
ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΑΤΤΙΚΗΣ
ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ
ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΚΑΙ ΗΛΕΚΤΡΟΝΙΚΩΝ
ΜΗΧΑΝΙΚΩΝ
ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΚΗΣ
ΣΧΕΔΙΑΣΗΣ ΚΑΙ ΠΑΡΑΓΩΓΗΣ

UNIVERSITY OF WEST ATTICA
FACULTY OF ENGINEERING

DEPARTMENT OF ELECTRICAL & ELECTRONICS
ENGINEERING

DEPARTMENT OF INDUSTRIAL DESIGN AND
PRODUCTION ENGINEERING

http://www.eee.uniwa.gr
http://www.idpe.uniwa.gr

http://www.eee.uniwa.gr

http://www.idpe.uniwa.gr
Θηβών 250, Αθήνα-Αιγάλεω 12241 250, Thivon Str., Athens, GR-12241, Greece
Τηλ: +30 210 538-1614 Tel: +30 210 538-1614
Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών Master of Science in
Τεχνητή Νοημοσύνη και Βαθιά Μάθηση
https://aidl.uniwa.gr/

Artificial Intelligence and Deep Learning

https://aidl.uniwa.gr/

Master of Science Thesis

Physics-Informed Neural Networks for Data-Efficient & Accurate Learning

of Physical Systems

Student: Panagiotis Koutsivitis

Registration Number: AIDL-0023

MSc Thesis Supervisor: Dr. Panagiotis Kasnesis

ATHENS-EGALEO, September 2024

http://www.eee.uniwa.gr/
http://www.idpe.uniwa.gr/
http://www.eee.uniwa.gr/
http://www.idpe.uniwa.gr/
https://aidl.uniwa.gr/
https://aidl.uniwa.gr/

Msc Thesis title

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Panagiotis Koutsivitis 0023 2

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΑΤΤΙΚΗΣ
ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ
ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΚΑΙ ΗΛΕΚΤΡΟΝΙΚΩΝ
ΜΗΧΑΝΙΚΩΝ
ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΚΗΣ
ΣΧΕΔΙΑΣΗΣ ΚΑΙ ΠΑΡΑΓΩΓΗΣ

UNIVERSITY OF WEST ATTICA
FACULTY OF ENGINEERING

DEPARTMENT OF ELECTRICAL & ELECTRONICS
ENGINEERING

DEPARTMENT OF INDUSTRIAL DESIGN AND
PRODUCTION ENGINEERING

http://www.eee.uniwa.gr
http://www.idpe.uniwa.gr

http://www.eee.uniwa.gr

http://www.idpe.uniwa.gr
Θηβών 250, Αθήνα-Αιγάλεω 12241 250, Thivon Str., Athens, GR-12241, Greece
Τηλ: +30 210 538-1614 Tel: +30 210 538-1614
Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών Master of Science in
Τεχνητή Νοημοσύνη και Βαθιά Μάθηση
https://aidl.uniwa.gr/

Artificial Intelligence and Deep Learning

https://aidl.uniwa.gr/

Μεταπτυχιακή Διπλωματική Εργασία

Νευρωνικά Δίκτυα υποβοηθούμενα από Φυσικούς Νόμους για την ακριβή

(μηχανική) μάθηση φυσικών συστημάτων με αποδοτική χρήση συνόλων

δεδομένων

Φοιτητής: Παναγιώτης Κουτσιβίτης

ΑΜ: AIDL-0023

Επιβλέπων : Δρ. Παναγιώτης Κασνέσης

ΑΘΗΝΑ-ΑΙΓΑΛΕΩ, Σεπτέμβριος 2024

http://www.eee.uniwa.gr/
http://www.idpe.uniwa.gr/
http://www.eee.uniwa.gr/
http://www.idpe.uniwa.gr/
https://aidl.uniwa.gr/
https://aidl.uniwa.gr/

Msc Thesis title

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Panagiotis Koutsivitis 0023 3

This MSc Thesis has been accepted, evaluated and graded by the following committee:

Supervisor Member Member

Kasnesis Panagiotis Rangoussi, Maria Papadopoulos, Pericles

Lecturer Professor Professor

Dept. of Electrical &

Electronics

Engineering

Dept. of Electrical &

Electronics

Engineering

Dept. of Electrical &

Electronics

Engineering

University of West Attica University of West Attica University of West Attica

Msc Thesis title

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Panagiotis Koutsivitis 0023 4

Copyright © Με επιφύλαξη παντός δικαιώματος. All rights reserved.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΑΤΤΙΚΗΣ και Παναγιώτης Κουτσιβίτης,

Σεπτέμβριος, 2024

Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή της παρούσας εργασίας, εξ

ολοκλήρου ή τμήματος αυτής, για εμπορικό σκοπό. Επιτρέπεται η ανατύπωση,

αποθήκευση και διανομή για σκοπό μη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής

φύσης, υπό την προϋπόθεση να αναφέρεται η πηγή προέλευσης και να διατηρείται το

παρόν μήνυμα. Ερωτήματα που αφορούν τη χρήση της εργασίας για κερδοσκοπικό σκοπό

πρέπει να απευθύνονται προς τους συγγραφείς.

Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο εκφράζουν τον/την

συγγραφέα του και δεν πρέπει να ερμηνευθεί ότι αντιπροσωπεύουν τις θέσεις του

επιβλέποντος, της επιτροπής εξέτασης ή τις επίσημες θέσεις του Τμήματος και του

Ιδρύματος.

ΔΗΛΩΣΗ ΣΥΓΓΡΑΦΕΑ ΜΕΤΑΠΤΥΧΙΑΚΗΣ ΔΙΠΛΩΜΑΤΙΚΗΣ ΕΡΓΑΣΙΑΣ

Ο/η κάτωθι υπογεγραμμένος Παναγιώτης Κουτσιβίτης του Γεωργίου, με αριθμό μητρώου

0023 μεταπτυχιακός φοιτητής του ΔΠΜΣ «Τεχνητή Νοημοσύνη και Βαθιά Μάθηση» του

Τμήματος Ηλεκτρολόγων και Ηλεκτρονικών Μηχανικών και του Τμήματος Μηχανικών

Βιομηχανικής Σχεδίασης και Παραγωγής, της Σχολής Μηχανικών του Πανεπιστημίου

Δυτικής Αττικής,

δηλώνω υπεύθυνα ότι:

«Είμαι συγγραφέας αυτής της μεταπτυχιακής διπλωματικής εργασίας και κάθε βοήθεια την

οποία είχα για την προετοιμασία της είναι πλήρως αναγνωρισμένη και αναφέρεται στην

εργασία. Επίσης, οι όποιες πηγές από τις οποίες έκανα χρήση δεδομένων, ιδεών ή λέξεων,

είτε ακριβώς είτε παραφρασμένες, αναφέρονται στο σύνολό τους, με πλήρη αναφορά

στους συγγραφείς, τον εκδοτικό οίκο ή το περιοδικό, συμπεριλαμβανομένων και των

πηγών που ενδεχομένως χρησιμοποιήθηκαν από το διαδίκτυο. Επίσης, βεβαιώνω ότι αυτή

η εργασία έχει συγγραφεί από μένα αποκλειστικά και αποτελεί προϊόν πνευματικής

ιδιοκτησίας τόσο δικής μου, όσο και του Ιδρύματος. Η εργασία δεν έχει κατατεθεί στο

πλαίσιο των απαιτήσεων για τη λήψη άλλου τίτλου σπουδών ή επαγγελματικής

πιστοποίησης πλην του παρόντος.

Παράβαση της ανωτέρω ακαδημαϊκής μου ευθύνης αποτελεί ουσιώδη λόγο για την

ανάκληση του διπλώματός μου.»

Ο Δηλών

Παναγιώτης Κουτσιβίτης

(Υπογραφή φοιτητή)

Msc Thesis title

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Panagiotis Koutsivitis 0023 5

Copyright © All rights reserved.

University of West Attica and (Name and Surname of the student)

Month, Year

You may not copy, reproduce or distribute this work (or any part of it) for commercial purposes.

