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Abstract 

The increasing prevalence of wearable health devices has opened new possibilities for 

continuous, real-time monitoring of critical medical conditions, such as arrhythmias. This thesis 

investigates the development of lightweight deep learning models for arrhythmia detection, 

optimized for deployment on wearable devices. The main objective was to create models 

capable of detecting a variety of cardiac abnormalities from 12-lead ECG signals while 

maintaining a balance between diagnostic accuracy and computational efficiency. The research 

utilized the PhysioNet/Computing in Cardiology Challenge 2020 dataset, consisting of over 

40,000 ECG recordings, and focused on 27 key arrhythmias. The methodology involved 

developing and evaluating several deep learning architectures, including convolutional neural 

networks (ECGConvNet) and hybrid models combining convolutional layers with long short-

term memory (ECGConvLSTMNet). These models were trained on ECG data and evaluated 

using a custom evaluation metric to assess classification accuracy. To optimize the models for 

wearable devices, post-training quantization was applied, reducing model size while preserving 

as much accuracy as possible. The performance of the quantized models was compared with 

non-quantized models to understand the trade-offs between size, speed, and accuracy. 

The results indicate that while the quantized models maintain a good level of accuracy, there is 

still room for improvement, particularly in handling more complex arrhythmias. The final 

quantized model achieved an F1-macro score of 0.264 on the validation set, showing the 

feasibility of deploying lightweight deep learning models for real-time ECG monitoring on 

wearable devices. However, limitations in computational resources and the complexity of ECG 

data imposed certain constraints on the research, including limited training time due to CPU-

based processing and challenges in addressing underrepresented arrhythmias in the dataset. 

In conclusion, this thesis demonstrates that lightweight deep learning models for arrhythmia 

detection in wearable devices are promising but require further refinement. Future research 

should explore advanced quantization techniques, such as quantization-aware training, and 

investigate additional architectures like transformers to enhance performance. The findings of 

this research contribute to the growing field of wearable health technology and have the potential 

to improve early detection and management of cardiovascular diseases through continuous real-

time monitoring. 

 

Keywords 

Arrhythmia detection, deep learning, ECG classification, wearable devices, model quantization, 

real-time prediction. 
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1 Introduction 

In recent years, the growth of wearable technology has transformed how healthcare is delivered, 

particularly in real-time health monitoring. Wearable devices, such as smartwatches, have 

become increasingly capable of detecting a range of medical conditions, offering continuous 

monitoring and early detection of life-threatening ailments. One such condition, arrhythmia—

an irregularity in the heart’s rhythm—can lead to serious health complications if not detected 

early. This thesis investigates the feasibility of developing lightweight deep learning models for 

arrhythmia detection, designed for implementation in wearable devices to provide real-time 

health monitoring. 

1.1 The subject of this thesis 

The central issue addressed in this thesis is whether a deep learning model can be developed 

and optimized for arrhythmia detection and subsequently compressed to a lightweight version 

suitable for wearable devices. Arrhythmia detection presents significant challenges due to the 

complexity of electrocardiogram (ECG) signals and the need for accuracy in real-time scenarios. 

The motivation for this research is both timely and important, as wearable health technology is 

gaining traction, offering non-invasive, continuous health monitoring that could greatly impact 

early diagnosis and management of cardiovascular diseases. 

1.2 Aim and objectives 

The aim of this thesis is to develop a deep learning model for arrhythmia detection, quantize it 

for deployment on wearable devices, and evaluate its performance in terms of accuracy and 

resource efficiency. The specific objectives are: 

• To explore different deep learning architectures suitable for ECG classification. 

• To train and evaluate models on a large, multi-label ECG dataset. 

• To apply quantization techniques to reduce model size without significantly 

compromising accuracy. 

• To assess the feasibility of deploying these lightweight models in real-time wearable 

applications. 

1.3 Structure 

The structure of this thesis is organized as follows: Chapter 2 introduces electrocardiograms 

(ECGs) and discusses the global burden of cardiovascular diseases. Chapter 3 reviews the role 

of machine learning and deep learning in ECG classification, focusing on key architectures. 

Chapter 4 explores the importance of real-time prediction and the challenges associated with 

developing lightweight models for wearable technology. In Chapter 5, the dataset used in the 

thesis as well as in the literature is presented and an explanatory data analysis is conducted. 

Chapter 6 provides a detailed literature review on arrhythmia detection using deep learning 

models. Chapter 7 outlines the methods employed for data preprocessing in our thesis. Chapter 

8 describes the development of the deep learning models, including the quantization techniques 
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applied. Finally, Chapter 9 concludes the thesis by summarizing the findings and outlining 

potential directions for future work. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

13 

 

2 Electrocardiograms  

In this section, we introduce the underlying basics of electrocardiograms (ECGs) and their 

interpretation. We start by describing the severity of cardiovascular diseases and highlight the 

importance of early diagnosis. We then deep dive into how the process of capturing an 

electrocardiogram works and how a clinician can interpret the results. Moreover, we elaborate 

on the differences between regular and 12-lead ECGs along with their clinical significance.    

2.1 Cardiovascular Diseases and Their Global Burden 

According to the World Health Organization [1], Cardiovascular Diseases (CVDs) have now 

become the world's leading cause of mortality. An estimation of 17.9 million deaths from CVDs 

per year is projected, mainly from heart attacks and strokes, accounting for 31% of all global 

deaths. Among these causes, one of the most common is coronary artery disease (CAD). CAD 

involves the narrowing or blockage of the coronary arteries supplying oxygen-rich blood to the 

heart muscle due to atherosclerosis, which is a buildup of plaque inside the artery walls as shown 

in Fig [2.1]. As a result, this may cause chest pain, often described as angina, a heart attack, or 

even sudden death [2]. 

                                                            

Figure 2.1: Normal inner walls of coronary artery (left), versus artery with atherosclerosis (right) (Medical gallery of Blausen 

Medical 2014; WikiJournal of Medicine 1 ISSN 2002-4436. CC BY 3.0) 

It is estimated that tens of thousands of people die from some form of heart condition daily 

around the world [3]. In developed countries, coronary artery disease is the leading cause of 

death, while in the low- and middle-income countries, the rapidly increasing rates of death from 

heart conditions are often related to changes in lifestyle, involving unhealthy diets, lack of 

physical activity, and smoking [4]. The CVDs result in a massive burden on mortality and 

economic costs for treatment and loss of productivity [5]. 

2.2 The Role of Early Diagnosis in the Prevention of Cardiovascular Deaths 

Early diagnosis of heart abnormalities is one of the easiest ways to avoid severe cardiac events 

like myocardial infarction and heart failure. One of the most efficient, non-invasive diagnostic 

tools for this purpose is an electrocardiogram (ECG). An ECG is one of the most common 

diagnostic tools that records any electrical activity related to the heart over a period of time [6]. 

It helps in identifying various types of arrhythmias, ischemic heart disease, and other disorders 

that may indicate hidden cardiovascular diseases [7]. 
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The sooner these abnormalities are picked up, the better the chances are for effective 

interventions. Early prevention by frequent ECG screening is very useful, especially in high-

risk cases, including subjects with a medical history of CVD, hypertension, diabetes, and/or 

high cholesterol [8]. Most of the benefits from ECGs in early prevention are derived from the 

fact that doctors can identify electrical signals in the heart that indicate a predisposition to 

problems through such procedures during the early stages of a disease, before worse symptoms 

appear [9]. 

1.2.3  ECG: Terminology and Function 

ECG stems from ElectroCardioGram; this is a word derived from "electro," as in electrical 

activity, and from "cardio," as in heart related. The electrocardiogram records electrical 

impulses produced by the movement of the heart and displays these impulses on a graph in 

waveform. These waveforms allow clinicians to analyze the rhythm of the heartbeat, assess 

electrical conduction problems, and diagnose a variety of cardiovascular conditions. 

2.3 The Usefulness of Early Prevention with ECGs 

The early prevention in the management of cardiovascular diseases is of high importance. The 

identification of a modality of cardiovascular origin has been proved in many studies to be much 

better when it was recognized early [10]. For example, early diagnosis of atrial fibrillation, 

ventricular hypertrophy, and ischemic heart disease may significantly reduce the risk of 

complications related to stroke, heart failure, or sudden cardiac death [11]. 

ECGs have become central in such a preventative strategy. For example, patients with high risks 

for cardiovascular diseases, such as those with hypertension, diabetes, or even family history of 

heart disease, can be regularly screened through ECGs [12]. These examinations will help the 

clinician monitor the first signs of cardiac dysfunction even when symptoms are not apparent. 

For example, the onset of ischemia or hypertrophy can often be represented by very slight 

changes in the P wave, QRS complex, or ST segment (ECG components that are mentioned in 

the next section), and may lead to more serious conditions [9]. Health professionals can thus 

begin with the relevant treatments, from anticoagulants for atrial fibrillation to beta-blockers for 

hypertension, in order not to let the disease advance any further. 

Moreover, the ECG is also useful in follow-up on the treatment outcomes. For instance, ECGs 

could be repeatedly carried out for patients who have undergone procedures such as angioplasty 

or bypass surgery to ensure that no new complication has arisen [13]. In this way, beyond early 

detection, the ECG could also play a vital role in the long-term management and prevention of 

cardiovascular diseases [6]. 

2.4 The Electrocardiogram: Traditional Procedure and Function 

The electrocardiogram records the electrical activity of the heart through electrodes attached to 

the patient’s skin as illustrated in Fig [2.4.1]. These electrodes collect the electrical signals 

generated by the beating heart and transmit these to the ECG machine, which in turn prints out 

a graphical recording of the heart's activity [14]. The basis of a typical ECG tracing is the P 

wave, representing the depolarization of the atria; the QRS complex, representing ventricular 
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depolarization; and a T wave, relating to the repolarization of the ventricles. These waveform 

studies might achieve differential diagnoses related to various heart disorders, including 

arrhythmias and myocardial ischemia [15]. 

                                                     

Figure 2.4.1: The illustration of a typical ECG exam (From: https://www.mountsinai.org/health-library/tests/electrocardiogram) 

In a routine ECG, electrodes are placed on the chest, arms, and legs. These electrodes are 

connected to the ECG recorder, which charts electrical impulses as they move through the heart 

[16]. Consequently, electrical activity will be reflected as a series of waves and intervals on the 

ECG tracing. Any abnormality in the pattern of these waves and intervals can indicate some 

heart condition. For instance, ST segment (Fig [2.4.2]) above normal would indicate an acute 

myocardial infarction; T wave with abnormal characteristics may also signal ischemia or even 

abnormal electrolyte levels [17]. 

                                                       

Figure 2.4.2: ECG waveform (From Understanding the EKG Signal: https://a-fib.com/treatments-for-atrial-fibrillation/diagnostic-

tests-2/the-ekg-signal/) 

 

While the process of a routine ECG is rather elementary, the placing of the electrodes must be 

very precise; otherwise, it will give a misleading reading. Poor placing gives an incorrect 

impression of the electrical activity of the heart that may lead to failure or misdiagnosis of a 
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problem. Therefore, proper training and experience are crucial not only for the technician 

carrying out the ECG but also for the clinician when interpreting the results [18]. 

  

2.5 The 12-Lead ECG: A Close-Up Look at Heart Activity 

The 12-lead electrocardiogram is the most developed kind of ECG and finds wide application 

in clinical practice, targeting a detailed observation of electrical activity of the heart. While 

simpler ECG configurations record only from a single or few leads, this 12-lead ECG captures 

the electrical signals of the heart from 12 different angles and gives a much more complete 

picture of cardiac function (Fig [2.5]) [16]. 

 

                                        

Figure 2.5: Illustration of all the angles captured by a 12-lead ECG (From: https://www.cablesandsensors.eu/pages/12-lead-ecg-

placement-guide-with-illustrations) 

ECG leads have traditionally been divided into two types: limb leads and precordial leads. Limb 

leads refer to the electrical axis of the heart in the frontal plane (I, II, III, aVR, aVL, aVF), while 

precordial refers to its activity in the horizontal plane: precordial or V leads (V1 to V6) [12]. 

