accessible through the settings menu.

The FAQ (Frequently asked questions) page of the application is a simple page with an 

accordion, answering seven simple questions about things the user might be interested in. For 
example, to whom the application caters to, whether or not it is free, and who developed the 
application.


5.2.2. About Page


Figure 27:  The Information page of the application, accessible through the settings menu.


     
31
 University of West Attica, Information and Computer Engineering, Athens, March 2024



Creating an Educational Application using the principles of Responsive Web Design for optimal user experience


 Dionisis Nikolopoulos - ice18390126 
￼ 


The information page is another rather simple page with two accordions, that 
mentions by name everyone involved with the development of the application, both the 
original project (myUoM) and the UniWA fork.


5.3. Semester Schedule Page 

To navigate to the semester page, the user must click upon the first category button on the 

Home page, after having selected a department:


Figure 28:  Navigation to the Semester Schedule page.


Figure 29:  The Semester Schedule page upon navigation through the Home page.


If a semester schedule is available for the selected department, then the schedule 
will be displayed on the page using a list format and clearly formatted using a table 
view. Information relating to the class will also be displayed, like the professor who 
oversees it, the time, day of the week and location where the lectures take place.


     
32
 University of West Attica, Information and Computer Engineering, Athens, March 2024



Creating an Educational Application using the principles of Responsive Web Design for optimal user experience


 Dionisis Nikolopoulos - ice18390126 
￼ 


5.4. Exam Schedule Page 


To navigate to the semester page, the user must click upon the second category 
button on the Home page, after having selected a department:


Figure 30:  Navigation to the Exam Schedule page.


Similar to the semester schedule page, if an exam schedule is available for the 
selected department, an exam schedule will be displayed, on which all information 
pertaining to the exam will be shown, like the location of the exam, the week number of 
the exam period, the time and date of the exam.


Figure 31:  The Exam Schedule page, zoomed in to the exam information table.


     
33
 University of West Attica, Information and Computer Engineering, Athens, March 2024



Creating an Educational Application using the principles of Responsive Web Design for optimal user experience


 Dionisis Nikolopoulos - ice18390126 
￼ 


5.5. Restaurant Page

The University of West Attica provides breakfast, lunch and dinner meals to students that 

fulfil certain economic requirements. These meals are provided in the restaurants of the UniWA 
campuses, following a weekly menu that alternates every week. The Restaurant pages outlines 
this menu in a concise manner, so that students are able to quickly see what is on the menu 
and whether or not breakfast, lunch or dinner is currently being served or not.


Figure 32:  Navigation to the Restaurant page.

Navigation on this page is available through clicking the fourth button on the home page, the 

one that houses an icon with a plate and a knife and fork on the top left.


Figure 33:  The Restaurant, zoomed in to the menu information table.


Noteworthy insights on this page are the features of seeing which menu is on rotation this 
week and whether or not breakfast/lunch/dinner is being served currently. If nothing is being 

     
34
 University of West Attica, Information and Computer Engineering, Athens, March 2024



Creating an Educational Application using the principles of Responsive Web Design for optimal user experience


 Dionisis Nikolopoulos - ice18390126 
￼ 


served at the time the user navigates this page, the menu for tomorrow’s lunch is being 
highlighted on the bold heading on top of the page. The lunch is displayed instead of breakfast 
or dinner by default here, since it is by far the meal most students choose to use the 
restaurants. Below the header, every day of the 2-week menu is displayed and able to be 
viewed.


5.6. Library Page

The University of West Attica also provides libraries within its campuses, in which people can 

read and borrow books, as well as study in peace and use the facilities’ computers.


Figure 34:  Navigation to the Library page.


Navigation on this page is available through clicking the fifth button on the home page, the 
one that houses an icon of a bookshelf on the top left.


Figure 35:  The library page, zoomed in to the information elements.


