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Abstract 

Depression is a widespread mental health disorder with severe impacts on quality of life. 

Current screening relies mainly on psychiatrist evaluations, lacking technological support. 

Advances in AI now enable rapid pattern recognition, allowing researchers to leverage speech 

analysis for depression detection. As a result, the present thesis aims to a) compare different 

machine learning models in terms of their classification accuracy in separating depressed and 

non-depressed people on voice data obtained from the DAIC-WOZ dataset, b) detect 

significantly important features that contribute to speech patterns related to depression, and 

c) fine-tune the optimal machine learning model found in stage a) ensuring accurate and 

robust results for real-world data.  

The used dataset is part of the Distress Analysis Interview Corpus (DAIC) from the University 

of Southern California, which aids in diagnosing depression. It consists of 189 English 

interview sessions with pre-extracted voice features, processed with the Cooperative Voice 

Analysis Repository (COVAREP) toolbox. In the present thesis, these features were processed 

via Python programming with the Anaconda Distribution package. 

The dataset was originally divided into training, validation, and testing sets, but a new split of 

80% training and 20% testing was chosen. The 74 pre-extracted COVAREP features represent 

time-series data, which created a large matrix that posed computational challenges. Two 

approaches were employed to address these: (1) selecting core features (7000 middle rows 

of each session) and (2) aggregating time series data into four statistical features per feature, 

reducing it to one row per participant. Both approaches included preprocessing steps to 

handle missing or infinite values and standardization. In the first approach, two dataset 

versions were tested: one non-balanced and one balanced through row deletion (392000 

rows for each class). Models evaluated included Neural Networks, Convolutional Neural 

Networks, Long Short-Term Memory, AdaBoost, Multilayer Perceptron, and Decision Tree. In 

the second approach, the data balanced with the SMOTE technique was used to evaluate the 

Support Vector Machine (SVM) algorithm on the aggregated features. 

The SVM demonstrated the best performance across scenarios, achieving 81% accuracy, 79% 

precision, 90% recall, 74% F1-score, and 72% specificity. Interpretability tools (LIME, SHAP, 

PDP) identified three key features contributing to the model’s predictions. 

Keywords: depression, voice detection, machine learning 
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Περίληψη 

Η κατάθλιψη είναι μια ευρέως διαδεδομένη διαταραχή της ψυχικής υγείας με σοβαρές 

επιπτώσεις στην ποιότητα ζωής. Ο σημερινός έλεγχος βασίζεται κυρίως σε αξιολογήσεις 

ψυχιάτρων, χωρίς κάποια τεχνολογική υποστήριξη. Οι εξελίξεις στην τεχνητή νοημοσύνη 

επιτρέπουν πλέον την ταχεία αναγνώριση μοτίβων, επιτρέποντας στους ερευνητές να 

αξιοποιήσουν την ανάλυση ομιλίας για την ανίχνευση της κατάθλιψης. Ως εκ τούτου, η 

παρούσα διπλωματική εργασία αποσκοπεί α) στη σύγκριση διαφορετικών μοντέλων 

μηχανικής μάθησης όσον αφορά την ακρίβεια ταξινόμησής τους στο διαχωρισμό 

καταθλιπτικών και μη καταθλιπτικών ατόμων σε δεδομένα φωνής που ελήφθησαν από τη 

βάση δεδομένων DAIC-WOZ, β) στον εντοπισμό στατιστικά σημαντικών χαρακτηριστικών 

που συμβάλλουν σε μοτίβα ομιλίας που σχετίζονται με την κατάθλιψη και γ) στην 

προσαρμογή του βέλτιστου μοντέλου μηχανικής μάθησης που βρέθηκε στο στάδιο α), 

εξασφαλίζοντας ακριβή και αξιόπιστα αποτελέσματα για δεδομένα πραγματικού κόσμου.  

Το σύνολο δεδομένων που χρησιμοποιήθηκε είναι μέρος της βάσης δεδομένων Distress 

Analysis Interview Corpus (DAIC) του Πανεπιστημίου της Νότιας Καλιφόρνιας, το οποίο 

βοηθά στη διάγνωση της κατάθλιψης. Αποτελείται από 189 συνεδρίες στην αγγλική γλώσσα 

με έτοιμα εξαχθέντα χαρακτηριστικά φωνής μέσω του Cooperative Voice Analysis Repository 

(COVAREP).  Στην παρούσα εργασία η επεξεργασία τους έγινε μέσω προγραμματισμού 

Python με το Anaconda Distribution. 

Τα δεδομένα ήταν ήδη χωρισμένα σε σύνολα εκπαίδευσης (training), επικύρωσης 

(validation) και δοκιμής (testing), αλλά επιλέχθηκε ένας νέος διαχωρισμός 80% εκπαίδευση 

και 20% δοκιμή. Τα 74 ήδη εξαχθέντα χαρακτηριστικά COVAREP αποτελούν δεδομένα 

χρονοσειρών, τα οποία δημιούργησαν έναν μεγάλο πίνακα που παρουσίασε υπολογιστικούς 

περιορισμούς. Για την αντιμετώπισή τους, χρησιμοποιήθηκαν δύο προσεγγίσεις: (1) η 

επιλογή των βασικών χαρακτηριστικών (7000 ενδιάμεσες γραμμές από κάθε συνεδρία) και 

(2) η συγκέντρωση των δεδομένων χρονοσειρών σε τέσσερα στατιστικά χαρακτηριστικά ανά 

χαρακτηριστικό, μειώνοντάς τα αποτελέσματα του πίνακα σε μία γραμμή ανά 

συμμετέχοντα. Και οι δύο προσεγγίσεις περιλάμβαναν βήματα προ-επεξεργασίας για την 

διαχείριση των μηδενικών ή άπειρων τιμών και την κανονικοποίηση. Στην πρώτη 

προσέγγιση, δοκιμάστηκαν δύο εκδοχές: μία με μη-ισορροπημένα δεδομένα και μία με 

ισορροπημένα μέσω της διαγραφής γραμμών για την εξισορρόπηση τους (392000 γραμμές 

κάθε κλάση). Τα μοντέλα που αξιολογήθηκαν περιλαμβάνουν τα Νευρωνικά Δίκτυα, 

Συνελικτικά Νευρωνικά Δίκτυα, Long Short-Term Memory, AdaBoost, Multilayer Perceptron, 

και τα Δέντρα Αποφάσεων. Στη δεύτερη προσέγγιση, τα δεδομένα που εξισορροπήθηκαν με 

την τεχνική SMOTE χρησιμοποιήθηκαν για την δοκιμή και την αξιολόγηση του αλγορίθμου 

Support Vector Machine (SVM). 

Το SVM επέφερε την καλύτερη απόδοση από όλα τα σενάρια, επιτυγχάνοντας 81% ακρίβεια 

(accuracy), 79% ευστοχία (precision), 90% recall (ευαισθησία), 74% F1-score και 72% 

εξειδίκευση (specificity). Μέσω εργαλείων που υποστηρίζουν την ερμηνεία των 

αποτελεσμάτων (LIME, SHAP, PDP) εντοπίστηκαν τρία στατιστικώς σημαντικά 

χαρακτηριστικά. 
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1 Introduction 

 

1.1 Motivations 

Statistical metrics regarding depression show a robust increase in cases over the recent years 

due to various social, financial, and possibly political issues, and even more after the 

pandemic of COVID-19. Unlike other health conditions, such as those related to 

cardiovascular, musculoskeletal, or digestive systems, etc., in mental health disorders, the 

signs are most of the time very complex and difficult to be stabilized. Depending on the 

severity the appropriate treatment needed is different and there are many cases that can 

even lead to suicide. 

On the other hand, due to technological advances and AI systems, computational power 

increased while computational time decreased significantly, even for complex algorithms. 

Moreover, the amount of available data online has opened the path for scientists to research 

the topic of depression and detect patterns via machine learning. The scientific community 

has insisted on researching the most efficient and accurate ways of screening depression 

based on a variety of different metrics, such as imaging, biochemical markers, text, voice, and 

facial expression.  

Finally, the growing need for telehealth solutions, even more in underserved and remote 

areas, and the above-mentioned gap in the detection of depression combined with the 

advance of machine learning became motivating factors to conduct this present thesis.  

1.2 Objectives 

The general vision of this research is to develop an automated early-diagnosis depression tool 

for psychiatrists that can support medical diagnosis, helping to face the rise of depression by 

using speech analysis. What is also important for this system, is to be a non-invasive and cost-

effective alternative that complies with ethical regulations, data privacy standards, and 

confidentiality respecting patient autonomy.  

The main objectives of this current thesis are: 

a) Compare different machine learning models in terms of their classification accuracy in 

separating depressed and non-depressed people on voice data obtained from the 

DAIC-WOZ dataset 

b) Detect significantly important features that contribute to speech patterns related to 

depression 

c) Fine-tune the optimal machine learning model found in stage a) ensuring accurate and 

robust results for real-world data 
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1.3 Document Organization 

This thesis is structured in seven chapters, wherein another perspective of the current topic 

contributes to a better understanding of the final results. In more detail, the present 

document is organized as follows: 

Chapter 1. Introduction: The first chapter describes the motivations, objectives as well as the 

organization of this present thesis. 

Chapter 2. Bibliographic Review of Depression: In this chapter, depression is analyzed in its 

different aspects, covering demographic data, common symptoms, ways of screening and 

treatment as well as the obstacles deriving from the nature of the disease, and finally the 

affection that it has on speech. 

Chapter 3. Bibliographic Review of Speech-Based Depression Classification: In this part of the 

thesis, machine learning methodologies regarding depression recognition are researched and 

all the theoretical background of the methods used in the present research is provided. In 

addition, bioacoustic and linguistic features that address this situation are examined. Finally, 

a table summarizes the related work and mentions the most important information, including 

the dataset/cohort, the model, and the performance of each research. 

Chapter 4. Materials, Methods and Tools: Chapter 4 analyses the Dataset and the repository 

COVAREP, used in the project development, to provide a better understanding of the sample 

of this thesis. Furthermore, the computational background that supported the 

implementation of the methods is discussed. 

Chapter 5. Development: This chapter describes the path taken to support the objective of 

this thesis, including the proposed methodologies, the obstacles encountered along the way, 

and the solutions that led to the final results. 

Chapter 6. Results: In the sixth chapter, the results of the methodologies' performance 

metrics are reported in detail in accordance with the relative explanations. In addition, the 

interpretability tools provide plots to evaluate the highest impact and significantly important 

features. 

Chapter 7. Discussion: In this chapter, the results of the development of the machine learning 

methodologies and the research findings are discussed and evaluated. 

Chapter 8. Conclusion and Future Work: This final part of the thesis summarizes the key 

findings of the research, and proposes potential directions for further development in the 

field. 

  

  



   

 

12 

 

2 Bibliographic Review of Depression 

Psychological diseases especially depression are topics of high interest nowadays due to the 

increased rates of cases over the years in the global population. More specifically, the COVID-

19 pandemic has boosted the global rates by 25% according to the World Health Organization. 

It is also estimated by the Global Health Data Exchange that 251-310 million people worldwide 

suffer from depression which means around 3.4% of the global population. Additionally, 

studies have shown that 1 to 6 people have experienced depression at least one time in their 

lives. More specific rates regarding the prevalence of depression globally are shown in the 

following image (Figure 2.1). It is important to mention that this increase is also caused by the 

fact that more and more people are becoming more sensitive to examining and treating their 

mental health. Nonetheless, in many countries, especially in the lower or mid economies, 

people do not have the proper means to diagnose it or major issues like hunger, poverty or 

war put their psychological condition as a lower priority [1] [2]. But how does the depression 

diagnosis take place?  

 

 

Figure 2.1: Global prevalence of depression [2] 

 

2.1 Symptoms  

Depression symptoms vary from changes in appetite, loss of energy and interest in activities, 

difficulties in sleep and concentration to a persistent feeling of sadness, negativity, lack of 

confidence, and suicide or self-harm thoughts. Other symptoms also affect a person’s 

movements speech and expressions and can be used as methods of diagnosis. Nevertheless, 

these symptoms can be connected with additional pathologies such as hormone disorders 

caused by other diseases like thyroid problems, lack of vitamins, or other biochemist 
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unbalances or can be misinterpreted with other mental disorders, Central nervous system 

disorders [3]. These indications are also affected by the unique characteristics of each 

person’s personality and external environment.  