Copying/reprinting, storage and distribution for any non-profit educational or research purposes

are allowed under the conditions of referring to the original source and of reproducing the

present copyright note. Any inquiries relevant to the use of this thesis for profit/commercial

purposes must be addressed to the author.

The opinions and the conclusions included in this document express solely the author and do

not express the opinion of the MSc thesis supervisor or the examination committee or the formal

position of the Department(s) or the University of West Attica.

Declaration of the author of this MSc thesis

I, Panagiotis Koutsivitis, George with the following student registration number: 0023,

postgraduate student of the MSc programme in “Artificial Intelligence and Deep Learning”,

which is organized by the Department of Electrical and Electronic Engineering and the

Department of Industrial Design and Production Engineering of the Faculty of Engineering of

the University of West Attica, hereby declare that:

I am the author of this MSc thesis and any help I may have received is clearly mentioned in the

thesis. Additionally, all the sources I have used (e.g., to extract data, ideas, words or phrases)

are cited with full reference to the corresponding authors, the publishing house or the journal;

this also applies to the Internet sources that I have used. I also confirm that I have personally

written this thesis and the intellectual property rights belong to myself and to the University of

West Attica. This work has not been submitted for any other degree or professional qualification

except as specified in it.

Any violations of my academic responsibilities, as stated above, constitutes substantial reason

for the cancellation of the conferred MSc degree.

The author

Panagiotis Koutsivitis

(Signature)

Msc Thesis title

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Panagiotis Koutsivitis 0023 6

Στη μνήμη των γονιών μου, Γεώργιου και Μαργαρίτας.

In memory of my parents, George and Margarita

Msc Thesis title

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Panagiotis Koutsivitis 0023 7

Acknowledgements

Above all, I extend my sincerest appreciation to my MSc thesis advisor, Dr. Panagiotis Kasnesis,

for his guidance, support, and patience throughout my research journey. His insightful feedback,

patience, and encouragement played a crucial role in the success of this project.

Finally, I would like to thank my colleagues Kai Jin and Navin Foglia at Gamma Technologies,

for sharing their expertise in fluid dynamics and in general their invaluable insights and

suggestions which have been instrumental in shaping this project.

Msc Thesis title

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Panagiotis Koutsivitis 0023 8

Abstract

Traditionally, Scientific Computing and Computer Aided Engineering software use numerical

solvers for simulating physics-based models. Despite their high accuracy, numerical solvers can

become very computationally intensive and often are impractical to be applied in real time

applications in Hardware-in-the-Loop systems (HiL), Electronic Control Units (ECU) or

modern edge devices (Microcontrollers). On the other hand, many machine learning models

such as Artificial Neural Networks are universal function approximators with very small

inference, time and memory footprint. For the above reasons, modern scientific computing

makes extensive use of Machine Learning for speeding up simulations or optimization

processes. However, this use is limited by the presence of measurement or simulation data. In

many cases, collecting measurements is not an option due to the high experimental costs, while

in the case of simulation data, the need to run expensive in time simulations will often arise.

Scientific Machine Learning or Physics-Informed Machine Learning tries to tackle the lack of

training data by incorporating physics-based laws into the training process of machine learning

models. More specifically, Physics Informed Neural Networks (PINNs) are a type of Neural

Networks that are trained not only on data, if data are available, as it is usually the case in deep

learning, but also on the model of the differential equations describing the underlying laws of

physics, which makes them extremely accurate and data efficient. This ability to train a Neural

Network in a non-arbitrary unsupervised way is a real breakthrough for the field of Machine

Learning in general.

The aim of this MSc thesis is to apply the PINNs methodology in solving a variety of benchmark

dynamical systems. We experimentally verify the ability of PINNs to solve standard benchmark

problems such as Burgers equation and Poisson equation. We explore the borders of this

technology by applying PINNs in challenging Fluid Dynamics problems, such as the Navier-

Stokes equations. In Lid-Driven Cavity Flow, our trained PINNs demonstrate competitive

performance in terms of accuracy when compared to established numerical solvers.