     
35
 University of West Attica, Information and Computer Engineering, Athens, March 2024



Creating an Educational Application using the principles of Responsive Web Design for optimal user experience


 Dionisis Nikolopoulos - ice18390126 
￼ 


 There are three distinct libraries that are part of UniWA, each with it's own contact phone 
numbers and schedule. In the library page, all of this information is formatted and displayed to 
the user, as well as the external link for the official library webpage (by UniWA) on the bottom of 
the page.


5.7. Student Care Page

The student care page pertains to special benefits and programs some students are entitled 

to by law, usually depending on their social, economic or health status. There exist specific 
pages for these benefits and programs, which are all aggregated in the application on the 
Student Care Page.


Figure 36:  Navigation to the Student Care page.


Navigation on this page is available through clicking the eleventh button on the home page, 
the one that houses an icon of the outlines of three people on the top left.


Figure 37:  All the Student Care page external links, zoomed in.


The links displayed here are all external, leading to the official websites of each program/
facility.


     
36
 University of West Attica, Information and Computer Engineering, Athens, March 2024



Creating an Educational Application using the principles of Responsive Web Design for optimal user experience


 Dionisis Nikolopoulos - ice18390126 
￼ 


5.8. Services Page

There are some services which cannot be organised based on the categories established 

until this point. Each one has an official webpage, whose external link is provided in.


Figure 38:  Navigation to the Services page.


Navigation on this page is available through clicking the eleventh button on the home page, 
the one that houses an icon of the outlines of three people on the top left. 


These aforementioned service external links are housed on the Services Page, where they 
are grouped into three sub-categories: Offices, Student Groups and Rest of Services.


Figure 39:  “Offices” tab on the Services Page, zoomed in.


Figure 40:  “Student Groups” tab on the Services Page, zoomed in.


     
37
 University of West Attica, Information and Computer Engineering, Athens, March 2024



Creating an Educational Application using the principles of Responsive Web Design for optimal user experience


 Dionisis Nikolopoulos - ice18390126 
￼ 


Figure 41:  “Rest of Services” tab on the Services Page, zoomed in.


5.9. External Pages & Homepage Map

In this chapter, the following figure is provided with annotations on links to external pages 

from the home page:


Figure 42:  All the links in the homepage explained.


     
38
 University of West Attica, Information and Computer Engineering, Athens, March 2024

(Internal Page)

Class Schedule Page

(Internal Page)

Exam Schedule Page

Open eClass platform of 
given department

(Internal Page)

Restaurant Page

Student Grade Services 
Website

(Internal Page)

Library Page

Eudoxus page (book 
delivery program)

Academic Calendar

(All university events page)

Academic Personnel 
Page

Campus Map
(Internal Page)


Student Care Page Questions Websites
Department 

Announcements
(Internal Page)

Services Page




Creating an Educational Application using the principles of Responsive Web Design for optimal user experience


 Dionisis Nikolopoulos - ice18390126 
￼ 


5.10.Additional Responsive Features

Apart from the features outlined until this point in Chapter 5, there are some additional 

responsive and modern features that the web application includes too.


5.10.1. Responsive Dark and Light mode theme


During the last decade, the prevalence of the feature of “dark mode” has been observable in 
nearly every device, from mobile phones to desktop computers. Dark mode is a paradigm of 
interface design, where instead of light backgrounds contrasting against dark details and 
lettering, the opposite it true, having light lettering and details on dark backgrounds. For 
example, on macOS, the two modes side-by-side, on each half of the window at a time (edited 
representation) would look like:


Figure 43: Light and Dark mode and the visual change their enabling typically makes. Image Credit: 
71

Tech giants like Microsoft  and Apple  have both integrated what is, effectively, dark mode 72 73

into their operating systems, with Microsoft since 2016  and Apple since 2018 . While there 74 75

are lot of options for  and against  ease-of-use and eye-strain prevention, one thing is for 76 77

certain. There is a demand for this feature on the market. Most OSes even have a setting where 

 Sydney CBD Repair Centre. “How to Enable Light Theme on Mac OS.” Pinterest, December 28, 2018. https://pin.it/1hSBZowPb.71

 “Using Dark Mode in Windows 11: Windows Learning Center.” Windows. Accessed June 19, 2024. https://72

www.microsoft.com/en-us/windows/learning-center/when-to-use-dark-mode.