2.2 Screening  

The screening of mental disorders is mainly based on psychiatrists’ diagnoses. Individuals are 

conducting clinical interviews with mental health care professionals whose diagnosis is 

connected with established diagnostic criteria based on discussion, metrics, and 

questionnaires. In addition, studies have shown, only in major depressive disorders, strong 

indexes for structural differentiations in individuals’ brains due to severe depression episodes 

but, to the best of our knowledge, no structural alteration shown by Magnetic Resonance 

Imaging (MRI) can be used as a metric due to the biological complexity of this specific disorder 

and have no clinical utility [3]. 

2.3 Treatment 

Once individuals are diagnosed with depression, their treatment can be carried out in 

different ways. One of the most common paths is the anti-depressant medication that 

stabilizes the brain’s chemistry and varies among individuals. Another method, most of the 

time combined with the previous one, is psychotherapy. Brain electrical stimulation known 

as electroconvulsive therapy (ECT) is a way to treat very severe cases of depression. 

Undoubtedly, the management is different depending on the category [1]. 

2.4 Depression Categories 

There are different categories depending on the duration as well as the severity of the 

symptoms.  

▫ Major depression is when the symptoms are present for more than two weeks and 

influence the functionality of daily life. 

▫ Seasonal affective disorder is when the symptoms are present depending on the season, 

usually during winter or autumn, and calm down after the passing of the season. 

▫ Perinatal or postpartum depression is known in women during or after pregnancy 

accordingly. 

▫ Persistent depressive disorder stands for cases with less intense symptoms but longer 

duration than two years also known as dysthymia. 

▫ Depression with psychotic symptoms is a more severe case in which the individual faces 

visual or audio delusions. 

▫ Manic depression is a bipolar disorder in which one comes across both depressive and 

manic symptoms [4]. 
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2.5 Clinical Evaluation Scales 

The need to categorize the severity of depression into a quantitative index led to the scale’s 

creation. The two types of extracting the information are mentioned, the observer-rated scale 

and the self-rated scale. 

Hamilton scale (HAMD-17) is the most commonly used scale for a clinician rating, lasts 20-30 

minutes, and includes questions for depression symptoms, anxiety, and side effects from drug 
treatment. The person conducting the interview needs to be well-trained and play an 

important role in the reliability of the results [5]. 

On the other hand, the Patient Health Questionnaire (PHQ-9) scale interprets another 

approach using the contribution of the person assessing themselves to detect depression. It 

has been proven to be a reliable and quick method [5]. Yet, these two scales used for clinical 

diagnosis of depression still have the objectivity that lies in the individual’s recalling to 

answer. 

Other scales, such as Beck Depression Inventory, DASS-21, or CES-D are also used for 

depression evaluation but their use is less prevalent. 

2.6 Reverse Inference 

Reverse inference is common in clinical diagnosis of most pathologies but it mostly fails when 

it comes to psychiatry (Figure 2.2). Providing an example of a patient with a broken hand who 

visits an orthopaedist, the clinician can come to a conclusion about the patient’s issue based 

on symptoms and by confirming using an x-ray. On the other hand, in the case of an individual 

suffering from depression and addressing a doctor, the psychiatrist is unable to conclude 

validly neither based only on their symptom recall nor via MRI evidence [3]. 

 

 

Figure 2.2: The role of reverse inference in psychiatry [3] 

The lack of depression screening technologies has pushed scientists’ interest to orient their 

research in various parameters –more than a decade now– such as EEG signals, facial 
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expressions, eye gaze and pose of the head, and word and voice identification parameters to 

support clinical assessment. The latter has proved notable results in clean lab-based datasets 

and being at the same a non-invasive technique promises an easy and efficient tool for 

detecting depression indicators. Certainly, real-world applications have brought limitations 

that open new ways of categorizing features which are going to be discussed in more detail 

in the following chapters [6]. 

2.7 Effects on speech 

The rise of speech analysis as a biomarker for supporting clinical depression detection seems 

to promise various benefits, such as improvement in the objectivity of conclusions, remote 

ability in individual monitoring, as well as cost and time reduction. Speech analysis can 

provide both linguistic and paralinguistic information. Most studies have shown that 

paralinguistic clues are inherently harder to compare than linguistic ones have more clear 

differences and provide more functional diagnostic tools.  Nevertheless, automated speech-

based techniques can gather information from both sides and enhance them with other 

metrics such as video and come up with robust and valid conclusions analyzed by machine 

and deep learning models [7]. 

The biological process of speech production is mainly characterized by three basic stages. It 

starts with the cognitive stage of creating phonetic and prosodic information in the brain. This 

process includes the activation of certain brain pathways responsible for supporting both 

phonological, syntactic processing and semantic processing. The next stage is the 

physiological stage in which around 100 muscles are temporally coordinated to move the 

articulators by receiving the proper signals from the motor nuclei to finally generate the 

proper speech sounds. The tongue, lips, lower jaw, and velum are articulators whose role is 

to be reshaped and create resonances. The air comes from the lungs and through the glottis 

and vibrates the vocal fold (glottal flow pulses). The third stage is the vocal result emitted 

from nasal and oral cavities [7]. 

One of the most widely known indicators of depression is the psychomotor retardation which 

can influence thoughts, physical movements, eye movements, facial expressions, and also 

speech. Regarding speech, studies have shown many significant changes such as slowing 

down the pitch rate, monotony, larger pauses, reduced tone, and changes in articulation. 

Various complex neurophysiological changes occur when an individual suffers from 

depression, mainly connected with the reduction of dopamine neurotransmission to the basal 

ganglia and striatum that control vocal movements. A high number of research works have 

proved that this reduction can be linked with anhedonic behavior and also influence speech 

coordination [8]. 

In addition, several studies related to other neuropsychiatric disorders like Parkinson’s 

disease, schizophrenia, and Huntington’s disease have shown psychomotor changes. In all of 

them, the basal ganglia take the major role in coordinating the motor process under the 

support of the neurotransmitters [9]. 
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3 Bibliographic Review of Speech-Based Depression 

Classification 

Taking a look at the past, in 1986 one of the first research projects on emotion detection using 

speech was conducted by Bezooijen and Tolkmitt using statistical tools. [10] Then, in 1999 

one of the first systems that connects emotion with speech using a specific model was 

proposed by Moriyama  [11]. Later a rise of studies due to computers’ evolution started using 

models like Gaussian Mixtures Models (GMM), Random Forest, Support Vector Machine, and 

Hidden Markov Models (HMM) to achieve the best classification. Nowadays, these methods 

are called traditional machine learning methods, and the selected features define the 

accuracy of the results. These techniques are well-performed for a few amount of data. Deep 

learning is the latest technique and it is possible to be implemented due to higher computing 

speed. It handles a large amount of data and it is a sub-category of Neural Networks (NN) 

[12]. 

The challenging need for an objective diagnostic tool for depression has led the research 

community to examine various possible methodologies of automatic detection and speech 

has been proven to be a powerful tool and mostly more effective than visual and textual data. 

However, they are often combined with facial and textual to make an enhanced multimodal 

approach [13]. 

3.1 Machine Learning Strategies  

According to the present bibliography, we can divide the current approaches of the 

depression detection techniques into two categories, hand-crafted feature-based (traditional 

machine learning) and deep learning-based. Deep neural networks (DNN) in literature have 

achieved impressive results and outperformed the hand-crafted feature-based approach in 

the detection of neuropsychological disorders [14]. More specifically in the case of 

depression, Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN) 

were both proven to be effective. The former technique used in non-sequential visual data 

has shown impressive results yet with no temporal ability for sequential data while the latter 

can provide temporal information in sequential data, although it is not yet clear which one 

performs better [13]. 

More specifically, the deep learning techniques can also be divided into 2 different 

subcategories (figure 3.1.). The first one is using feature engineering meaning a manual 

extraction of features and the other is called end-to-end. The basic difficulty that machine 

learning techniques face is the choice of suitable features. It is a fact that depending on the 

dataset different features have shown better performance [13]. The end-to-end approach 

aims to overcome this obstacle by reducing complexity when automatically learning from the 

input of the raw data to extract features without the need for human intervention, and it has 

proved to produce impressive results [15] [16]. A schematic illustration is shown in Fig. 3.1. In 

the study of Srimadhur N.S, Lalitha S  [17], spectrogram-based CNN and proposed end-to-end 

CNN are compared using AVEC 2016 DAIC-WOZ dataset for validation. The proposed method 

indicates better performance than the spectrogram–based. 
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Figure 3.1: Machine learning pipelines for feature-based approach (a) and end-to-end approach (b) 

[18]. 

In the present research, several methodologies including traditional machine learning and 

deep learning, were used comparatively to detect the most accurate performance on the 

analysis of already extracted features. These were the following: 

Support Vector Machine 

Support Vector Machine (SVM) is a supervised model that works well for both classification 

and regression applications. The fundamental concept that supports (SVM) is the hyperplane. 

Hyperplanes work as boundaries for dividing the data into classes and according to the 

dimensionality they are presented as a line (two-dimensional space) or a plane (for more than 

two dimensions). In addition, the decision function determines in which side of the 

hyperplane the new data points are placed. Their classification is conducted according to the 

optimal boundary for maximum margin between classes. [19] 

In more detail, the margin separates the nearest data points and the maximum-margin 

hyperplane achieves the best prediction. Soft margin is also important because it allows the 

method to give some extra space to deal with errors. Additionally, the kernel function is a 

mathematical tool used to increase the existing dimensionality of the data so they become 

linearly separable as it appears schematically in Figure 3.2. The choice of kernel is critical for 

each dataset and can be either linear, or polynomial, sigmoid, Gaussian, etc [20] [21]. 

Overall, the SVM’s ability to maximize the margin and utilize kernel functions makes it a 

robust tool for both classification and regression tasks, including applications in voice 

detection and recognition. 
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Figure 3.2: The kernel function [21] 

AdaBoost 

Adapting Boosting or shortly AdaBoost algorithm is an ensemble approach of Freund and 

Schapire who based their idea on combining a set of weak classifiers to form a single stronger 

classifier.  

More specifically, if we regard an input pattern xi for each kj classifier to form a decision 

function C(xi) corresponding to the weights a1,a2,…,al, assuming the training vectors are 

separated into two classes kj(xi) Є {-1,+1}: [27] [22]  

𝐶(𝑥𝑖) = 𝑎1 𝑘1(𝑥𝑖) + 𝑎2 𝑘2(𝑥𝑖) + ⋯ + 𝑎𝑙 𝑘𝑗(𝑥𝑖) (1) 

The weak learners are adjusted according to an error function after each each iteration. This 

adjustment involves decreasing the weights of the correctly classified samples and increasing 

the weights of the misclassified ones, thereby iteratively enhancing the classification 

performance. 

In the example of Fig. 3.3, blue triangles and orange squares represent features whose weight 

is according to the size. In the first diagram, all features carry equal weight until correctly 

classified features are down-weighted and incorrectly classified feature are increasing their 

weight respectively, as shown in the second diagram. In the third diagram, the same process 

is repeated. Finally, on the last diagram, a strong classifier is produced [23]. 
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Figure 3.3: A schematic of the AdaBoost method [23] 

In conclusion, the AdaBoost algorithm's iterative reweighting mechanism and combination of 

weak classifiers make it a powerful tool for improving classification accuracy. 

Decision Trees 

The Decision Tree is one of the most popular supervised algorithms for either classification or 

regression tasks.  

Practically, nods and branches compose a tree and each internal node represents a test on an 

attribute, and the branch the result of the test, while each leaf node corresponds to a class 

label (classification) or a continuous value (regression) as shown in Figure 3.4. [24]. 

Firstly, the best attribute is defined which divides the dataset into classes. Until no longer 

splitting is possible, the data are divided into subsets recursively.  

