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ΠΕΡΙΛΗΨΗ 
 

Ο ιός Ζίκα είναι ένας αρβοϊός, μεταδίδεται μέσω αιματοφάγων αρθροπόδων και 

μπορεί να προκαλέσει συμπτώματα που κυμαίνονται από πυρετό και αίσθημα 

κόπωσης έως σοβαρότερες νευρολογικές και ανοσολογικές επιπλοκές. Παρά την 

εκτεταμένη έρευνα, δεν υπάρχουν εγκεκριμένα εμβόλια ή αντιϊικά φάρμακα από 

διεθνείς οργανισμούς υγείας για αυτή τη λοίμωξη. Το γονιδίωμά του ιού είναι ένα 

μονόκλωνο ριβοζονουκλεϊνικό οξύ. Κωδικοποιεί μία πολυπρωτεΐνη, η οποία 

διασπάται από πρωτεάσες, με το σύμπλεγμα NS2B-NS3 να είναι το πιο κρίσιμο για 

τον πολλαπλασιασμό του ιού. Στόχος της παρούσας μελέτης είναι η πρόβλεψη 

πιθανών αντιϊικών ενώσεων που αναστέλλουν αυτή την πρωτεάση, χρησιμοποιώντας 

μια πολύπλευρη προσέγγιση που περιλαμβάνει στατιστική ανάλυση, μηχανική 

μάθηση και τεχνικές υπολογιστικής χημείας. Μια βάση δεδομένων με ενώσεις που 

προήλθαν από το ChEMBL αναλύθηκε για την αναγνώριση των σημαντικότερων 

χαρακτηριστικών. Το τεστ κατάταξης Wilcoxon αποκάλυψε ότι οκτώ από αυτά τα 

χαρακτηριστικά παρουσίασαν στατιστικά σημαντικές διαφορές. Στη συνέχεια, ένα 

μοντέλο μηχανικής μάθησης, που αναπτύχθηκε χρησιμοποιώντας τη μέθοδο 

εξαντλητικής αναζήτησης με ταξινομητή το Random Forest, εντόπισε τον βέλτιστο 

συνδυασμό επτά χαρακτηριστικών, επιτυγχάνοντας ακρίβεια 95,46%. Στην 

υπολογιστική χημεία, επιλέχθηκε η κατάλληλη κρυσταλλική δομή της πρωτεάσης του 

ιού, καθώς και οι ενώσεις που θα δοκιμαστούν για την ανασταλτική τους δράση. Στη 

συνέχεια, πραγματοποιήθηκαν πειράματα μοριακής πρόσδεσης χρησιμοποιώντας το 

Webina και το Maestro. Στο τέλος, πέντε ενώσεις αναδείχθηκαν ως πιθανοί 

προσδέτες και όλες ταξινομήθηκαν ως ενεργές με πιθανότητα 70%. Αυτά τα 

ευρήματα αναδεικνύουν την αποτελεσματική ενσωμάτωση αυτών των προσεγγίσεων 

στον εντοπισμό ενώσεων που θα μπορούσαν δυνητικά να αναστείλουν την πρωτεάση 

του ιού Ζίκα, παρέχοντας πολύτιμες πληροφορίες για μελλοντική πειραματική 

επικύρωση. 
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ABSTRACT 
 

  Zika virus is an arbovirus, it is transmitted through blood-feeding arthropods and can 

cause symptoms ranging from fever and malaise to more severe neurological and 

immunological complications. Despite the extensive research, there are no approved 

vaccines or antiviral drugs from health organizations for this infection. Its genome is a 

single-stranded ribonucleic acid. It encodes a polyprotein that is cleaved by proteases, 

with the NS2B-NS3 complex being the most crucial for viral replication. The aim of 

this study is to predict potential antiviral compounds that inhibit this protease using an 

integrative approach involving statistical analysis, machine learning and 

computational chemistry techniques. A compound database from ChEMBL was 

analyzed to identify the most significant features. The Wilcoxon rank-sum test 

revealed that eight of these features showed statistically significant differences. 

Subsequently, a machine learning model, developed using the exhaustive search 

method with a Random Forest classifier, identified the optimal combination of seven 

features, achieving an accuracy of 95.46%. In computational chemistry, initially, the 

appropriate crystal structure of the virus protease complex was selected, along with 

the compounds to be tested for their inhibitory potential. Molecular docking 

experiments were then conducted using Webina and Maestro. Five compounds in the 

end emerged as promising candidates, and all were classified as active with a 

probability of 70%. These findings highlight the effective integration of these 

approaches in identifying compounds that could potentially inhibit the Zika virus 

protease, providing valuable insights for future experimental validation. 

 

Keywords: zika virus; machine learning; compounds; statistical analysis; molecular 

docking;  
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INTRODUCTION 

 

  The Zika virus outbreak, in recent years, has underscored the urgent need for 

effective antiviral treatments. Despite, extensive research efforts, creating targeted 

therapies against this virus has proven challenging. The aim is to make a contribution 

to this effort by employing various approaches that integrates statistical analysis, 

machine learning and molecular docking techniques, to predict potential antiviral 

compounds targeting to inhibit the activity of the Zika virus protease, a pivotal 

enzyme in viral replication.  

 

  There are benefits and challenges associated with using these computational 

methods. They expedite the screening process by rapidly screening many compounds, 

reducing the time and cost required for traditional experimental approaches. 

Furthermore, these methods can predict the potential effectiveness of compounds with 

high accuracy, guiding researchers towards the most promising candidates for further 

experimentation. Once established, computational models can be readily applied to 

screen additional chemical libraries.  

 

  Difficulties arise with data availability and quality, because incomplete or biased 

datasets can lead to inaccurate predictions and flawed conclusions. Additionally, 

interpreting the results requires expertise in many scientific fields and ensuring model 

generalization to unseen data is crucial for reliable predictions in real world 

applications. It is worth mentioning, that although there are advancements in Zika 

virus research, gaps remain in our understanding of his transmission dynamics and 

long-term health effects, hindering the development of targeted therapies.  

 

  This thesis provides an overview of viruses, including their structure, function and 

classification, focusing on flaviviruses and more specifically on the Zika virus. The 

mechanisms of the immune system and how it responds to viral infections was, also, 

described. The aim was to identify compounds that would potentially inhibit the 

NS2B-NS3 protease complex. To achieve that, a database was created with a selection 

of compounds from ChEMBL that had been previously experimentally tested for their 

activity. Their features were extracted using the RDKit software and only the possibly 

most important ones, were kept for further analysis.  

 

  Statistical methods were used, and machine learning models were developed to 

extract the features that provided the best discriminative ability. Molecular docking 

experiments were then carried out in the freely accessible Webina software and in 

Maestro using two separate modes, GLIDE-SP and GLIDE-XP, to find potential 

ligands. Moreover, the compounds that were selected from the molecular docking 

experiments were extracted and their features were found using RDKit. From all the 

features produced the focus was on the most important ones that derived from the 

machine learning methodology. These compounds with the selected features were put 

into a model that was created in Metaboanalyst to determine if it would classify them 

as active or non-active. Finally, the results were evaluated. 
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TOPIC SELECTION & LITERATURE REVIEW 

  

  The subject of this thesis was chosen due to its critical relevance and innovative 

approach to addressing a significant public health threat. The Zika virus (ZIKV), 

known for causing severe congenital disabilities and neurological disorders, 

necessitates the urgent development of effective antiviral treatments. This research 

resides at the intersection of bioinformatics, cheminformatics and pharmacology, 

integrating computational techniques to enhance drug discovery. By leveraging 

machine learning to analyze vast datasets and predict compound activity, alongside 

molecular docking to elucidate drug-protein interactions, this study aims to streamline 

and optimize the identification of promising antiviral compounds.  

 

  Previous research on this topic has been conducted by a diverse group of scientists 

from various disciplines, including computational biologists, medicinal chemists, and 

pharmacologists. Notable contributions have come from researchers who specialize in 

machine learning applications in bioinformatics, as well as those focusing on 

molecular modeling and simulation techniques.  

 

  A. Jainul Fathima et al. (2018) used computational tools like Schrodinger’s Maestro 

and AutoDock, to study the interactions between Zika virus NS2B-NS3 protease 

(PDB: 5LC0) and various small molecule derivatives, including Isatin, 

Benzimidazole, Quinazoline, Indophenazine, and Indenoquinoxaline. The results 

showed that these derivatives exhibited favorable drug-like properties and strong 

binding interactions with the protease's active site, particularly for Benzimidazole 

derivative MBZ-SN and Isatin derivative SPIII-5CL-AC, indicating their potential as 

lead compounds for anti-ZIKV drug development [1].  

 

  A study by Dario Akaberi et al. (2020) utilized molecular docking techniques with 

AutoDock Vina to screen a library of Human Immunodeficiency Virus (HIV) 

protease inhibitors for their potential activity against the ZIKV NS2B-NS3 protease. 

Their molecular dynamics simulations, that were performed using the ZIKV protease 

crystal structure 5LC0, revealed that compound 9b, a C2-symmetric diol-based HIV 

protease inhibitor, exhibited notable binding stability and was further confirmed as an 

effective inhibitor in subsequent in vitro assays [2].  

 

  Additionally, Woon Yi Law et al. (2023) assessed the antiviral potential of Schiff 

base vanillin derivatives against Zika virus NS2B-NS3 protease, using ligand-based 

pharmacophore modeling with novobiocin, sofosbuvir, and azithromycin as training 

sets, followed by molecular docking simulations referencing the 5LC0 crystal 

structure. Several derivatives were identified with strong pharmacophore fit values, 

binding affinities, and key interactions within the protease's active site, suggesting 

their potential as promising ZIKV antiviral drugs [3].  
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Hisham N. Altayb and Hanan Ali Alatawi (2024) developed a machine learning based 

Quantitative Structure-Activity Relationship (QSAR) model to screen a library of 

2.864 natural compounds for their potential to inhibit the Zika virus NS3 protease. 

The QSAR model used various molecular descriptors (features) to capture key 

physicochemical, topological, and electronic properties of the compounds. These 

descriptors were the input of the machine learning algorithms so they can predict the 

antiviral activity of the compounds.  

 

  The best-performing QSAR model was then used for virtual screening, followed by 

molecular docking studies, to evaluate the binding affinities of the prioritized 

compounds to the NS3 protease. Molecular dynamics simulations were conducted to 

assess the stability of the protein-ligand complexes over time, and binding free energy 

calculations were performed to identify the most promising inhibitors. Through this 

comprehensive approach, compound Streptomycin emerged as the top candidate 

showing strong and stable binding interactions with the NS3 protease, suggesting its 

potential as a lead compound for further development as a Zika virus inhibitor [4]. 

 

  These studies underscore the effectiveness of computational methods in identifying 

novel antiviral compounds, highlighting the pivotal role of interdisciplinary research 

in advancing antiviral drug discovery efforts. The collective outcomes from these 

studies provide a robust foundation for the present research endeavor, aiming to 

further enhance the efficacy and efficiency of antiviral drug discovery against Zika 

and other related viruses. 

 

    This thesis addresses the need for innovative antiviral strategies and explores the 

efficacy of computational methods in predicting biological activity, thus advancing 

the field of antiviral drug discovery. There are various perspectives on the use of 

computational methods in drug discovery. Some researchers are highly optimistic 

about the potential of machine learning and molecular docking to revolutionize the 

field, citing successes in predicting drug efficacy and identifying new therapeutic 

targets. Others are more cautious, pointing out limitations such as the availability and 

quality of the data, the complexity of biological systems, and the need for 

experimental validation of computational predictions.  

 

  There is also ongoing debate about the best practices for integrating different 

computational techniques and the ethical considerations related to data privacy and 

the use of artificial intelligence in biomedical research. Overall, while the field is 

generally viewed as promising and rapidly evolving, it also faces challenges that 

require continued research and collaboration. 
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THEORETICAL BACKGROUND 

 

2.1 Viral pandemics 
 

  The complex relationship between humans and nature has been the subject of intense 

interest and study recently, as it profoundly impacts human health, particularly 

concerning viral infections.  

 

  As humans progressively encroach upon natural habitats and disrupt ecosystems 

through deforestation and urbanization, natural barriers that once separated humans 

from wildlife are dismantled, increasing the risk of contact with new viruses 

originating from natural hosts. Activities such as hunting, trading, and consuming 

wild animals can expose humans to novel viruses carried by these animals, leading to 

the discovery of new infectious diseases. In areas where agriculture is crucial for 

survival, dependence on wildlife can further heighten the risk of zoonotic 

transmission. This phenomenon has led to the emergence of several infectious 

diseases with global epidemic potential, including Ebola, Zika, and the Coronavirus 

Disease 2019 pandemic. 

 

  One significant factor contributing to the discovery of new diseases caused by 

viruses, is the mutation of already known viruses. Ribonucleic acid (RNA) viruses 

often exhibit unusually high mutation rates because the errors made during the 

replication of their RNA genomes are not subjected to proofreading. Some mutations 

convert existing viruses into new genetic varieties with pathogenic effects even in 

individuals who were immune to the original virus. Influenza outbreaks for example, 

can be caused by new strains of the influenza virus that differ genetically from 

previous strains, resulting in minimal immunity among people. 

 

  A second process leading to the emergence of new viral diseases is the spread of a 

virus from a small, isolated population of humans. In the case of acquired 

immunodeficiency syndrome (AIDS), various technological and social factors, such 

as the ability to travel to foreign countries, blood transfusions, and intravenous drug 

abuse, allowed a previously not so common human disease to become a worldwide 

threat. 

 

  Furthermore, a source of new viral diseases in humans can also be the transmission 

of existing viruses from other animals. It is estimated that about most of the new 

diseases affecting humans come from animals. Animals that harbor and can transmit a 

particular virus but remain generally unaffected by it act as a natural reservoir for the 

virus. Influenza epidemics are a prime example of the potential consequences of 

viruses transitioning from one species to another. Generally, pandemics begin with 

the mutation of the virus during its transition from one host species to another. Strong 

suspicions of human-to-human transmission arise when the disease caused by the 

virus is observed in many members of the same family.  
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  Emerging viruses are not new in general. They are existing viruses that mutate, 

spread within the host species they already infect more widely or to new host species. 

Changes of the environment or in host behavior can increase the mobility of viruses 

responsible for emerging diseases. The construction of new roads in areas that are 

remote can spread viruses to previously isolated human populations. Additionally, the 

destruction of the forest for agricultural expansion can make humans come into 

contact with animals that may host pathogenic viruses. 