Each lead offers a different perspective-the electric waves emanating from different parts of the 

heart. For example, leads II, III, and aVF reflect the electrical activity of the inferior wall of the 

heart, whereas the leads V1 to V4 focus on the anterior wall [19]. This wide field-of-vision helps 

the doctor get abnormalities that may not be obvious in single lead ECG-for instance, localized 

myocardial infarctions or bundle branch blocks [15]. 

The 12-lead ECG is especially useful in the diagnosis of acute coronary syndromes, arrhythmias, 

and ventricular hypertrophy. The electrical activities received through the different leads allow 



 

 

17 

 

the clinician to determine the position and extent of any myocardial infarct, the status of any 

conduction block, or the status of the electrical conducting system of the heart in general [20]. 

These include the elevation of the ST segment in leads indicative of acute myocardial infarction 

and the implicated lead indicative of the area of the heart involved [21]. 

Besides the already mentioned, the 12-lead ECG is very important in emergency management 

for patients presenting either with chest pain or other symptoms of myocardial infarction. In 

such instances, the 12-lead ECG provides instantaneous, real-time information that guides 

lifesaving interventions, including thrombolytic therapy or urgent angioplasty [22]. The rapid 

diagnosis and localization of a myocardial infarction on a 12-lead ECG make it indispensable 

in both emergency and routine clinical practices [13]. 

To conclude, cardiovascular diseases still pose the greatest challenge to health in this century, 

claiming millions of lives every year. In relation to early diagnosis and management, an ECG-a 

more appropriate term is a 12-lead ECG-is primarily an early basic step. ECGs allow clinicians, 

through the provision of a close-up view of the electrical activity of the heart, to outline 

abnormalities early, sometimes even before symptoms have appeared, and institute necessary 

interventions with a view to preventing worse outcomes. Thus, the 12-lead ECG is the highest 

resolution record of the electrical function of the heart, as it takes electrical signals from many 

angles that provide very important information concerning rhythm and structure. Considering 

the burden of cardiovascular disease continuing to rise, ECGs will be at the forefront in 

diagnosis and prevention as far as minimizing mortality and improving outcomes for patients, a 

fact that makes the idea of their examination automation via artificial intelligence more 

attractive than ever. 
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3 Machine Learning and Deep Learning in ECG Classification 

Deep learning (DL) has undeniably changed how difficult problems were envisioned lately, 

especially those domains that incorporate voluminous data processing and identification of 

complex patterns in them. Cardiology is a field where doctors must study and observe an ECG 

for diagnosing most heart diseases. Recent publication trends have shown that Machine 

Learning (ML) can be a powerful tool for various areas, including medicine. A variety of 

breakthroughs in medicine have been achieved by incorporating medical knowledge into 

algorithms, resulting in the development of tools able to help expert clinicians to make more 

advanced decisions and also automate and alleviate some of their mundane tasks. In this chapter 

a summary overview of both applied ML and DL frameworks in ECG classification is provided, 

thereby underlining technological groundings that could form the basis for the adoption of 

models in this thesis. We will start with an introduction to basic machine learning and deep 

learning concepts, followed by a discussion of specific architectures that have proven to be 

useful for dealing with the spatial and temporal complexities of ECG data, such as 

Convolutional Neural Networks, Long Short-Term Memory Networks, and Wide and Deep 

Networks. Finally, the methodological approach to multi-label classification will be briefly 

covered, which puts a basis, essentially from the same ECG data, on which several cardiac 

anomalies could be identified. Understanding the theoretical background of these methods 

would provide a perspective on how these methods are able to deliver accurate real-time 

predictions within wearable health devices and lay the bedrock for the next methods and 

experiments of the thesis. 

3.1 Conceptual and Technical Overview of Machine Learning and Deep 

Learning  

The domain of Artificial Intelligence (AI) which can be defined as the capability to enable 

machines to learn from data, identify patterns, and make judgments or predictions autonomously 

is called Machine Learning. It is based on the representation and execution of algorithms which 

analyze the input data to find patterns within, then use those inferences on other unobserved 

data [23]. Supervised learning is considered one of the most common approaches toward 

machine learning where the model has to be trained with labeled data. In other words, that would 

mean that both input and output labels are available; thus, an algorithm learns the mapping from 

input to output [24]. In our thesis scope, using the pattern in electrocardiogram waveforms, 

machine learning models can be taught to recognize certain prespecified heart problems [25]. 

Machine learning can be demarcated from other traditional modes of programming in that it 

relies on data for building features and decision boundaries. Conventionally, rule-based systems 

are hand-crafted by a human expert by laboriously creating rules for decision-making. While 

instead, in ML models, these rules are automatically learned from data by the maximization of 

objective functions, and the performance in these models depends upon the quality and size of 

the training data [26]. 
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Deep learning is a subset of several different machine learning methods, where a lot of academic 

articles in the literature would parallelize that the inspiration of their architecture comes from 

the structure and functionality of the human brain. That is, deep learning models are made to 

intentionally learn hierarchical input representations automatically from complex links and 

patterns deriving from the raw input of the data. These models are referred to as neural networks 

and contain various interconnected nodes or neurons in successive layers, which transform the 

inputs in an increasingly abstract manner [27]. Probably the most important ability of deep 

learning that makes it so powerful in picture and signal processing, including electrocardiogram 

processing, is its ability to learn these representations mentioned above, from raw data[28]. 

The process in which, in deep learning, a model learns its parameters, especially the weights of 

its interneuron connections, is known as backpropagation. In an overly broad explanation, it's 

the act of having the weights iteratively modified based on the gradient of a loss function. In 

simple terms, the event chain goes as follows: prediction on the training data, calculation of 

error/loss, and backpropagation of that mistake through the network to adjust the weights. The 

entire process is repeated many times, for in several epochs until convergence occurs and a 

minimum error is obtained [29]. 

Deep learning models are suitable for handling large-sized datasets, and can thus be exploited 

to complex tasks like the ECG classification presented with multidimensional, noisy, and 

temporally varying signals. This is especially true for tasks such as arrhythmia classification 

[25], where minute changes in the waveform could spell the thin line between life and death. 

Deep learning architectures allow one to build systems whereby such patterns from the data are 

themselves learned by the model with superior performance compared to traditional rule-based 

and feature-engineered techniques. 

3.2 Deep Learning in Medical Diagnostics and ECG Interpretation 

Deep learning now ingrains analysis for complex physiological data in cardiology. As 

mentioned in chapter 2, an elementary diagnostic tool in cardiology, the 12-lead ECG, records 

the electrical activity of the heart from multiple perspectives and thus gives the doctor an all-

encompassing look into cardiac function. Each lead of the ECG traces electrical potentials 

between two pre-specified pairs of electrodes, giving another different perspective on the 

electrophysiology of the heart. By incorporating information from all 12 leads, physicians are 

able to diagnose abnormalities such as cardiac arrhythmias and conduction blocks. 

Traditionally, ECGs have been interpreted based on the cardiologist's expertise in observing 

waveforms for anomalies. This approach is time-consuming and prone to human error, 

especially when minute abnormalities or inconsistencies across leads are present. Deep learning 

ECG classification seeks to automate this process, using raw waveforms to arrive at highly 

accurate diagnoses [25]. 

The challenge in ECG analysis stems from its inherent complexity, as the waveform represents 

numerous physiological processes. and an abnormality may show up only as minor variations 
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in some segments of the signal. For instance, an abnormal P wave may suggest atrial fibrillation, 

while an irregular QRS complex could indicate bundle branch blocks [28]. This is where deep 

learning excels: its ability to model complex relationships and learn hierarchical representations 

makes it highly effective for analyzing these nuanced variations in ECG data [27]. 

3.3 Deep Learning Architectures for ECG Classification 

The success of deep learning in ECG classification depends on the choice of architecture, each 

of which is optimized for handling different aspects of the data. There is a plethora of major 

architectures that are being put into practice in ECG classification over the past years which 

include CNNs, LSTMs, and more recently very popular ones like Wide and Deep Networks 

[30]. Each architecture reflects different strengths in interpreting ECG signals, which exhibit 

both spatial and temporal complexities. CNNs excel at learning spatial features from raw ECG 

signals, capturing local patterns and waveform shapes, while LSTMs are well-suited for learning 

temporal dependencies, such as detecting arrhythmias across time sequences [25]. Wide and 

Deep Networks combine the benefits of wide linear models and deep neural networks, making 

them effective in learning both low- and high-dimensional patterns [31]. In this chapter an 

overview of each architecture will be provided emphasizing on their potential usage in the 

context of ECGs.  

1.3.3 Convolutional Neural Networks (CNNs) 

CNNs were designed for data with grid-like structures and are therefore eminently suitable for 

picture or time-series data, a feature that makes them very effective in ECG signal processing. 

Generally speaking, a convolutional neural network works by applying convolutional filters on 

the input data. In such a way, it will be able to detect local patterns within the signal, like edges, 

shapes, or any other typical waveform [26]. Through the development of the work with ECG, 

these filters can be empowered to select clinically relevant features such as the P wave, QRS 

complex, and T wave, important for the diagnosis in cases of cardiac disorders [30]. 

In a 12-lead ECG, each lead represents one channel in this time series signal. CNNs have the 

capability of processing more than one channel at once and can extract the relationships in the 

spatial features spanning multiple leads. This will be the case in which some arrhythmias look 

different across leads; the key to identification lies in exact diagnosis [28]. These CNNs 

systematically extract advanced information from the ECG by combining many convolutional 

layers, including low-level fluctuations of the signal with higher-order interactions between 

different leads. 

The typical architecture of a CNN involves pooling by max-pooling or average-pooling (Fig 

[3.3.1]); this reduces the feature maps in dimensionality while keeping the most important 

information. While doing so, it decreases the problem's computational complexity and enhances 

the robustness of the model against small variations of the input signal [32]. Lastly, after these 

convolution and pooling steps, the feature maps usually undergo flattening and fully connected 

layers connecting the extracted knowledge to produce the estimated target in classification. 
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Figure 3.3.1: Illustration of a typical convolutional operation inside a CNN (From: https://www.researchgate.net/figure/Schematic-

diagram-of-a-basic-convolutional-neural-network-CNN-architecture-26_fig1_336805909 ) 

Other benefits of CNNs include great efficiency, especially in real-time applications. The speed 

with which it does the inference after it has been trained has proven to be faster compared to 

other architectures that rely on fully connected neurons and layers, a characteristic that is quite 

desirable for the real-time analysis of ECGs on wearables. Finally, their ability to process 

volumes of data also places them clinically for the management of a number of ECGs all at once 

[33]. 

2.3.3 Long Short-Term Memory Networks (LSTMs) 

While CNNs proved capable of catching those spatial patterns in the ECG signal, they tend to 

capture little to none temporal dependencies because of their architecture’s nature. It is here that 

the LSTMs, a subclass of Recurrent Neural Networks (RNNs), come into relevance. Their 

architecture allows for a more accurate way of processing sequences of data by remembering 

previous time steps-as the "memory" helps in the detection of longer sequence dependencies 

[34]. 

In fact, the transient nature of ECG signals makes LSTMs be of special use in applications such 

as arrhythmia identification, where the diagnostic information usually resides not in the single 

pulse but in a sequence of beats. As an example, AF and STach are rhythm disorders; they 

manifest through sustained cardiac rhythm irregularities, a fact that highlights even further the 

importance of an architecture capable of capturing the time essence into the data [28]. As 

previously mentioned, LSTMs cache and learn the temporal properties of the data by preserving 

information from earlier in the sequence context to inform the predictions later. 

Every LSTM cell contains three major parts: the input gate, forget gate, and output gate as shown 

in Figure [3.3.2]. These gates allow for the flow of information in and out of the cell, thereby 
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enabling the network to discard unnecessary information and store only the necessary 

information. The aforementioned statement is what makes LSTMs powerful, since their 

architecture helps them avoid the issue of vanishing gradients, a major drawback of traditional 

RNNs, and hence learn the long-term dependencies quite easily [35]. 