 

Figure 3.4: Decision Tree [24] 

This algorithm is known for its’ simplicity and it can be also used both for numerical and 

categorical data. This fact leads to the conclusion that the algorithm can be versatile for many 

different types of datasets [24] [25]. 

Neural Networks and Deep Learning 
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Neural Networks (NN) or Deep Learning are frameworks within machine learning, inspired by 

the human brain function and they are basically applied in supervised machine learning. They 

manage to learn from a set of parameterized differentiable functions with many connected 

layers so that they can organize past data and generate predictions [26]. 

NNs consist of interconnected nodes, named neurons which are arranged in layers so node i 

is connected to a node j with connection weights wij represented in a weight matrix W. Some 

of the most widely used forms of NNs as shown in Figure 3.5., are the fully connected layered 

feedforward networks (a), recurrent (b), lattice (c), fully connected with lateral connections 

(d), and cellular (e) as well as convolutional NNs [27]. 

 

Figure 3.5: Neural Network representations [27] 

The general rule says, that the first stage of the process in NNs is learning or in other words 

optimization or training, and the second stage is generalization or recalling that the model is 

evaluated is unseen data. During the first stage, it is important to define the hyperparameters 

of the number of epochs and batches. In more detail, batches are small subsets that the 

training dataset is divided into in order to facilitate the training process. On the other hand, 

the epoch’s number indicates the number of times that the dataset will be submitted to 

training [28]. 

In addition, there are some key parametrization factors during the training that are important 

to be tuned properly in order to achieve the desired model's performance. One important 

factor is the activation function, whose role is to control the node’s output and train them to 

capture intricate patterns and this brought innovation in NNs. Currently, one of the most 

commonly used functions that address successfully to complex patterns, is the rectified linear 

unit (ReLU) and its variants [29]. Furthermore, another important factor is the optimization 

algorithm, and the most commonly used in NNs is «adam». Its’ role is to enhance the training 

process by which adjusting the network’s weights during training to minimize prediction error 

[30]. 
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The latest approaches, according to the bibliography regarding voice recognition tasks, either 

use as an input hand-crafted extracted features to feed the (DNN) or just raw audio signal due 

to their ability to process sequential and high-dimensional data [14]. 

• Convolutional Neural Networks (CNNs) 

Convolutional Neural Networks or CNN is one of the most famous algorithms related to NNs. 

It is a structured architecture with multiple layers supported by certain functions to extract 

features from the input. 

Considering the general structure of CNNs, the first layer receives the raw data values and the 

convolutional layers follow to operate the extraction. After each convolutional layer, there is 

one activation layer with the function ReLU to support the effective learning process. The 

following layers are the pooling (max pooling, or average pooling layers) that reduce the 

dimensions of the feature matrices. Finally, the network has created a set of vectors of the 

most relevant information, highly discriminative and at the same time with lower 

dimensionality (Figure 3.6.) [29] [31]. 

 

Figure 3.6: CNN representation [31] 

CNNs outperform compared to other NN approaches due to various advantages. Starting with 

the fact that the weight-sharing feature reduces the parameters, boosts the generalization, 

and limits the overfitting. In addition, feature extraction layers and classification layers are 

trained simultaneously, so they are directly optimized. Finally, CNNs are well-designed to 

handle high-dimensional data thanks to the pooling layers [32]. 

CNNs find a lot of applications in medical imaging (grid-like data). However, they are 

vulnerable in sequential data due to their inability to measure the dependencies of distant 

elements as well as their position or order. 

• Long Short-Term Memory (LSTM) 

Long Short-Term Memory Neural Networks (LSTM) falls into the category of a recurrent 

network which differentiates with its ability to handle long sequences. This fact is achieved 

By the use of gates and regulating the information’s flow [33].  

In more detail, there are three categories of gates, the forget gate, the input gate, and the 

output gate. The first one is responsible for controlling the discarded information from the 
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cell state, the second one handles the input that is stored in the cell state, and finally, the exit 

information from the cell state is decided by the output gate. The cell state distinguishes the 

important information while in classical recurrent networks, the hidden state is the memory 

and at the same time the output of the network [34]. Therefore, the LSTM cell (Figure 3.7.) is 

an extension of a recurrent cell enhanced with robustness and versatility [33]. 

  

 

Figure 3.7: LTSM cell structure representation [34] 

Additionally, compared to typical recurrent networks, LSTM networks incorporate two 

activation functions to enhance performance, the tanh function, and the sigmoid activation 

function additionally which filter unnecessary information [34]. The functions are shown 

below: 

tanh(x) = ex-e-x/ ex+e-x  (2) 

In LSTM networks: 

σ(x) = 1/1+e-x  (3) 

These attributes make LSTMs effective tools for long-term dependency tasks in sequential 

data. 

• Multilayer Perceptron  

Multilayer Perceptron is a type of feedforward NNs, widely used for both classification and 

regression applications. They are composed of layers, and every layer consists of connected 

nods. The input and the output nods have linear activation functions and the hidden nodes 

non-linear. 

In Figure 3.8. an example of a three-layer perceptron is represented, where all of the inputs 

are also connected directly to all of the outputs. The hidden unit and output nodes have 

thresholds associated with them in addition to the weights. So, the signal is fed into a node 

and in any connected layer and it has the original input multiplied by a weight, adding a 

threshold, and then passed through an activation function [35]. 
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Figure 3.8: Three-layer - Multilayer Perceptron [35] 

3.2 Evaluation and Interpretability Methods 

There are a lot of critical tools that assist the interpretation of models’ results by providing 

insights and explaining the way as well as the reasons models make certain predictions. In this 

specific research, the following tools were used for evaluation and interpretability: 

Evaluation Metrics: 

a. Confusion Matrix: A matrix that interprets the model’s performance by comparing the 

actual with the predicted values 

 

In more detail, the general structure of the confusion matrix is shown in Figure 3.9. in 

which true positive (TP), true negative (TN), false positive (FP) and false negative (FN) 

cases are represented: 
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Figure 3.9: General Structure of Confusion Matrix [19] 

b. Accuracy: A vital metric that measures the rate of correct predictions over the dataset and 

based on the Confusion Matrix: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (4) 

 

c. Recall: Counts if the models capture the actual positive cases and based on the Confusion 

Matrix: 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (5) 

 
d. Precision: Measures how well the model detects the actual positives and based on the 

Confusion Matrix [19]: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (6) 

 

e. F1-SCORE: The harmonic mean of precision and recall and based on the Confusion Matrix 

[36]: 

 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2𝑇𝑃

𝐹𝑁+𝐹𝑃+2𝑇𝑃
 (7) 

 

f. Specificity: Counts the actual negative correctly identified and based on the Confusion 

Matrix [37]: 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
 (8) 
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g. Training time: Another important performance indicator that shows the time (in seconds) 

the model needs to train on a dataset [38]. 

Interpretability Methods: 

a. LIME (Local Interpretable Model-agnostic Explanations) method is a model 

interpretability tool used in machine learning that shows multiple local estimations based 

on particular predictions by using the input and applying an additive feature attribution 

technique. For this current research, binary vectors were exported indicating feature 

presence or absence [39]. 

 

b. SHAP (SHapley Additive exPlanation) Values is another interpreting method which is 

based on cooperative game theory. It explains how each feature’s contribution affect the 

output in the end [39]. In more detail, the output of a function f is explained by SHAP 

values, which are the sum of the impacts ϕi of each feature given to a conditional 

expectation. Crucially, the introduction order of features affects non-linear functions. 

SHAP values are the average of all possible orderings [40]. 

 

c. The Partial Dependance Plot (PDP) interprets the small influence that one or two features 

have on the expected outcome. If there is a complex relationship between a feature and 

a target, a PDP plot can demonstrate it [41]. 

 

d. Permutation importance is a technique that determines the significance of individual 

features in machine learning models. As part of the process, each feature is permuted to 

disrupt the relationship between the feature and the target variable, and metrics as such 

as accuracy or mean squared error show the change in the model's performance. This 

approach helps in identifying which features are critical for the experiment leading to a 

more unbiased estimation of feature importance. However, it can be computationally 

intensive as it requires multiple evaluations of the model, and in cases of high correlation 

of features, bias may occur [42]. 

3.3 Bioacoustic and Linguistic Features 

It is important to consider during the feature extraction that the segments of the time in 

different window lengths can also affect the quality of the results. The bioacoustic features 

are mostly categorized into the following groups, but depending on the study they have been 

differently categorized [7] [14]. 

▫ The source features represent the voice of quality characteristics, like the jitter which is 

the frequency variation/pitch, and the shimmer, meaning the amplitude 

variation/loudness. A typical range for adults is 0,5-1% for the former and 0.05 db to 0.22 

db for the latter. Glottal Closure Instant (GCI) marks the glottal closure phase and helps 

determine the previous parameters [7]. 
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▫ The spectral features refer to articulatory prosodic and phonetic characteristics related to 

motor control in speech production in frequency and spectral analysis [7] [14]. 

▫ The “cepstral” features (the word comes from “Spectrum”), like the Mel Frequency 

Cepstral Coefficients (MFCCs) are the most common features, describing the variation of 

low frequencies of the signal. They achieve high performance in the mel-frequency 

domain to mimic the human auditory system [14]. 

▫ The prosodic features describe the variation in pitch, loudness stress, and rhythm related 

to differences between individuals’ speaking ways. They are long-term features. For 

example, in women, F0 is usually around 200-220 Hz compared to men’s value which is 

100-120 Hz, due to thinner and shorter vocal folds. Sound pressure level (SPL) and zero-

crossing rate (ZCR) represent the time-domain prosodic features that indicate the acoustic 

wavelength and the number of times the signal is zero [7]. 

▫ The formant features detect information regarding the coordination of articulators 

(tongue, lips, lower jaw, and velum). Values F1 and F2 characterize the vowel quality and 

F3 F4, and F5 the colour of one’s voice [7]. 

▫ Deep audio features are considered the features extracted from the raw signal or 

extracted from it and fed into the Deep Neural Network (DNN) [14]. 

Many tools support feature extraction nowadays, like the OpenSmile toolkit 

(https://www.audeering.com/research/opensmile/), Python libraries such as Librosa 

(https://librosa.org/doc/main/tutorial.html), and COVAREP toolkit [43]. 

Apart from the bioacoustic characteristics, studies have also shown remarkable results 

regarding linguistic features. A well-known tool that measures the frequency of certain word 

categories is Linguistic Inquiry and Word Count (LIWC) [44]. According to the bibliography, 

Rude et al 2004, depression has been significantly associated with the following word 

categories: 

▫ First-person singular pronouns 

There are many different reactions and ways of responding when someone faces a difficulty, 

and one of them is being trapped into him/her self-regulatory cycle. (Pyszczynski & 

Greenberg, 1987). During this situation, the person strongly focuses on himself/herself. Many 

studies have shown there is a correlation between the increased usage of words in the first-

person singular and this depressed reaction [29] [45] [46]. However, in this field, there is still 

room for further research. 

▫ Depression and emotional words 

Aaron Beck's theory mentions that depressed people use more negative emotional words 

than non-depressed people [46] and more researchers have also concluded to significant 

results that enhance this statement. On the other hand, regarding to the positive emotion 

words, fewer of them are used by a depressed group compared to a non-depressed. Although 

both sides include literature that supports the fact that, this area needs more research to 

clarify [45]. 
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3.4 Related Work  

After thorough research regarding the different approaches to voice evaluation of depressive 

presence, absence, severity, or traits, the relevant articles summarize the most widely used 

techniques below (Table 3.1). The divided input dataset and the performance metrics are also 

noted for each method. 

TABLE 3.1: SPEECH DATASETS FOR THE STUDY OF DEPRESSION 

Ref. 
 

Input 
 

Model 
 

Performance 
 

1. Detection of Major 
Depressive Disorder 
Based on a 
Combination of Voice 
Features: An 
Exploratory Approach 
[47] 

Subjects from five 
institutions 
 
102 patients (“depressed 
group (HDRS ≥ 8)”) and 129 
non-depressed 

Logistic regression with 
regularization 

~90% sensitivity, specificity, 
and accuracy in the training 
set  
~80% sensitivity, specificity, 
and accuracy in the test 
set. 