 

  Beyond human-nature interactions, the spread of viruses is exacerbated in countries 

with poor economic conditions and inadequate hygiene practices. Socioeconomic 

disparities often result in densely populated areas, facilitating close contact among 

individuals and increasing the likelihood of virus transmission through respiratory 

droplets or direct physical contact. Inadequate or limited healthcare infrastructure and 

lack of access to clean water also create conditions conducive to virus transmission. 

 

  In such environments, viruses can spread rapidly, as effective prevention measures, 

such as vaccinations and personal protective equipment, are challenging to 

implement. This lack of damage control can prolong infectious periods and delay 

diagnosis and treatment, allowing viruses to spread unchecked within communities. 

Furthermore, economic instability may compel individuals to continue working even 

when ill, contributing to the spread of viruses in workplaces and public spaces. 

 

  Addressing these complex challenges requires comprehensive public health 

interventions that prioritize improving access to healthcare, promoting hygiene and 

sterilization practices, and implementing measures to reduce human-wildlife 

interaction.  

 

  While these are essential priorities for managing epidemics, developing new drugs 

and vaccines for viruses currently lacking treatments is equally crucial. This is 

because transmissible viruses can evolve into pandemics, threatening global health 

and economies. Developing new therapies and vaccines can protect populations from 

the effects of viruses and reduce disease spread. Therefore, the timely discovery and 

application of effective treatments and vaccines are vital for preventing future 

pandemics and safeguarding global public health [5]. 
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2.2 Virus 
 

2.2.1 Discovery  

 

  Viruses lack the metabolic mechanisms and structures found in cells and are 

primarily just genes encased in a protein shell. Therefore, they are considered either 

as the most complex assemblies of biological macromolecules or the simplest forms 

of life. Previously, they were thought to be chemical substances with biological 

activity. Their ability to cause a wide variety of diseases and spread from one 

organism to another led researchers in the late 19th century to believe that viruses 

were similar to bacteria. However, viruses cannot perform metabolic activities or 

reproduce outside their host cells. Most scientists studying viruses come to the 

agreement that they are not living organisms but rather exist in a state of "borrowed 

life." 

 

 

  Viruses can infect all forms of life, not only plants, bacteria and animals but also 

algae, archaea, fungi and other protists. The genome of a virus can show more 

similarities to the genome of its host than to the genome of a virus with a different 

host. Indeed, the sequence of some viral genomes matches the sequence of certain 

host genes to a significant degree. 

 

  The first experiments leading to the discovery of viruses were conducted on plants, 

specifically the tobacco plant. One disease affecting this plant is tobacco mosaic 

disease, which stunts plant growth and makes the leaves have a mottled appearance. 

In 1883, German scientist Adolf Mayer found that he could transmit this disease from 

one plant to another by rubbing healthy plants with an extract from diseased ones. He 

could not find any infectious microbe and assumed that the disease occurred because 

of bacteria.  

 

  Later, Dutch botanist Martinus Beijerinck conducted experiments, showing that the 

infectious agent in the filtered extract could reproduce. He found that the pathogen 

reproduced only within the host it infected and could not be cultivated in a nutrient 

medium or test tube. He hypothesized that it was a much smaller and simpler 

reproducing particle than bacteria, and he is considered by many to be the first 

scientist to articulate the concept of a virus. In 1935 his suspicions were confirmed 

when American scientist Wendell Stanley managed to crystallize the infectious 

particle [6]. 

 

2.2.2 Structure 

 

  The smallest viruses have a diameter of only 20 nm, smaller even than ribosomes. 

When examined in more detail, they consist of one or more nucleic acid molecules 

enclosed within a protein shell and sometimes a membranous envelope. Their genome 

can be composed of double-stranded deoxyribonucleic acid (DNA), single-stranded 

DNA, double-stranded RNA, or single-stranded RNA, depending on the type of virus. 

Based on the type of nucleic acid in their genome, viruses are classified as DNA 

viruses or RNA viruses. The genome of the smallest known viruses has only four 

genes, while the largest can have thousand genes. 
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  Capsid is the protein shell surrounding the viral genome. Depending on the virus, the 

capsid can be polyhedral, rod-shaped, or have a more complex structure.  

 

  Capsids are composed of many protein subunits called capsomeres. The tobacco 

mosaic virus has a rod-shaped, rigid capsid made of over a thousand molecules of a 

single type of protein arranged in a helix. Viruses with a rod-shaped structure due to 

their helical arrangement are called helical viruses. The capsid of adenoviruses, many 

of which infect the respiratory tract of animals, is polyhedral and consists of 252 

identical protein molecules arranged to form 20 triangular faces, making an 

icosahedron. Therefore, these viruses and all others with the same shape are called 

icosahedral viruses.  

 

 

 

 

 

  Viruses that infect bacteria has been found to have many of the most complex 

capsids, known as bacteriophages or simply phages. The three phages T2, T4, and T6 

have many structural similarities. Their DNA is enclosed in an elongated icosahedral 

head, to which a protein tail with tail fibers is attached, enabling them to attach to the 

bacteria they infect.  

 

  Some viruses possess additional structures that aid in infecting their hosts. Such 

structure is the viral envelope, which is a membranous layer surrounding the capsids 

of influenza and various other animal viruses. This envelope is derived from the host 

cell's membranes and incorporates phospholipids and membrane proteins from the 

host cell. 

 

  Glycoprotein molecules of viral origin protrude from the envelope's outer surface, 

attaching on the host cell surface to specific receptor molecules. These glycoproteins 

on the viral envelope bind to specific receptor molecules of the host cell, facilitating 

viral entry. The envelopes of some viruses do not originate from the host cell’s 

cytoplasmic membrane. 

 

  These few viral parts work together with the host cell's components to produce many 

viral progenies [6]. 

 

2.2.3 Function 

 

  To understand how a virus can pose such a significant global threat and why timely 

prevention and management are necessary, it is essential to analyze how viruses 

operate. 

 

  Viruses can only reproduce within their host cells. They do not have the metabolic 

enzymes and equipment, required for protein synthesis. Thus, they are obligate 

intracellular parasites, meaning they can only replicate within a host cell. Viruses are 

sets of genes transferred from one host cell to another.  
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  Moreover, they show specificity in the cells they infect. Only a certain amount of 

host cells can be infected by each virus type, known as the virus's host range. This 

specificity is due to the evolution of virus-host recognition systems. Viruses recognize 

host cells through proteins on their surfaces that fit like a lock and key with specific 

receptor molecules on the host cell's surface. Some viruses have a wider host range, 

while others are so limited that they infect only a single species. In multicellular 

eukaryotes, there is an additional level of specialization, with viruses usually 

restricted to specific tissues. 

 

  Viral infection starts when the virus attaches to the host cell and the viral genome 

enters into the cell. Depending on the host cell and virus type, the mechanism of 

genome entry differs. For example, T2, T4, and T6 phages inject their DNA into 

bacteria using their tail apparatus. Other viruses enter host cells through endocytosis 

or, for enveloped viruses, by the fusion of their envelope with the cell membrane. 

After the viral genome and capsid enter the cell and the capsid is broken down by 

cellular enzymes, the viral genome is released into the cytoplasm.  

 

 

  Then encoded by the viral genome the viral proteins command the host's materials 

and machinery, reprogramming the cell to replicate the viral nucleic acid and 

synthesize viral proteins. The host provides the nucleotides for making viral nucleic 

acids and the amino acids, enzymes, transfer RNAs, ribosomes, adenosine 

triphosphate (ATP), and other components needed for synthesizing viral proteins.  

 

  Most DNA viruses use the host cell's DNA polymerases to synthesize copies of their 

genome using the viral DNA as a template. RNA viruses, on the other hand, replicate 

their genome using polymerases encoded by their genome, which can use RNA as a 

template. The envelope glycoproteins are transported to the cytoplasmic membrane 

via vesicles. A capsid assembles around each viral genome molecule. New viruses 

exit the cell, each bearing numerous glycoproteins on its membrane, which is derived 

from the host cell. After exiting the host cell, the viruses can infect other cells. 

 

  A simple type of viral reproductive cycle concludes with the release of thousands of 

viruses from the infected cell, frequently leading to the host cell's destruction. Death 

and cellular damage of the host cell, along with the body's response to viral infection, 

are responsible for many symptoms associated with viral infections [6].  

 

2.2.4 Classification 

 

Phages 

 

  Phages are viruses that infect bacteria. They have been extensively studied and are 

known for their complexity. The study of phages contributed to the discovery that a 

number of viruses with double-stranded DNA as their genetic material reproduce 

through two alternative mechanisms: the lytic cycle and the lysogenic cycle. In the 

lytic cycle, the phage injects its DNA into the bacterial cell, hijacks the cell's 

machinery to produce new phages, and eventually causes the cell to burst, releasing 

new phages. In the lysogenic cycle the phage DNA integrates into the bacterial 

genome and replicates along with it, without killing the host. Under certain 

conditions, it can switch to the lytic cycle. 
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Plant viruses 

 

  There are over 2.000 known types of plant diseases caused by viruses. It is estimated 

that these diseases can cause a global loss of 15 billion dollars annually due to the 

damage they cause to agricultural and horticultural crops. Usual symptoms of viral 

infections in plants are discolored spots on fruits and leaves, stunted growth, and 

damage to roots or flowers. All of these symptoms reduce the yield and quality of the 

crop. Plant viruses exhibit a similar structure as the one animal viruses have and 

follow a similar way of reproduction. Most of the discovered plant viruses until now, 

have RNA genomes. A lot of them have helical capsids, while some have icosahedral 

capsids. 

 

 

 

 

Animal viruses 

 

  Animal viruses exhibit many variations in their infection and reproduction cycles. 

An important variable is the nature of the virus's genome is whether it consists of 

DNA or RNA and whether it is single-stranded or double-stranded. 

 

Families of viruses with double-stranded DNA: 

• Adenoviruses (respiratory diseases, tumors, no envelope) 

• Papovaviruses (papilloma virus, like warts and cervical cancer, polyoma virus, 

like tumors, no envelope) 

• Herpesviruses (envelope) 

• Poxviruses (envelope) 

 

Family of viruses with single-stranded DNA: 

• Parvoviruses (parvovirus B19, mild rash, no envelope) 

 

Family of viruses with double-stranded RNA: 

• Reoviruses (rotavirus, diarrhea, no envelope) 

 

  The family of single-stranded RNA viruses is categorized based on the utilization of 

RNA as mRNA, as a template for mRNA synthesis, or as a template for DNA 

synthesis. The last type is retroviruses, which have the most complex reproductive 

cycle among RNA viruses infecting animals. These viruses possess an enzyme, which 

is the reverse transcriptase that uses RNA as a template for DNA synthesis, causing 

the genetic information flow to reverse from the usual DNA-to-RNA direction to 

RNA-to-DNA. 

 

RNA used as messenger ribonucleic acid (mRNA): 

• Picornaviruses (rhinoviruses (common cold), poliovirus, hepatitis A virus, 

other enteroviruses, no envelope) 

• Coronaviruses (severe acute respiratory syndrome, envelope) 

• Flaviviruses (zika, yellow fever, hepatitis C, west nile virus, envelope) 
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• Togaviruses (rubella virus, envelope) 

 

RNA as a template for mRNA synthesis: 

• Filoviruses (ebola virus, envelope) 

• Orthomyxoviruses (influenza virus, envelope) 

• Paramyxoviruses (measles virus, envelope) 

• Rhabdoviruses (rabies virus, envelope) 

 

RNA as a template for DNA Synthesis: 

• Retroviruses (HIV (human immunodeficiency virus) and viruses causing 

leukemia, envelope) [6] 

 

 

 

 

 

 

2.3 Immune system  
 

2.3.1 Mechanisms 

 

  Immunology refers to the study of the physiological defense mechanisms through 

which the host organism recognizes, destroys, or neutralizes foreign bodies that 

invade the body, whether living or non-living matter. The defense mechanisms protect 

against infections from pathogens such as microorganisms and viruses, including 

bacteria and fungi, remove or isolate foreign bodies, and destroy cancer cells that are 

formed in the body. The immunological defense mechanisms can be categorized into 

two types the innate and the adaptive, which interact with one another. 

 

  The innate immunological defense mechanisms provide an immediate response to a 

wide range of foreign substances or cells invading the organism without identifying 

their specific identity. Consequently, these responses are not unique to any particular 

invader and are therefore referred to as non-specific immune responses. 

 

  The adaptive immunological defense mechanisms provide a specific response 

adjusted to particular pathogens and has the unique ability to remember past 

infections. This memory allows for a more efficient and rapid response during 

subsequent encounters with the same pathogen. While the innate response takes less 

time to activate than the adaptive response but the adaptive provides longer and 

highly specific protection. 

 

  The adaptive and innate immune systems are interconnected and cooperate together 

to form a defense strategy. The innate immune system controls the beginning of 

infection and provides crucial signals that shape the adaptive response. For instance, 

dendritic cells, part of the innate system, act as antigen-presenting cells that capture 

and present pathogen antigens to T lymphocytes (T cells), thus initiating and guiding 

the adaptive immune response. This interaction ensures that the adaptive immune 

system is activated and customized specifically to the pathogen encountered. 
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  In conclusion, together they provide a robust and dynamic defense mechanism, with 

the adaptive system providing a targeted and longer response and the innate system 

offering immediate protection [7]. 

 

2.3.2 Antigen and antibodies 

 

  In general, an antigen is anything that can trigger an immune response because it is 

identified as foreign by the body's defense system. In the context of viruses, an 

antigen is a component found on the surface of the virus that the immune system 

recognizes as an invader. To combat this, the immune system produces antibodies, 

proteins designed to specifically bind to these viral antigens. By doing so, antibodies 

help neutralize the virus and assist in its removal from the body, effectively protecting 

against infections [7]. 

 

 

 

 

 

2.3.3 Cells 

 

  The immune system consists of many different cells that combat diseases and are 

found both in the blood and in tissues and organs throughout the body. These cells are 

different types of white blood cells known as leukocytes and they can be classified 

into two groups: lymphoid cells and myeloid cells. The myeloid cells consist of 

neutrophils, eosinophils, basophils, monocytes, macrophages, dendritic and mast cells 

and the lymphoid of natural killer (NK), B lymphocytes (B Cells), T Cells and plasma 

cells.  