                            

Figure 3.3.2: Illustration of an LSTM block (From: https://databasecamp.de/en/ml/lstms) 

In real-world applications, LSTMs are often combined with CNNs in hybrid models that 

leverage the strengths of each architecture. Usually, the CNN will be used to extract the spatial 

information from the ECG data, while the LSTM will manage the temporal relationships, hence 

allowing the model to take in not just the spatial structure of the individual waveforms but the 

temporal sequence of heartbeats. This model fusion has proven especially effective in the 

domain of arrhythmia recognition, many forms of which need both spatial and temporal contexts 

to be diagnosed well [33]. 

3.3.3 Wide and Deep Networks 

Wide and Deep Networks are a new paradigm for deep learning that incorporates the strengths 

of both shallow architectures comprising wide networks and deep architectures. The notion 

behind Wide and Deep Networks lies into the combination of both structured and unstructured 

data. The “wide” part of the model learns those patterns and interactions which are explicitly 

defined by the features, whereas the “deep” part learns patterns by leveraging the deep learning 

capabilities from raw unstructured data hierarchically. This architecture is particularly fitted for 

the task of ECG classification because the model can make use of both handcrafted features-

including specific waveform morphologies-and features that are automatically learned, such as 

complex patterns of the time series [31]. 

The wide part resembles most of the more classical machine learning models, whereby the 

explicit features are supplied directly to the model as an input. Generally, such features can be 

hand-crafted or based on domain expertise and are meant to give the model a "shortcut" toward 

finding specific patterns already known to be diagnostically relevant [30]. 
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It is the deep component, however, that processes the raw ECG signal with many convolutional 

or recurrent structure layers and brings up the patterns that a human annotator may be unable to 

produce. Capturing this representation hierarchically from the data produces more abstract and 

complex features than it could easily get with the mere adoption of the pre-defined features [33]. 

Therefore, Wide and Deep Networks can learn both pre-defined and new relationships of the 

ECG data, improving results in this respect. 

Wide and Deep Networks are particularly valuable in scenarios where certain features are well 

understood, but there is also a need for discovering new, latent patterns within the data. In ECG 

classification, this could mean that while certain arrhythmias are well-defined by traditional 

metrics, other, more subtle abnormalities may require deeper exploration through learned 

representations. The combination of both wide and deep components ensures that the model 

benefits from domain knowledge while also allowing it to learn new patterns from the data [28]. 

3.4 Multi-Label Classification in ECG Interpretation 

Now it is a good moment in the thesis to note that the classification of ECGs is inherently multi-

label: one ECG tracing can be associated with several diagnostic categories. A patient can have 

both AF and LBBB; correspondingly, a model should also be able to identify the presence of 

both illnesses simultaneously. This problem is considerably harder compared to traditional 

single-label classification, where for one sample, only one label is assigned. 

The ECG analysis follows a multi-label classification setting where the model has to predict a 

binary outcome for each of the possible diagnoses. That is, on a given ECG recording, the model 

will return a probability for each class, showing whether the sickness is present or not. 

Commonly, these probabilities are thresholded to give binary predictions, where a probability 

above some threshold-0.5, for example-indicates that the condition is present [28]. 

Training multi-label classification involves the optimization of a loss (or objecting) function 

that takes into consideration all the predictions for every label. In that respect, binary cross-

entropy is usually used as the loss function. It calculates an error for every label separately and 

then sums them up. In that way, the model can handle multiple labels all at once and give very 

good predictions for both frequent and rare conditions [33]. 

Precision, recall, and F1 score, are some of the metrics that have been applied to quantify the 

performance of multi-label classifiers. The approach captured above provides a view of the 

model performance across multiple classes and allows the making of trade-offs between false 

positives and false negatives. This is because a few disorders may be highly prevalent and thus 

the model may easily be overfitted towards the majority classes at the cost of clinically important 

but very rare conditions [31]. 

Thus, deep learning offers a variety of architectures discussed above that can be utilized to 

capture spatial and temporal representations of the ECG data. Framing the problem as a 

multilabel classification problem can find multiple cardiac diseases from a single recording of 

ECG and develop more accurate, efficient, and scalable diagnostic systems. One topic remains 
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uncovered yet. While building highly accurate models for arrythmia prediction is vital, the era 

of wearable devices that feature diagnostic models creates a new benchmark. This in turn opens 

a discussion on the significance of the inference and prediction time of such models on wearable 

devices. In the upcoming chapter we will discuss the importance of real time prediction on 

wearable devices and the methods to achieve it. 

 

  



 

 

25 

 

4 Real-Time Prediction and Lightweight Models for Wearable Devices 

As wearable technology continues to evolve, the demand for real-time, low-latency medical 

diagnostics is becoming increasingly prominent. Wearable devices, such as smartwatches and 

fitness trackers, have transitioned from simple health monitoring tools to sophisticated 

diagnostic platforms capable of detecting critical medical conditions in real time. One of the key 

challenges in the design of such platforms relates to finding harmony between computing 

efficiency and prediction accuracy in activities such as arrhythmia detection with ECG data. 

This chapter reviews real-time prediction, with a focus on lightweight deep learning models that 

can be deployed on wearable devices. Finally, a set of techniques to reduce a machine learning 

model’s size also known as quantization is introduced. Even though the literature is growing by 

the minute with novel quantization approaches, we will be reviewing some of the most important 

ones that help on reducing a model’s size and complexity, hence making them suitable for real-

time applications with minimal alteration in their diagnostic accuracy. 

4.1 The Importance of Real-Time Prediction in Medical Diagnostics 

Real-time prediction includes the ability of the system to process the incoming data and come 

out with output or diagnosis with little time being wasted. Some of the major motives behind 

the real-time prediction capability of wearable health devices are timely interventions that can 

be provided in life-threatening conditions. Whether it is a capacity to detect, within a few 

seconds, the onset of a dangerous arrhythmia-say, ventricular fibrillation-the wearable device 

could phone a lifesaving call to the user or health professional; it is really the speed of the 

response compared to conventional diagnostics that usually have huge delays between data 

acquisition, interpretation, and diagnosis [36]. 

Apart from the life threating scenarios, real time prediction improves the user experience 

through making such predictions real-time, continuous, and actionable. Wearable devices are 

meant to be worn all the time, under some tracking of physiological signals such as heart rate, 

oxygen saturation, and electrocardiogram data. Wearable devices, operating under a batch 

analysis of data or after some considerable period, would make the results irrelevant since the 

findings would not attribute their existing time interval [37]. 

Real-time prediction technically requires an efficient and fast computational model. Although 

very accurate, deep learning models are usually very computation-intensive; hence, they require 

high-performance hardware to execute fast inference. Considering the limited processing power 

and memory, wearable devices can never achieve real-time performance; hence, there is an 

immediate need for lightweight dedicated models operating at a high level of diagnostic 

performance under strict hardware constraints within the wearables. 

4.2 Wearable Devices and Lightweight Models 

Wearable devices, including smartwatches, fitness trackers, and specialist medical wearables, 

have relatively few computational resources compared to traditional computing systems. Most 

of the devices are normally designed with a low-power processor, very constrained memory, 
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and a limited battery lifetime, which normally makes direct deployment of complex and large 

deep learning models challenging on the device. Hardware constraints call for lightweight model 

development that will realize accurate predictions without overburdening the device [39]. 

The term lightweight model can be described as a model with a small number of parameters, 

hence small in size that makes the time between the required calculations from the input step to 

the output step close to the second. Lightweigh models were developed in an effort to decrease 

the computational and memory costs for deep learning models, so that it can easily enhance their 

on-the-fly use in resource-constrained environments. A few of the probable ways to design 

lightweight models include model compression, quantization, pruning, and distillation. Each of 

them shrinks a model’s size through either removal of some of the superfluous parameters or 

through effective optimization of the model weight representations [39,40]. 

The techniques most applied today to reduce model complexity are network pruning, in which 

the model removes neurons and model connections that are contributing less or are redundant. 

This pruning can be performed during or after training, with the intention of discarding elements 

that do not add to the final prediction. Pruning reduces the total number of network parameters, 

hence reducing model memory usage [41].  

Another applied strategy for this problem is model quantization, wherein both the weight and 

activation precision are reduced. Typically, most deep learning models are trained on 32-bit 

floating-point integers, but during resource-constrained deployment, this precision can be 

reduced to 16-bit, 8-bit, and even less without significant degradation in the model performance. 

This means that the model requires less memory and will do the computations much faster. It is 

thus suitable for real-time execution on wearables [42]. 

Model distillation in general is a process of training a smaller, simpler model-the "student"-to 

mimic the behavior of a larger, more complex model-the "teacher." The notion is to train a much 

smaller student model that will mimic the predictions of a much larger instructor model but will 

be times smaller and much lighter computation-wise. This method has been proven to be one of 

the most efficient approaches at creating very light models, while still holding excellent 

accuracy [43]. 

4.3 Model Quantization: Techniques and Impact on Accuracy 

Quantization is one of the most common techniques that can be used to transform a complex, 

high-precision model into its lightweight version suitable for wearables. This process reduces 

the precision of the numerical values of the learned weights during the training of the model and 

hence allows faster computation and reduced consumption of memory [44]. Most deep learning 

models conventionally work on 32-bit floating-point base, which has very high precision but is 

quite computationally expensive. Quantization flows can reduce the computational load alone 

significantly by reducing precision to 16-bit or 8-bit integers with limited loss in accuracy. 

There are numerous quantization algorithms, each making different trade-offs between model 

size, speed, and accuracy: 
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1. Post-Training Quantization: This is the application of quantizating once a model has been 

fully trained. In other words, a trained model is quantized by changing weights and activations 

from 32-bit floating-point representations into lower-precision formats. This is a somewhat 

simpler approach to use; however, this may result in some degree of loss in accuracy, especially 

for models that are very sensitive to even slight changes in the weights [45]. 

2. Quantization-Aware Training: Embedding the quantization process into the training phase 

can be one of the mitigations for avoiding post-training quantization accuracy loss. At QAT, the 

model emulates the quantization process in the forward passes of training, while allowing 

weight updates and full precision to adapt the lost accuracy. This will yield a far better model, 

maintaining its accuracy post-quantization. Although much more computationally intensive 

compared to direct post-training quantization, QAT usually results in a much better quantized 

model in practice [46]. 

3. Dynamic Quantization: This contains a technique wherein weights are quantized to lower 

precision while keeping the activations in high precision formats like that of a 32-bit floating 

point format. Hence, this balances the tradeoff between the decrease in memory and 

computational cost while mitigating losses in accuracy as far as possible. This is useful during 

instances when the model's accuracy depends upon sensitive changes in the precision of 

activation [47]. 

4. Integer-only quantization: This means that the weights and all the activations are 

transformed wholly into their integer representations. Correspondingly, this would give a model 

that will be able to use only integer arithmetic in its implementation, usually having pretty high 

speed compared with floating-point operations on low-power systems. However, in regard to 

integer-only quantization, large speedups and efficiency gains normally come at the price of 

higher degradation in model accuracy if not implemented carefully [48]. 

Eventhough quantization is indeed an effective technique that can be proposed for wearable 

devices, which are normally very limited in computational resources, there are a couple of 

challenges. The immediate trade-off is in achievable precision: Whereas most models can be 

quantized with very minor degradation in performance, some models do suffer, especially those 

with very complex features or when they are highly sensitive for even small changes in weights, 

hence turning can be very poor in accuracy after quantization [49]. These cases would have to 

be precariously calibrated and tested to ensure that they would still meet the required diagnostic 

limits. 
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5 Data  

5.1 Overview of the PhysioNet Dataset 

This thesis utilizes data from the PhysioNet/Computing in Cardiology Challenge 2020 [50], 

which provides a robust dataset of 12-lead electrocardiogram (ECG) recordings collected from 

a variety of data sources across different regions. The challenge aimed to stimulate 

advancements in the development of algorithms for automated cardiac abnormality detection, 

and it forms a critical foundation for developing deep learning models. The dataset's diversity 

in terms of geography, sampling methods, and patient demographics makes it particularly 

suitable for building generalizable models capable of arrhythmia detection in wearable devices. 