2. Detection of major 
depressive disorder 
using vocal acoustic 
analysis and machine 
learning—an 
exploratory study [48] 

22 patients with previous 
diagnosis of major 
depressive disorder and 11 
non-depressed participants  
 

Random forest with 100 
trees 

accuracy (87.5575% ± 
1.9490), 
kappa index 0.7508 ± 
0.0319 and specificity 
0.8354 ± 0.0254  

3. Estimating Depressive 
Symptom Class from 
Voice [49] 

Recruited subjects from 
depressed patients at the 
National Defense Medical 
College Hospital in Japan 
110 participants 

Decision Tree- 
divided into two groups 
with distinct symptom 
profiles 

Accuracy 79% 
sensitivity 83% and 
specificity 76% 

4. An End-to-End model 
for Detection and 
Assessment of 
Depression Levels 
using Speech [17] 

AVEC 2016 DAIC-WOZ 
Dataset: 146 non-
depressed and 43 
depressed participants  

• Spectrogram 
based CNN 

• End-to-End CNN 
 
 

• Overall accuracy 
59.2% 

• Overall accuracy 
61.32% 

 

5. Adieu Features? End-
to-End Speech 
Emotion Recognition 
Using a Deep 
Convolutional 
Recurrent Network 
[16] 

RECOLA database – 45 
participants 

End-to-End Deep 
Convolutional Recurrent 
Network 

Arousal prediction: ρc = 
0.686 
Valence Prediction: 
ρc = 0.261 

6. Depression Detection 
in Speech Using 
Transformer and 
Parallel Convolutional 
Neural Networks [50] 

DAIC-WOZ Dataset: 189 
participants 
Training & development: 
Depressed: 30+ 12 
Non-depressed: 77+ 23 
Test Set: 47 participants 
MODMA dataset: 
Depressed: 23 
Non-depressed: 29 
 

Transformer and Parallel 
Convolutional Neural 
Networks (CNNs) 

DAIC-WOZ dataset: 
TCC-softmax variant F1-
score of 93.6% 
 
MODMA dataset: 
TCC-softmax variant F1-
score of 96.7% 

7. Depression Speech 
Recognition With a 
Three-Dimensional 
Convolutional 
Network [12] 

DAIC-WOZ English dataset 
Training Set: 107 
participants (30 depressed, 
77 non-depressed) 
Validation Set: 35 
participants (12 depressed, 
23 non-depressed) 
Test Set: 47 participants  

Three-Dimensional 
Convolutional filter bank 
with Highway Networks 
and Bidirectional GRU with 
an Attention mechanism 
(3D-CBHGA). 

Accuracy: 83.1% 
F1 Score: 0.812 
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8. End-to-End 
Multimodal Clinical 
Depression 
Recognition using 
Deep Neural 
Networks: A 
comparative Analysis 
[13] 

DAICWOZ dataset (80% 
training, 10% validation, 
10% test split 

Convolutional Neural 
Networks (CNNs) 
and 
Long Short-Term Memory 
(LSTM) 

LSTM-based Audio 
Features: Accuracy = 
66.25% 
CNN-based Audio Features: 
Accuracy = 65.60% 

9. MFCC-based 
Recurrent Neural 
Network for 
Automatic Clinical 
Depression 
Recognition and 
Assessment from 
Speech [14] 

DAIC-WOZ dataset 56 
depressed 133 non-
depressed participants 

MFCC-based Recurrent 
Neural Network 

overall accuracy: 76.27% 
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4 Materials, Methods and Tools 

 

4.1 Dataset 

For the development of the current thesis, the clinical interview database DAIC-WOZ was 

used as a source to feed and train the algorithm. This database, as a part of a larger corpus, 

the Distress Analysis Interview Corpus (DAIC), that supports the diagnosis of depression, 

anxiety, and post-traumatic disorders, contains audio and video information driven by a 

virtual interviewer, called Ellie, controlled by a human in another room. All of the participants 

have signed an agreement of consent that allowed their data to be shared for research 

purposes. In this dataset, 189 interview sessions are included. For each session, the dataset 

also includes the already extracted features supported by the Cooperative Voice Analysis 

Repository, COVAREP toolbox (v. 1.3.2)[43] [51] [52]. 

4.2 COVAREP 

More specifically, collaborative free repository, or COVAREP, is widely used for speech 

processing and provides methods and algorithms. It also supports a platform where 

researchers can share and exchange knowledge with the common aim of encouraging speech-

processing research. 

The main methodologies used in COVAREP are the following and are presented in (Figure 4.1). 

Starting with pitch tracking via the Summation of the Residual Harmonics (SRH), this method 

supports the estimation of F0 with robust results regarding the additive noise, a major 

challenge that has been a topic of research for many scientists in order to measure the rate 

of vocal fold vibrations.  

Furthermore, speech polarity detection is another vital method in COVAREP based on the 

skewness of the LP residual signal, which dramatically impacts the performance of various 

analysis and synthesis techniques. In addition, the GCI detection algorithm called SEDREAMS 

(Speech Event Detection using the Residual Excitation and a Mean-based Signal) is a major 

methodology used in COVAREP analyzing the precise timings of significant excitation in the 

vocal folds, crucial for many pitch-synchronous analysis procedures. 

Moreover, the regular vibrations of the vocal cords lead to the harmonic structure of the 

frequency spectrum of the speech. Using the discrete Fourier transform (DFT), peaks are 

observed at frequencies that are multiples of the fundamental frequency (F0). These peaks 

are crucial because they contain the most important spectral information for perceiving 

voiced speech. COVAREP uses different models to represent it, such as the Sinusoidal Model 

(SM), Harmonic Model (HM), and Adaptive Harmonic Models (aHM). 

Spectral Envelope Estimation is also undertaken in COVAREP, measuring the response of the 

vocal tract filter, by using a set of methods such as True Envelope (TE), Discrete All-Pole (DAP) 

Model, Temporally Weighted LP Methods, Advanced Formant Tracker, (SM) and (HM) 

models. 
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In addition, Glottal Flow (GF) Estimation is a challenging and complex process of separating 

the vocal tract and glottal flow components. COVAREP uses Iterative Adaptive Inverse 

Filtering (IAIF) and Complex Cepstrum-based Decomposition (CCD), though other 

methodologies need to be compared to lead to robust results. Parameterizing GF is used to 

support overcoming the changes in phonation types, with parameters such as NAQ 

(Normalized Amplitude Quotient), QOQ (Quasi-Open Quotient), H1-H2, HRF (Harmonic 

Richness Factor), PSP (Parabolic Spectral Parameter), MDQ (Maxima Dispersion Quotient) and 

Peak Slope and Rd Shape Parameter. 

Finally, phase processing is another challenge for researchers. Although handling this kind of 

information is complex, it plays a significant role in accurately modeling speech. In COVAREP, 

Relative Phase Shift (RPS) and Phase Distortion (PD) are the used features. 

In the current dataset, for each different candidate’s interview session, a final matrix of 

COVAREP features is composed. This matrix, in each column, contains different values 

representing the relative extracted features regarding pitch, formants, glottal parameters, 

spectral characteristics, and phase information, as detailed previously. Each row represents a 

temporal snapshot of the speech signal. Every snapshot results from the method of Consistent 

interval sampling in which overlapping frames are applied. This is a fundamental procedure 

that ensures the accurate capture and representation of temporal characteristics of speech. 

More specifically, the speech signal is divided into fixed-duration frames of 25ms with a slight 

overlap of 10ms [43]. In this present research, the already extracted COVAREP features were 

used for further analysis. 

 

Figure 4.1: Implemented methods in COVAREP [43] 
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4.3 Methods and Tools 

The present analysis was developed using the open-source package Anaconda Distribution, 

and compiled into Python programming language. For the implementation of the methods 

described in Chapter 3, several Python packages were used. In Table 4.1. each used library 

and its role are described: 

TABLE 4.1: PYTHON LIBRARIES 

Libraries: Role: 

Os Managing the CSV files 

Pandas • Managing the files & input data  

• Extracting of statistical features of mean, 

std, min, and max using the function 

extract_features() 

Numpy Handling infinite data, feature & permutation 

importance 

Matplotlib Confusion matrices, feature & permutation 

importance plots, SHAP, LIME, and PDP 

visualizations 

Shap SHAP plot 

lime.lime_tabular LIME plot 

Seaborn Confusion matrices 

Time Measuring training time 

imblearn SMOTE balancing 

sklearn Handling NaN values, Standardization, Data 

splitting, Machine learning models 

*tensorflow.keras.models NN models 

 

Based on the previous table, the sklearn library, also called «scikit-learn», is an important 

library used in several tasks. More specifically, the function «SimpleImputer()» assisted the 

handling of NaN values, the «StandardScaler()» function also assisted the standardization of 

data values, the «train_test_split()» function the data splitting in 80 train/20 test division, as 

well as the following machine learning models: 

• Decision Tree model: using «DecisionTreeClassifier()» function 

• MLP model: using «MLPClassifier()» function  

• AdaBoost model: using «AdaBoostClassifier()» function 

• SVM model: using «SVC()» function  

In addition, tensorflow.keras.models library supported the implementation of deep learning 

models of Simple NN, CNN, and LSTM. 

  



   

 

32 

 

5 Development 

To support the goal of this thesis and compare different machine learning models in terms of 

their classification accuracy in separating depressed and non-depressed people in the already 

extracted voice features taken from the DAIC-WOZ dataset, all the methods and tools 

mentioned in Chapter 4 were used. In more detail, Figure 5.1. shows a schematic 

representation of the methodology pipeline.  

  

Figure 5.1: Methodology pipeline [Original image] 

More specifically, the research pipeline, according to the previous figure (fig. 5.1.), is 

described below: 

Data loading: Gathering all the extracted COVAREP features of each separate session and 

creating a large matrix format. This matrix was difficult to process due to its large size which 

caused computational restrictions. 

Methodology 1: 

To overcome the computational obstacle, a method of core information selection was first 

attempted. This means, that for each COVAREP file setting the matrix, the first 2000 rows 

were skipped, the next 7000 rows were only selected, and the rest were discarded. So, the 

amount of data for each class is: 

Number of rows in the class of non-depressed: 931000  

Number of rows in the class of depressed: 392000  

Data Preprocessing: Handling missing/infinite data and standardization of data values 

Data Splitting: Splitting the total data into 80% train and 20% test subset: 

Training set: 1058400 rows  

Test set: 264600 rows 

Model Performing: Six different models were performed separately; these were Simple NN, 

CNN, LSTM, Decision Tree, MLP, and AdaBoost with the following parameterization:  
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➢ Simple NN: 

First dense layer: 

Number of units: 64 units/neurons: support capturing complex patterns 

Activation Function: «relu»: support capturing complex patterns 

Input Shape: 1 indicates the dimensionality of the input data 

Output layer: 

Number of units: 1 for binary classification 

Activation function: «sigmoid» for binary classification 

Optimizer: «Adam», with a learning rate: 0.001 

Number of epochs: 10: pass the training dataset 10 times 

Batch Size: 64: process 64 samples at a time before updating the weights 

➢ CNN: 

Conv1D Layer: 

Filters: 64 filters used : the layer will learn 64 different features 

Kernel: 3 specifies the width of the convolutional filter 

Activation Function: «relu»: support capturing complex patterns 

Input Shape: 1 indicates the dimensionality of the input data 

MaxPooling1D Layer: 

Pool Size: 2 reduces computation and control overfitting 

Flatten Layer: 

This layer reshapes the 2 dimension data from the convolutional and pooling layers into a 

1dimension/vector 

Dense Layers: 

1st dense layer: 64 units with «relu» activation: learn patterns and features from the flattened 

data 

Output Dense layer: 1 unit with a «sigmoid» activation function: binary classification 

➢ LSTM: 

LSTM layer: 

Number of units: 64 units/neurons: learning temporal dependencies in sequential data 

Input Shape: 1 indicates the dimensionality of the input data 



   

 

34 

 

Activation functions: its default activation functions internally: tanh for the cell state and 

sigmoid for the gating mechanisms (input, output, and forget gates): Activations help in 

retaining or discarding information through time steps 

Output Dense Layer: 

Number of units: 1 unit for binary classification. 