 “Dark Mode.” Apple Developer Documentation. Accessed June 19, 2024. https://developer.apple.com/design/human-interface-73

guidelines/dark-mode.

 Paul, Ian. “The Anniversary Update’s Most Exciting Features: Windows 10 Users Weigh In.” PCWorld, July 26, 2016. 74

https://www.pcworld.com/article/415733/the-anniversary-udates-most-exciting-features-windows-10-users-weigh-in.html.

 Clover, Juli. “MacOS Mojave: Dark Mode, Stacks, & More.” MacRumors, March 18, 2020. https://www.macrumors.com/roundup/75

macos-10-14/.

 Cummins, Eleanor. “Dark Mode Is Easier on Your Eyes-and Battery.” Popular Science, November 21, 2018. https://76

www.popsci.com/night-dark-mode-design/.

 Clarke, Laurie. “Dark Mode Isn’t as Good for Your Eyes as You Believe.” Wired, July 30, 2019. https://www.wired.com/story/77

dark-mode-chrome-android-ios-science/.
     
39

 University of West Attica, Information and Computer Engineering, Athens, March 2024

https://www.wired.com/story/dark-mode-chrome-android-ios-science/
https://www.wired.com/story/dark-mode-chrome-android-ios-science/
https://developer.apple.com/design/human-interface-guidelines/dark-mode
https://developer.apple.com/design/human-interface-guidelines/dark-mode
https://pin.it/1hSBZowPb
https://www.microsoft.com/en-us/windows/learning-center/when-to-use-dark-mode
https://www.microsoft.com/en-us/windows/learning-center/when-to-use-dark-mode
https://www.pcworld.com/article/415733/the-anniversary-udates-most-exciting-features-windows-10-users-weigh-in.html
https://www.macrumors.com/roundup/macos-10-14/
https://www.macrumors.com/roundup/macos-10-14/
https://www.popsci.com/night-dark-mode-design/
https://www.popsci.com/night-dark-mode-design/


Creating an Educational Application using the principles of Responsive Web Design for optimal user experience


 Dionisis Nikolopoulos - ice18390126 
￼ 


after sundown (tracked with geolocation) or at a certain user-set time, dark mode is enabled, 
only for it to be switched to light mode on when the sun rises (or another user-set time). The  
positive effect on battery life dark mode, however seems to be backed by actual fact, but only 
on screens with technologies like OLED, which disable backlighting when displaying dark 
colour .
78

Regardless, a dark and light mode on the app is available. This feature’s development  was 
greatly aided by the centralised control of React that was mentioned in Chapter 4.3.2.3. The 
Web Application automatically tracks the state of the dark or light mode on the user’s device 
and appropriately sets the theme on the website as well. The user also has the option to 
manually disable or enable dark mode from the settings menu, as visible in Figure 25.


Figure 44: Dark and Light mode and the visual change in the Homepage


Figure 45: Dark and Light mode and the visual change in the Restaurant Page 

 Welch, Chris. “Google Confirms Dark Mode Is a Huge Help for Battery Life on Android.” The Verge, November 8, 2018. 78

https://www.theverge.com/2018/11/8/18076502/google-dark-mode-android-battery-life.
     
40

 University of West Attica, Information and Computer Engineering, Athens, March 2024

https://www.theverge.com/2018/11/8/18076502/google-dark-mode-android-battery-life


Creating an Educational Application using the principles of Responsive Web Design for optimal user experience


 Dionisis Nikolopoulos - ice18390126 
￼ 


5.10.2. Disabled Options on Missing Selection of Department


Upon the user’s first navigation upon the application, the web app understandably has no 
cookies stored in regards to the user’s department and cannot determine which department 
the user is interested in. Thus, upon first navigation, the user will be faced with the following 
screen:


Figure 46: Screen upon first navigation (or) with no cookies. Notice disabled buttons.


Figure 47: Warning upon clicking disabled button.