This chapter provides a detailed exploration of the dataset’s composition, its demographic 

characteristics, and the focus on 27 cardiac abnormalities out of the total 111 diagnoses present 

in the dataset. 

The training collection comprises ECG recordings from four primary sources, each reflecting 

distinct populations and healthcare environments. These data sources enhance the dataset's 

diversity regarding geography, clinical procedures, and patient demographics. The institutions 

contributing to this dataset are located in the United States, Europe, and Asia, guaranteeing that 

the data encompasses a wide range of cardiac diseases and patient demographics. 

1. China Physiological Signal Challenge (CPSC): This dataset originates from the China 

Physiological Signal Challenge 2018 [51] and comprises ECG recordings obtained from a 

substantial cohort of patients in China. The dataset is partitioned into three sub-datasets: CPSC, 

CPSC-Extra, and a concealed test dataset designated for the Challenge's ultimate assessment. 

2. St. Petersburg Institute of Cardiological Technology (INCART): This dataset, sourced 

from Russia, has a limited quantity of ECG recordings concentrated on arrhythmias. It offers 

high-resolution signals with extended recording times relative to other datasets [52]. 

3. Physikalisch-Technische Bundesanstalt (PTB and PTB-XL): These datasets, originating 

from Germany, comprise a basic version and an expanded version, PTB-XL, which offers more 

complete and extensive ECG recordings. The PTB-XL dataset is distinguished by its elevated 

sample rate and comprehensive metadata, encompassing demographic information [53]. 

4. The Georgia 12-lead ECG Challenge (G12EC) collection originates from Emory 

University in Atlanta, USA, and comprises recordings from a substantial population in the 

Southeastern United States. The G12EC dataset is divided into training, validation, and test sets, 

which substantially augment the overall size of the Challenge dataset. 

The dataset includes 43,101 ECG recordings sourced from six different sub datasets and 

institutions across four countries. Each recording contains a 12-lead ECG signal saved in mat 

file format, with corresponding metadata such as the patient’s age, gender, and diagnostic labels 

stored in hea files. 
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As shown in Table [5.1] and Figure [5.1], The PTB-XL dataset makes for over half of the total 

dataset. The Georgia and CPSC 2018 datasets contribute significantly as well, with large patient 

populations and high-quality ECG recordings. The smaller datasets, PTB and INCART, though 

limited in size, provide useful diversity in sampling rates and demographic profiles, which adds 

to the robustness of the dataset. 

Source # of records % of the total samples 

PTB-XL 21,837 50.66% 

Georgia 10,344 24.00% 

CPSC 2018 6,877 15.96% 

CPSC 2018 Extra 3,453 8.01% 

PTB 516 1.20% 

St. Petersburg INCART 74 0.17% 

Table 5.1: Distribution of records between sources 

                                          

Figure 5.1: Pie chart of records’ distribution across various sources 

In addition to the ECG signals, the dataset contains demographic information about each patient, 

including gender and age. These features are important as they provide additional context for 

the ECG readings and can be incorporated into the deep learning model to improve classification 

accuracy. A summary of the demographic composition of the dataset is provided in the table 

below: 



 

 

30 

 

Source # Samples % 

Females 

% 

Males 

Average Age Sampling Rate 

CPSC 2018 6,877 46.21% 53.79% 60.13 500 Hz 

CPSC 2018 Extra 3,453 46.63% 53.37% 63.73 500 Hz 

Georgia 10,344 46.34% 53.66% 60.04 500 Hz 

PTB 516 26.74% 73.06% 55.31 1000 Hz 

PTB-XL 21,837 47.89% 52.11% 61.54 500 Hz 

St. Petersburg INCART 74 45.95% 54.05% 55.99 257 Hz 

Table 5.2: Population demographics across data sources 

Across all hospitals, the gender distribution is relatively balanced, with 53% of the patients 

being male and 47% female. The total number of male patients is 22,889, while the total number 

of female patients is 20,211 as shown in Figure [5.2]. The average patient age ranges from 55.31 

years in the PTB dataset to 63.73 years in the CPSC 2018 Extra dataset. The combination of 

both younger and older patients provides a dataset that mirrors the age-related prevalence of 

many cardiac conditions, such as atrial fibrillation, which is more common in older adults. 

 

Figure 5.2: Gender distribution  

Moreover, by looking at Figure [5.3] we can infer that the dataset has a wide age spectrum, 

predominantly featuring older persons, which indicates the heightened incidence of cardiac 

disorders like atrial fibrillation, bundle branch blockages, and ventricular arrhythmias among 

this demographic. If we also look closely we will notice outliers from both the upper and the 

lower tails of the distributions of both genders. That entails that data cleaning practices should 

take place in the preprocessing step of the data, before they reach out the training phase of our 

machine learning models. 
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Figure 5.3: Age distribution per gender group and outlier detection 

A key challenge in working with multi-institutional datasets is the variability in sampling rates. 

The PhysioNet dataset contains recordings sampled at three different frequencies: 

• 500 Hz: 42,511 recordings (98.63%) 

• 1000 Hz: 516 recordings (1.20%) 

• 257 Hz: 74 recordings (0.17%) 

 

As can be noticed, most of the recordings (over 98%) are sampled at 500 Hz, which is a typical 

clinical standard. The remaining recordings, mostly from the PTB and St. Petersburg INCART 

datasets, are sampled at 1000 Hz and 257 Hz respectively. To ensure consistency across the 

dataset, all ECG signals were resampled to 500 Hz during preprocessing, as will be described 

in Chapter 7. This standardization step is necessary for the deep learning models to process the 

signals uniformly. 

In terms of the classes studied in this collection, the dataset contains 111 unique diagnostic 

labels, reflecting the variety of cardiac conditions that can be identified through ECG signals. 

However, for this thesis, following the notion of the PhysioNet challenge, we also focus on a 

subset of 27 key diagnoses. These 27 classes were selected due to their clinical relevance and 

sufficient representation in the dataset. They include common arrhythmias, such as atrial 

fibrillation (AF) and atrial flutter (AFL), as well as various forms of heart block and bundle 

branch blocks. The selected classes are: 

• 1st degree AV block (IAVB) 

• Atrial fibrillation (AF) 

• Atrial flutter (AFL) 

• Bradycardia (Brady) 

• Complete right bundle branch block (CRBBB) 

• Incomplete right bundle branch block (IRBBB) 

• Left anterior fascicular block (LAnFB) 

• Left axis deviation (LAD) 

• Left bundle branch block (LBBB) 

• Low QRS voltages (LQRSV) 

• Nonspecific intraventricular conduction disorder (NSIVCB) 

• Pacing rhythm (PR) 
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• Premature atrial contraction (PAC) 

• Premature ventricular contractions (PVC) 

• Prolonged PR interval (LPR) 

• Prolonged QT interval (LQT) 

• Q wave abnormal (QAb) 

• Right axis deviation (RAD) 

• Right bundle branch block (RBBB) 

• Sinus arrhythmia (SA) 

• Sinus bradycardia (SB) 

• Sinus rhythm (NSR) 

• Sinus tachycardia (STach) 

• Supraventricular premature beats (SVPB) 

• T wave abnormal (TAb) 

• T wave inversion (TInv) 

• Ventricular premature beats (VPB) 

Figure [5.4] illustrates the occurrence of each of the 111 diagnostic labels within the dataset. 

This distribution highlights the prevalence of conditions such as sinus rhythm (NSR), colored 

in yellow, which is expected due to its commonality. As this plot quantifies all the labels we can 

clearly see that there are a lot of labels that have almost 0 examples resulting to extra confusion 

for any potential model that will be trained using them.  

 

Figure 5.4: A countplot of all the 111 classes available in the dataset 

Additionally, we focused on the distribution of the 27 key classes within the dataset. A second 

countplot (Figure [5.5]) shows the frequency of these selected classes. This subset emphasizes 

the clinical relevance of the model, as these conditions are among the most commonly diagnosed 

in clinical settings, making them highly valuable for real-world applications of wearable ECG 

monitoring. By focusing on the 27 classes we end up with patients that none of their diagnosed 

labels belongs to one of the selected classes and therefore they are excluded from the dataset. If 

we were to compare the previous distribution (Figure [5.4]) with that of Figure [5.5] we can 

infer that the balance of the data is significantly better but still there are some classes that are 

relatively undersampled. 
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Figure 5.5: A countplot of all the 27 selected classes available in the dataset  

As already mentioned, the PhysioNet dataset presents a multi-label classification problem, 

where each recording can be associated with multiple diagnostic labels. This characteristic 

reflects the complexity of ECG interpretation in clinical practice, where patients often exhibit 

more than one cardiac abnormality simultaneously. The number of co-occurring conditions 

varies across the dataset, with some patients having no diagnosis, while others may have up to 

seven conditions diagnosed from a single ECG recording as shown in Figure [5.6], with the 

majority of our records having one and two labels assigned to them. 

 

 

 Figure 5.6: A countplot of the number of labels per ECG record 

Finally, to ensure robust model evaluation and to mitigate the risk of overfitting, the dataset was 

split into training and testing sets. 20% of the dataset was reserved as a test set, while the 

remaining 80% was used for training and validation. For the training and validation phases, a 

stratified k-fold cross-validation approach was implemented. A thorough explanation of the 

training data methods used will be shared in Chapter 7. 

To conclude, the PhysioNet dataset provides an extensive and diverse collection of ECG 

recordings, accompanied by rich demographic data and detailed diagnostic labels. This data 

forms the foundation for developing deep learning models capable of detecting multiple cardiac 

conditions in real-time, wearable devices. The selection of 27 key cardiac conditions for this 

study ensures that the models are clinically relevant and can generalize well across different 

populations. The multi-label nature of the dataset and its complex class distribution add 
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additional challenges, making this a highly valuable dataset for advancing the field of automated 

ECG analysis. 

The variety in sampling rates, patient demographics, and the number of diagnoses per patient 

also ensure that the models are robust and can be applied in real-world scenarios. Future chapters 

will detail the preprocessing and model development techniques that were employed to 

transform this data into a useful tool for real-time arrhythmia detection. 
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6 Literature Review 

Studies focusing on the automatic diagnosis of ECGs via ML and DL-based approaches have 

grown in popularity over the last years. Since the literature continues to grow interest in deep 

learning and its medical application it is only natural that the field is becoming also the center 

of attention for high-profile competitions such as the PhysioNet/Computing in Cardiology 

(CinC) Challenge [50]. In this event, a number of researchers have advanced the field of ECG 

classification through deep learning, by developing state-of-the-art algorithms that advance the 

boundary of automatic ECG analysis, combining new architectures with novel methodological 

developments. This chapter intends to focus on describing in depth works presented during the 

2020 PhysioNet Challenge since it comprises the most relevant work to our dataset and thesis 

scope. Each of the contributions mentioned in this section brings novelty to address part of the 

challenge posed by ECG data, whether it be multi-label classification, imbalanced datasets, 

noisy signals, or domain generalization. It is worth mentioning that in the PhysioNet 

competition, the organizers used a held-out test set to internally evaluate each team's submitted 

projects. After the submission date, the evaluation process involved their own benchmarking 

system by creating a custom evaluation weighted metric, for which more details will be provided 

in the following chapters. By using the above-mentioned system, a leaderboard with the top 

ranked teams was created. Therefore, in this section, some of the highest in ranking as well as 

state-of-art approaches will be presented and compared thoroughly to make the readers 

comprehend how our methods differentiate with the already existing. 

Natarajan et al. [54] proposed a wide and deep transformer neural network for their winning 

submission to the PhysioNet/CinC Challenge 2020. Their approach was notable for its 

combination of handcrafted features with deep learning representations, effectively blending 

traditional ECG analysis techniques with modern deep learning architectures. The “wide” part 

of their model relied on domain expertise for identifying clinically relevant features which 

included heart rate variability, QRS duration, and T-wave morphology. The handcrafted features 

that they engineered assisted the model with a solid foundation of known diagnostic indicators, 

helping to guide the learning process. 