Activation Function: «sigmoid» for binary classification 

Optimizer: «Adam», with a learning rate: 0.001 

Number of epochs: 3: pass the training dataset 3 times 

Batch Size: 64: process 64 samples at a time before updating the weights 

➢ Decision Tree: all the default parameters 

➢ MLP: 

Hidden Layer Sizes: 64: specifies a single hidden layer with 64 neurons (model learns 

intermediate features that help map the input to the output) 

Activation Function: «relu» used for the neurons in the hidden layer 

Solver: «adam» model optimization 

Max Iterations: maximum number of epochs or iterations the algorithm can perform 

Random state: 42: fixing the randomness to a particular seed value 

➢ AdaBoost: 

Number of estimators/weak learners: 100 trained to correct the errors of the previous 

learners 

Algorithm: «SAMME»: specifies the boosting algorithm used 

Random state: 42: fixing the randomness to a particular seed value 

Model Performance Evaluation: In this phase, confusion matrices and accuracy were 

visualized to estimate the models’ performanc. In addition, the class distribution was plotted 

and showed that the imbalance between the classes of non-depressed and depressed is 

remarkable, so the model was found biased. Further investigation was necessary. 

Methodology 2: 

In this attempt, in the data preprocessing step, handling missing/infinite data and 

standardization were conducted as methodology 1. In addition, data balancing was applied 

by deleting rows from the outperformed class to make both classes equal, so the number for 

each class was: 

Number of rows in the class of non-depressed before balancing: 931000  

Number of rows in the class of depressed before balancing: 392000  
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Number of rows in the class of non-depressed after balancing: 392000 

Number of rows in the class of depressed after balancing: 392000 

All the following steps of data splitting (80% training set - 20% testing set), model performing 

and parameterization (NN, CNN, LSTM, AdaBoost, MLP, and Decision Tree) and model 

performance evaluation were the same as the methodology 1. Thus: 

Training set: 627200 rows 

Test set: 156800 rows 

Consequently, adjusting the data balancing reduced the models' accuracy results, so further 

research was needed. 

Methodology 3: 

In this methodology, another approach was tested, compared to methodologies 1 and 2, in 

order to handle the computational restrictions and improve the model’s performance. The 

new approach was the extraction of statistical features of mean, std, min, and max that 

aggregated the time series data to one row per participant. Then, instead of row deletion 

conducted in methodology 2, data balancing was achieved with the SMOTE technique, Thus: 

Number of rows before balancing: 189 

Number of rows after balancing: 266  

The rest of the data preprocessing (handling missing/infinite data and standardization) and 

data splitting (80% training set - 20% testing set) phases that followed were the same as 

methodologies 1&2. Thus: 

Training set: 212 rows 

Test set: 54 rows 

Model Performing: In this methodology, the SVM model was performed with the following 

key parameters: 

• Kernel: linear: separation in the original feature space 

• Probability: true: calibration to the decision function to produce probabilities output 

• Verbose: true: print out detailed messages about its training process 

• Random state: 42: fixing the randomness to a particular seed value  

Model Performance Evaluation and Interpretability Metrics:  

The confusion matrix and accuracy were visualized to check the model’s performance which 

proved satisfying results compared to the previous methodologies and related work. More 

metrics regarding the model’s performance were then calculated. These were precision, recall 

specificity, F1-score, and training time. Finally, the tools of SHAP, LIME, PDP, feature, and 

permutation importance were used to extract useful information regarding the models’ 

predictions. 



   

 

36 

 

The relevant scripts of SVM (methodology 3) and NN (methodology 2) are provided in the 

appendix section. 

Furthermore, giving some more technical details regarding the data development, the data 

transformations of methodology 3 are schematically represented in Figure 5.2. More 

specifically: 

• The script reads the COVAREP data from 189 total sessions of interviews. The given DAIC-

WOZ dataset had already split the labels of the sessions for training, testing, and validation 

but it was decided to be used in a different division. So, the script reads all the COVAREP 

CSV files from a specific directory by reading each participant’s number from three 

different CSV files and creates a total DataFrame of features and a separate Panda Series 

for the labels. The total DataFrame has a very large number of rows (nx10x) and 74 

columns while the labels is a Panda Series of 189 numbers. 

• Extracts four statistical features for each participant, and aggregates the time series data 

to one row per participant, creating a new smaller DataFrame. The new DataFrame has 

189 rows and 296 columns. 

•  Adds the labels and creates a total DataFrame The label for each participant being 

depressed is «1» and for non-depressed participants is «0». The result is that the 

DataFrame is consistef of 189 rows and 297 columns. 

• After the SMOTE balancing, the data has been converted to a numpy array with final 

dimensions of 266 rows and 297 columns. 

 

 

Figure 5.2: Data transformation [Original image] 
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6 Results 

 

6.1 Performance Evaluation 

This chapter details the results of the metrics that supported the performance evaluation of 

the algorithms developed in the three methodologies mentioned in Chapter 5. Algorithms’ 

results of methodologies 1&2, of both balanced and unbalanced conditions, are represented 

in the following table (Table 6.1). 

TABLE 6.1: MACHINE LEARNING ALGORITHMS RESULTS FOR BOTH BALANCED AND UNBALANCED 

DATASET 

Algorithm Accuracy for non-balanced 

dataset 

Accuracy for balanced dataset 

Simple NN (10 epochs) 71.82% 63.25% 

CNN 72.34% 51.00% 

LSTM 71.00% 58.96% 

Multilayer Perceptron 72.63% 64.05% 

AdaBoost 70.44% 58.96% 

Decision Tree 73.51% 69.27% 

  

The class distribution chart in Figure 6.1. shows a remarkable unbalance between classes of 

non-depressed (0) and depressed (1) before data balancing. In addition, the results of the 

algorithms show that the unbalanced condition of the data strongly affected the models' 

performance. 

  

Figure 6.1: Class distribution before data balancing  

Furthermore, confusion matrices (as shown in figures 6.2, 6.3, 6.4., 6.5, 6.6., 6.7.) were 

displayed to examine the algorithms’ performance in methodology 2 (the confusion matrices 

of methodology 1 are not included, as the model was biased and therefore their information 
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is not reliable). In the following confusion matrices, it is important to note that the large values 

are due to the time-series data.  

Confusion matrices: 

 

Figure 6.2: Confusion matrix of Simple NN algorithm 

  

Figure 6.3: Confusion matrix of CNN algorithm 
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Figure 6.4: Confusion matrix of LSTM algorithm 

  

Figure 6.5: Confusion matrix of MLP algorithm 
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Figure 6.6: Confusion matrix of AdaBoost algorithm 

  

Figure 6.7: Confusion matrix of Decision Tree algorithm 

Finally, the lower accuracy results combined with the unsatisfactory results of the confusion 

matrices consider the models’ performance poor in methodology 2 and lead to further 

investigation. Methodology 3 proved to be the most robust scenario compared to the 

previous methods in terms of accuracy, confusion matrices, and balanced dataset. The 
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methodology’s 3 metrics of performance evaluation are shown in Table 6.2. and Figure 6.8.. 

Αs methodology 3 was considered superior to the previous ones, more metrics were 

calculated in order to evaluate and compare it with the related work in literature. These were 

precision, recall, f1-score, and specificity which are represented in Table 6.2..  

TABLE 6.2: MODEL PERFORMANCE 

Metrics Values 

Accuracy 0.81 

Precision 0.79 

Recall 0.90 

F1-Score 0.84 

Specificity 0.72 

 

According to the previous table, the score of 0.81 accuracy represents a solid performance 

highlighting an effective model. Moreover, the precision metric checks if the model considers 

many false positive instances as "depressed". A score of 0.79 is a satisfying result avoiding 

many false predictions. In addition, the recall metric counts if the model captures the actual 

depressed cases, and a score of 0.9 means a very good identifier. Regarding F1-Score which 

balances precision and recall, the model achieved 0.84 which is a strong result that identifies 

positive cases and avoids false positive ones. Finally, specificity is another important metric 

that captures the actual negatively depressed cases. The score of 72% is lower compared to 

recall, so overall it is easily concluded that the model is good in identifying depressed cases 

and less effective in identifying true negatives, compared also to related work in the 

literature. 

Furthermore, the Confusion Matrix Interpretation summarises the table’s results in a four-

box figure (Fig. 6.8.) showing the results calculated from the test set (54 cases in total). From 

the total cases, 26 were predicted depressed correctly (TP), 7 were predicted depressed 

incorrectly (FP), 18 correctly predicted negative (TN) and 3 false non-depressed (FN). In the 

present confusion matrix, lower values than the previous methodologies’ confusion matrices 

are noticed due to the aggregation of the time series data to one row per participant. 
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Figure 6.8: Confusion Matrix 

Finally, another metric that is important to take into account when choosing a model for real-

world data, is computational efficiency. For this aim, the training time was measured at 

0.0899 seconds, an excellent score that allows real-world applications. 
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6.2 Evaluation Scenarios and Interpretability Metrics 

According to the metrics discussed in Chapter 6.1., methodology 3 proved to be the most 

robust alternative of all the examined scenarios. To evaluate the models’ predictions of 

methodology 3, the following interpretability tools were used: 

LIME Plot 

The LIME interpretability method provides a detailed explanation of why the model classifies 

a specific instance as depressed or non-depressed, giving a local approximation. In more 

detail, it shows which features contributed the most to the final decision as well as their 

specific value ranges [39]. 

Based on Fig. 6.9. the top 20 are represented and ranked in depending on the size of the bar, 

showing the larger bar the stronger the contribution. In addition, the green colour represents 

the positive contribution to the «depressed» result while the red colour the negative 

contribution to the «depressed». On the left side, the feature label is represented as well as 

the interval in which the feature value lies relative to the decision boundary within the model. 

The rest 276 features were chosen not to be presented on the graph as they offer less 

contribution to the final result and they would make the picture more illegible. 

According to the LIME graph, in the present model, feature 239 with the interval 0.29 < 

feature_239 <= 0.87 has a large negative contribution (red bar), suggesting that within this 

interval, it strongly influences the model towards predicting that the individual is not 

depressed. Less influence but still toward predicting an individual is not depressed, feature 

46 has when its value is more than 0.42, feature 91 when it is higher than 0.57, feature 79 

when its value is higher than 0.5, feature 52 when it is higher than 0.64, feature 127 when it 

is higher than 0.56, feature 246 when it is higher than 0.68, feature 35 when it is less or equal 

than -0.23 and feature 37 when it is less or equal than -0.52. Conversely, feature_162 within 

the interval -0.36 < feature_162 <= 0.66 has a strong positive contribution (green bar), 

indicating that this feature is pushing the model towards classifying the individual as 

depressed as well as feature 56 when it is less or equal to -0.53, feature 60 when it is higher 

than 0.55, feature 86 when its value is less or equal than-0.71, feature 223 within the interval 

-0.46<feature 223<=0.65, feature 53 when it is less or equal to -0.75, feature 24 when it is 

higher than 0.87, features 82 and 258 when they are less or equal than -0.56 and -0.69 

accordingly, feature 103 when it is higher than 0.62 and finally feature 37 when its value is 

less or equal to -0.52. 
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Figure 6.9: LIME plot 

SHAP Plot 

The following graph that provides valuable information and supports the detection of the 

machine learning model’s results is the SHAP plot as shown in fig. 6.10., which shows the 

contribution of each feature to the model’s predictions both locally and globally [39]. Features 

are sorted on the y-axis based on their overall significance, which is determined by the mean 

absolute SHAP value, so the top 20 features are presented. In more detail, positive SHAP 

values indicate that the feature increases the model’s predicted output, so making the model 

more likely to predict "Depressed" while negative SHAP values do the opposite, indicating 

that the feature decreases the model’s predicted output and making the model less likely to 

predict "Depressed". In addition, the dots’ colour indicates if the actual feature number is 

high or low with red and blue colours accordingly. 