 

  Neutrophils, produced in the bone marrow, perform phagocytosis (the process by 

which cells engulf and digest foreign particles or microorganisms) and release 

enzymes to kill microorganisms. Eosinophils, also from the bone marrow, combat 

parasitic infections and participate in allergic responses, while basophils release 

histamine during allergic reactions. Monocytes, which originate in the bone marrow 

and differentiate into dendritic cells and macrophages in tissues, are involved in 

phagocytosis and the presentation of the antigens. Macrophages further specialize in 

these functions and release cytokines to signal other immune cells.  

 

  Dendritic cells, located in various tissues, are key in antigen presentation and 

initiating adaptive immunity. NK cells, from the bone marrow, target virus-infected 

and tumor cells. B cells, also bone marrow derived, produce antibodies and present 

antigens to T cells.  

 

  T lymphocytes include helper T cells that aid other immune cells and cytotoxic T 

cells that destroy cells that are infected. Plasma cells, differentiated from B cells, 

release antibodies and mast cells, found in tissues, release histamine during allergic 

reactions. Additionally, cytokines, proteins released by immune cells, act as 

messengers to regulate immune responses, cell growth, and differentiation. These 

cells collaborate to protect the body from infections, remove damaged cells and 

coordinate immune responses [7].  
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2.3.4 Immune response to viral entry 

 

  When viral entry happens, the immune system initiates a coordinated response to 

identify, neutralize, and eliminate the pathogen. The entry can happen through various 

routes such as the respiratory and gastrointestinal tract or breaches in the skin.  

 

  Antigen-presenting cells (APCs), such as macrophages, dendritic cells and B cells, 

encounter the virus. These cells ingest the virus and break it down into smaller protein 

fragments (antigens). These fragments are then displayed on the surface of the APCs. 

Helper T-cells recognize these antigens on the APCs, they become activated and they 

release cytokines to enhance the response of B-cells and cytotoxic T-cells.  

 

  Cytotoxic T-cells directly kill cells that are infected, preventing further viral 

replication. B-cells, with assistance from Th cells, differentiate into plasma cells that 

generate specific for the virus antibodies. These antibodies bind to the virus, blocking 

its entry into host cells and tagging it for destruction by macrophages and neutrophils.  

 

 

  Some of the cytotoxic T cells, helper T cells, and B cells that are activated transform 

to memory cells. These cells remain in the body way after the infection has been 

resolved and provide a quicker and more robust response if the same virus invades the 

body again in the future [7].  

 

2.3.5 Symptoms 

 

  When a virus enters the body, it can manifest in a range of symptoms that reflect the 

body’s efforts to combat the infection. Typically, individuals may experience a fever, 

which acts as a natural defense mechanism to inhibit viral replication. Respiratory 

viruses often trigger a persistent cough as the body attempts to clear the virus from the 

airways, accompanied by a sore throat. Fatigue and muscle aches frequently 

accompany viral infections and headaches may arise as a secondary effect. 

Additionally, respiratory infections can lead to a runny or stuffy nose, while 

gastrointestinal viruses might cause diarrhea or vomiting. These symptoms 

collectively illustrate the intricate interaction between viral invasion and the body’s 

defense mechanisms, highlighting the complex nature of the immune response [7]. 

 

2.4 Flaviviruses 
 

2.4.1 Arboviruses 

 

  Vector-borne diseases are caused by pathogens and parasites that are transmitted to 

humans and other animals through vectors which are organisms that carry and 

transmit these infectious agents. Arboviruses unlike other viral groups defined by 

genetic relationships, are characterized by their shared mode of transmission rather 

than their evolutionary lineage. These viruses are all transferred by an arthropod 

vector and are considered responsible for several major diseases such as Yellow fever 

Dengue, Zika, West Nile and Japanese Encephalitis virus. 

 

  Arthropods are an ancient group of animals that have been present on Earth million 

years ago. They are ubiquitous and have developed diverse adaptations, including 
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bloodsucking behaviors in several insects, some mites and all ticks. The transmission 

cycle of arboviruses involves an arthropod vector that becomes infected after feeding 

on the blood of a vertebrate host that is infected. The virus then replicates within the 

vector and is transferred to a new host.  

 

  Environmental factors can critically influence the survival and replication of both the 

arthropod vectors and the viruses they carry, impacting the prevalence and spread of 

arbovirus-related diseases. Understanding and controlling the transmission of 

arboviruses is vital for public health, given their potential to cause widespread 

outbreaks with severe health consequences [8]. 

 

2.4.2 Proteases 

 

  Proteins are molecules composed of amino acid chains that are connected by peptide 

bonds. Each amino acid has the same main structure. It includes an alpha carbon 

bonded to a hydrogen atom, central carbon atom, an amino group (NH₂), and a 

carboxyl group (COOH).  

 

  The side chain (R group) attached to this central carbon is what varies and it differs 

between each of the 20 standard amino acids. The side chain decides the properties 

and characteristics of the amino acid, such as its size, acidity, polarity, and whether it 

is hydrophobic (water-repelling) or hydrophilic (water-attracting).  

 

  Peptide bonds are covalent bonds created by a condensation reaction between the 

amino group of one carboxyl acid and the amino group of another, resulting in the 

release of a water molecule. They are generally strong bonds, meaning that enough 

energy must be supplied to the molecule to overcome the attractive forces that holds 

the atoms together.  

 

  Structurally, proteins can be categorized into four levels: primary, secondary, 

tertiary, and quaternary. The primary structure is the sequence of amino acids that are 

linked together by peptide bonds. It determines the protein’s overall shape and 

function, as the particular order of amino acids influences how the protein will fold 

and interact with other molecules.  

 

  The secondary structure addresses the local folding of the polypeptide chain into 

specific shapes stabilized by hydrogen bonds that link different parts of it. Hydrogen 

bonds are weak, non-covalent interactions that occur between a hydrogen atom that is 

covalently bonded to an electronegative atom and another electronegative atom. 

 

  The tertiary structure refers to the three-dimensional shape of a single polypeptide 

chain, created by the folding of secondary structures into a compact, globular form. 

This shape is stabilized by interactions among the side chains of the amino acids 

within the polypeptide chain, such as ionic and hydrogen bonds, van der Waals forces, 

and disulfide bridges. 

 

  Ionic bonds, also known as salt bridges, are stronger bonds than hydrogen bonds that 

form between negatively and positively charged side chains. Van der Waals forces are 

weak, non-covalent interactions that occur between all atoms in close proximity and 
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disulfide bridges are covalent bonds that form through an oxidation reaction where 

two cysteine residues form a disulfide bond.  

 

  The tertiary structure is essential for the protein's functionality, as the specific 

folding determines the active site and interaction sites with other molecules. Some 

proteins have a quaternary structure, where multiple polypeptide chains come together 

to form a functional complex. Similar types of interactions as in tertiary structure hold 

the chains together. 

 

  Proteins, also, have two distinct ends, the N-terminus and the C-terminus. The N-

terminus, characterized by a free amino group, represents the beginning of the amino 

acid sequence and is often referred to as the 5' end. Conversely, the C-terminus, with 

a free carboxyl group, signifies the end of the amino acid sequence and is known as 

the 3' end.  

 

 

 

 

 

  Each protein can vary greatly in size. Peptides are short chains of fewer than 50 

amino acids, polypeptides are longer chains ranging from 50 to 1000 amino acids but 

not yet fully functional proteins, proteins are fully folded polypeptides that many 

different lengths and multi-subunit proteins consist of multiple polypeptide chains.  

 

  Furthermore, each one’s unique structure, determined by the sequence of amino 

acids, dictates its specific function within the cell. They can serve as structural 

components, as enzymes, which catalyze biochemical reactions, as transporters, and 

as signaling molecules. Proteins are also involved in immune responses, cell 

movement, and regulation of gene expression. Many proteins act as enzymes, which 

are catalysts that speed up chemical reactions in the body. Amino acids in the 

enzyme’s active site interact with substrates, facilitating the conversion of reactants to 

products [9]. 

 

  Most catalysts in biological systems are enzymes, and almost all enzymes are 

proteins. Enzymes are highly specialized and they can increase the speed in which 

chemical reactions are happening in living organisms. To understand their function, it 

is important to understand their structure. 

 

  Substrates are molecules that enzymes selectively recognize and bind to. This high 

specificity ensures that the enzyme catalyzes only the intended reaction. When a 

substrate binds to an enzyme, it interacts with the enzyme's active site binding to it 

through various interactions, forming an enzyme-substrate complex.  

 

  The active site is a specially shaped pocket on the enzyme’s surface that is 

complementary to the substrate, allowing it to fit like a key in a lock. This site, though 

typically a small part of the enzyme’s entire structure, is crucial for its catalytic 

function. The specificity of an enzyme is largely determined by the unique structure 

and chemistry of its active site. This site is composed of amino acid residues that 

create a specific chemical environment. For instance, in many enzymes, a catalytic 

triad of amino acids works together to catalyze reactions. 
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  At the entry of the substrate to the active site, the enzyme experiences a minor 

conformational change, optimizing the interaction and reducing the activation energy 

needed for the reaction. Lowering the activation energy means that the enzyme makes 

it easier for the chemical reaction to happen by reducing the energy barrier that the 

substrate must overcome to be converted into the product. This leads to the efficient 

conversion of the substrate into the product.  

 

  Once the reaction is complete, the products, which have lower affinity for the active 

site than the substrate, are released. This reduced affinity means that the products do 

not bind as tightly, allowing them to be released from the active site. The enzyme 

returns to its original conformation, prepared to bind with a new substrate molecule 

and do the same process all over again.  

 

 

 

 

 

 

  Additionally, cofactors and coenzymes play a crucial role in assisting the enzyme's 

catalytic activity. Cofactors, which can be metal ions like or organic molecules, are 

necessary for many enzymes to be fully active. Coenzymes, a type of organic cofactor 

usually derived from vitamins, assist in enzyme activity by carrying chemical groups 

between molecules during reactions. 

 

  Enzymes can also be regulated allosterically, where molecules bind to sites other 

than the active site, known as allosteric sites. When a molecule binds that way, it 

makes a conformational change in the enzyme's structure. This change can either 

enhance or inhibit the enzyme’s activity. When an allosteric molecule binds, it can 

increase the receptivity of the active site by making it more accessible or stabilizing a 

conformation that enhances catalytic efficiency. This regulatory mechanism enables 

the cell to adjust enzyme activity as needed, ensuring that reactions proceed at optimal 

rates 

 

  The enzymes have six major classes. The oxidoreductases catalyze oxidation-

reduction reactions. They facilitate the transfer of electrons between molecules, 

usually by transferring hydrogen or oxygen atoms. The transferases transfer 

functional groups between molecules. Lyases destroy various chemical bonds without 

using oxidation and hydrolysis. Isomerases arrange atoms inside a molecule, 

converting it into its isomer and ligases join two molecules. Finally, hydrolases 

catalyze the cleavage of bonds through the addition of water (hydrolysis). This class 

of enzymes includes proteases, lipases, and nucleases. 

 

  Proteases are a specific type of enzyme that play a critical role in protein metabolism 

by decomposing proteins into smaller peptides or individual amino acids. This 

process, known as proteolysis, cleaves the peptide bonds between amino acids in a 

protein chain. In the context of viral infections, such as those caused by flaviviruses, 

proteases are essential for the virus's life cycle.  
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  The flavivirus protease is classified as a serine protease because it utilizes a catalytic 

triad, composed of histidine, serine and aspartate, which operates in a mechanism 

similar to that of trypsin. Like trypsin, it uses its serine residue to cleave peptide 

bonds, targeting specific sites just after certain amino acids. Given their essential role 

in viral replication, proteases make excellent targets for antiviral drugs, as inhibiting 

them prevents viral spread [10]. 

 

2.4.3 Treatment  

 

  Vaccines is the primary way to prevent viral infections. They are harmless forms of 

a pathogen or its derivatives capable of stimulating the body's immune system to 

develop defenses against the harmful pathogen. They can completely eradicate certain 

diseases and prevent some viral diseases, but current medical technology cannot cure 

most of the viral diseases once they occur.  

 

 

 

 

 

 

  For treating a virus, often antiviral drugs are needed. They can be a critical tool in 

managing and curing viral infections, especially when vaccines are unavailable or 

ineffective. They target specific viral enzymes critical to the virus's ability to replicate 

and spread. The most common practice is inhibiting viral proteases, enzymes that 

cleave viral polyproteins into functional parts necessary for the virus to mature. These 

antiviral drugs, known as protease inhibitors, are designed to interact with either the 

active site or the allosteric site of the enzyme. 

 

  When a drug targets the active site of the protease, it acts as a competitive inhibitor. 

This means the drug molecule is structurally the same to the enzyme’s natural 

substrate and competes directly to bind to the active site. By occupying this site, the 

drug prevents the enzyme from processing its natural substrate, which in the case of 

viral proteases, means the virus cannot cleave its polyproteins into functional proteins. 

This blockage effectively stops the virus from producing the components needed to 

assemble new viral particles, halting replication. 

 

  In contrast, when a drug binds to the allosteric site, a different region on the enzyme, 

it functions as a non-competitive inhibitor. Binding to the allosteric site changes the 

conformation of the enzyme, which then alters the structure of the active site. This 

alteration can reduce the enzyme's ability to bind its natural substrate or render the 

active site completely inactive. As a result, the enzyme can no longer catalyze the 

necessary cleavage reactions, further inhibiting the virus's ability to replicate. 

 

  Both mechanisms, competitive and non-competitive inhibition, specifically target 

viral proteases disrupting the virus's lifecycle without affecting human proteases, 

offering a targeted therapeutic approach. However, it's important to note that viruses 

can mutate over time, potentially developing resistance to these drugs, which 

underscores the need for ongoing research and development of new antiviral therapies 

[10]. 
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  Currently, there are no safe therapeutic options for treating flavivirus infections and 

supportive care is the primary approach, although it is often not very effective. The 

symptoms of viral infections vary depending on how the virus interacts with host 

cells, and many symptoms, such as fever and pain, are primarily due to the immune 

system's response as it attempts to eliminate the virus. For West Nile virus and 

dengue, no licensed vaccines exist, and treatment remains focused on symptom 

management rather than targeting the virus.  

 

  Similarly, while vaccines are available for Japanese encephalitis and yellow fever, 

they have limitations, and their use is mainly recommended for those in endemic 

areas. The challenge is further compounded by the lack of specific antiviral drugs and 

the difficulty in scaling vaccine production to meet global demand, particularly for 

dengue. Substantial gaps remain in our understanding of flaviviruses and their 

associated diseases, highlighting the need for continued research and development [9]. 