Furthermore, they produce more precise results than those reported in a relevant PINN reference

paper [1], all while utilizing significantly smaller neural network architectures. This becomes

feasible by proposing and applying alternative optimization schemes. In the case of the Static

Piston Flow problem, where PINNs failed to find the solution because of high nonlinearity and

increased turbulence, we solve the problem using the classic Supervised Learning (SL)

approach, which applies similar in size NN architectures, and we provide comparative results

for the various optimizers used. The high accuracy achieved using the SL is a clear indication

that the reason of PINNs’ failure in that case was not the learning capability of the Neural

Network but the complexity of the optimization problem itself. Finally, after extensive search

in the bibliography, several candidate solutions have been gathered and are presented that could

help to expand the limits of this technology and make it applicable to real world applications.

Keywords

Scientific Computing, Scientific Machine Learning, Deep Learning, Physics Informed Neural

Networks, Automatic Differentiation.

Msc Thesis title

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Panagiotis Koutsivitis 0023 9

Περίληψη

Παρά την εκτεταμένη χρήση της Μηχανικής Μάθησης στη σύγχρονη επιστημονική

υπολογιστική, αυτή περιορίζεται από την παρουσία δεδομένων μέτρησης ή προσομοίωσης. Σε

πολλές περιπτώσεις, η συλλογή δεδομένων μέσω καταγραφής και μετρήσεων δεν είναι εφικτή

λόγω του υψηλού κόστους διεξαγωγής πειραμάτων, ενώ όσον αφορά τα δεδομένα

προσομοίωσης, πολλές φορές απαιτείται η διεξαγωγή χρονοβόρων υπολογιστικών

προσομοιώσεων. Η Επιστημονική Μηχανική Μάθηση, και πιο συγκεκριμένα το πεδίο Physics

Informed Machine Learning, προσπαθεί να αντιμετωπίσει την έλλειψη δεδομένων εκπαίδευσης

ενσωματώνοντας φυσικούς νόμους στην εκπαιδευτική διαδικασία των μοντέλων μηχανικής

μάθησης. Πιο συγκεκριμένα, τα Physics Informed Neural Networks (PINNs) είναι μια

κατηγορία Νευρωνικών Δικτύων που εκπαιδεύονται όχι μόνο σε δεδομένα, όπως συνηθίζεται

στη βαθιά μάθηση, αλλά και στο θεμελιώδες μοντέλο των διαφορικών εξισώσεων που

περιγράφει τους υποκείμενους φυσικούς νόμους – χαρακτηριστικό που τα καθιστά εξαιρετικά

ακριβή και αποδοτικά ως προς τα δεδομένα.

Σκοπός της παρούσας μεταπτυχιακής διπλωματικής εργασίας είναι η εφαρμογή της

μεθοδολογίας των PINNs για την επίλυση διάφορων δυναμικών συστημάτων αναφοράς.

Επιβεβαιώνουμε πειραματικά την ικανότητα των PINNs να επιλύουν τυπικά προβλήματα

αναφοράς, όπως η εξίσωση Burgers και η εξίσωση Poisson. Περαιτέρω, εξερευνούμε τα όρια

της τεχνολογίας αυτής εφαρμόζοντας τη μέθοδο σε απαιτητικά δυναμικά προβλήματα Ρευστών,

όπως τις εξισώσεις Navier-Stokes. Στο Lid-Driven Cavity Flow, τα εκπαιδευμένα PINNs μας

επιδεικνύουν ανταγωνιστική απόδοση όσον αφορά την ακρίβεια, σε σύγκριση με

καθιερωμένους αριθμητικούς επιλυτές. Επιπλέον, παράγουν πιο ακριβή αποτελέσματα από

αυτά που αναφέρονται σε ένα σχετικό έγγραφο αναφοράς PINNs [1], ενώ όλα αυτά

χρησιμοποιούν σημαντικά μικρότερες αρχιτεκτονικές νευρωνικών δικτύων. Αυτό γίνεται

εφικτό με τη επιλογή και την εφαρμογή εναλλακτικών σχημάτων βελτιστοποίησης. Στην

περίπτωση του προβλήματος Στατικής Ροής Εμβόλου, όπου τα PINN απέτυχαν να βρουν τη