According to the present SHAP graph, it is noticed that feature 239 has a strong impact on the 

model’s prediction as its high values correspond to negative SHAP values which means that 

the high values are pushing the model towards reducing the likelihood of the "depressed" 

classification. On the contrary, feature 96 has more blue dots on the left side which means 

that lower feature values push slightly the model towards non-depressed but the impact is 

small. Regarding features 258 and 56, the concentration of red dots on the left and blue dots 

on the right suggests that lower values may push the model towards predicting "depressed," 

while higher values may increase the likelihood of predicting "no depressed." In feature 60, 

red points are predominantly on the right part of the graph, indicating that higher values 

increase the likelihood of a "Depressed" prediction as well as in feature 162 in which the 

pattern is very clear. In feature 23, it is noticed that lower values push the model to reduce 

the likelihood of depression while higher ones have the opposite impact as the same happens 

with features 24 and 109 in slightly less impact. The opposite happens in features 240, 91, 

86,137,70,133,295,69, 107, and 127 that have almost the same pattern with higher values 

reducing the possibility of depression and lower values increasing it. Finally, in feature 46 
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higher values have less impact as according to the graph, they approach zero SHAP values 

while lower values push the model towards "depressed" prediction. The last features of SHAP 

plot are less significant than features higher up on the list which doesn't mean they are 

unimportant, but they have a lighter influence compared to the top-ranked ones. 

 

 

Figure 6.10: SHAP plot 

PDP Plot 

Each subplot of PDP plots represents a different feature and its impact on the prediction 

probability, revealing features’ trends and how feature values push the model towards or 

away from predicting the positive class (depressed) [41]. Figure 6.11. illustrates 10 manually 

selected features that are present in both the LIME and SHAP plots.  

In more detail, according to the following plots, features 239, 56, 91, 258, 46, 127, and 86 

show downward trends, indicating that as these feature values increase, the likelihood of 

predicting the "depressed" class decreases, suggesting a negative relationship between the 

features and the likelihood of predicting "depressed." On the other hand, features 162, 60, 

and 24 have upward trends meaning that higher values of these features increase the 

likelihood of predicting the "depressed" class. 

In addition, differences in the gradient reveal useful information too. A steep gradient, 

whether upward or downward, indicates that small changes in the feature values lead to 

significant changes in the predicted outcome.  
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Figure 6.11: PDP plots 

Feature and Permutation Importance 

Figure 6.12. aims to represent the importance of the features, estimated during the training 

process. Based on this graph, the features with positive coefficients estimated that they 

contribute positively or negatively to predicting the "depressed" class are shown in Table 6.3.. 

 

Figure 6.12: Feature importance graph 
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TABLE 6.3: FEATURES IMPORTANCE 

Features with positive feature importance: 

1   3   8   9  13  15  16  17  18  20  21  23  24  25  28  33  35  36  37  39  49  50  55  57  59  60  
64  66  67  72  73  76  77  80  83  85  87  92  94  95  96  99 101 102 103 106 108 109 113 114 
115 121 124 125 130 135 136 141 142 143 162 164 165 168 169 173 177 178 179 181 183 
185 187 190 192 194 197 203 204 207 209 216 218 219 220 222 223 224 226 228 233 234 
237 241 243 245 249 250 251 259 261 262 263 268 272 275 279 280 283 284 287 288 290 
292 293 

Features with negative feature importance: 

0   4   5  11  12  19  27  29  30  31  32  44  45  46  47  48  51  52  53  54  56  58  61  62  63  65  
68  69  70  71  74  75  78  79  81  82  84  86  88  89  90  91  93  97  98 100 104 105 107 110 
111 112 116 117 118 119 120 122 123 126 127 128 129 131 132 133 134 137 138 139 140 
160 161 163 166 167 170 171 172 174 175 176 180 182 184 186 188 189 191 193 195 196 
198 199 200 201 202 205 206 208 210 211 212 213 214 215 217 221 225 227 229 230 231 
232 235 236 238 239 240 242 244 246 247 248 252 253 254 255 256 257 258 260 264 265 
266 267 269 270 271 273 274 276 277 278 281 282 285 286 289 291 294 295 
Positive permutation importance features 
23  33  53  56  60  70  81  82  96 101 103 110 131 135 162 182 203 207  223 231 238 239 
240 243 251 253 257 277 

 

In addition, figure 6.13. follows to detect which of the features were actually important and 

effective after the training process. Table 6.3. also represents the features with positive mean 

importance. 

 

Figure 6.13: Permutation importance graph 

Combined Results 

Feature 239 has the steepest gradient of a downward trend, indicating that as its value 

increases, the predicted probability of a "depressed" class decreases according to the PDP 

plot. In addition, the LIME plot shows the larger red bar from all the features within the range 
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"0.29 < feature_239 <= 0.87." This indicates that, for this particular instance, feature 239 

significantly decreases the likelihood of the "depressed" prediction, pushing it towards "non 

depressed." According to the SHAP plot, feature 239 is the most significant of all the features. 

The concentration of red dots on the left side of the plot suggests that when the feature value 

is high, it significantly contributes to decreasing the likelihood of predicting the "depressed" 

class. Finally, the feature and permutation importance metrics show that feature 239 has 

been estimated to have a negative coefficient on its importance regarding the prediction of 

the "depressed" class as well as it shows a positive coefficient in the permutation importance 

suggesting that this feature is truly effective in practice. 

Regarding feature 56, globally as shown in the PDP, higher values tend to reduce the 

likelihood of a "depressed" prediction. However, according to the LIME plot, for a specific 

instance, the feature can significantly increase the likelihood of predicting "depressed" when 

it is within the range of "feature_56 <= -0.53". The SHAP plot confirms that the impact of this 

feature varies across the dataset, with both high and low values influencing the model’s 

predictions by decreasing and increasing accordingly the probability of the "depressed" class. 

Finally, the feature and permutation importance metrics indicate that this feature has been 

estimated to have a negative coefficient on its importance regarding the prediction of the 

"depressed" class and indeed it shows a positive coefficient in the permutation importance 

suggesting that this feature is effective in practise.  

In addition, feature 91 has a consistent negative impact on the "depressed" prediction, both 

globally (as seen in the PDP and SHAP plots) and locally (as seen in the LIME plot). Its trend in 

the PDP is downward, in the LIME plot the bar is red, and the distribution of SHAP values, 

indicated by red dots on the left side, shows that it pushes the prediction towards "non 

depressed", characterizing it as a protective feature, reducing the likelihood of the model 

predicting the "depressed" class for higher values. 

Feature 162 has consistently a positive impact on the "depressed" class, both globally and 

locally. The PDP plot shows an upward trend, the LIME plot a large green bar and the SHAP 

plot indicates that when values are high it significantly contributes to increasing the likelihood 

of predicting "depressed" based on the concentration of red dots on the right side of the plot. 

This feature can be characterized as a predictor for a "depressed" class when the values are 

high. 

Feature 258 has a negative impact on the "depressed" prediction, as shown in the PDP plot. 

However, the LIME plot shows that in a specific instance, lower values than -0.69 significantly 

increase the likelihood of predicting "depressed", according to the green bar. The SHAP plot 

confirms this dual influence, showing that this feature can both decrease and increase the 

probability of a "depressed" class prediction, depending on its value, and for lower values it 

is more likely to push the model towards predicting "depressed" while for higher values to 

"non depressed." 

Regarding feature 60, it is noticed to have a positive impact on the "depressed" prediction 

based on the PDP plot which represents an upward trend. The LIME plot confirms that 

showing a green bar for higher values than 0.55 the likelihood of predicting "depressed" 

significantly increases. The SHAP plot supports this statement too, showing that higher 
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feature values tend to increase the SHAP values so that the possibility of "depressed" 

prediction. The feature and permutation importance metrics indicate that it has been 

estimated to have a positive coefficient on its importance regarding the prediction of the 

"depressed" prediction and indeed it shows a positive coefficient in the permutation 

importance. This concludes with the fact that feature 60 is actually effective. 

Feature 46 has a downward trend according to the PDP plot, a red bar according to the LIME 

plot for values higher than 0.42, and finally, the SHAP plot agrees with the statement that 

higher values tend to decrease the likelihood of predicting the "depressed" class. 

The same pattern with the previous feature has feature 127, showing a downward trend 

according to the PDP plot, and a red bar according to the LIME plot for values higher than 

0.56. The SHAP plot shows red dots on the left side proving that for higher values there is less 

possibility of a "depressed" prediction while for lower values the prediction is pushed towards 

"depressed". This feature is the last one on the SHAP plot which means that it is the least 

significant compared to the other mentioned features. 

Feature 86 is downward according to the PDP plot. For values less than -0.71, according to 

the LIME plot, a green bar indicates an increasing tend of the likelihood of a "depressed" 

prediction. Finally, the SHAP plot confirms by showing blue dots on the right part and red dots 

on the left part, the increased possibility of the "depressed" predicted statement in lower 

values and "non depressed" in higher values. 

Finally, feature 24 is upward based on the PDP plot, and for values higher than 0.87 the green 

bar of the LIME plot indicates the prediction is pushing significantly towards "depressed". The 

SHAP plot also shows that the higher the feature values the higher the probability of a 

"depressed" prediction. 
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7 Discussion 

After thorough research of several methodologies regarding voice detection of depression to 

support the aim of the present thesis, the SVM algorithm used in the already extracted 

COVAREP features of the DAIC-WOZ dataset balanced with the SMOTE technique proved the 

best performance compared to all examined methods.  

Considering the results of the proposed algorithm, three features provided significantly 

important predictions regarding the depressive class, which are the following: 

• The presence of feature 239 within the interval of, "0.29 < feature_239 <= 0.87" indicates 

that the likelihood of the "depressed" prediction is significantly decreased, pushing the 

model’s prediction towards the "non-depressed" class. This feature could be considered 

a protecting factor for this specific interval. Furthermore, feature 239 corresponds to the 

max value of the 60th initial feature in the original 74 feature set, which means that if the 

max value of feature 60 is within the interval of, "0.29 < max_of_feature_60 <= 0.87", 

there is a strong indication that the person does not have depression. 

• Feature 56, for values less than or equal to -0.53, significantly increases the probability of 

the category "depressed", according to the LIME chart. Furthermore, according to feature 

and permutation importance metrics, this feature has also proved a negative coefficient 

regarding the "depressed" class. These statements conclude with the fact that the higher 

the values of feature 56 the less evidence of depression, and the lower the values the 

greater the likelihood of a "depressed" class, so it could be considered as a risk factor for 

values less or equal to -0.53 and as a protecting factor for higher values. In addition, this 

feature is the mean value of the 14th initial feature in the original 74 feature set, which 

means that if the mean value of feature 14 is less or equal to -0.53, there is a strong 

indication that the person might have depression otherwise if its mean value is higher 

there is a strong indication that this person does not. 

• Feature 60, for values higher than 0.55, significantly increases the likelihood of predicting 

"depressed" and all the metrics taken into account in this present research confirm this 

statement, so this feature could be considered as a risk factor. Finally, feature 60 

corresponds to the mean value of the 15th initial feature in the initial feature set, which 

means that if the mean value of feature 15 exceeds 0.55, there is a strong indication that 

the person has depression. 

Regarding the performance of the proposed model, due to its high recall score, it has the 

advantage of catching most of the true "depressed" cases. It also shows a good balance 

between precision and recall (as shown by the F1-score) pointing to another strength in 

distinguishing the depressed from non-depressed cases. However, the specificity score 

indicates an increased number of false positives and could be a useful point for further 

improvement.  

The present thesis results cannot be directly compared to the related work provided in 

Chapter 3 because in the research papers, different methods of balancing and feature 

extraction have been used, directly from the raw wave, already extracted COVAREP features 

were not used, and in most of them multimodal approaches have been adopted.   