 

 

 

 

 

2.4.4 Structure 

 

  The flavivirus is a small, icosahedral, enveloped particle, 40–60 nm in diameter, 

with a 30 nm nucleocapsid core. It contains three structural proteins: the membrane 

protein M, the capsid protein C and envelope protein E. The C protein encases the 

RNA genome, forming the nucleocapsid, which is encircled by a lipid bilayer 

originating from the host cell, anchoring the M and E proteins. The E protein is vital 

for recognizing host-cell receptors and serves as the main target for neutralizing 

antibodies. 

 

  The flavivirus genome is a positive, single-stranded RNA, approximately 11.000 

nucleotides long, functioning as a single RNA messenger, which is used to produce 

the proteins needed by the virus. This RNA has a part called an "open reading frame" 

(ORF), which is a sequence of genetic code that can be translated into a protein. 

 

  On either side of the ORF, there are regions of the RNA called noncoding regions 

(NCRs). Although they don't make proteins, these NCRs play important roles. They 

can fold into specific shapes, known as RNA secondary structures, which may help 

the virus replicate its genome, produce proteins, and package the RNA into new virus 

particles. 

 

  Non-structural proteins such as NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5 

are crucial for the replication of the virus and assembly. NS1, a homodimer, is vital 

for viral RNA replication, as do NS4A and NS4B, which are small, hydrophobic, 

membrane-associated proteins. NS2A, a small viral protein, aids in replication by 

preparing RNA templates and supporting the machinery necessary for this process. 

Additionally, NS2A can interfere with the host's immune response, helping the virus 

evade detection.  

 

  NS2B, another small membrane-associated protein, functions as a cofactor for the 

NS2B–NS3 complex, which activates a protease responsible for cleaving the viral 
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polyprotein at specific sites. NS3, a large cytoplasmic protein, is involved in several 

enzymatic activities, including polyprotein processing and viral RNA replication. 

Notably, NS3 also seems to play a role in the assembly of the virus. NS5, the biggest 

and most conserved protein, is crucial for the virus's life cycle, underlining its 

importance across different flavivirus species [9]. 

 

2.4.5 Expansion and symptoms 

 

Yellow Fever  

 

  Yellow fever (YF) is an African disease caused by the yellow fever virus (YFV), 

which has a single serotype and several genotypes [9]. The first documented outbreak 

occurred in Barbados in 1647, spreading to the Yucatan peninsula in 1648 and 

throughout the Caribbean, with regular outbreaks in Cuba. Major outbreaks followed, 

including a significant one in Philadelphia in 1793 that killed almost 10% of the 

population, and the biggest outbreak in America in 1878 along the Mississippi River, 

that claimed over 20.000 lives.  

 

 

 

  The last outbreak in America was in New Orleans in 1905. Initially believed to be 

caused by "miasma," YF was later proven to be mosquito-borne by the Yellow Fever 

Commission in 1900, confirming earlier hypotheses by J.C. Nott and Carlos Finlay 

[11]. Dramatic upsurges in YFV activity occurred in Africa in the 1960s and late 

1980s, involving over 100.000 cases, with more recent outbreaks in Brazil, Paraguay, 

Argentina, Uganda, Sudan, and Ethiopia. Despite vaccination efforts, surveillance 

remains predominantly passive, leading to an underestimation of the true incidence, 

especially in endemic areas [9].  

 

  YFV infection ranges from sub-clinical to severe hemorrhagic disease and death. 

The disease progresses through an "infection" phase, with flu-like symptoms like 

fever and malaise, to a severe "intoxication" phase, characterized by jaundice, 

hemorrhage, multi-organ dysfunction and death seven to ten days after onset. YFV 

directly infects liver cells, causing acute injury and potentially leading to vascular 

leakage and coagulation issues. While there are reports of disseminated intravascular 

coagulation and loss of coagulation factors in patients that were infected, much about 

YF pathogenesis remains unclear, necessitating further research [11]. 

 

Dengue 

 

  "Dandy Fever" and "break-bone fever" were terms used in the late 1700s to describe 

what were later identified as outbreaks of dengue and Chikungunya virus (CHIKV) 

infections. Dengue, caused by DENV infection, was distinguished from CHIKV by 

the absence of persistent arthritis and the presence of a rash and headaches. The first 

official description of dengue was by David Bylon during 1779.  

 

  In the 1800s, it was hypothesized that both yellow fever and dengue were 

transmitted similarly and it was also noted that they occurred in the same locations. 

Both diseases were identified as filterable agents linked to the Aedes aegypti 

mosquito, and later, Aedes albopictus was also identified as a vector for dengue. 
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  Using various immunological tests, Sabin and Schlesinger identified two 

immunological types of dengue virus. Immunological types refer to distinct variations 

of the virus that elicit different immune responses from the host. Further serological 

assessments revealed that in dengue virus (DENV), there are four immunological 

types, also known as serotypes, DENV-1, DENV-2, DENV-3, and DENV-4. 

 

  Each serotype has unique surface proteins that the immune system identifies and 

responds to. When an individual is infected with one serotype, they have immunity to 

that particular serotype. However, this immunity does not fully protect against the 

other three serotypes. In fact, subsequent infections with a different serotype can 

result in more severe disease. 

 

  A significant outbreak in America in 1922 affected one to two million people. 

Today, about 40% of the global population is vulnerable to DENV infection, 

primarily in tropical and subtropical regions, with an estimated 390 million cases 

annually [11].  

 

 

 

 

  Specifically, the virus affects the continents of Africa, Asia, Oceania, and the 

Americas. However, information on cases in African endemic countries is limited, 

and the true prevalence is obscured by numerous asymptomatic infections in big 

urban regions. These factors make dengue the most prevalent arbovirus in the world. 

The complexity of dengue pathogenesis continues to be a focus of ongoing research 

[9]. with a variety of clinical presentations, so the severity of the disease was 

determined based on clinical observations. 

 

  Dengue is a disease with a variety of clinical presentations, so the severity of the 

disease was based on clinical observations. The typical symptoms include a fever, 

nausea, headache, rash, vomiting, and muscle and joint pains. This initial phase 

generally lasts for five to seven days, with recovery being straightforward for most 

individuals. In some cases, however, patients may experience a sudden worsening 

after the febrile phase, marked by warning signs such as abdominal pain, lethargy, 

fluid accumulation, persistent vomiting, liver enlargement, and mucosal bleeding.  

 

  Severe dengue, or dengue hemorrhagic fever (DHF), is characterized by severe 

plasma leakage, leading to fluid accumulation in body cavities and organs, which can 

cause respiratory distress and hypotension. Without prompt treatment, severe dengue 

can progress to dengue shock syndrome (DSS) and result in significant bleeding and 

multi-organ impairment, affecting the liver, heart, central nervous system, and 

pancreas [9].  

 

  DHF/DSS is more common in secondary infections, especially in children or in 

newborns. In practical terms, the grading system for severe DENV infection is not 

well-defined prompting efforts to refine and enhance the classification [11]. 

 

Japanese Encephalitis 
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  Epidemics of encephalitis in Japan date back to 1871, with a notable outbreak in 

1924 affecting 6.000 people and causing a 60% fatality rate. The causative agent, 

Japanese encephalitis virus (JEV), was first isolated from non-human primates in 

1933 and further characterized in mice during a 1935 outbreak.  

 

  JEV has five distinct genotypes but there are no differences among them, they all 

form a single serotype. Approximately three billion people across 24 countries, 

mainly in Asia, live in JEV-endemic areas. The annual incidence is around 70.000 

cases, influenced by geographic and climatic factors as well as vaccination rates, with 

an estimated 14.000–20.500 fatalities.  

 

  The virus is transmitted by Culex mosquitoes that are the primary vectors and with 

vertebrate hosts like pigs and domesticated birds. Pigs serve as significant amplifying 

hosts, while birds primarily facilitate the spread to new areas. 

 

   

 

 

 

 

  The majority of human infections with JEV are asymptomatic. Acute encephalitis is 

the most frequently observed clinical manifestation. with symptoms like headache, 

myalgia, diarrhea, and vomiting. It can escalate to neurological complications such as 

acute flaccid paralysis, convulsions, mental confusion, severe encephalitis, coma and 

death. Approximately 30% of survivors of severe disease experience neurological 

sequelae, including seizures, physical disabilities, and cognitive deficits [11]. 

 

West Nile 

 

  West Nile virus (WNV) was initially identified as a human pathogen in 1937 in 

Uganda. Later on, its presence was reported in Asia, Africa, Europe and Australia. It 

was not considered as a significant human health issue until the late 1990s due to its 

rare outbreaks, which were sporadic, linked to low pathogenicity and typically 

resulted in mild neurological diseases. 

 

  The first outbreak in humans was documented in Israel in 1950. Notable outbreaks 

then occurred in France, South Africa, Algeria, Romania, Tunisia, and Russia 

between the 1950s and 1990s. In August 1999, the WNV was first identified in New 

York City and it successfully established and dispersed throughout America. Today, 

WNV is globally distributed and it is transmitted by Culex spp. mosquitoes with 

Passeriformes birds being the hosts.  

 

  Most of WNV infections in humans are asymptomatic. Typical symptoms are an 

abrupt fever, myalgia, headache, fatigue, nausea, weakness, diarrhea and vomiting, 

often developing two to fourteen days after virus infection. The illness usually 

remains for two to five days.  

 

  The neuroinvasive infection by WNV is characterized by altered mental status 

(disorientation, coma and stupor) meningitis, encephalitis, and/or poliomyelitis with 

long-lasting neurological complications. Infrequent complications are myocarditis, 
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Guillain–Barrι syndrome, respiratory failure and death. The fatality rate in patients 

with neurological symptoms is approximately 10 %, with the elderly and 

immunocompromised patients being more at risk [9]. 

 

2.5 Zika virus 
 

2.5.1 Expansion 

 

  The Zika virus was first isolated in 1947 from a rhesus monkey in Uganda's Zika 

Forest [12]. It remained largely unnoticed for decades due to its limited geographical 

spread in East and West Africa and its typically mild or asymptomatic infections [13]. 

However, this changed dramatically in 2007 with an outbreak on the Pacific Island of 

Yap, marking the first documented human epidemic. The virus continued to spread, 

causing significant outbreaks in French Polynesia and other South Pacific islands 

between 2013 and 2014 [12].  

 

 

 

 

 

  In 2015, ZIKV was detected in Brazil [14], where it rapidly proliferated, leading to 

an epidemic that affected hundreds of thousands of people across the Americas and 

the Caribbean [12]. The Brazilian Health Ministry estimated over one million 

infections by the end of 2016 [14]. Since then, ZIKV has caused a global health 

emergency, with approximately 84.000 reported cases in 2016 [15], and it has 

impacted millions of people in over 40 countries, including those in North and South 

America, Europe, and Asia [12]. The virus's ability to cause large-scale outbreaks is 

largely due to its vectors and the regions in which they circulate [14]. 

 

2.5.2 Transmission 

 

  Zika virus (ZIKV) is mainly transmitted through Aedes mosquitoes, particularly 

Aedes aegypti and Aedes albopictus [15]. There is also evidence suggesting that 

mosquitoes can acquire ZIKV if the water is contaminated with human urine, 

highlighting the risk of transmission in areas with poor sanitation. However, the virus 

can also spread through non-vector means, including sexual transmission [14], as it 

has been detected in human spermatozoa [12].  

 

  Additionally, ZIKV can be transmitted to the fetus from the mother while she is 

pregnant, as the virus is capable of crossing the placental barrier, leading to severe 

birth defects. Another potential route of transmission is through breast milk, as viable 

ZIKV has been identified there, posing a risk of mother-to-child transmission [9]. 

 

2.5.3 Symptoms 

 

  ZIKV infection often causes mild symptoms, like rash, fever, conjunctivitis, muscle 

and joint pain, headache, and fatigue. These symptoms typically last for two to seven 

days and are often so mild that they go unnoticed [9]. However, ZIKV poses a 

significant health threat due to its association with severe neurological and 
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immunological complications such as microcephaly in newborns and Guillain-Barré 

syndrome in adults.  

 

  Microcephaly is a medical condition characterized by abnormal fetal growth in the 

uterus, impacting the development of the central nervous system, which can result in 

permanent cognitive impairment or death. Guillain-Barré syndrome, is more common 

in young adults where the immune system attacks the peripheral and spinal nerves 

causing the demyelination of them and leading to muscle weakness or paralysis [14]. 

 

2.5.4 Structure 

 

Zika virus, is an arbovirus member of the Flavivirus genus within the Flaviviridae 

family. It has a single-stranded RNA genome comprising of almost 10.794 

nucleotides of positive polarity and an envelope [15]. This genome encodes a single 

polyprotein that is cleaved by viral and cellular proteases into structural proteins that 

form the viral particle (capsid, precursor membrane/membrane, and envelope) and 

nonstructural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5) that are 

involved in the replication of the virus within host cells. 

 

 

  The viral NS2B-NS3 complex is a chymotrypsin‐like serine protease with a key role 

in processing the ZIKV polyprotein, facilitating the release and maturation of 

individual proteins [14]. The catalytic triad of the protease is Ser135, His51, and 

Asp75, with NS2B acting as a cofactor to enhance NS3's activity. The protease can 

adopt an "open" conformation when a substrate or inhibitor is absent, where NS2B 

shows limited interaction with NS3, and a "closed" conformation upon binding a 

substrate or inhibitor, resulting in a more compact structure [16]. Understanding these 

structural details is crucial for developing targeted antiviral treatments [15].  

 

2.5.5 Treatment 

  

  The creation of efficient and safe vaccines and antiviral drugs is crucial for 

controlling and managing outbreaks and complications associated with ZIKV 

infections. Although multiple vaccines have demonstrated considerable promise in 

human clinical trials, none have yet received approval from the World Health 

Organization (WHO) or other global health agencies.  

 

  In the absence of approved vaccines, the exploration of clinically available antiviral 

drugs offers a potential alternative for containing Zika infections [12]. However, no 

specific antiviral drugs have been approved either [13]. As a result, current clinical 

management relies on supportive care, including hydration, rest and the use of 

nonsteroidal anti-inflammatory and antipyretics drugs. While these measures help 

alleviate symptoms, they offer only limited effectiveness, underscoring the need for 

continued research into more targeted therapies [14]. 