On the other hand, the “deep” part of their architecture utilized the power of the transformer 

architecture, which in very recent years has been proven to be groundbreaking in natural 

language processing and computer vision tasks. What makes Transformers excel at capturing 

long-range dependencies in sequential data is their self-attention mechanism, which allows the 

model to weigh the importance of each part of the input sequence dynamically. In the context 

of ECG diagnosis, the aforementioned has proven to be beneficial for identifying abnormalities 

that unfold over several heartbeats, such as atrial fibrillation or ventricular tachycardia.  

One of the key innovations in Natarajan et al.'s model was its ability to process large datasets 

efficiently due to the parallelizable nature of the transformer architecture. Unlike traditional 

recurrent neural networks (RNNs) or long short-term memory (LSTM) networks, which process 

data sequentially, transformers can analyze entire sequences at once. This not only reduced 
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training time but also allowed the model to capture global patterns in the ECG data, which were 

critical for distinguishing between different types of arrhythmia. Their model achieved state-of-

the-art performance, scoring highest in the challenge, and setting a new benchmark for ECG 

classification tasks. 

A different but fascinating approach was Zhao et al. [55], who developed an adaptive ResNet-

based model which featured Squeeze-and-Excitation blocks to enhance the explainability and 

performance in the ECG classification task. The proposed SE blocks enabled this network to 

adaptively change and assign the significance of each lead when processing the ECG, which is 

incredibly useful for 12-lead ECG records. As in real-world medical practices, a doctor would 

give more significance to some particular leads to make a diagnosis as some leads may carry 

more diagnostic importance than others, and the model of discussion was purposely designed 

to mimic this behavior by giving the more relevant leads greater weights in the training 

process. 

As already mentioned, the architecture of the model was built on ResNet, which is a well-known 

deep learning architecture designed to mitigate the problem of vanishing gradients in deep 

networks. ResNet's skip connections allowed the model to preserve information from earlier 

layers, enabling it to learn deeper representations without suffering from the degradation of 

performance typically seen in very deep networks. What make their approach stand out even 

more is that Zhao et al. customized the ResNet architecture by introducing large kernel sizes in 

the convolutional layers, which helped the model capture long-term dependencies in the ECG 

signals. Taking this direction enabled them to detect conditions like bundle branch blocks, which 

affect the timing and shape of the QRS complex across multiple leads. 

Finally, to address the issue of class imbalance, Zhao et al. employed a novel grid-search method 

to optimize class-specific thresholds during the training process. Moreover, this method ensured 

that the model did not overfit to more common classes, such as sinus rhythm, while neglecting 

rarer but clinically significant conditions like ventricular premature beats. The model’s ability 

to adaptively weigh the ECG leads and dynamically adjust classification thresholds resulted in 

improved sensitivity and specificity, especially for challenging multi-label classification tasks, 

placing them one of the highest-ranking scores in the leaderboard. 

Similarly to Zhao et al. , Zhu et al. [56], representing Team HeartBeats, introduced an ensemble 

model based on SE-ResNet to classify cardiac abnormalities from 12-lead ECG signals. Their 

model was placed third in the PhysioNet/CinC Challenge 2020, highlighting the effectiveness 

of combining deep learning with rule-based systems. For the same reasons as the previous team, 

they opted their approach to consist of Squeeze-and-Excitation (SE) blocks, which adaptively 

recalibrated the feature maps to assign higher weights to the most informative channels in the 

ECG signals leading their model to make more accurate diagnosis. 

Specifically, the team employed an ensemble of SE-ResNet models, each trained on different 

segments of the ECG recordings. For example, one model was trained on 10-second segments, 

while another was trained on 30-second segments, allowing the ensemble to capture both short-
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term and long-term dependencies in the ECG data. This approach ensured that the model could 

detect both transient arrhythmias, such as premature atrial contractions, and sustained 

conditions, like atrial fibrillation. What makes this work different from the others is the decision 

of the authors to introduce a rule-based model for bradycardia detection, which leveraged 

clinical knowledge about heart rate thresholds to improve classification accuracy. This hybrid 

approach of combining deep learning with clinical rules proved to be highly effective, 

particularly in reducing false negatives for certain classes. 

Finally, Zhu et al. addressed the challenge of noisy and imbalanced data by customizing a multi-

label loss function that emphasizes the cost of incorrect predictions. By penalizing the model 

more heavily for misclassifications in rare classes, they were able to achieve better balance 

across the 27 scored classes. Their results demonstrated the importance of integrating domain 

knowledge with advanced machine learning techniques, as the rule-based corrections provided 

significant improvements in clinical performance metrics. 

Oppelt et al. [57] proposed a new hybrid model that incorporated a signal processing-based 

scatter transform into a deep deep residual neural network (ResNet). Their notions was to create 

a modulation of a wavelet transform aimed at capturing the small-scale morphological features 

of the time-series data of the P-wave or QRS complex in the ECG signal. Unlike traditional 

wavelet transforms, the scatter transform is non-trainable and derived from theoretical principles 

in such a way that the features it extracts are invariant against locally deforming the input 

signals. 

Essentially, Oppelt et al. combined a scatter transform with a ResNet to take advantage of both 

theoretical feature extraction and trainable deep learning components. The ResNet in their 

method thus processed the scatter-transformed information, and the network was hence allowed 

to be focused on capturing more specific, higher-level representations relevant for ECG 

classification. The hybrid model therefore provides a unique balance between interpretability 

and flexibility, bringing stability and robustness to noise via a scattering transform while letting 

the ResNet capture some of the subtlety of the data not captured by the hand-engineered 

scattering transform alone. 

Finally, one great remark of the work introduced by Oppelt et al. was that this approach worked 

particularly well for noisy signals: the application of scatter transformation at the first stage of 

data processing made the model much less sensitive to noise and baseline drift-the two most 

common types of ECG recording artifacts. The proof of their innovation is that their model 

reached the fourth-place score at the PhysioNet/CinC Challenge’s leaderboard and in turn 

underlined the efficiency of combining classic signal processing techniques with state-of-the-

art deep learning approaches for time-series classification. 

Hasani et al. [58] presented an adversarial multi-source domain generalization approach to cope 

with domain generalization in ECG classification. The approach was engineered to handle the 

diversity across ECG records emanating from a variety of different sets of hospitals, devices, 

and recording settings. This variability, also known as further domain shift, can reduce the 
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performance of machine learning models when those latter are used to predict test data deriving 

from a different distribution from their training set. 

To tackle this issue, Hasani et al. proposed a model that combined CNNs with LSTMs for 

extracting features from the ECG signal; their convolutional neural network layers captured the 

spatial properties of ECG data, while the LSTM layers captured temporal dependencies, 

enabling this model to process information in space and time. The key innovation in their 

approach was the usage of adversarial domain generalization, which aimed to learn domain-

invariant by training the model to discriminate between diverse sources while performing 

optimization over the classification objective. 

In addition to the adversarial domain generalization framework, Hasani et al. employed 

extensive data augmentation techniques to simulate the effects of domain shift during training. 

These include adding noise, the random permutation of leads, and various kinds of filters applied 

to the ECG, hence enhancing the robustness of the model coming from different domains. Their 

approach ranked fifth in the PhysioNet/CinC Challenge, hence solidifying the importance of 

domain shift overcoming in ECG multisource datasets. 
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7 Data Preprocessing 

Preprocessing is without a doubt one of the most fundamental parts of every machine learning 

pipeline, and especially relevant in physiological inputs such as electrocardiograms. The raw 

ECG signals are always susceptible to a lot of noise, artifact, and other inconsistencies attributed 

to various factors related to the movement of patients, electrode positioning, and recording 

apparatus. If not treated accordingly, these might substantially bring down the performance of 

deep learning models. In this chapter, we present the preprocessing pipeline that normalizes, 

cleans, and segments the ECG data in a manner useful for both model training and model 

inference. The specific preprocessing techniques discussed within the thesis include filtering, 

resampling, and normalization, in addition to the feature extraction from demographic 

information such as age and gender. 

7.1 Overview of the Preprocessing Pipeline 

The whole preparation workflow described in this chapter is encapsulated within the special 

PyTorch dataset class, PhysioNet_Dataset, and its subroutines for loading ECG data from source 

.mat files and doing several preprocessing steps. Preprocessing is done in order to standardize 

the data arriving from different recordings and to ensure that our training models will receive a 

standardized size of input data. Besides ECG signal processing, demographic features (age and 

gender) are also processed to serve as additional inputs for the model. 

The pipeline takes as input a list of unique patient IDs and a DataFrame containing metadata for 

each recording, including the file paths, sampling rates, and labels. The following sections 

provide a detailed explanation of each preprocessing step, as well as its role in preparing the 

data for training deep learning models. 

7.2 Data Loading and Resampling 

The first step in the preprocessing pipeline is to load the raw ECG data from .mat files. The 

ECG recordings are sampled at different frequencies depending on the source institution, which 

can range from 250 Hz to 1 kHz. To ensure uniformity, all recordings are resampled to a standard 

frequency of 500 Hz, which is commonly used in clinical ECG analysis. This step is important 

because deep learning algorithms are very sensitive to temporal anomalies in time-series data. 

Uniform sampling enables the algorithm to catch the patterns, which do not depend on specific 

recording conditions. 

The resampling is performed using either decimation or interpolation techniques, depending on 

whether the original sampling rate is higher or lower than 500 Hz. Decimation reduces the 

sampling rate by discarding some data points, while interpolation fills in missing data points to 

increase the sampling rate. The described step acts as a necessary normalization of all ECG 

records to one standard temporal resolution, regardless of originally used recording settings. 

ECG signals, after resampling, are stored as NumPy arrays for subsequent processing. 
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7.3  Filtering 

Once the ECG data has been loaded and resampled, the next step is to apply a bandpass filter to 

remove noise and artifacts. ECG signals are often contaminated by various sources of noise, 

such as baseline wander (low-frequency noise caused by patient movement) and powerline 

interference (high-frequency noise at 50 or 60 Hz). The filtering process is designed to isolate 

the frequency range of interest for ECG analysis, which typically lies between 3 Hz and 45 Hz. 

This range captures most of the clinically relevant features of the ECG signal, such as the P-

wave, QRS complex, and T-wave, while excluding extraneous noise. 

Moreover, a Finite Impulse Response (FIR) bandpass filter [59] is applied to the ECG signals 

to remove frequencies outside of a given range. FIR filters are widely used in ECG 

preprocessing since they offer linear phase characteristics, i.e. they do not distort the timing 

relationships between different components of the ECG waveform. The implementation of the 

filter is done using an existing python module, which allows for easy configuration of the filter 

order and cutoff frequencies. To ensure a sharp transition between the passband and stopband 

and at the same time maintain computational efficiency, the filter order is set to 0.3 times the 

sampling frequency as proposed by the literature.  

7.4 Signal Normalization 

After filtering, the ECG signals are then normalized to ensure a standardized range of 

amplitudes. Normalization is considered a particularly important preprocessing step for training 

deep learning models because it prevents biases caused by large variations in signal amplitude 

among the different recordings. Each ECG recording in normalization will be scaled to zero 

mean and unit variance, hence normalizing the dataset's signal amplitudes. This step ensures 

that the model focuses on the structure alone of the ECG waveforms regardless of any variation 

in signal amplitude. 

Besides regular normalization, we also use smoothing scaling technique that is introduced 

aiming to avoid division by zero during the regularization process. The scaling factor is modified 

by adding a small constant termed "smooth" inside the denominator. The formula used in this 

step is as follows: 

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑠𝑖𝑔𝑛𝑎𝑙 = 2 ×
(𝑠𝑖𝑔𝑛𝑎𝑙 − min(𝑠𝑖𝑔𝑛𝑎𝑙))

(max(𝑠𝑖𝑔𝑛𝑎𝑙) − min(𝑠𝑖𝑔𝑛𝑎𝑙) + smooth)
− 1 

 

After a signal pass through this formula, it scales its’ values to a range between -1 and 1, 

ensuring that all recordings are harmonized. 