   

 

51 

 

Nevertheless, cross-referencing is useful to be conducted. The present thesis shows higher 

scores in terms of accuracy compared to the spectrogram-based CNN (59.2%) and End-to-End 

CNN (61.32%) of the «An End-to-End model for Detection and Assessment of Depression 

Levels using Speech» [17], the same happens with the Convolutional Neural Networks (CNNs) 

(65.60%) and Long Short-Term Memory (LSTM) (66.25%) results of the «End-to-End 

Multimodal Clinical Depression Recognition using Deep Neural Networks: A comparative 

Analysis» [13] and MFCC-based Recurrent Neural Network (76.27%) of «MFCC-based 

Recurrent Neural Network for Automatic Clinical Depression Recognition and Assessment 

from Speech» [14], but they also differentiate in the other metrics. F1 scores of Transformer 

and Parallel Convolutional Neural Networks (CNNs) (93.6%) of «Depression Detection in 

Speech Using Transformer and Parallel Convolutional Neural Networks» [50] have 

outperformed the present thesis, as well as in «Depression Speech Recognition With a Three-

Dimensional Convolutional Network» [12] with higher accuracy( 83.1%) and slightly lower F1 

Score (0.812). 
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8 Conclusion and Future Work 

The present thesis researched the topic of the speech-based detection of depression. Starting 

with a general overview of this psychological condition, someone can easily come to the 

conclusion that symptoms can vary from mild or not even visible to very severe, leading even 

to suicide. It affects a great number of people, in a percentage around 3.4% of the global 

population while 1 to 6 people have experienced depression at least one time in their lives, 

based on official published scientific data. The proper treatment relies on detecting the 

severity of each unique case and can be either a pharmaceutical medication, psychotherapy, 

or a combination of both. 

Since there is a significant gap in screening technologies for depression, scientists have been 

driven to research various parameters, and voice has proven to be a very promising indicator. 

According to the bibliography, many bioacoustics and linguistic patterns connected with 

speech and voice have been associated with neuropsychological diseases and more 

specifically with depression. 

On the other hand, the rise of applied sciences and artificial intelligence have opened the path 

for research through machine learning methodologies that can be combined in complex ways 

and currently in a short time with powerful computing power. Some examples of promising 

algorithms used in the present thesis, are Support Vector Machine, AdaBoost, Decision Trees, 

and Neural Networks. 

In this current work, the DAIC-WOZ dataset, with 189 English interview sessions included, was 

used as a source of research, and more specifically the already extracted COVAREP features. 

74 features in each session were processed via Python programming with the Anaconda 

package. The Support Vector Machine algorithm with the SMOTE balancing technique proved 

the best performance compared to all the examined methods with 81% accuracy, 74% F1-

score, and 72% specificity. LIME, SHAP, PDP, feature and permutation importance, and 

confusion matrices were used to support the interpretation of the model’s predictions.  

The results of the present study highlight a significant effect of three specific characteristics 

οn the prediction classes. More specifically based on the machine learning outcome, it was 

noticed that when the max value of feature 60 is within the interval of "0.29 < 

max_of_feature_60 <= 0.87", there is a strong indication that the person does not have 

depression. Furthermore, when the mean value of feature 14 is "mean_of_feature_14 <= -

0.53", there is a strong indication that the person suffers from depression otherwise as the 

mean value increases the probability of depression decreases. Finally, when the mean value 

of feature 15 is "mean_of_feature_15 > 0.55", there is a strong indication that the person has 

depression. These results indicate that feature 60 can be considered a protecting factor, 

feature 15 a risk factor, and feature 14 can be both depending on its value. 

Eventually, the model performs well with a significant focus on identifying "depressed" 

instances according to the high accuracy and F1-score. The slightly weak specificity score gives 

room for further development with appropriate parameter tuning to minimize the false 

positive results and identify more accurately the "non-depressed" cases, avoiding false 

predictions and reducing unnecessary stress for patients. This adjustment could enhance this 
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machine learning model to become a low-cost and non-invasive additional tool for physicians 

to improve their diagnostic process by complying with all requirements regarding data 

privacy. Finally, this algorithm was trained including voice patterns in the English language. 

Many of the acoustic features analyzed may be applicable across languages, yet, further 

improvement with cross-language validation would ensure that the findings are also valid in 

other linguistic contexts. 
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Appendix 1: SVM Script  

Appendix 1 includes the code used to implement the SVM algorithm described in Chapters 4 and 5 as 

outlined in methodology 3. 

import os 

import pandas as pd 

import numpy as np 

from sklearn.preprocessing import StandardScaler 

from sklearn.model_selection import train_test_split 

from sklearn.svm import SVC 

from sklearn.feature_selection import RFE 

from sklearn.metrics import accuracy_score, classification_report 

from sklearn.metrics import precision_score, recall_score, f1_score, confusion_matrix 

import matplotlib.pyplot as plt 

import seaborn as sns 

from imblearn.over_sampling import SMOTE 

from sklearn.impute import SimpleImputer 

from sklearn.inspection import permutation_importance, PartialDependenceDisplay 

import shap 

from sklearn import svm 

from lime.lime_tabular import LimeTabularExplainer 

from sklearn.tree import DecisionTreeClassifier 

from sklearn.tree import plot_tree 

import time 

 

# Function to read a CSV file and return a DataFrame 

def read_csv_to_dataframe(csv_path): 

    try: 

        dataframe = pd.read_csv(csv_path, header=None) 

        return dataframe 
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    except FileNotFoundError: 

        print(f"File not found: {csv_path}") 

        return None 

    except pd.errors.EmptyDataError: 

        print(f"The CSV file {csv_path} is empty.") 

        return None 

    except pd.errors.ParserError: 

        print(f"Error parsing the CSV file {csv_path}.") 

        return None 

 

# Function to extract statistical features from COVAREP matrices 

def extract_features(df): 

    # Extracting statistical features 

    features = [] 

    for column in df.columns: 

        features.append(df[column].mean()) 

        features.append(df[column].std()) 

        features.append(df[column].min()) 

        features.append(df[column].max()) 

    return features 

 

# Function to read all CSV files in a directory and concatenate them 

def read_csv_files_in_directory(directory, numbers_df, label_column): 

    all_dataframes = [] 

    for number in numbers_df['Participant_ID']: 

        csv_file_path = os.path.join(directory, f"{number}_COVAREP.csv") 

        try: 

            df = pd.read_csv(csv_file_path, header=None) 

            # Extract features from the COVAREP matrix 
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            features = extract_features(df) 

            # Add label to the features 

            label = numbers_df[numbers_df['Participant_ID'] == number][label_column].values 

            if len(label) > 0: 

                features.append(label[0]) 

            else: 

                raise KeyError(f"Label for participant {number} not found") 

            all_dataframes.append(features) 

            print(f"Loaded and processed CSV file for number {number}") 

        except FileNotFoundError: 

            print(f"CSV file for number {number} not found at {csv_file_path}") 

        except KeyError as e: 

            print(e) 

            print(f"Skipping participant {number} due to missing label.") 

    return pd.DataFrame(all_dataframes) 

 

def train_and_evaluate_svm(X_train, y_train, X_test, y_test): 

    # Create an SVM classifier 

    svm_classifier = SVC(kernel='linear', probability=True, verbose=True) 

    # Train the SVM classifier 

    svm_classifier.fit(X_train, y_train) 

    # Evaluate the SVM classifier 

    y_pred = svm_classifier.predict(X_test) 

    accuracy = accuracy_score(y_test, y_pred) 

    return accuracy, y_pred, svm_classifier 

 

# Directory containing CSV files 

csv_directory = r"D:\COVAREP" 
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# Load the CSV files that contain the numbers 

numbers_df = pd.read_csv(r"D:\train_split_Depression_AVEC2017.csv") 

numbers_df2 = pd.read_csv(r"D:\full_test_split.csv") 

numbers_df3 = pd.read_csv(r"D:\dev_split_Depression_AVEC2017.csv") 

 

# Read all CSV files in the directory and apply label from numbers_df 

print("Reading CSV files for training data...") 

train_df = read_csv_files_in_directory(csv_directory, numbers_df, 'PHQ8_Binary') 

print("Reading CSV files for development data...") 

dev_df = read_csv_files_in_directory(csv_directory, numbers_df3, 'PHQ8_Binary') 

print("Reading CSV files for test data...") 

test_df = read_csv_files_in_directory(csv_directory, numbers_df2, 'PHQ_Binary') 

 

# Combine all dataframes vertically 

print("Combining all dataframes vertically...") 

combined_df = pd.concat([train_df, dev_df, test_df], axis=0, ignore_index=True) 

 

# Check sizes after concatenation 

print(f"Size of combined_df: {combined_df.shape}") 

 

# Ensure the last column is the label column 

features = combined_df.iloc[:, :-1] 

labels = combined_df.iloc[:, -1] 

 

# Replace infinite values with NaN 

features.replace([np.inf, -np.inf], np.nan, inplace=True) 

 

# Check for NaN values and handle them using SimpleImputer 

imputer = SimpleImputer(strategy='mean') 
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features = imputer.fit_transform(features) 

 

# Balance the dataset using SMOTE 

print("Balancing the dataset using SMOTE...") 

smote = SMOTE(random_state=42) 

X_balanced, y_balanced = smote.fit_resample(features, labels) 

 

# Check sizes after balancing 

print(f"Size of X_balanced: {X_balanced.shape}, y_balanced: {y_balanced.shape}") 

 

# Standardize features using StandardScaler 

scaler = StandardScaler() 

X_balanced = scaler.fit_transform(X_balanced) 

 

# Split data into train and test sets 

print("Splitting data into train and test sets...") 

X_train, X_test, y_train, y_test = train_test_split(X_balanced, y_balanced, test_size=0.2, 

random_state=42) 

print("Data split completed.") 

print(f"Training set size: {X_train.shape}, Test set size: {X_test.shape}") 

#%% 

# Measure Training Time 

start_train_time = time.time() 

 

# Train and evaluate the SVM classifier using the full dataset 

print("Training and evaluating the SVM classifier using the full dataset...") 

accuracy_full, y_pred_full, svm_classifier = train_and_evaluate_svm(X_train, y_train, X_test, 

y_test) 

 

end_train_time = time.time() 
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training_time = end_train_time - start_train_time 

print(f"Training Time: {training_time:.4f} seconds") 

 

# Calculate the Confusion Matrix 

cm = confusion_matrix(y_test, y_pred_full) 

tn, fp, fn, tp = cm.ravel() 

 

# Plot and save the Confusion Matrix as an image 

plt.figure(figsize=(8, 6)) 

sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', cbar=False, 

            xticklabels=['Not Depressed', 'Depressed'],  

            yticklabels=['Not Depressed', 'Depressed']) 

plt.xlabel('Predicted Label') 

plt.ylabel('True Label') 

plt.title('Confusion Matrix') 

plt.savefig('confusion_matrix.png') 

plt.show() 

 

# Calculate Precision, Recall, F1-Score, and Specificity 

precision = precision_score(y_test, y_pred_full) 

recall = recall_score(y_test, y_pred_full) 

f1 = f1_score(y_test, y_pred_full) 

specificity = tn / (tn + fp) 

 

# Interpretation of the Results 

print("\nInterpretation:") 

print(f"Accuracy: {accuracy_full:.2f} - The proportion of correctly predicted instances out of 

all instances.") 
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print(f"Precision: {precision:.2f} - The proportion of positive predictions that are actually 

correct.") 

print(f"Recall: {recall:.2f} - The proportion of actual positives that are correctly predicted.") 

print(f"F1-Score: {f1:.2f} - The harmonic mean of precision and recall, balancing the two.") 

print(f"Specificity: {specificity:.2f} - The proportion of actual negatives that are correctly 

identified.") 

print(f"\nConfusion Matrix Interpretation:") 

print(f"True Positives (TP): {tp} - Correctly predicted 'Depressed' instances.") 

print(f"False Positives (FP): {fp} - Incorrectly predicted 'Depressed' instances (should be 'Not 

Depressed').") 

print(f"True Negatives (TN): {tn} - Correctly predicted 'Not Depressed' instances.") 

print(f"False Negatives (FN): {fn} - Incorrectly predicted 'Not Depressed' instances (should be 

'Depressed').") 