 

  Significant efforts have been dedicated to the development and identification of 

compounds with inhibitory potential against ZIKV, particularly focusing on small 

molecule protease inhibitors. In recent years, several ZIKV NS2B-NS3 protease 

inhibitors have been identified through virtual screening approaches. The inhibition of 

the NS2B-NS3 protease complex is especially noteworthy because it plays a pivotal 
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role in the replication of the virus, making it a promising molecular target for the 

development of antiviral drugs against this emerging flavivirus.  

 

  The application of virtual screening and computational modeling has accelerated the 

traditional drug discovery process, enabling the rapid identification of potential 

inhibitors. This approach is recognized as one of the most effective strategies for 

discovering and developing new, safer drugs. Furthermore, leveraging existing 

knowledge from studies on compounds effective against other flaviviruses has proven 

invaluable in expediting the discovery of therapeutics against ZIKV [12]. 

 

  Notably, most reported effective small molecules are designed to target allosteric 

sites instead of the enzyme's active site. [13]. The preference for allosteric inhibition 

arises due to limitations associated with directly targeting the active site. The active 

site of the NS3 enzyme is inherently small, structurally rigid and relatively 

inaccessible. These characteristics make it challenging for competitive inhibitors to 

bind effectively and retain specificity. Moreover, even before any structural changes 

occur, this specificity can complicate drug development and increase the risk of 

resistance as the virus mutates. 

 

  Things become even more difficult after the enzyme undergoes a shape change 

either due to an NS3 inhibitor or a substrate binding to the active site of the enzyme. 

Specifically, the NS2B protein adopts a closed conformation that obscures the active 

site, further obscuring access to it. This can partially or completely block the 

inhibitor's access to essential binding regions, resulting in incomplete binding and, 

consequently, ineffective inhibition of the enzyme's catalytic activity.  

 

  Even if the inhibitor manages to bind, the altered enzyme structure may weaken the 

interaction, leading to a fragile bond, thereby reducing the drug's overall 

effectiveness. This insufficient inhibition allows the enzyme to maintain some level of 

activity, diminishing the therapeutic impact of the drug. Over time, incomplete 

inhibition can facilitate the continued replication of the pathogen, potentially leading 

to the development of drug resistance as the pathogen adapts to evade the inhibitory 

effects.  

 

  Ultimately, these issues can culminate in therapeutic failure, where the treatment 

does not achieve the desired clinical outcome. Addressing these structural challenges 

is therefore critical for successful drug design and effective disease control. 

 

  In contrast to competitive inhibitors that compete with the substrate for the protein's 

active site, allosteric inhibitors function by binding to other sites on the surface of the 

protein. That way they can modulate protease activity by inducing conformational 

changes rather than completely blocking the enzyme, thereby allowing for a more 

controlled inhibition and a way less invasive to influence the catalytic function of the 

enzyme.  

 

  This subtle modulation reduces the risk of side effects and minimizes toxicity to host 

cells. Toxicity in host cells refers to the harmful effects that a drug or compound can 

have on the cells of the organism being treated, rather than just on the pathogen it is 

targeting. Additionally, allosteric sites are generally less susceptible to mutations 

compared to the active site, which can further reduce the likelihood of resistance.  
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  Furthermore, allosteric inhibition offers the potential for synergistic interactions with 

active site inhibitors, providing an avenue for developing more robust and durable 

antiviral therapies against ZIKV. 

 

  However, in allosteric inhibition, sites for binding are often more challenging to 

discover and define. They are often less conserved across strains, meaning that viral 

mutations could easily evolve to render allosteric inhibitors ineffective, leading to 

quicker resistance development. Since allosteric inhibition works by inducing 

conformational changes in the enzyme, the resulting effects on enzyme activity can be 

less predictable and harder to measure than with competitive inhibitors.  

 

  On the other hand, competitive inhibitors directly block the substrate from binding, 

providing an immediate and measurable impact on enzyme activity, which is critical 

in the initial phases of drug development. The structure of the active site is often 

easier to map, allowing for structure-based drug design and more straightforward 

optimization of drug candidates. Each approach has positives and negatives. The 

choice between them depends on the specific virus and enzyme [14]. 

 

 

  Several Food and Drug Administration (FDA) approved drugs, originally developed 

for other uses, have shown promise in combating Zika virus. Sofosbuvir is approved 

for Hepatitis C, hydroxychloroquine for malaria, lupus, and rheumatoid arthritis, 

while azithromycin and novobiocin are antibiotics. These repurposed drugs highlight 

the strategy of leveraging existing therapeutics for new disease applications, including 

combating Zika virus [17]. 

 

METHODOLOGY 
 

  For the prediction of potential antiviral compounds that may be effective against the 

Zika virus, three different methodologies were used: statistical analysis, machine 

learning, and in silico molecular docking experiments. The primary advantage of 

these approaches, and the reason they are increasingly applied in scientific research, 

particularly in the health sector, is their ability to reduce cost and time.  

 

  Specifically, statistical analysis aids in a better understanding and prediction of 

results, while the creation of machine learning models allows for the processing of 

large datasets and the recognition of patterns that are not easily discernible by 

humans. Concurrently, in silico analysis can expedite the search for new compounds 

by enabling the assessment of the antiviral activity of thousands of potential 

molecular structures. This approach also helps avoid the production and experimental 

testing of these numerous compounds in the laboratory, a process that is both time 

consuming and costly.  

 

3.1 Data preprocessing 
 

3.1.1 Statistical analysis & machine learning 

 

  For data preparation, the ChEMBL [18] database was utilized to identify potential 

antiviral compounds against the Zika virus. Since this database does not have the 
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NS2B-NS3 protein specific to the Zika virus, a search was conducted using the target 

organism.  

 

  Navigating to the activity charts Half Maximal Inhibitory Concentration (IC50) and 

Half Maximal Effective Concentration (EC50) values, which are critical measures of 

a compound's potency and efficacy, were analyzed. Lower values indicate higher 

potency, making them essential criteria for selecting promising antiviral compounds. 

 

  The data were extracted and processed, mainly by labeling the compounds based on 

their IC50 values, classifying those with an IC50 less than 10.000 nM as "Active" and 

those with higher values as "Not Active." This allowed to efficiently identify and 

classify the antiviral compounds for further investigation. 

 

  To find the molecular descriptors of this compounds the ChemDes [19] online tool 

was used. In the platform the descriptors were computed with RDKit [20] which is an 

open-source cheminformatics library that offers a comprehensive suite of tools for 

processing and analyzing chemical data.  

 

 

 

  The input was the Simplified Molecular Input Line Entry System (SMILES) of the 

compounds that is a text-based notation for representing chemical structures using 

ASCII characters. Once the molecular descriptors were calculated the results were 

downloaded as a CSV file.  

 

  The code read the data from that CSV file, handled missing values by filling them 

with the most frequent value of each column, and classified data based on a threshold 

value of 10.000 that it splits the data into 'Active' and 'Not Active' categories. The 

code further dropped irrelevant columns and applied a correlation cleaner function to 

remove highly correlated features. The correlation cleaner iteratively removed the 

most correlated feature until no pair exceeded a specified correlation cutoff of 0.9. 

This resulted in a cleaner dataset that is well-prepared for subsequent analysis. 

 

  To ensure a robust evaluation, the dataset was split into training and testing sets with 

80% of the data for training and 20% for testing. The random state was reproducible 

so its time the code was executed the same split and the exact same data points 

remained. This was particularly useful for debugging and for ensuring that results can 

be reliably compared across different runs of the experiment.  

 

  The training data were then used to select molecular descriptors according to their 

Fishers Score. This method aims to identify descriptors that best separate different 

classes in a dataset. The primary goal is to select those that maximize the distance 

between classes while minimizing the variance within each class, making it easier for 

classifiers to distinguish between different categories. 

 

The Fisher Score for a particular descriptor is calculated: 
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  The numerator of the equation calculates the between-class variance. It measures 

how much the feature varies between different classes. Specifically, it sums up the 

weighted squared differences between the mean of the feature in each class and the 

overall mean. A larger value indicates that the feature can differentiate well between 

classes.  

 

 

 

 

  The denominator represents the within-class variance. It sums the variances of the 

feature within each class, weighted by the amount of samples in the class. A smaller 

value here suggests that the feature has less variability within each class, which is 

desirable because it implies that the feature is consistent within each class.  

 

  As a result, a high Fishers Score indicates that the feature has a large between-class 

variance and a small within-class variance, making it a good feature for distinguishing 

between classes [21].  

 

  The top 50 features with the higher score were retained for training and testing a 

Random Forest classifier. Training means learning patterns between the target labels 

and the features and then this model is utilized to predict the labels of the test dataset. 

This step assesses how effectively the model generalizes to new data.  

 

  Random Forest is an advanced machine learning algorithm that builds on the concept 

of decision trees. A decision tree resembles a flowchart, where every internal node 

symbolizes a decision according to a particular feature of the data, branches represent 

the results from these decisions, and leaf nodes indicate the final prediction or 

classification. The tree starts with a root node that contains the entire dataset and 

splits it based on the feature that best separates the data, according to methods like 

Gini impurity. This process of splitting continues recursively, creating a structure 

where every path from the root to a leaf represents a sequence of decisions leading to 

a final outcome [22].  

 

  Gini impurity is an automated method to assess the quality of a split at a node. It 

calculates the probability that a randomly chosen feature from the node will be 

incorrectly classified if it were labeled at random based on the current class 
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distribution in the node. By calculating the Gini impurity, the classifier can identify 

which features are better suited for placement higher up in the tree, starting from the 

root and progressing through the internal nodes.  

 

  During the construction of a decision tree, Gini impurity helps decide which feature 

to split on by evaluating how each potential split affects the impurity of the resulting 

child nodes. The feature that leads to the highest reduction in Gini impurity from the 

parent node to the child nodes is chosen for the split. 

 

The mathematical formula for the Gini impurity is given by: 

 

 
 

• pi represents the probability of a sample being classified into a specific 

class i  

• n is the number of classes [23] 

 

 

 

 

  A Random Forest classifier improve the overall predictive performance by 

producing an ensemble of multiple decision trees. Each tree in this forest is trained on 

a various subset of the data, generated through a process called bootstrapping, where 

the original dataset is randomly sampled with replacement. This implies that some 

data points may be chosen multiple times, while others might not be selected at all, 

ensuring diversity in the training data for each tree.  

 

  Additionally, the random subspace method is used. In a standard decision tree, when 

making a split at any node, the algorithm considers all available features in the dataset 

to determine the best possible split. This approach, while effective, can lead to 

overfitting, especially if some features are particularly dominant. If these dominant 

features are always chosen first, the resulting trees can become highly correlated, 

meaning they make similar mistakes and fail to generalize well to new data.  

 

  To mitigate this issue, Random Forest introduces a layer of randomness during the 

tree-building process. At each node in a decision tree, instead of evaluating all 

features, Random Forest randomly selects a subset of features. Only these randomly 

chosen features are then considered for splitting the node.  

 

  Once the individual trees are built, the Random Forest classifier aggregates their 

predictions to make a final decision. For classification tasks, this is usually 

accomplished through majority voting, where the class that receives the highest votes 

from the trees is selected as the final prediction. For regression tasks, the predictions 

from all the trees are averaged.  

 

  The Random Forest classifier was selected for both feature selection and later on for 

classification due to its unique combination of advantages. It can handle high-
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dimensional data well, meaning it can manage datasets with a large number of 

features without getting overwhelmed.  

 

  For classification, its ensemble approach, where multiple decision trees are trained 

on different subsets of the data, makes it highly robust and less prone to overfitting 

that happens when a model is too closely tailored to the training data. By averaging 

the predictions of these diverse trees, Random Forest produces a model that 

generalizes well to new data.  

 

  It also excels in capturing complex, non-linear relationships between features, which 

many other classifiers might miss. Moreover, Random Forest is relatively immune to 

issues like multicollinearity, that occurs when two or more features in a dataset are 

highly correlated. This boosts its versatility and reliability for both feature selection 

and classification tasks [24].  

 

  To understand which descriptors contributes most to the model's predictions, the 

permutation importance of each feature was calculated. This involved randomly 

shuffling the values of each feature and assessing the resulting decrease in model 

accuracy. Features that resulted in a substantial drop in accuracy were considered 

more valuable. The features were then ranked according to their importance scores, 

and the top 10 possibly most important features were identified and extracted from the 

original dataset. These features were used for further analysis. 

 

3.1.2 Computational chemistry 

 

  In our study, computational chemistry methods were utilized to evaluate whether a 

series of natural compounds could interact with the NS2B-NS3 protease of the Zika 

virus in a similar way to its bound ligand, which acts as a potential inhibitor, thereby 

assessing their potential as antiviral drugs.  

 

  The analysis began by identifying from the Protein Data Bank (PDB) [25] a suitable 

co-crystallized protein and ligand complex. PDB is a database that stores three-

dimensional (3D) structural data of biological molecules, such as nucleic acids, 

proteins and complex assemblies. These structures are produced using experimental 

methods like X-ray crystallography.  

 

  The selected structure was 5LC0 that represents the NS2B-NS3 protease of the Zika 

virus with a boronate inhibitor bound to its active site. A boronate inhibitor is a type 

of chemical compound that contains a boronic acid or boronate group and is designed 

to inhibit the activity of specific enzymes, particularly targeting serine or cysteine 

proteases. The International Union of Pure and Applied Chemistry (IUPAC) name of 

the compound used in this structure is N-((S)-3-(4-(aminomethyl) phenyl)-1-(((R)-4-

guanidino1-(5-hydroxy-1,3,2-dioxaborinan-2yl) butyl) amino)-1-oxopropan-2-yl) 

benzamide (6T8).  

 

  In the crystal structure of the ZIKV NS2B/NS3 protease, the two chains, labeled A 

and B, are identical. Each chain is made up of the NS3 protease and the NS2B 

cofactor, forming a special kind of pair known as a homodimer. This homodimer 

exhibits quasi-twofold symmetry, where the two identical parts are arranged almost 

like mirror images of each other. This specific arrangement in the dimer, which is 
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unusual for flavivirus proteases, could be essential for the virus's ability to replicate 

within the host [16]. 

 

  5LC0 is considered a good structure for studying the Zika virus for several reasons. 