7.5 Random Window Extraction 

As one can imagine, ECG recordings vary in length, and usually the longer the recordings the 

larger the information that they contain about the patient's heart activity. To standardize the 
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input size for the model, a fixed-length window of 10.24 seconds is extracted from each ECG 

recording. We chose the specific window size based on the duration of the typical ECG beat 

sequence, allowing the model to capture multiple heartbeats within each window. For recordings 

that are longer than the window size, random windows are sampled during training to provide a 

diverse range of segments to the models that we will train. This random windowing approach 

also acts as a form of data augmentation, as the model is exposed to different parts of the ECG 

signal in each training epoch making this step a not only a preprocessing step but also a model 

performance regularization one. 

In this step of our preprocessing pipeline, for recordings that are shorter than the window size, 

the signals are padded with zeros to match the required length. Zero-padding is a common 

technique used in time-series analysis to ensure that all inputs to the model have the same 

dimensionality. The windowing and padding operations are crucial for ensuring that the model 

can process recordings of varying lengths while maintaining a consistent input size. 

7.6 Demographic Feature Processing 

As will discussed in the next chapter, one of our expirements on this thesis is the Wide and Deep 

architecture, which will utilize tabular information on the Wide part. The respective 

demographic information used are the patients’ age and gender along their ECG. Therefore, as 

part of our preprocessing we first extract the age and any outlier ages shown in the previous 

chapter are removed from the dataset (e.g. age samples with a value of 300). For the gender 

variable we first standardize the values to common naming conventions as it was shown that 

some sources were refering to each gender by its full word and others by its initial (e.g. “Female” 

and “F”). After this harmonization, one-hot encoding for gender: "male" = 1, "female" = 0 was 

applied. The ambition of bringing this type of information into the model is to color our model 

more, as some heart diseases can affect people of particular age brackets or even a specific 

gender. 

7.7 Target Variable Handling 

Finally, as our focus is shifted into the 27 classes mentioned above we standardize the order that 

the labels are sorted for all the patients and we encode them into a binary format resulting into 

a 27 element long vector of zeros and ones. It is worth mentioning that patients that didn’t have 

any of the 27 labels of interest in their diagnoses were excluded from the dataset. 

This chapter described the necessary preprocessing steps for preparing the ECG recordings to 

be used in a deep learning model, which include resampling, filtering, normalization, window 

extraction, and demographic feature processing-very crucial preprocessing steps to make them 

clean, coherent, and suitable for model training. The step of cleaning and preprocessing of data 

is very important for high accuracy and robustness in models, especially on complex multi-label 

classification issues. In the following charts we can vizualize how a raw ECG versus a 

preprocessed ECG looks like. In Fig [7.1] we see the raw ECG of a male patient that is 70 years 
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old with a sample rate of 500 Hz and how his ECG is transformed after the preprocessing 

pipeline (Fig [7.2]). 

Figure 7.1: Visual representation of raw 12-lead ECG record from our training set 

Figure 7.2: Visual representation of raw 12-lead ECG record from our training set after preprocessing 
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8 Methods 

This chapter examines the architectures and methodology utilized in this thesis for the 

classification of arrhythmias from electrocardiogram (ECG) data. The subsequent sections 

delineate four deep learning architectures trained, starting with a basic CNN model utilized as a 

reference point. Each model was engineered with distinct characteristics to tackle the intricacies 

of the ECG signal, the multi-label classification challenge, and the limitations necessitated by 

the requirement for lightweight, real-time implementation in wearable devices. It is reminded 

that the models discussed in these sections are trained using a 5 k-fold stratified cross validation 

and the results on each model consern only the fold of which the model outperformed the rest 

of the folds.  

8.1 Baseline Convolutional Neural Network (CNN) Architecture 

For this study, the SimpleECGConvNet model was employed as a baseline architecture for ECG 

classification tasks. The network's architecture was specifically designed to balance simplicity 

with performance, minimizing the number of parameters to ensure efficient training while 

maintaining sufficient depth to capture complex patterns in the ECG data. The model consists 

of two convolutional layers, each followed by a ReLU activation function and max-pooling 

layers. The first convolutional layer has 16 filters, each with a kernel size of 1×11 and stride of 

5, followed by a max-pooling operation with a pool size of 1×8. The second convolutional layer 

has 32 filters with the same kernel size and padding, followed by a max-pooling operation with 

a smaller pool size of 1×4. The output of the second convolutional layer is flattened, and a fully 

connected layer with 32 neurons is applied, followed by a ReLU activation function and an 

output layer with 27 neurons corresponding to the target classes. 

 

The total number of parameters in this architecture was 313,659. The model was trained using 

a batch size of 256 over a maximum of 100 epochs, with early stopping enabled if the validation 
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loss did not improve after 2 epochs. The most actual epochs trained during the folds were 27. 

The Adam optimizer was employed with a learning rate of 0.001, and binary cross-entropy with 

logits served as the loss function. The training set consisted of 30,236 examples, while the 

validation set contained 4,335 examples. On the final epoch, the model achieved a training loss 

of 0.101, accuracy of 20.5%, and an F1-macro score of 0.3602. The corresponding validation 

metrics were a loss of 0.125, accuracy of 15%, and an F1-macro score of 0.31. 

8.2 Convolutional and Long Short-Term Memory (ECGConvLSTMNet) 

Architecture 

The ECGConvLSTMNet architecture was designed to leverage both convolutional and 

recurrent layers to capture both spatial and temporal dependencies in the ECG data. The model 

starts with two convolutional layers, followed by max-pooling layers, similar to the previous 

models. The first convolutional layer contains 16 filters with a kernel size of 1×11 and a stride 

of 5, while the second contains 32 filters with the same kernel size. The output of the second 

convolutional layer is reshaped and fed into an LSTM layer, which captures the temporal 

dependencies across the ECG signals. The LSTM has 64 hidden units and processes sequences 

of length 46 with an input size of 384 (corresponding to the flattened output of the convolutional 

layers). The final output is obtained through two fully connected layers. 

 

This model has 124,027 parameters and was trained using a batch size of 256 over 100 epochs, 

with early stopping set to trigger if the validation loss did not improve for 2 epochs. The model 

trained for 35 epochs in the longest fold. The Adam optimizer was used with a learning rate of 

0.001, and binary cross-entropy with logits was applied as the loss function. The training dataset 

included 30,236 examples, while the validation dataset contained 4,335 examples. At the end of 

training, the model achieved a training loss of 0.123, accuracy of 31.54%, and an F1-macro 

score of 0.26. The validation metrics indicated a loss of 0.1588, accuracy of 31.8%, and an F1-

macro score of 0.264. 
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8.3 Wide and Deep Neural Network (WideAndDeepECGNet) 

The WideAndDeepECGNet is a hybrid model designed to integrate both ECG signal data and 

additional demographic information such as age and gender. This architecture consists of two 

separate input paths: the wide path for numerical features and the deep path for the ECG data. 

The deep path processes the ECG data through two convolutional layers, each followed by max-

pooling. The first convolutional layer uses 16 filters with a kernel size of 1×11, while the second 

uses 32 filters. The output of the convolutional layers is flattened and passed through a fully 

connected layer with 64 neurons. The wide path processes the numerical input (age and gender) 

through a fully connected layer with 32 neurons. The outputs of the two paths are concatenated 

and passed through a final fully connected layer to produce the final output. 

 

This architecture contains 278,171 parameters and was trained over 100 epochs with a patience 

of 2 for early stopping. The most epochs trained in a fold were 28. The training and validation 

sets consisted of 30,236 and 4,335 examples, respectively. The Adam optimizer was used with 

a learning rate of 0.001, and binary cross-entropy with logits was the chosen loss function. In 

the final epoch, the model achieved a training loss of 0.22, accuracy of 26.7%, and an F1-macro 

score of 0.11. The validation set yielded a loss of 0.1858, accuracy of 28%, and an F1-macro 

score of 0.13. 

8.4 Enhanced Convolutional Neural Network (ECGConvNet) 

The ECGConvNet model builds upon the baseline architecture by incorporating additional 

layers to enhance the model's ability to capture more intricate patterns in the ECG data. This 

model consists of three convolutional layers, each followed by ReLU activations, max-pooling, 

and dropout layers to prevent overfitting. The first convolutional layer uses 32 filters with a 
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kernel size of 1×11 and a stride of 5, while the subsequent layers contain 64 and 96 filters, 

respectively. These layers are followed by fully connected layers to produce the final 

classification. 

 

The model comprises a total of 572,027 parameters and was trained over a maximum of 1000 

epochs with a patience of 10 for early stopping. The model was trained on a batch size of 128, 

and the Adam optimizer was used with a learning rate of 0.001. The loss function was binary 

cross-entropy with logits. During training, the model was provided with 30,236 examples for 

training and 4,335 for validation. After 144 epochs, the model achieved a training loss of 0.0983, 

an accuracy of 32%, and an F1-macro score of 0.33. On the validation set, the loss was 0.1124, 

with an accuracy of 21% and an F1-macro score of 0.326, indicating the model's reasonable 

performance without significant overfitting. 

 

 

 

8.5 Quantized model (QECGConvNet) 

Based on the validation results we can conclude that the best performance was that of 

ECGConvNet, outperforming all the other architectures proposed in this chapter. Therefore, 

from this chapter and onwards we select this particular model for further usage and evaluation 

on the test set. Building upon the theoretical concepts of quantization discussed earlier, we 
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applied post-training quantization to the best-performing ECGConvNet model in this thesis. 

Post-training quantization, as described, is one of the most accessible techniques for 

transforming a fully trained model into a lighter version by reducing the precision of its weights 

and activations from 32-bit floating-point representations to more computationally efficient 8-

bit integers. This approach significantly reduces memory usage and speeds up computations, 

making the model suitable for deployment on wearable devices where real-time predictions are 

essential. 

In the context of this work, the quantization process followed a structured four-step procedure 

to convert the ECGConvNet model into its quantized counterpart, QECGConvNet. Initially, we 

performed layer fusion, combining convolutional and ReLU activation layers into single 

operations. This step helps streamline the computation and reduce overhead, which is 

particularly important for resource-constrained environments like wearable devices. Moreover, 

the model was prepared for static quantization using the QNNPACK backend, optimized for 

ARM architectures common in wearables. Calibration was then performed using a subset of the 

training data to adjust the activations and ensure that the transition to lower precision did not 

significantly impact the model's performance. 

As noted in the theoretical chapter, while post-training quantization can introduce some 

degradation in model accuracy, it remains one of the most practical methods when the model 

needs to be deployed on devices with limited computational resources. The choice of post-

training quantization here aligned with the thesis's goal to create a lightweight model suitable 

for wearable applications, without requiring the computational intensity of quantization-aware 

training (QAT). The calibration step was crucial in mitigating the accuracy loss, ensuring that 

the quantized model could still perform diagnostic tasks effectively despite the reduction in 

precision. 

The resulting QECGConvNet demonstrated the advantages of post-training quantization, 

achieving significant reductions in memory and computational cost, while hopefully 

maintaining a performance level close to the original model.  

8.6 Individual probability threshold tuning 

To further optimize the performance of both the ECGConvNet and QECGConvNet models, we 

employed a custom validation generator and fine-tuned the probability threshold for each of the 

27 output classes. In multi-label classification tasks, a common approach is to apply a default 

threshold (usually 0.5) to convert predicted probabilities into binary labels. However, different 

classes may benefit from different thresholds to maximize performance metrics like F1-macro. 

By fine-tuning the probability threshold for each class individually, we aimed to improve the 

macro-averaged F1 score, which is particularly sensitive to the imbalances inherent in the multi-

label ECG dataset. 

For this process, we evaluated thresholds ranging from 0.05 to 0.65 in increments of 0.05. For 

each fold in the cross-validation process, we calculated several metrics, including accuracy, F1-
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macro score, and the challenge metric, across all threshold values. The model was then evaluated 

with the optimal threshold settings that produced the highest F1-macro score for each class. This 

tuning was performed on both the ECGConvNet and its quantized counterpart, QECGConvNet, 

ensuring that the models were not only computationally efficient but also well-calibrated to 

produce optimal diagnostic performance. 