       

# Explain the model's predictions using SHAP 

explainer = shap.Explainer(svm_classifier.predict, X_train, max_evals=2 * X_train.shape[1] + 

1) 

shap_values = explainer(X_train) 

 

# Plot feature importance 

shap.summary_plot(shap_values, X_train) 

 

# LIME Integration 

# Explain a single prediction using LIME 

explainer = LimeTabularExplainer(X_train, feature_names=[f"feature_{i}" for i in 

range(X_train.shape[1])], class_names=['Not Depressed', 'Depressed'], verbose=True, 

mode='classification') 

 

# Choose an instance to explain 

i = 0  # index of the instance to explain 

exp = explainer.explain_instance(X_train[i], svm_classifier.predict_proba, num_features=20) 
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# Display the explanation using matplotlib 

exp.as_pyplot_figure() 

plt.show() 

 

# Partial Dependence Plot (PDP) 

feature_names = [f"feature_{i}" for i in range(X_train.shape[1])]  # Replace with actual feature 

names if available 

features_to_plot = [239, 56, 91, 162, 258, 60, 24, 46, 127, 86]  # Adjust based on feature 

importance or specific features of interest 

 

fig, ax = plt.subplots(figsize=(14, 16))   

pdp_disp = PartialDependenceDisplay.from_estimator( 

    svm_classifier, X_train, features_to_plot, feature_names=feature_names, ax=ax 

) 

plt.subplots_adjust(hspace=0.4, wspace=0.4)  # Adjust hspace and wspace to reduce label 

overlap 

 

# 1.a. Get the feature importance (coefficients from SVM) 

feature_importance = svm_classifier.coef_.flatten()  # Flatten if needed 

print(f"Feature importance (coefficients): {feature_importance}") 

 

# 1.b. Plot Feature Importance 

plt.figure(figsize=(10, 6)) 

plt.bar(np.arange(len(feature_importance)), feature_importance, color='skyblue') 

plt.xlabel('Feature Index') 

plt.ylabel('Coefficient Value') 

plt.title('Feature Importance (SVM Coefficients)') 

plt.show() 

# 1.c. Identify and print features with positive and negative coefficients 

positive_feature_indices = np.where(feature_importance > 0)[0] 
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negative_feature_indices = np.where(feature_importance < 0)[0] 

print(f"Features with positive feature importance: {positive_feature_indices}") 

print(f"Features with negative feature importance: {negative_feature_indices}") 

 

# 2.a. Get the permutation importance 

result = permutation_importance(svm_classifier, X_test, y_test, n_repeats=10, 

random_state=42) 

permutation_importance_mean = result.importances_mean 

print(f"Permutation importance: {permutation_importance_mean}") 

 

# 2.b. Plot Permutation Importance 

plt.figure(figsize=(10, 6)) 

plt.bar(np.arange(len(permutation_importance_mean)), permutation_importance_mean, 

color='lightcoral') 

plt.xlabel('Feature Index') 

plt.ylabel('Mean Importance (Permutation)') 

plt.title('Permutation Importance') 

plt.show() 

positive_importance_indices = np.where(permutation_importance_mean > 0)[0] 

print(f"Features with positive permutation importance: {positive_importance_indices}") 
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Appendix 2: NN Script 

Appendix 2 includes the code used to implement the NN algorithm described in Chapters 4 and 5 as 

outlined in methodologies 1 and 2. 

import os 

import pandas as pd 

import random 

import numpy as np 

import tensorflow as tf 

from sklearn.preprocessing import StandardScaler 

from sklearn.model_selection import train_test_split 

from tensorflow.keras.models import Sequential 

from tensorflow.keras.layers import Dense 

from tensorflow.keras.optimizers import Adam 

import matplotlib.pyplot as plt 

import seaborn as sns 

from sklearn.tree import DecisionTreeClassifier 

from sklearn.metrics import accuracy_score 

from sklearn.metrics import confusion_matrix 

# Function to read a CSV file and return a DataFrame 

def read_csv_to_dataframe(csv_path): 

    try: 

        dataframe = pd.read_csv(csv_path, header=None) 

        return dataframe 

    except FileNotFoundError: 

        print(f"File not found: {csv_path}") 

        return None 

    except pd.errors.EmptyDataError: 

        print(f"The CSV file {csv_path} is empty.") 

        return None 

    except pd.errors.ParserError: 

        print(f"Error parsing the CSV file {csv_path}.") 
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        return None 

 

# Function to read all CSV files in a directory and concatenate them 

def read_csv_files_in_directory(directory, numbers_df): 

    all_dataframes = [] 

    for number in numbers_df['Participant_ID']: 

   

         csv_file_path = os.path.join(directory, f"{number}_COVAREP.csv") 

         try: 

 

             # Extracting the filename without extension 

           filename = os.path.splitext(os.path.basename(csv_file_path))[0] 

             # Extracting the number part from the filename 

           file_number = int(filename.split('_')[0]) 

             # Check if the file number is less than 400 

           if file_number < 493: 

            df = pd.read_csv(csv_file_path, header=None, skiprows=2000, nrows=7000)  # Read with 

header=None 

            # Now you have loaded the CSV file corresponding to the current number 

            # Check the value of 'PHQ8_Binary' column 

 

           df.reset_index(drop=True, inplace=True) 

           phq8_binary = numbers_df[numbers_df['Participant_ID'] == number]['PHQ8_Binary'].values[0] 

            # Create a new column filled with '0' or '1' based on the value of 'PHQ8_Binary' 

           df['New_Column'] = phq8_binary 

            # Now you have added the new column to the dataframe 

           print(f"Loaded CSV file for number {number}") 

           print(df.head())  # For demonstration, printing the first few rows 

           all_dataframes.append(df) 

         except FileNotFoundError: 

            print(f"CSV file for number {number} not found at {csv_file_path}") 



   

 

68 

 

    return all_dataframes 

 

# Function to read all CSV files in a directory and concatenate them (for numbers_df2) 

def read_csv_files_in_directory_numbers_df2(directory, numbers_df): 

    all_dataframes = [] 

    for idx, row in numbers_df.iterrows(): 

        csv_file_path = os.path.join(directory, f"{row['Participant_ID']}_COVAREP.csv") 

        try: 

            # Extracting the filename without extension 

            filename = os.path.splitext(os.path.basename(csv_file_path))[0] 

            # Extracting the number part from the filename 

            file_number = int(filename.split('_')[0]) 

            # Check if the file number is less than 400 

            if file_number < 493: 

                 

                 

            

             df = pd.read_csv(csv_file_path, header=None, skiprows=2000, nrows=7000)  # Read with 

header=None 

            # Now you have loaded the CSV file corresponding to the current number 

            # Check the value of 'PHQ8_Binary' column 

 

                # Check if any row is empty, if so, ignore this dataframe 

            if df.empty: 

                    continue 

                # Now you have loaded the CSV file corresponding to the current participant 

                # Check the value of 'PHQ_Binary' column 

            phq_binary = row['PHQ_Binary'] 

                # Create a new column filled with '0' or '1' based on the value of 'PHQ_Binary' 

            df['New_Column'] = phq_binary 

                # Now you have added the new column to the dataframe 
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            print(f"Loaded CSV file for number {row['Participant_ID']}") 

            print(df.head())  # For demonstration, printing the first few rows 

            all_dataframes.append(df) 

        except FileNotFoundError: 

            print(f"CSV file for number {row['Participant_ID']} not found at {csv_file_path}") 

    return all_dataframes 

 

# Directory containing CSV files 

csv_directory = r"D:\COVAREP" 

 

# Load the CSV files that contain the numbers 

numbers_df = pd.read_csv(r"D:\train_split_Depression_AVEC2017.csv") 

numbers_df2 = pd.read_csv(r"D:\full_test_split.csv") 

numbers_df3 = pd.read_csv(r"D:\dev_split_Depression_AVEC2017.csv") 

 

# Read all CSV files in the directory and apply label from numbers_df 

all_dataframes = read_csv_files_in_directory(csv_directory, numbers_df) 

all_dataframes3 = read_csv_files_in_directory(csv_directory, numbers_df3) 

 

# Read CSV files for numbers_df2 and apply label 

all_dataframes2 = read_csv_files_in_directory_numbers_df2(csv_directory, numbers_df2) 

 

 

# Combine all dataframes into one list 

#all_dataframes.extend(all_dataframes3) 

#all_dataframes3.extend(all_dataframes2) 

 

 

combined_df = pd.concat([pd.concat(all_dataframes), pd.concat(all_dataframes2), 

pd.concat(all_dataframes3)], axis=0) 

print(combined_df) 
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#  Display sizes of the original DataFrames 

# for i, df in enumerate(combined_df, start=1): 

#     print(f"Size of DataFrame {i}:", df.shape) 

 

# Concatenate all DataFrames vertically 

#final_df = pd.concat(all_dataframes, ignore_index=True) 

 

# Display size of the final concatenated DataFrame 

print("Size of Concatenated DataFrame:", combined_df.shape) 

 

# Stack the DataFrame into a Series 

#stacked_series = combined_df.stack() 

 

# Convert the stacked Series to numeric type, coercing errors to NaN 

#numeric_series = pd.to_numeric(stacked_series, errors='coerce') 

 

# Check if there are any non-numeric values (NaN) in the Series 

#if numeric_series.isna().any(): 

#    print("There are non-numeric values in the dataframe.") 

#else: 

 #   print("All values in the dataframe are numeric.") 

 

# Display the final concatenated DataFrame 

#print("Final Concatenated DataFrame:") 

#print(final_df) 

# Count the number of zeros and ones in the last column 

num_zeros = (combined_df.iloc[:, -1] == 0).sum() 

num_ones = (combined_df.iloc[:, -1] == 1).sum() 

 

print("Number of zeros before deletion:", (combined_df.iloc[:, -1] == 0).sum()) 

print("Number of ones before deletion:", (combined_df.iloc[:, -1] == 1).sum()) 
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# Create a boolean mask for rows where the last column is equal to 0 

zero_mask = combined_df.iloc[:, -1] == 0 

 

# Sample the rows with label 0 to match the number of rows with label 1 

to_keep = combined_df[zero_mask].sample(n=num_ones, random_state=42) 

 

# Concatenate the sampled rows with the rows with label 1 

balanced_df = pd.concat([to_keep, combined_df[~zero_mask]]) 

 

# Confirm that the number of zeros and ones is now equal 

print("Number of zeros after deletion:", (balanced_df.iloc[:, -1] == 0).sum()) 

print("Number of ones after deletion:", (balanced_df.iloc[:, -1] == 1).sum()) 

 

 

 

# Split data into train and test sets 

x_train, x_test, y_train, y_test = train_test_split(balanced_df.iloc[:, :-2], balanced_df.iloc[:, -1], 

test_size=0.2, random_state=42) 

 

# Standardize features using StandardScaler 

scaler = StandardScaler() 

x_train = scaler.fit_transform(x_train) 

x_test = scaler.transform(x_test) 

 

 

# Define a simple neural network model 

model = Sequential([ 

    Dense(64, activation='relu', input_shape=(x_train.shape[1],)), 

    Dense(1, activation='sigmoid') 

]) 



   

 

72 

 

# Compile the model 

model.compile(optimizer=Adam(learning_rate=0.001), loss='binary_crossentropy', 

metrics=['accuracy']) 

# Train the model on the training set with validation data 

history = model.fit(x_train, y_train, epochs=10, batch_size=64)  # Increase epochs if necessary 

# Evaluate the model on the test set 

test_loss, test_accuracy = model.evaluate(x_test, y_test) 

print(f'Test Accuracy: {test_accuracy * 100:.2f}%') 

# Predictions on the test set 

test_probabilities = model.predict(x_test) 

test_predictions = (test_probabilities > 0.5).astype(int) 

 

# Create a confusion matrix 

cm = confusion_matrix(y_test, test_predictions) 

# Plot confusion matrix 

plt.figure(figsize=(8, 6)) 

sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', cbar=False) 

plt.title('Confusion Matrix') 

plt.xlabel('Predicted Label') 

plt.ylabel('True Label') 

plt.show() 
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