It is highly relevant as it represents the NS2B-NS3 protease complex of the Zika virus 

with a bound inhibitor, which provides an example of how the potential inhibitors 

interact into the active site of the examined complex, making it a valuable template 

for designing new drugs. The resolution of the structure is good for crystallographic 

data, providing accurate details of the atomic positions, which is crucial for reliable 

computational chemistry procedures.  

 

  Finally, it has a well-defined view of the active site and it has been widely used in 

research and published studies so it is validated as a reliable structure. Once the 

structure was selected, it was inspected and cleaned by removing non-essential 

elements like water and other small molecules or additional chains that are not part of 

the target complex. Following this, proper protonation was achieved by adding 

hydrogen atoms, enhancing the accuracy of simulations and improving the 

understanding of the protein's behavior and function.  

 

 

 

 

 

  Understanding the interactions between a protein and its complexed ligand is 

essential for comprehending how enzyme inhibition occurs. To identify these 

interactions the Protein-Ligand Interaction Profiler (PLIP) [26] software was used. It 

examines 3D structures, from PDB, of protein and ligand complexes and finds non-

covalent interactions such as hydrophobic interactions, hydrogen bonds, π-stacking, 

salt bridges and π-cation.  

 

  Hydrophobic interactions occur when non-polar molecules or parts of molecules 

group together to avoid contact with water. When two flat, ring-shaped molecules, 

such as aromatic rings, stack on top of each other because of the special type of 

electrons they have, called π-electrons, π-stacking happens. These π-electrons, which 

are found in π-bonds, a type of bond where electrons are spread above and below the 

atoms, rather than directly between them, create a weak attraction between the rings.  

 

  This attraction occurs because the electrons in one ring are drawn to the electron 

cloud of another ring. As a result, the stacking stabilizes the structure of the 

molecules. On the other hand, π-cation interactions occur when a positively charged 

ion, called a cation, is attracted to the π-electrons in an aromatic ring. Since the π-

electrons form a negatively charged cloud above and below the ring, the positively 

charged cation is drawn to it, creating a strong attraction [27]. 

 

  Based on the identified interactions that were mostly hydrogen bonds, 

pharmacophore models were created, using Pharmit [28], which is a web-based tool, 

that screens large libraries of compounds to predict which ones may have the 

necessary features to interact effectively with a biological target. The 5LC0 PDB was 

used as input so the 3D coordinates of the protein and the ligand were extracted. After 
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identifying the binding site, a pharmacophore model was generated automatically, the 

features of whom, were altered to adjust to the search being conducted.  

 

  It was decided that two models would be constructed, the first includes six features, 

five hydrogen bond donors and one hydrogen bond acceptor, while the second with 

three hydrogen bond donors. The choice to include two models derived because the 

one with more features would have a higher specificity, meaning that it would likely 

identify ligands that closely match the binding interactions of the known ligand. It 

also reduced the chance of non-relevant compounds being identified as potential hits. 

The second one with fewer features, would be more flexible, potentially allowing for 

a broader range of structurally diverse compounds to be identified as hits. 

 

  To select this type of features the focus was on two key criteria, the hydrogen bonds 

and the Root Mean Square Deviation (RMSD) score that was produced following the 

screening with the ZINC compound database [29].  

 

  Prioritizing hydrogen bonds allowed to target compounds that form strong 

interactions with the enzyme's active site, as these bonds are vital for stabilizing the 

inhibitor and they were also the most common interaction found. To further refine the 

selection process, RMSD was used as an additional filter. This is a measure used to 

quantify the differences between two molecular structures.  

 

 

 

  Specifically, in drug discovery, how much the predicted binding pose of a compound 

(inhibitor) differs from a reference pose (pose of the inhibitor in a crystal structure). 

Low RMSD indicates that the inhibitor binds in a way that is very similar to the 

reference pose. This suggests that the pharmacophore features and docking 

predictions are accurate. The inhibitor also has a better chance of fitting into the 

enzyme's active site and be more stable in it.  

 

  If the predicted binding pose has a significant deviation from the reference, 

suggesting that the RMSD is higher, it might mean that the inhibitor will not bind as 

well or could bind in a way that is less effective. Compounds with the lower RMSD 

were the ones considered as potential candidates for experimental validation.  

 

  Furthermore, a selection of 2.000 natural compounds sourced from the ZINC library 

was obtained. Natural compounds were chosen because they are often biocompatible, 

as they are derived from natural sources that organisms have been exposed to over 

evolutionary time. They can interact with specific biological targets with good 

precision minimizing unintended interactions with other biological systems.  

 

  These reduce the likelihood of triggering immune responses or causing other adverse 

effects making them less toxic compared to synthetic compounds. It is worth 

mentioning that they also have a long history of use in traditional medicine further 

proving their safety. These benefits make natural compounds particularly desirable in 

drug development [30]. 

 

  The ZINC library was selected in both cases due to its comprehensive database of 

commercially available compounds, which includes a large and diverse collection of 
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natural products. The fact that these are commercially available means that they are 

well-documented and ready for experimental validation.  

 

  These compounds are also carefully validated to meet specific criteria and come in 

formats directly compatible with virtual screening tools and computational chemistry 

software, eliminating the need for extensive preprocessing. Additionally, it is widely 

recognized and used by the scientific community having been referenced in numerous 

studies. All the above make it a reliable choice. 

 

  In conclusion the final dataset comprised of 2.200 compounds. A total of one 

hundred compounds were selected from the pharmacophore model with the highest 

feature count, each with an RMSD score ranging from 0.319 to 0.604. Similarly, one 

hundred compounds were extracted from the second pharmacophore model, with 

RMSD values between 0.028 and 0.140. Along with the 2.000 compounds directly 

derived from the library, they all were subsequently utilized for molecular docking 

experiments. 

 

 

 

 

 

 

 

 

3.2 Characteristics 
 

Table 3.1: Description of features that have originated from the results of statistical 

analysis and machine learning methodologies [31] 
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3.3 Objectives & implementation 
 

3.3.1 Objectives & implementation of statistical analysis methodology 

 

 NAME DESCRIPTION CATEGORY 

1 MinEStateIndex 
Returns a tuple of EState indices 

for the molecule 
Topological 

2 MaxAbsEStateIndex 
Returns a tuple of EState indices 

for the molecule 
Topological 

3 MinAbsEStateIndex 
Returns a tuple of EState indices 

for the molecule 
Topological 

4 Qed 

 

It stands for quantitative 

estimation of drug-likeness and it 

reflects the underlying 

distribution of molecular 

properties including molecular 

weight, topological polar surface 

area, number of hydrogen bond 

donors and acceptors, the number 

of aromatic rings and rotatable 

bonds, and the presence of 

unwanted chemical functionalities 

 

Physicochemical 

5 MaxAbsPartialCharge 
Returns molecular charge 

descriptors 
Topological 

6 MinAbsPartialCharge 
Returns molecular charge 

descriptors 
Topological 

7 FpDensityMorgan3 Morgan fingerprint density Connectivity 

8 BCUT2D_MWLOW 

 

Lowest eigenvalue weighted by 

atomic masses 

It contains information on 

molecular size and topology 

 

Topological 

9 BCUT2D_CHGHI 
Highest eigenvalue weighted by 

gasteiger charges 
Topological 
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  In the process of statistical analysis, it was necessary to find the features that had 

statistically significant differences between the two categories, active or non-active 

compounds. To achieve this, the appropriate statistical test had to be implemented. 

The options were the t-test (Student's t-test) and the rank sum test (Wilcoxon rank 

sum test or Mann-Whitney U test).  

 

  The first test requires the samples to have a normal distribution, meaning there 

should be homogeneity of variance between the two samples, and it is generally more 

sensitive to extreme values. The second type of test does not require a known 

distribution and is more robust against extreme values, which is why it was preferred. 

 

The rank sum test is a non-parametric test that uses the mean rank for two 

independent samples. More specifically, the observations of the two categories are 

placed one after the other in a column in ascending order. The next step is to assign a 

rank to each observation, with the lowest taking the first rank and the next taking the 

second, and so on. In the case of ties between observations, the average rank is 

calculated. Then, the U parameter needs to be found for each category. 

 

 

 
 
  The n1 represents the number of observations belonging to the first category, and n2 

similarly represents the number of observations belonging to the second category. T1 

and T2 are the sum of the ranks for each category. From U1 and U2, the one with the 

smaller value is chosen. Using U, along with n1 and n2, the p-value is calculated 

using various methods. If the p-value is below a predefined level of significance, then 

the null hypothesis is rejected, meaning there is a statistically significant difference 

between the two categories [32]. 

 

  As previously mentioned, the goal is to find the features with statistically significant 

differences, as these are more likely to provide the best discriminative ability between 

the two categories. In this study, this was achieved with an algorithm using Python, 

where the test was performed on each of the 10 potentially best features. Each feature 

was divided into two categories depending on whether the compounds were active or 

not, and for each, the p-value was calculated. This was compared to a significance 

level of 0.001, and if the p-value was smaller, then the feature showed a statistically 

significant difference. The distributions of the values of the two categories for each 

feature that showed a statistically significant difference were depicted in box plots. 

 

 

  Box plots are a graphical tool that summarize data distribution, making them useful 

for comparing a feature across two different categories (Figure 4.1). The box 

represents the interquartile range (IQR), which includes the central 50% of the data 

between the first quartile (Q1) and the third quartile (Q3). The lower edge of the box 
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corresponds to Q1, while the upper edge corresponds to Q3, with the line inside 

marking the median (Q2), or central value.  

 

  This box effectively illustrates where most of the values are, indicating how 

concentrated or dispersed they are around the median. The whiskers extend from the 

box to the minimum and maximum values within 1.5 times the IQR, while any data 

points beyond the whiskers are regarded as outliers. representing extreme values. 

When the medians are clearly separated and the boxes (IQRs) show minimal overlap, 

there is strong visual evidence of a statistical difference between the two categories.  

 

  Moreover, having fewer outliers suggests that the data is more consistent and 

follows a predictable pattern, with fewer extreme deviations. This enhances the 

reliability of the analysis, making it easier to detect true patterns, draw accurate 

conclusions, and avoid misleading interpretations [23]. 

 

3.3.2 Objectives & implementation of machine learning methodology 

 

  A classifier is a machine learning model that is trained through a dataset to learn 

patterns in the data associated with each category. Once trained, it can predict the 

category of new data. In this study, to create the model that would predict as accurate 

as possible if a compound, based on its features, is active or non-active many 

classifiers were tested. These were the Nearest Centroid, k-Nearest Neighbors, Linear 

Discriminant Analysis, Gaussian Naive Bayes, Logistic Regression, Perceptron, 

Multilayer Perceptron, Random Forest, linear Support Vector Machine and Decision 

Tree Classifier. 

 

  The Nearest Centroid Classifier calculates the distance of a data point to the center 

of each class and assigns it to the closest class and it works best for data that are well-

separated. The k-Nearest Neighbors (KNN) assigns a class to a data point based on 

the majority class among its k nearest in distance points (neighbors) and its most 

effective for small datasets.  

 

  The Naive Bayes classifier works by calculating the probability of each class 

according to the features of the existing data. When a new compound is introduced, it 

uses the same method, which is based on Bayes' Theorem, to calculate the probability 

of that compound belonging to each class, considering the compound's features. It 

then classifies the new compound into the class with the biggest probability. It is 

called "naive" because it insinuates that the features of the data are not dependent of 

each other making it fast for problems where this applies. 

 

  The Linear Discriminant Analysis (LDA) finds a straight line that best separates 

classes in the data. It assumes each class follows a normal distribution and calculates 

both the class means and the spread (variance) of data within each class. LDA aims to 

maximize the distance between the class means while minimizing the variance within 

each class.  

 

  By combining these factors, LDA determines an optimal line for classification, 

where new data points are classified according to which side of the line they are. This 

approach works well for linearly separable problems. 
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  The Logistic Regression applies a mathematical function called the logistic or 

sigmoid function to produce a value between zero and one. This value indicates the 

likelihood that a given input belongs to a specific class. If the probability is greater 

than 0.5, the data point is more likely to belong to one class, whereas a probability 

below 0.5 suggests it belongs to the other class. This is especially useful when it is 

important to know not only the predicted class but also the confidence level of that 

prediction. 

 

  The Perceptron is the simplest type of neural network, which is a computational 

model inspired by the function of the human brain. It takes multiple input features and 

assigns each a weight. These weights represent how much influence each feature has 

in determining the outcome. It then computes a weighted sum of all the inputs, which 

means it multiplies each input by its weight and adds them together. After that, it 

applies a threshold function to decide whether the data point belongs to one class or 

the other. During training, the Perceptron continuously adjusts its weights by learning 

from the errors it makes. The ultimate goal is for the Perceptron to identify a linear 

decision boundary that divides the two classes with as much accuracy as possible. 

 

  The Multilayer Perceptron (MLP) is an extension of the basic perceptron and it can 

handle non-linear relationships between data. It consists of multiple layers which are 

the input layer, one or more hidden layers, and the output layer. Each node in the 

hidden layers is connected to nodes in the next layer through weights. These hidden 

layers allow the MLP to learn more complex patterns and solve problems where a 

simple straight line isn't enough to separate the classes. 

 

  The linear Support Vector Machine (SVM) aims to separate data into different 

classes using a straight line or a plane in higher dimensions. It tries to identify the line 

that maximizes the distance, called the margin, between itself and the closest points 

from each class. These closest points are called support vectors. A larger margin 

means there’s more space between the classes, which generally leads to better 

classification results. SVM is mostly used for high-dimensional data [24]. 

 

  The classifiers that produced the best results were the KNN, Decision Tree, which 

builds a single tree based on the training data to make classifications, and the Random 

Forest classifier. While all three classifiers performed well, the Random Forest was 

ultimately selected due to its higher classification accuracy, as well as all the 

advantages that were mentioned before. 

 

  In the dataset the number of active and not active compounds of the 10 possibly 

most important descriptors were 296. The Random Forest classifier that was used for 

classification demands a significant amount of data to effectively train multiple 

decision trees and capture the underlying patterns in the data. A larger dataset as a 

result enables the classifier to better generalize by reducing variance, avoiding 

overfitting, and improving the model's predictive accuracy.  

 

 

  To achieve that resampling was utilized. It is a statistical technique used to create 

additional samples from a limited dataset, particularly in situations where the original 

data is insufficient. Using this method the 296 compounds increased to 1.000 entries.  
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  To the resampled data noise was added, which was random values that were 

generated to follow a normal (Gaussian) distribution, which is a bell-shaped curve 

where the majority of the values are concentrated near the mean, and fewer values 

appear as you move towards the tails of the distribution, representing more extreme 

deviations.  