The fine-tuning process leveraged the outputs from the validation set, adjusting the predicted 

probabilities to the most appropriate threshold for each individual diagnosis. By doing so, we 

were able to minimize the loss in accuracy that can occur when a single threshold is applied 

uniformly across all classes, especially in the case of imbalanced datasets like the one used in 

this thesis. This class-specific thresholding allowed for a more nuanced and effective 

classification of the 27 cardiac conditions, thereby aligning the model’s predictions more closely 

with the clinical requirements for wearable ECG diagnostics. 

8.7 Evaluation Results 

As already mentioned, the evaluation of the models in this thesis is based on a custom metric of 

the PhysioNet Challenge [50] designed to account for the complexity of multi-class, multi-label 

classification, particularly in the context of clinical diagnosis. Unlike traditional evaluation 

metrics, which typically assign equal penalties to all misclassifications, this custom metric 

incorporates clinical relevance by weighing different types of classification errors according to 

their clinical impact. Specifically, the scoring system begins with a multi-class confusion matrix 

A=[aij], which tracks how frequently a classifier predicts each class relative to the true class 

across a set of recordings. For a given recording k, the matrix entry aij is updated if the true label 

ci and predicted class cj are both positive. This contribution is normalized by the number of 

positive labels and/or classifier outputs for the recording, represented as |xk∪yk|, where xk and yk 

are the sets of true and predicted classes, respectively. The confusion matrix is computed as: 

𝑎𝑖𝑗 = ∑ 𝑎𝑖𝑗𝑘
𝑛
𝑘=1 , where 𝑎𝑖𝑗𝑘 =

1

|𝑥𝑘∪𝑦𝑘|
, if 𝑐𝑖 ∈ 𝑥𝑘, and 𝑐𝑗 ∈ 𝑦𝑘 

Next, a reward matrix W=[wij] is applied to the confusion matrix. This matrix, designed by 

cardiologists, assigns full credit to correct classifications and partial credit to clinically similar 

misclassifications and is illustrated in Fig [8.7]. The unnormalized score sU  is calculated as the 

weighted sum of the confusion matrix entries: 

𝑠𝑈 =∑∑𝑤𝑖𝑗

𝑚

𝑗=1

𝑚

𝑖=1

𝑎𝑖𝑗 

 

where m represents the total number of classes. To make the score more interpretable, it is 

normalized to fall between 0 and 1. This is done by comparing the observed score to two 

baselines: a classifier that always predicts the correct labels (yielding a score sT ) and an inactive 

classifier that always predicts the normal class (yielding a score sI). The normalized score sN is 

calculated as: 
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𝑠𝑁 =
𝑠𝑈−𝑠𝐼

𝑠𝑇−𝑠𝐼
, 

where sT  represents the score of a perfect classifier, and sI represents the score of the inactive 

classifier. This normalization ensures that a perfect classifier achieves a score of 1, while an 

inactive classifier achieves a score of 0. 

 

Figure 8.7: Reward matrix proposed by the challenge [50] 

The evaluation of both the original ECGConvNet model and its quantized version, 

QECGConvNet, was conducted using the custom metric described above on the test set that we 

kept held-out. The evaluation results of our 2 selected models based on the challenge metric are 

being shown in Table 8.7 along with the corresponding metric of the researchers discussed in 

the literature review of the thesis. 
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Model Challenge Metric 

Natarajan et al. [54] 0.53 

Zhao et al. [55] 0.52 

Zhu et al. [56] 0.51 

Oppelt et al. [57] 0.49 

ECGConvNet 0.46 

Hasani et al. [58] 0.44 

QECGConvNet 0.39 

Table 8.7: Evaluation results compared to the literature 

The evaluation of the original ECGConvNet and its quantized counterpart, QECGConvNet, 

demonstrates the trade-off between model performance and computational efficiency, as 

reflected by the custom challenge metric. As seen in Table [8.7], the ECGConvNet achieved a 

score of 0.46, which is competitive compared to the state-of-the-art models by the literature. 

The quantized version, QECGConvNet, while still achieving a respectable score of 0.39, 

exhibits a slight reduction in performance due to the post-training quantization process, which 

is expected given the precision loss when reducing the model's complexity. Nevertheless, the 

quantized model's performance remains within a reasonable range, underscoring its potential for 

deployment in resource-constrained environments, such as wearable devices, where 

computational efficiency is paramount. This trade-off between performance and efficiency 

highlights the effectiveness of quantization techniques in maintaining diagnostic utility while 

meeting practical deployment requirements. Finally, it should be noted for comparison purposes 

that the ECGConvNet model that we trained is much lighter than the models proposed in the 

literature (shown in Table [8.7]; it contains 572,027  parameters while the Natarajan et al,’s [54] 

proposed model consists of 13.644 million parameters making it about 23.9 times larger. 
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9 Conclusions  

This work aims to investigate whether it is possible to create a Deep Learning model for 

arrhythmia prediction that could then be quantized into a lightweight model capable of 

deployment onto wearable devices. In general, the goal is to keep the model performing properly 

in real-time predictions while maintaining the strict hardware limitations of wearables. This has 

also followed a structured path toward its fulfillment by reviewing the literature, understanding 

the problem, preprocessing the ECG data, and exploring a number of deep learning architectures 

and methods that may be used for improving the classification of ECGs. We reviewed the 

literature of various research related to the detection of arrhythmias using deep learning models, 

including state-of-the-art trends in wearable technology for real-time medical diagnostics. Our 

primary data source was the PhysioNet/Computing in Cardiology Challenge 2020 dataset which 

included 12-lead ECG recordings in order to classify 27 specified cardiac abnormalities. 

Considering the sheer number of recordings that required normalization, signal filtering, and 

resampling, a lot of preprocessing was done on the data. 

The conducted experiments covered several different architectures, which were developed using 

both convolutional and recurrent neural network layers in the interest of modeling both spatial 

and temporal dependencies of ECG signals, including two state-of-the-art models: 

ECGConvNet and ECGConvLSTMNet. Also, a tailored metric of the PhysioNet scoring system 

that better reflects the real-world needs of arrhythmia classification as it has been given by 

domain experts was used to evaluate the models in a literature compatible manner. 

Finally, we employed model quantization techniques to reduce the size of the trained models, 

making them compatible with the limited processing power of wearable devices. Specifically, 

post-training quantization was used to convert the model's parameters to lower precision 

formats, such as 8-bit integers, without significantly compromising accuracy. 

9.1 Key Findings 

The final quantized model achieved promising results but also demonstrates room for 

improvement. The baseline model (ECGConvNet) reached an F1-macro score of 0.264 on the 

validation set, while the quantized version maintained an acceptable performance but with a 

degradation in accuracy due to the inherent limitations of post-training quantization. Despite 

this, the quantized model is a promising candidate for future optimization, and further 

exploration of advanced quantization techniques, such as quantization-aware training or model 

distillation, could yield better results. 

The overall findings suggest that the proposed approach—developing deep learning models for 

arrhythmia detection and subsequently quantizing them for wearable devices—is feasible. 

However, achieving state-of-the-art performance in real-time applications will require further 

work, especially in improving quantization techniques and exploring more advanced model 

architectures like transformers. 
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9.2 Limitations 

Several limitations were encountered during the research process. To begin with, resource 

constraints played a significant role, as the models had to be trained mostly on CPU based 

machines, leading to long training times (approximately 10 minutes per epoch). The limited 

computational resources also restricted the number of epochs we could run, which could have 

impacted the final performance of the models. Secondly, the lack of domain expertise held us 

back in terms of the feature engineering, preprocessing techniques and creativity in the 

architectures used for the complex ECG data. With greater access to domain knowledge, 

particularly in cardiology, it might have been possible to come up with more custom 

architectures and models more effective on clinical applications. Additionally, the imbalanced 

nature of the dataset, with some arrhythmia classes significantly underrepresented, made it 

difficult to achieve high performance across all classes. Although techniques such as threshold 

tuning were employed to address this imbalance, further work is needed to handle rare classes 

more effectively. 

9.3 Future Work 

The results of this thesis provide a foundation for future research into lightweight models for 

wearable ECG monitoring, but there are several areas for further investigation. Future work 

could benefit from exploring more advanced model architectures, such as the transformer one, 

which has demonstrated superior performance in handling sequential data like ECG signals as 

shown in chapter 6. Feature engineering techniques that are incorporating domain experise, 

maybe in conjunction with clinitials, could further enhance model performance by highlighting 

the most relevant features produced by the ECG data. Moreover, additional quantization 

techniques, such as model distillation and quantization-aware training, should be explored to 

minimize the performance degradation seen in the post-training quantization phase. These 

methods could yield models that maintain higher accuracy while remaining lightweight enough 

for wearable devices. Finally, it would be valuable to incorporate more real-world constraints 

into the model development process, such as battery consumption and processing power 

limitations, to ensure that the models are not only accurate but also practical for continuous use 

in wearable devices. 

In conclusion, this thesis has demonstrated the feasibility of developing lightweight models for 

arrhythmia detection that can be deployed on wearable devices. While the final quantized model 

shows some promise, significant improvements can still be made, particularly through the 

exploration of more advanced architectures, feature engineering, and quantization techniques. 

With the continued advancement of deep learning and hardware technologies, it is likely that 

future developments will result in state-of-the-art arrhythmia detection systems capable of real-

time operation on wearable devices. This could significantly impact the early diagnosis and 

management of cardiovascular diseases, potentially saving lives. 
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Appendix: MAX78000 and ai8x Module for Model Quantization 

As part of the research for this thesis, I explored the use of the MAX78000 microcontroller and 

the ai8x quantization framework developed by Analog Devices. These tools are designed to 

facilitate the deployment of deep learning models in resource-constrained environments, such 

as wearables or other edge AI devices, which are highly relevant for ECG monitoring 

applications. 

MAX78000 Overview 

The MAX78000 is a specialized microcontroller designed for ultra-low-power neural network 

inference, particularly targeting applications at the edge of the Internet of Things (IoT). It 

features an integrated Arm Cortex-M4 processor alongside a Convolutional Neural Network 

(CNN) accelerator. The CNN accelerator allows the MAX78000 to execute AI tasks, such as 

keyword spotting, image recognition, or signal processing, with minimal power consumption 

The MAX78000's CNN engine is optimized for 8-bit quantized models, providing significant 
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efficiency improvements compared to traditional floating-point operations. This makes it ideal 

for devices like wearables, which need to operate on battery power for extended periods. Its 

ability to perform real-time inference with minimal latency is another benefit for edge AI 

applications like continuous ECG monitoring 

ai8x Training and Quantization Module 

To facilitate model deployment on the MAX78000, Analog Devices developed the ai8x 

framework, a PyTorch-based toolkit that enables model training, fine-tuning, and quantization 

specifically for the MAX78xxx series of microcontrollers. The ai8x module streamlines the 

process of converting a trained deep learning model into a form that can be run efficiently on 

the MAX78000's CNN accelerator. It achieves this by reducing the precision of weights and 

activations from 32-bit floating-point to 8-bit integers, a process known as quantization. 

However, despite the advantages of the MAX78000 and the ai8x module, several limitations 

impacted my work. Specifically: 

1. Limited Multi-label Classification Support: The ai8x module is built on an older 

version of PyTorch, which does not support multi-label classification tasks. This posed 

a significant challenge, as my models are designed to classify multiple cardiac conditions 

simultaneously. The ai8x module only supports multi-class classification, where a single 

label is predicted, limiting its applicability for my use case. 