When and if a user clicks on a disabled button without having selected a department first, a 
warning will be displayed on the bottom of the screen informing them to select a department, 
so that the app load the necessary info for some department specific buttons and to then click 
the desired button again. 

     
41
 University of West Attica, Information and Computer Engineering, Athens, March 2024



Creating an Educational Application using the principles of Responsive Web Design for optimal user experience


 Dionisis Nikolopoulos - ice18390126 
￼ 


5.10.3. General Responsiveness on Smaller Screens


The web application was from the ground up designed to enable easy usage with mobile 
devices by transforming the interfaces, sometimes completely, in order to accommodate 
smaller screen sizes and mobile-centric UX paradigms. For example, this is the homepage and 
restaurant page of the application when viewed by a mobile devices:


Figure 48: Restaurant and Home Page when viewed by a smaller screen.


But this is not the only feature that is mobile centric in the application. When the application 
detects that the user has entered the application through a mobile device (and not a browser 
window, even a smaller one), there are some more UI elements present that will be showcased 
in the following chapter. 

     
42
 University of West Attica, Information and Computer Engineering, Athens, March 2024



Creating an Educational Application using the principles of Responsive Web Design for optimal user experience


 Dionisis Nikolopoulos - ice18390126 
￼ 


5.10.4. Additional Features on Mobile Devices


As mentioned previously, when the user is entering the web app with a mobile device, 
some more features appear on-screen. In the homepage, a bottom navigation bar with three 
distinct buttons appears.


Figure 49: Home Page when viewed by a mobile device, notice the navbar at the bottom.


The first button, displaying a home icon leads back to the homepage. The navigation bar is 
always present on the bottom of the screen on mobile devices, so it can be used from multiple 
pages. The second button, displaying a gear, opens up the side menu of the settings, which is 
now full screen to accommodate for the smaller screen size:


     
43
 University of West Attica, Information and Computer Engineering, Athens, March 2024



Creating an Educational Application using the principles of Responsive Web Design for optimal user experience


 Dionisis Nikolopoulos - ice18390126 
￼ 


Figure 50: Settings Menu when Settings button is clicked on a mobile device


Lastly, there is the red phone button on the rightmost side of the bottom navigation bar. This 
button is the emergency call button, which is only useful is the user’s device is able to receive 
and make calls. Hence, it is an exclusive mobile device feature that is not visible with a desktop 
computer or laptop. When the user clicks on the button, they are redirected to the call app on 
their mobile device with a predetermined phone number ready to be called on their screen. This 
number is the specific number of the campus security. The application determines the phone 
number depending on the department the user selected. The behaviour following a click of the 
button will be akin to this screenshot:


     
44
 University of West Attica, Information and Computer Engineering, Athens, March 2024



Creating an Educational Application using the principles of Responsive Web Design for optimal user experience


 Dionisis Nikolopoulos - ice18390126 
￼ 


Figure 51: Screen right after clicking the emergency button on iOS


When the user clicks to confirm the call on the pop-up responsible for confirming on their 
device’s OS, then the call to the campus security starts immediately. This functionality is 
important to be quick for the user to utilise even under stress, due to the inherent increased 
possibility of the campus security being called on times of crisis. A user who has previously 
selected their department on the site does not have to reselect it, since the site keeps the 
cookie of the selection for the specific device. 


This is significantly useful, since it removes the burden from the user to have to search the 
phone number of the campus security of their campus, which would be less than ideal to have 
to deal with when in a time of need. 