 

  In the tests the mean was zero to ensure that the noise is centered around the original 

data points, while the standard deviation was 0.5 to control the spread of the noise, 

introducing slight variations without drastically altering the data. This can prevent the 

model from simply memorizing the specific details of the training samples and 

encourages the model to learn more generalized patterns, making it more robust and 

better equipped to handle new, unseen data.  

  

  Synthetic Minority Over-sampling Technique (SMOTE) was applied to address class 

imbalance by generating synthetic examples for the minority class. For each data 

point in the minority class, it identifies a certain number of nearest in distance 

neighbors. It selects one of these nearest neighbors at random. It then generates a new 

data point (a synthetic example) by taking a point somewhere along the line segment 

that connects the original data point and the selected neighbor.  

 

  This means the new data point will have values that are a weighted average of the 

original and the neighbor. The specific location on the line is chosen randomly, so 

each synthetic example is slightly different. This process is repeated for many data 

points in the minority class, generating as many synthetic examples as needed to 

balance the class distribution. This leads to better decision-making when the model is 

trained, as it no longer heavily favors the majority class. 

 

  After applying SMOTE, normalization was performed to scale the data, ensuring 

that all features contribute equally to the model's learning process. This happened by 

adjusting the values of the features, so they lie within a specific range, typically 

between 0 and 1, preventing features with larger numerical differences from 

dominating the model’s predictions. 

 

  Then, an exhaustive search method was employed to identify the optimal 

combination of features so the classification model achieved the highest possible 

accuracy. This technique explores every potential subset of features, from individual 

features to combinations that include the entire set, leaving no possible feature 

interaction unchecked. For each subset, the model was trained, and its performance 

was evaluated using the bootstrap method. The bootstrap approach involves creating 

multiple datasets by randomly drawing samples with replacement from the original 

data. For each bootstrap sample, confusion matrices were generated. 

 

 

 

 

 

Table 3.2: Confusion matrix 
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• True Positives (TP): The number of compounds correctly predicted as active 

 

• False Positives (FP): The number of compounds incorrectly predicted as 

"active" when they are actually not active 

 

• True Negatives (TN): The number of compounds correctly predicted as not 

active 

 

• False Negatives (FN): The number of compounds incorrectly predicted as not 

active when they are actually active 

 

 

  Additionally, critical evaluation metrics such as sensitivity (the model’s ability to 

correctly identify active compounds), specificity (the ability to correctly identify not 

active compounds), and overall accuracy were computed.  

 

 
 

 
 

 
 

 

This combination of exhaustive search and bootstrap evaluation provided a thorough 

and reliable assessment of the model's performance, ensuring that the most effective 

subset of features was identified while maintaining confidence in the model's ability 

to generalize across different samples. 

 

  Receiver Operating Characteristic (ROC) curves visualize how well a classification 

model performs by showing the relationship between the True Positive Rate (TPR) 

and the False Positive Rate (FPR). The TPR, also known as sensitivity, indicates how 

many actual positive cases are correctly identified compared to the FPR that 

represents how many negative cases incorrectly classified as positive.  

 

 

 

 

 

 

 

  The Area Under the Curve (AUC) quantifies the overall ability of the model to 

distinguish between the active and inactive classes. Value of 1 indicates perfect 
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classification, 0.5 signifies that the model is no better than random guessing, and 

values less than 0.5 suggest that the model performs worse than random guessing. A 

curve that is steep and closer to the top-left corner with a big AUC score and a 

accuracy greater than 90% signifies a model with strong discriminatory ability. This 

indicates a high true positive rate with a low false positive rate [33]. 

 

3.3.3 Objectives & implementation of computational chemistry methodology 

 

  In the molecular docking experiments, the aim is to identify compounds that could 

potentially inhibit the Zika virus protease complex NS2B-NS3. To accomplish that 

the softwares Webina [34] and Maestro [35] were utilized.  

 

  Webina is a web-based platform that integrates AutoDock Vina, to predict how 

small compounds fit into a protein's binding site. This aids researchers in assessing 

the strength of the interaction between the ligand and the receptor. Webina requires 

three files as input. One that will contain only the receptor, another with the known 

complexed ligand, and a third one with the compound being tested in conjunction 

with the receptor.  

 

  To determine the correct pose for each test compound, PyRX [36], an open-source 

virtual screening software was used. Two main criteria were applied. Each compound 

had to possess a low-energy (stable) conformation and ideally exhibit an orientation 

similar to that of the known ligand, especially since it has already been established 

that it is an effective binder to the target site. Aligning the orientation ensures correct 

interactions but minor variations are allowed if the main interactions are maintained. 

 

  For every compound combined with the receptor to be able to accurately predict the 

binding affinity between them it is essential and can be accomplished by adding 

hydrogen atoms at a specific pH. If a ligand is not in its proper protonation state, it 

may not fit optimally in the binding site or may fail to interact effectively with crucial 

residues, leading to inaccurate docking results. The optimal pH was determined 

through the BRENDA database [37], a comprehensive resource for enzyme 

information. The Zika virus has a pH range of 7.4–8.5 in which the enzyme is most 

stable, and a pH of 7.5 was selected for the experiments. 

 

  Moreover, to create a custom grid box in Webina is critical as it defines the specific 

area of the protein where the docking analysis will be conducted. This creates a three-

dimensional box around the protein's active site, specifying the exact region where the 

ligand will be tested for binding. By setting the grid box, researchers can narrow the 

docking search to the most relevant part of the protein, ensuring that calculations 

focus on the target area rather than the entire protein structure. Properly defining the 

grid box size and position is essential for obtaining reliable docking results. 

 

  Through the docking process in Webina the binding affinity is produced, which is an 

indication of the strength of the interaction between the ligand and the receptor. A 

more negative binding affinity value suggests a stronger interaction, implying that the 

compound is more likely to bind effectively to the target protein. It generates multiple 

possible orientations (poses) of the ligand within the binding site, ranked by their 

predicted binding affinities. The top-ranked pose is considered the most likely 

interaction of the compound with the protein. 
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  Maestro, developed by Schrödinger, is a commercial software that provides 

advanced molecular docking, visualization, and analysis tools. It enables the 

simultaneous screening of a library of compounds against a target protein, evaluating 

their binding affinity and potential poses in a single run. This makes it suitable for 

studies involving a large number of compounds, enabling quick identification of 

potential inhibitors. It offers two docking modes the Glide XP (Extra Precision) and 

the Glide SP (Standard Precision). Glide SP provides a balance between speed and 

accuracy in contrast to XP which is more stringent, delivering precise and detailed 

results by applying additional scoring functions. 

 

  The increased strictness of Maestro compared to Webina arises from its advanced 

scoring functions, algorithms, and docking protocols, particularly in Glide XP mode. 

This results in more accurate and reliable docking outcomes than those provided by 

Webina, which utilizes the simpler AutoDock Vina scoring function. This led to the 

initial use of Webina to filter out compounds, retaining only the most suitable 

candidates. These selected compounds were then subjected to further analysis in 

Maestro's two docking modes to identify the top compounds with greater precision. 

 

  Initially, internal validation was performed, by re-docking the original ligand back 

into the receptor, in both software programs, to estimate the binding affinity of the 

complex. This information was crucial, as it provided a reference range for evaluating 

how well the other compounds would bind in comparison. 

 

  Then to eliminate or not compounds, the criteria included achieving the highest 

absolute docking score close to that of the original complex, in addition to evaluating 

the number of interactions, especially hydrogen bonds, since they contribute most to 

stabilizing the connection of the test compounds with the receptor. Also important 

was for the interactions to match the interactions the original complexed ligand had 

with the protease complex. To examine the interactions PLIP was employed. 

 

  Ultimately, 10 compounds that met these criteria were selected from Webina and 

processed through Glide Sp and Glide Xp mode in Maestro to identify the top five 

potential inhibitors. 

 

 

 

 

 

 

 

 

 

3.3.4 Objectives & implementation of combined methodologies  

 

  One method of verifying the results from the machine learning methodology, was 

the combination of these with the potential compounds identified from the molecular 

docking experiments. The machine learning results refer to the combination of 

features that provided the highest classification accuracy. The goal of this process is 
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to categorize the compounds from the molecular docking experiments, using the 

machine learning features, as active. 

 

  To implement this endeavor, the MetaboAnalyst [38] software was used. The data 

that were uploaded are the original database containing the compounds from 

ChEMBL but with only the features that emerged from the machine learning process. 

The appropriate type of analysis was selected, which in this case was the classification 

analysis, and the algorithm used was the Random Forest, as it was also the one 

utilized in the classification process during the machine learning stage.  

 

  Additionally, data segmentation was implemented, where the entire dataset was split 

into two subsets. One of the sets was used for training the model and the other was a 

test set, which was used for evaluating the model's final performance. The data was 

split with 70% belonging to the training set and 30% to the test set. 

 

Once the analysis was complete and the Random Forest classifier was trained, it was 

necessary, for the features of the compounds that were nominated from the molecular 

docking experiments to be found. This was achieved using the RDKit library. More 

specifically, an algorithm was created, that took as input the SMILES of the 

compounds.  

 

  These were converted into Mol objects, which are various molecular properties, 

using the Chem library. Then the features of the compounds were produced from the 

Mol objects. Only the ones that appeared in the machine learning results were 

extracted and subsequently used as input into MetaboAnalyst.  

 

  Finally, the trained Random Forest classifier was used to evaluate and categorize the 

compounds as active or inactive. The classification accuracy was depicted through a 

ROC curve, a scatter plot, and a box plot diagram. 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

RESULTS 
 

4.1 Results of statistical analysis 
 

Table 4.1: Characteristics that show a statistically significant difference at a 

significance level of 0.001 
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 Name of the Characteristic p-value 

1 MinEStateIndex 6.718e-07 

2 MaxAbsEStateIndex 6.290e-04 

3 MinAbsEStateIndex 8.200e-09 

4 Qed 1.980e-06 

5 MaxAbsPartialCharge 6.393e-04 

6 MinAbsPartialCharge 4.701e-04 

7 FpDensityMorgan3 2.133e-06 

8 BCUT2D_MWLOW 9.514e-10 
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Figure 4.1: Box plots for the characteristics from table 4.1 for the active compounds 

and the not active compounds 

 

 

4.2 Results of machine learning 
 

Table 4.2: The classification with the best performance, according to the confusion 

matrix, was produced by the combination of the 7 characteristics 

 

Optimal Feature 

Combination 

Confusion 

matrix 
Sensitivity Specificity Accuracy 

 

BCUT2D_CHGHI 

MinAbsEStateIndex 

MinAbsPartialCharge 

BCUT2D_MWLOW 

FpDensityMorgan3 

MaxAbsPartialCharge 

MinEStateIndex 

 

[534 23] 

[ 27 536] 

 

95.84% 95.10% 95.46% 
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Figure 4.2: Receiver Operating Characteristic curve for the optimal combination of 

features with an accuracy of 95.46% and an AUC equal to 1 
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4.3 Results of computational chemistry 

 
 

Table 4.3: Binding affinities and interactions of the original complexed ligand and the 

five potential inhibitors that were not selected with the virus protease complex, as 

identified through the Maestro program for both modes, Glide-SP and Glide-XP. With 

bold are the common interactions 

 

 

 

 

 

 

 

 

 

 

 

Compounds 
Binding affinity 

(kcal*mol^-1) 
Interactions 

PDB: 5LC0 Glide-SP Glide-XP Glide-SP Glide-XP 

Original complexed 

ligand 
-5.265 

 

-6.481 

 

H.I: HIS 1051, LYS 1054, VAL 1155, TYR 

1161 

H.B: SER 81, TYR 1130, GLY 1133, SER 

1135, GLY 1151, GLY 1153, TYR 1161 

π-S: HIS 1051 π-C: LYS 1054 S.B: ASP 1129 

ZINC000017126848 -4.912 -9.615 
H.B: ASP 83, ASP 

1129 

H.B: SER 81, TRP 

1050, LYS 1054, PRO 

1131, GLY 1151 

ZINC000070665802 -7.581 -10.367 

H.B: SER 81, ASP 

83, VAL1036, HIE 

1051, PRO 1131, 

ASN 1152 

 

H.B: ASP 83, VAL 

1036, VAL 1072, SER 

1135, TYR 1161 

 

ZINC000095101034 -5.108 -8.431 

H.B: VAL 1036, 

ASP 1129, TYR 

1130 

H.B: ASP 83, HIE 1051, 

VAL 1072, ASP 1075, 

ASN 1152 

ZINC000195793040 -5.393 -10.356 

H.B: ASP 83, VAL 

1036, ASP 1075, 

ASP 1129, TYR 

1130 

H.B: SER 81, ASP 83, 

HIE 1051, LYS 1054, 

TYR 1130, PRO 1131 

π-C: TYR 1161 

Amb22759155 -6.394 -10.373 

H.B: ASP 83, TYR 

1130, PRO 1131, 

GLY 1153, TYR 

1161 

H.B: TYR 1130, PRO 

1131, ASN 1152, GLY 

1153, TYR 1161 
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Table 4.4: Binding affinities and interactions of the original complexed ligand and the 

five potential inhibitors that were not selected with the virus protease complex, as 

identified through the free access software Webina. With bold are the common 

interactions. 