2. Conv2D Layer Quantization: While the ai8x module is effective for many 

applications, it currently lacks support for quantizing Conv2D layers. Since Conv2D 

layers are integral to the architectures I developed for ECG signal processing, this 

limitation prevented the full integration of my models into the ai8x quantization pipeline  

Architectures Explored with ai8x 

Despite these limitations, I explored several convolutional architectures, which are worth 

noting. Some of these models included: 

Model Architecture History 

1. CNN Model 1 

Hyperparameters: 
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Batch size: 128 

Shuffle: Yes 

Number of Epochs: 1000 

Early Stopping: Yes 

Early Stopping Patience: 10 

Normalization: Yes 

Normalization Method: Z – Normalization 

Model Architecture: 

class ECGConvNet(nn.Module): 

    def __init__(self): 

        super(ECGConvNet, self).__init__() 

        self.conv1 = nn.Conv2d(1, 32, kernel_size=(1, 11), padding=(0, 5), stride=(1, 5)) 

        self.relu1 = nn.ReLU() 

        self.maxpool1 = nn.MaxPool2d(kernel_size=(1, 8)) 

        self.dropout1 = nn.Dropout(p=0.2) 

        self.conv2 = nn.Conv2d(32, 64, kernel_size=(1, 11), padding=(0, 5)) 

        self.relu2 = nn.ReLU() 

        self.maxpool2 = nn.MaxPool2d(kernel_size=(1, 4)) 

        self.dropout2 = nn.Dropout(p=0.2) 

        self.conv3 = nn.Conv2d(64, 96, kernel_size=(1, 11), padding=(0, 5)) 

        self.relu3 = nn.ReLU() 

        self.maxpool3 = nn.MaxPool2d(kernel_size=(1, 4)) 

        self.dropout3 = nn.Dropout(p=0.2) 

        self.flatten = nn.Flatten() 

        self.fc1 = nn.Linear(12672, 64) 

        self.relu3 = nn.ReLU() 

        self.dropout4 = nn.Dropout(p=0.2) 

        self.fc2 = nn.Linear(64, 27) 

 

    def forward(self, x): 

        x = self.conv1(x) 



 

 

61 

 

        x = self.relu1(x) 

        x = self.maxpool1(x) 

        x = self.dropout1(x) 

        x = self.conv2(x) 

        x = self.relu2(x) 

        x = self.maxpool2(x) 

        x = self.dropout2(x) 

        x = self.conv3(x) 

        x = self.relu3(x) 

        x = self.maxpool3(x) 

        x = self.dropout3(x) 

        x = self.flatten(x) 

        x = self.fc1(x) 

        x = self.relu3(x) 

        x = self.dropout4(x) 

        x = self.fc2(x) 

        return x 

Number of Trainable parameters: 903,483 

Evaluation Results: 
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2. CNN Model 2 

Hyperparameters: 

Batch size: 128 

Shuffle: Yes 

Number of Epochs: 1000 

Early Stopping: Yes 

Early Stopping Patience: 10 

Normalization: Yes 
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Normalization Method: Z – Normalization 

Architecture: 

class ECGConvNet(nn.Module): 

    def __init__(self): 

        super(ECGConvNet2, self).__init__() 

        self.conv1 = nn.Conv2d(1, 32, kernel_size=(1, 11), padding=(0, 5), stride=(1, 5)) 

        self.relu1 = nn.ReLU() 

        self.maxpool1 = nn.MaxPool2d(kernel_size=(1, 8)) 

        self.dropout1 = nn.Dropout(p=0.2) 

        self.conv2 = nn.Conv2d(32, 64, kernel_size=(1, 11), padding=(0, 5), stride=(1, 2)) 

        self.relu2 = nn.ReLU() 

        self.maxpool2 = nn.MaxPool2d(kernel_size=(1, 4)) 

        self.dropout2 = nn.Dropout(p=0.2) 

        self.conv3 = nn.Conv2d(64, 96, kernel_size=(1, 11), padding=(0, 5), stride=(1, 2)) 

        self.relu3 = nn.ReLU() 

        self.maxpool3 = nn.MaxPool2d(kernel_size=(1, 4)) 

        self.dropout3 = nn.Dropout(p=0.2) 

        self.flatten = nn.Flatten() 

        self.fc1 = nn.Linear(3456, 64) 

        self.relu3 = nn.ReLU() 

        self.dropout4 = nn.Dropout(p=0.2) 

        self.fc2 = nn.Linear(64, 27) 

 

    def forward(self, x): 

        x = self.conv1(x) 

        x = self.relu1(x) 

        x = self.maxpool1(x) 

        x = self.dropout1(x) 

        x = self.conv2(x) 

        x = self.relu2(x) 

        x = self.maxpool2(x) 

        x = self.dropout2(x) 

        x = self.conv3(x) 

        x = self.relu3(x) 

        x = self.maxpool3(x) 

        x = self.dropout3(x) 

        x = self.flatten(x) 

        x = self.fc1(x) 

        x = self.relu3(x) 

        x = self.dropout4(x) 

        x = self.fc2(x) 

        return x 
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Number of Trainable parameters: 313,659 

Evaluation Results: 

 

3. CNN Model 3 

Hyperparameters: 

Batch size: 128 

Shuffle: Yes 

Number of Epochs: 1000 

Early Stopping: Yes 

Early Stopping Patience: 10 
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Normalization: Yes 

Normalization Method: Min Max Scaling 

Architecture: 

Same as 2. 

Number of Trainable parameters:  

Same as 2. 

Evaluation Results: 

 

4.  CNN Model 4 

Hyperparameters: 

Batch size: 128 

Shuffle: Yes 

Number of Epochs: 1000 

Early Stopping: Yes 

Early Stopping Patience: 10 
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Normalization: Yes 

Normalization Method: Min Max Scaling 

class ECGConvNet(nn.Module): 

    def __init__(self): 

        super(ECGConvNet3, self).__init__() 

        self.conv1 = nn.Conv2d(1, 32, kernel_size=(1, 9), padding=(0, 5), stride=(1, 5)) 

        self.relu1 = nn.ReLU() 

        self.maxpool1 = nn.MaxPool2d(kernel_size=(1, 8)) 

        self.dropout1 = nn.Dropout(p=0.2) 

        self.conv2 = nn.Conv2d(32, 64, kernel_size=(1, 11), padding=(0, 5), stride=(1, 2)) 

        self.relu2 = nn.ReLU() 

        self.maxpool2 = nn.MaxPool2d(kernel_size=(1, 4)) 

        self.dropout2 = nn.Dropout(p=0.2) 

        self.conv3 = nn.Conv2d(64, 96, kernel_size=(1, 11), padding=(0, 5), stride=(1, 2)) 

        self.relu3 = nn.ReLU() 

        self.maxpool3 = nn.MaxPool2d(kernel_size=(1, 4)) 

        self.dropout3 = nn.Dropout(p=0.2) 

        self.flatten = nn.Flatten() 

        self.fc1 = nn.Linear(3456, 64) 

        self.relu3 = nn.ReLU() 

        self.dropout4 = nn.Dropout(p=0.2) 

        self.fc2 = nn.Linear(64, 27) 

 

    def forward(self, x): 

        x = self.conv1(x) 

        x = self.relu1(x) 

        x = self.maxpool1(x) 

        x = self.dropout1(x) 

        x = self.conv2(x) 

        x = self.relu2(x) 

        x = self.maxpool2(x) 

        x = self.dropout2(x) 

        x = self.conv3(x) 

        x = self.relu3(x) 

        x = self.maxpool3(x) 

        x = self.dropout3(x) 

        x = self.flatten(x) 

        x = self.fc1(x) 

        x = self.relu3(x) 

        x = self.dropout4(x) 

        x = self.fc2(x) 

        return x 
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Number of Trainable parameters: 313,595 

Evaluation Results: 

 

5. CNN Model 5 

Hyperparameters: 

Batch size: 128 

Shuffle: Yes 

Number of Epochs: 1000 

Early Stopping: Yes 

Early Stopping Patience: 10 

Normalization: Yes 

Normalization Method: Min Max Scaling 

Architecture: 

class ECGConvNet(nn.Module): 

    def __init__(self): 

        super(ECGConvNet4, self).__init__() 
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        self.conv1 = nn.Conv2d(1, 32, kernel_size=(1, 7), padding=(0, 5), stride=(1, 5)) 

        self.relu1 = nn.ReLU() 

        self.maxpool1 = nn.MaxPool2d(kernel_size=(1, 8)) 

        self.dropout1 = nn.Dropout(p=0.2) 

        self.conv2 = nn.Conv2d(32, 64, kernel_size=(1, 11), padding=(0, 5), stride=(1, 2)) 

        self.relu2 = nn.ReLU() 

        self.maxpool2 = nn.MaxPool2d(kernel_size=(1, 4)) 

        self.dropout2 = nn.Dropout(p=0.2) 

        self.conv3 = nn.Conv2d(64, 96, kernel_size=(1, 11), padding=(0, 5), stride=(1, 2)) 

        self.relu3 = nn.ReLU() 

        self.maxpool3 = nn.MaxPool2d(kernel_size=(1, 4)) 

        self.dropout3 = nn.Dropout(p=0.2) 

        self.flatten = nn.Flatten() 

        self.fc1 = nn.Linear(3456, 64) 

        self.relu3 = nn.ReLU() 

        self.dropout4 = nn.Dropout(p=0.2) 

        self.fc2 = nn.Linear(64, 27) 

 

    def forward(self, x): 

        x = self.conv1(x) 

        x = self.relu1(x) 

        x = self.maxpool1(x) 

        x = self.dropout1(x) 

        x = self.conv2(x) 

        x = self.relu2(x) 

        x = self.maxpool2(x) 

        x = self.dropout2(x) 

        x = self.conv3(x) 

        x = self.relu3(x) 

        x = self.maxpool3(x) 

        x = self.dropout3(x) 

        x = self.flatten(x) 

        x = self.fc1(x) 

        x = self.relu3(x) 

        x = self.dropout4(x) 

        x = self.fc2(x) 

        return x 

Number of Trainable parameters: 313,531 

Evaluation Results: 
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6. CNN Model 6 

Hyperparameters: 

Batch size: 128 

Shuffle: Yes 

Number of Epochs: 1000 

Early Stopping: Yes 

Early Stopping Patience: 30 

Normalization: Yes 

Normalization Method: Min Max Scaling 

Architecture: 

Same as 5. 

Number of Trainable parameters:  

Same as 5. 

Evaluation Results: 
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7.  CNN Model 7 

Hyperparameters: 

Batch size: 128 

Shuffle: Yes 

Number of Epochs: 1000 

Early Stopping: Yes 

Early Stopping Patience: 50 

Normalization: Yes 

Normalization Method: Min Max Scaling 

Architecture: 

class ECGConvNet(nn.Module): 

    def __init__(self): 

        super(ECGConvNet5, self).__init__() 

        self.conv1 = nn.Conv2d(1, 32, kernel_size=(1,7), padding=(0, 5), stride=(1, 5)) 

        self.relu1 = nn.ReLU() 

        self.maxpool1 = nn.MaxPool2d(kernel_size=(1, 8)) 
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        self.dropout1 = nn.Dropout(p=0.2) 

        self.conv2 = nn.Conv2d(32, 32, kernel_size=(1, 11), padding=(0, 5), stride=(1, 2)) 

        self.relu2 = nn.ReLU() 

        self.maxpool2 = nn.MaxPool2d(kernel_size=(1, 4)) 

        self.dropout2 = nn.Dropout(p=0.2) 

        self.conv3 = nn.Conv2d(32, 64, kernel_size=(1, 11), padding=(0, 5), stride=(1, 2)) 

        self.relu3 = nn.ReLU() 

        self.maxpool3 = nn.MaxPool2d(kernel_size=(1, 4)) 

        self.dropout3 = nn.Dropout(p=0.2) 

        self.flatten = nn.Flatten() 

        self.fc1 = nn.Linear(2304, 64) 

        self.relu3 = nn.ReLU() 

        self.dropout4 = nn.Dropout(p=0.2) 

        self.fc2 = nn.Linear(64, 27) 

 

    def forward(self, x): 

        x = self.conv1(x) 

        x = self.relu1(x) 

        x = self.maxpool1(x) 

        x = self.dropout1(x) 

        x = self.conv2(x) 

        x = self.relu2(x) 

        x = self.maxpool2(x) 

        x = self.dropout2(x) 

        x = self.conv3(x) 

        x = self.relu3(x) 

        x = self.maxpool3(x) 

        x = self.dropout3(x) 

        x = self.flatten(x) 

        x = self.fc1(x) 

        x = self.relu3(x) 

        x = self.dropout4(x) 

        x = self.fc2(x) 

        return x 

Number of Trainable parameters: 183,419 

Evaluation Results: 
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