     
45
 University of West Attica, Information and Computer Engineering, Athens, March 2024



Creating an Educational Application using the principles of Responsive Web Design for optimal user experience


 Dionisis Nikolopoulos - ice18390126 
￼ 


Appendix

In this appendix, the complete tree of the source code of the application is presented:


.
├── LICENSE

├── README.md

├── package-lock.json

├── package.json

├── public

│   ├── index.html

│   ├── logo192.png

│   ├── logo192_old.png

│   ├── logo512.png

│   ├── logo512_old.png

│   ├── manifest.json

│   ├── robots.txt

│   └── service-worker.js

└── src

    ├── App.js

    ├── App.test.js

    ├── assets

    │   ├── DepNames.js

    │   ├── FirstYearInfo.js

    │   ├── Graduation.js

    │   ├── ScheduleLink.js

    │   ├── UniWALogo.png

    │   ├── UniWALogo_alt.png

    │   ├── academicPersonnelPages.js

    │   ├── categories.js

    │   ├── departmentAnnouncements.js

    │   ├── departmentExamsSchedules.js

    │   ├── departmentSemesterSchedules.js

    │   ├── dinner.png

    │   ├── fonts

    │   │   ├── Comfortaa

    │   │   │   ├── Comfortaa-Variable.ttf

    │   │   │   ├── OFL.txt

    │   │   │   ├── README.txt

    │   │   │   └── static

    │   │   │       ├── Comfortaa-Bold.ttf

    │   │   │       ├── Comfortaa-Light.ttf

    │   │   │       ├── Comfortaa-Medium.ttf

    │   │   │       ├── Comfortaa-Regular.ttf

    │   │   │       └── Comfortaa-SemiBold.ttf

    │   │   ├── Syne-Bold.woff2

    │   │   ├── Syne-ExtraBold.woff2

    │   │   ├── Syne-Medium.woff2

    │   │   ├── Syne-Regular.woff2

    │   │   └── Syne-SemiBold.woff2

    │   ├── libraryData.js

    │   ├── mapData.js

    │   ├── menus

    │   │   ├── FirstWeekMenu.json

    │   │   └── SecondWeekMenu.json

    │   ├── professors.js

    │   ├── projectMembers.js

    │   ├── questionsForFAQ.js

    │   ├── secretaries.js

    │   ├── services.js

    │   └── Εγχειρίδιο.pdf

    ├── components


     
46
 University of West Attica, Information and Computer Engineering, Athens, March 2024



Creating an Educational Application using the principles of Responsive Web Design for optimal user experience


 Dionisis Nikolopoulos - ice18390126 
￼ 


    │   ├── FAQCard.jsx

    │   ├── FoodMenuList.jsx

    │   ├── Header.jsx

    │   ├── InfoCard.jsx

    │   ├── LibraryCard.jsx

    │   ├── MapCords.jsx

    │   ├── Menu.jsx

    │   ├── MenuBox.jsx

    │   ├── MenuButton.jsx

    │   ├── ProfCard.jsx

    │   ├── ProfList.jsx

    │   ├── ProjectMembersCard.jsx

    │   ├── ProjectMembersList.jsx

    │   ├── Schedule.jsx

    │   ├── Search.jsx

    │   ├── SecrCard.jsx

    │   ├── ServicesCard.jsx

    │   └── TodaysMenu.jsx

    ├── contexts

    │   └── departmentContext.jsx

    ├── hooks

    │   └── useLocalStorage.js

    ├── index.css

    ├── index.js

    ├── pages

    │   ├── AboutSettingsPage.jsx

    │   ├── ExamsSchedulePage.jsx

    │   ├── FAQSettingsPage.jsx

    │   ├── FirstYearInfoPage.jsx

    │   ├── GraduationPage.jsx

    │   ├── HomePage.jsx

    │   ├── LibraryPage.jsx

    │   ├── MapPage.jsx

    │   ├── ProfInfoPage.js

    │   ├── RestaurantPage.jsx

    │   ├── SchedulePage.jsx

    │   ├── SemesterSchedulePage.jsx

    │   └── ServicesPage.jsx

    ├── reportWebVitals.js

    ├── setupTests.js

    └── theme

        └── theme.js

     
47
 University of West Attica, Information and Computer Engineering, Athens, March 2024


	Abstract
	Introduction
	Technical Background
	Configuration of the Application
	Implementation of the Application
	Functionality of the Application
	Appendix

		2024-10-09T20:59:38+0300
	Christos Troussas


		2024-10-14T14:50:02+0300
	Panagiota Tselenti


		2024-10-14T18:25:41+0300
	Akrivi Krouska