 

 

 

 

 

 

 

 

 

Compounds 
Binding Affinity 

(kcal*mol^-1) 
Interactions Pharmit 

PDB: 5LC0 Affinity Webina RMSD 

Original complexed 

ligand 
--- 

H.I: HIS 1051, LYS 1054, VAL 1155, 

TYR 1161 

H.B: SER 81, TYR 1130, GLY 1133, 

SER 1135, GLY 1151, GLY 1153, TYR 

1161 

π-S: HIS 1051 π-C: LYS 1054 S.B: ASP 

1129 

--- 

ZINC000017126848 -5.926 

H.I: TYR 1161 

H.B: ASP 83, PHE 84, HIS 1051, ASP 

1129, TYR 1130, PRO 1131, GLY 1133, 

THR 1134, SER 1135, GLY 1151, ASN 

1152, GLY 1153, TYR 1161 

0.589 

ZINC000070665802 -7.214 

H.B: SER 81, ASP 83, HIS 1051, VAL 

1072, ASP 1129, TYR 1130, SER 1135, 

GLY 1151, GLY 1153 

π-S: HIS 1051, TYR 1161 

S.B: HIS 1051, LYS 1054 

0.442 

ZINC000095101034 -8.411 

H.B: ASP 83, ASP 1075, ALA 1132, SER 

1135, GLY 1151, ASN 1152, GLY 1153, 

TYR 1161 

π-S: TYR 1161 π-C: HIS 1051 

S.B: HIS 1051, ASP 1129 

0.596 

ZINC000195793040 -5.919 

H.B: ASP 83, PHE 84, ASP 1129, TYR 

1130, GLY 1133, THR 1134, SER 1135, 

GLY 1151, ASN 1152, GLY 1153, VAL 

1155 

0.540 

Amb22759155 -7.885 

H.I: HIS 1051 

H.B: SER 81, ASP 83, VAL 1036, GLY 

1133, SER 1135, GLY 1151, ASN 1152, 

GLY 1153, TYR 1161 

π-C: HIS 1051 S.B: HIS 1051 

--- 
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Table 4.5: Binding affinities and interactions of the original complexed ligand and the 

five potential inhibitors that were selected with the virus protease complex, as 

identified through the Maestro program for both modes, Glide-SP and Glide-XP. With 

bold are the common interactions 

 

 

 

 

 

 

 

 

 

 

 

 

 

Compounds 
Binding affinity 

(kcal*mol^-1) 
Interactions 

PDB: 5LC0 Glide-SP Glide-XP Glide-SP Glide-XP 

Original complexed 

ligand 
-5.265 

 

-6.481 

 

H.I: HIS 1051, LYS 1054, VAL 1155, TYR 

1161 

H.B: SER 81, TYR 1130, GLY 1133, SER 

1135, GLY 1151, GLY 1153, TYR 1161 

π-S: HIS 1051 π-C: LYS 1054 S.B: ASP 1129 

ZINC000013424720 -4.635 -6.743 

H.B: ASP 1075, ASP 

1129, TYR 1130, 

GLY 1153, TYR 

1161 

π-C: LYS 1054 

H.B: SER 81, ASP 83, 

LYS 1054, TYR 1130 

ZINC000253389742 -5.154 -7.083 

H.B: SER 81, TYR 

1130, GLY 1151, 

TYR 1161 

H.B: SER 81, TYR 

1130, GLY 1151, 

TYR 1161 

ZINC000253529689 -5.201 -9.424 

H.B: ASP 83, LYS 

1054, ASP 1129, 

GLY 1153 

H.B: SER 81, LYS 

1054, ASP 1129, TYR 

1130, GLY 1151, 

GLY 1153 

π-S: TYR 1161 

ZINC000271778003 -5.772 -6.987 

H.B: ASP 83, HIE 

1051, LYS 1054, 

GLY 1151, GLY 

1153, VAL 1155, 

TYR 1161 

H.B: ASP 83, HIE 

1051, LYS 1054, 

GLY 1151, TYR 

1161 

Neoeriocitrin -5.456 -7.792 

H.B: ASP 83, LYS 

1054, ASP 1129, 

GLY 1153 

H.B: ASP 83, LYS 

1054, ASP 1129, PRO 

1131, GLY 1153 
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Table 4.6: Binding affinities and interactions of the original complexed ligand and the 

five potential inhibitors that were not selected with the virus protease complex, as 

identified through the free access software Webina. With bold are the common 

interactions. The internal validation from Webina could not produce an affinity due to 

the boronic acid the original complexed ligand had 

 

 

 

 

 

 

 

Compounds 
Binding affinity 

(kcal*mol^-1) 
Interactions Pharmit 

PDB: 5LC0 Affinity Webina RMSD 

Original complexed 

ligand 
--- 

H.I: HIS 1051, LYS 1054, VAL 1155, 

TYR 1161 

H.B: SER 81, TYR 1130, GLY 1133, 

SER 1135, GLY 1151, GLY 1153, TYR 

1161 

π-S: HIS 1051 π-C: LYS 1054 S.B: ASP 

1129 

--- 

ZINC000013424720 -8.746 

H.I: HIS 1051 

H.B: SER 81, VAL 1072, TYR 1130, 

GLY 1133, THR 1134, SER 1135, TYR 

1161 

π-S: HIS 1051 

0.108 

ZINC000253389742 -7.05 

H.I: TYR 1161 

H.B: SER 81, ASP 83, VAL 1036, TYR 

1130, GLY 1133, SER 1135, GLY 1153, 

TYR 1161 

π-S: HIS 1051 S.B: HIS 1051 

0.461 

ZINC000253529689 -8.005 

H.B: VAL 1036, TYR 1130, GLY 1133, 

SER 1135, GLY 1151, ASN 1152, GLY 

1153, TYR 1161 

π-S: TYR 1161 S.B: HIS 1051 

0.090 

ZINC000271778003 -7.083 

H.I: ASP 83 

H.B: SER 81, ASP 83, ASP 1129, TYR 

1130, ALA 1132, TYR 1150, GLY 1151, 

ASN 1152, GLY 1153, TYR 1161 

π-S: HIS 1051, TYR 1161 S.B: HIS 1051 

0.530 

Neoeriocitrin -8.765 

H.I: HIS 1051, ALA 1132 

H.B: SER 81, ASP 83, HIS 1051, TYR 

1130, GLY 1151, ASN 1152, GLY 1153, 

TYR 1161 

π-S: HIS 1051 S.B: HIS 1051, LYS 1054 

--- 
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Figure 4.3: Two-dimensional representation of the compound ZINC000013424720 

through Glide-SP (top left) and Glide-XP (top right) with the interactions into the 

receptor, and though Maestro (bottom) without the interactions 
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Figure 4.4: Three-dimensional representation of the compound ZINC000013424720 

through Glide-SP (pink) superimposed with the original complexed ligand (green) 

 

 

 

 

 

Figure 4.5: Three-dimensional representation of the compound ZINC000013424720 

through Glide-XP (pink) superimposed with the original complexed ligand (green) 
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Figure 4.6: Three-dimensional representation of the compound ZINC000013424720 

through Webina (top left and right) (grey) superimposed with the original complexed 

ligand (yellow) and two-dimensional representation of the compound though and 

PLIP (bottom left) with the interactions with the receptor 
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Figure 4.7: Two-dimensional representation of the compound ZINC000253389742 

through Glide-SP (top left) and Glide-XP (top right) with the interactions with the 

receptor, and though Maestro (bottom) without the interactions 
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Figure 4.8: Three-dimensional representation of the compound ZINC000253389742 

through Glide-SP (pink) superimposed with the original complexed ligand (green) 

 

 

 

 

 

Figure 4.9: Three-dimensional representation of the compound ZINC000253389742 

through Glide-XP (pink) superimposed with the original complexed ligand (green) 
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Figure 4.10: Three-dimensional representation of the compound ZINC000253389742 

through Webina (top left and right) (grey) superimposed with the original complexed 

ligand (yellow) and two-dimensional representation of the compound though and 

PLIP (bottom left) with the interactions with the receptor 
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Figure 4.11: Two-dimensional representation of the compound ZINC000253529689 

through Glide-SP (top left) and Glide-XP (top right) with the interactions with the 

receptor, and though Maestro (bottom) without the interactions 
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Figure 4.12: Three-dimensional representation of the compound ZINC000253529689 

through Glide-SP (pink) superimposed with the original complexed ligand (green) 

 

 

 

 

Figure 4.13: Three-dimensional representation of the compound ZINC000253529689 

through Glide-XP (pink) superimposed with the original complexed ligand (green) 
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Figure 4.14: Three-dimensional representation of the compound ZINC000253529689 

through Webina (top left and right) (grey) superimposed with the original complexed 

ligand (yellow) and two-dimensional representation of the compound though and 

PLIP (bottom left) with the interactions with the receptor 
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Figure 4.15: Two-dimensional representation of the compound ZINC000271778003 

through Glide-SP (top left) and Glide-XP (top right) with the interactions with the 

receptor, and though Maestro (bottom) without the interactions 
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Figure 4.16: Three-dimensional representation of the compound ZINC000271778003 

through Glide-SP (pink) superimposed with the original complexed ligand (green) 

 

 

 

 

Figure 4.17: Three-dimensional representation of the compound ZINC000271778003 

through Glide-XP (pink) superimposed with the original complexed ligand (green) 
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Figure 4.18: Three-dimensional representation of the compound ZINC000271778003 

through Webina (top left and right) (grey) superimposed with the original complexed 

ligand (yellow) and two-dimensional representation of the compound though and 

PLIP (bottom left) with the interactions with the receptor 
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Figure 4.19: Two-dimensional 

representation of the compound 

Neoeriocitrin through Glide-SP 

(top left) and Glide-XP (top right) 

with the interactions with the 

receptor, and though Maestro 

(bottom) without the interactions 
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Figure 4.20: Three-dimensional representation of the compound Neoeriocitrin through 

Glide-SP (pink) superimposed with the original complexed ligand (green) 

 

 

 

 

 

Figure 4.21: Three-dimensional representation of the compound Neoeriocitrin through 

Glide-XP (pink) superimposed with the original complexed ligand (green) 
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Figure 4.22: Three-dimensional representation of the compound Neoeriocitrin through 

Webina (top left and right) (grey) superimposed with the original complexed ligand 

(yellow) and two-dimensional representation of the compound though and PLIP 

(bottom left) with the interactions with the receptor 
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4.4 Results of combined methodologies 

 
 

Table 4.7: Classification of the five selected compounds, as active or inactive, based 

on a model created with MetaboAnalyst 

 

Compound Name Possibility Category 

ZINC000013424720 0.69 Active 

ZINC000253389742 0.64 Active 

ZINC000253529689 0.61 Active 

ZINC000271778003 0.70 Active 

Neoeriocitrin 0.63 Active 
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Figure 4.23: Receiver Operating Characteristic curve, box plot, and scatter plot that 

provide a probability of correct classification close to 70% 
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DISCUSSION 
 

  The Wilcoxon rank sum test proved that out of the 10 potentially most important 

features, eight showed a statistically significant difference at a significance level of 

0.001 (Table 4.1). This indicates that each of these features had a distinct value 

distribution between the active and inactive compound categories, making them 

effective for distinguishing between them. As a result, these features can contribute to 

more accurate predictions of compound activity. 

 

  Figure 4.2 displays a Receiver Operating Characteristic (ROC) curve generated 

using the Random Forest classifier, which achieved an accuracy of 95.46%. This 

accuracy shows that the model is highly effective in correctly classifying compounds 

as active or not active. The optimal combination of seven molecular descriptors, as 

shown in Table 4.2, was determined to be the most efficient for this classification. 

This feature set enabled the model to achieve a sensitivity of 95.84% and a specificity 

of 95.10%, demonstrating that it handles both true positive and true negative 

predictions with minimal errors, thus ensuring a well-balanced and robust 

performance. 

 

  Notably, the Area Under the Curve (AUC) reached a perfect score of 1, suggesting 

flawless classification. However, such a perfect AUC is often unrealistic. While this 

indicates the model performed exceptionally well on the data used, it’s crucial to 

validate it further with independent datasets to ensure its reliability in real-world 

applications. 

 

  From the in silico molecular docking experiments, five potential inhibitors were 

selected (table 4.5 – 4.6) based on several key criteria that assessed their ability to 

effectively dock to the receptor. The selection process prioritized compounds with 

low root mean square deviation values, indicating minimal structural deviation from 

the original ligand, which enhances the likelihood of favorable binding interactions.  

 

  Additionally, these compounds exhibited low binding affinities that were 

comparable to that of the original ligand, further supporting their potential as viable 

candidates for docking. A significant emphasis was placed on the nature and quantity 

of the interactions, particularly in the hydrogen bonds, which are crucial in stabilizing 

receptor and ligand complexes. The selected inhibitors had a good amount of 

hydrogen interactions, but also shared numerous common interactions with the ones 

the original ligand had, enhancing their potential for effective binding to the virus 

protease complex. 

 

  Flavonoids are a group of natural polyphenolic compounds commonly found in 

vegetables, fruits and certain beverages like tea and wine. They possess various 

biological activities, including anti-inflammatory, antioxidant and antiviral properties, 

making them suitable candidates for medicinal research [39]. All the selected 

compounds, except ZINC000271778003, belong to this family and primarily target 

enzymes. 
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  ZINC000271778003, on the other hand, is a complex serine derivative known as 3-

O-(2-acetamido-6-O-(N-acetylneuraminyl)-2-deoxygalactosyl) serine (STn Epitope). 

Although not classified as a typical flavonoid, it can still be considered a naturally 

occurring molecule due to its serine-based structure. Like flavonoids, it could exhibit 

significant biological activity, potentially enzyme inhibition or modulation. 

 

  Further validation of the selected compounds was achieved using a model created in 

MetaboAnalyst. This model classified all compounds as active, with an AUC value of 

0.781, indicating a reliable performance in distinguishing active compounds from not 

active ones. This result reinforces the effectiveness of the selection process and the 

potential of these compounds as inhibitors against the Zika virus protease NS2B-NS3. 

 

CONCLUSIONS AND FUTURE PERSPECTIVES 

 
  This study by employing a methodology of combining statistical analysis, machine 

learning, and molecular docking, identified promising candidates, primarily from the 

flavonoid family. These natural compounds have gained popularity for their antiviral 

properties due to their ability to interfere with various stages of viral infection, such as 

viral entry, replication, and assembly. Moreover, they exhibit relatively low toxicity, 

making them attractive candidates for developing antiviral therapies.  

 

  Other studies have supported the conclusion that flavonoids can serve as effective 

inhibitors. Notable examples include flavonoids from Pterogyne nitens, which have 

been shown to inhibit the Zika virus NS2B-NS3 protease [40] and flavonoids derived 

from the geopropolis of the Brazilian Jandaira bee, which effectively inhibit the 

replication of both Zika and Dengue viruses in vitro [41]. These findings and many 

more underscore the potential of flavonoids as promising antiviral drugs. 

 

  In the future, the aim is to conduct molecular dynamics simulations to evaluate the 

stability and interaction dynamics of the identified compounds with the NS2B-NS3 

protease complex over time. This approach will improve our understanding of the 

binding affinities and conformational changes that occur, enhancing our predictions 

regarding their inhibitory effectiveness. Following these analyses, testing the most 

promising candidates in vitro will follow and depending on the results this 

methodology can be extended to explore other chemical libraries, increasing the 

chance of finding more potential inhibitors. 
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