λύση λόγω της υψηλής μη γραμμικότητας και της αυξημένης τυρβώδους ροής, λύνουμε το

πρόβλημα χρησιμοποιώντας την κλασική προσέγγιση εποπτευόμενης μάθησης (Supervised

Learning, SL), εφαρμόζoντας αντίστοιχες σε μέγεθος αρχιτεκτονικές δικτύων, και παρέχουμε

συγκριτικά αποτελέσματα για τους διάφορους βελτιστοποιητές που χρησιμοποιήθηκαν. Τέλος,

μετά από εκτενή έρευνα στη βιβλιογραφία, έχουν συγκεντρωθεί και παρουσιάζονται αρκετές

υποψήφιες λύσεις που θα μπορούσαν να βοηθήσουν στην επέκταση των ορίων αυτής της

τεχνολογίας και να την καταστήσουν εφαρμόσιμη σε πραγματικές εφαρμογές.

Λέξεις – κλειδιά

Επιστημονική Υπολογιστική, Επιστημονική Μηχανική Μάθηση, Βαθιά Μάθηση, Νευρωνικά

Δίκτυα με βάση τη Φυσική, Αυτόματη Παραγώγιση.

Msc Thesis title

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Panagiotis Koutsivitis 0023 10

Table of Contents

List of figures ... 12

Acronym Index .. 14

INTRODUCTION ... 16

The subject of this thesis ... 16
Thesis’ objectives .. 17
The main contributions of this thesis ... 17
Structure ... 18

1 CHAPTER 1: Background ... 19

1.1 Scientific Computing .. 19
1.1.1 Computer Aided Engineering (CAE) ...20
1.2 Differential Equations.. 22
1.2.1 Ordinary Differential Equations (ODEs) ...22
1.2.2 Partial Differential Equations (PDEs) ...22
1.3 Artificial Neural Networks ... 23
1.4 Computational Graphs .. 26
1.5 Automatic Differentiation ... 27
1.6 Optimization algorithms .. 28
1.6.1 Heuristic algorithms ...28
1.6.2 Genetic algorithms ...28
1.6.3 Gradient Descent ...28
1.7 PINNs .. 32
1.7.1 Forward ..33
1.7.2 Inverse ...34

2 CHAPTER 2: Experiments .. 34

2.1 Burgers equation ... 34
2.2 Poisson equation ... 35
2.3 Lid Driven Cavity Flow Problem ... 36
2.4 Static Piston Flow Problem .. 39

3 CHAPTER 3: Implementation and Detailed results .. 42

3.1 Results of Burgers equation ... 43
3.2 Results of Poisson equation ... 45
3.3 Results of Lid-Driven Cavity Flow problem ... 47
3.3.1 Re = 100 ...47
3.3.2 Re = 400 ...50
3.3.3 Re = 1000 ...51
3.4 Results of Static Piston Flow problem .. 53

4 Chapter 4: PINN’s pathologies – Possible Enhancements 57

4.1 PINNs’ issues ... 57
4.1.1 Automatic differentiation is not without a cost ..57
4.1.2 Overfitting and Under-constrained Optimization ...57
4.1.3 Competing optimization terms ..57
4.1.4 Sensitivity to Hyperparameters ...58
4.1.5 Difficulty in Capturing Complex Dynamics with large domains ...58
4.2 PINNs’ enhancements ... 59
4.2.1 Coupled Automatic and Numerical differentiation ...59
4.2.2 Respect Temporal & Spatial Causality ...60
4.2.3 Levenberg Marquardt for PINNs ..61

Msc Thesis title

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Panagiotis Koutsivitis 0023 11

4.2.4 Domain Decomposition & XPINNs ...61

5 Conclusions .. 63

6 Future work ... 64

Bibliography – References – Online sources ... 65

Msc Thesis title

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Panagiotis Koutsivitis 0023 12

List of figures

Figure 1. Scientific Computing [4] 19

Figure 2. Biological Neuron versus Artificial Neural Network [5] 23

Figure 3. Abstract diagram of an MLP [6] 25

Figure 4. Computational Graph used for calculating the forward pass of y=σ(tanh(xW1)W2) [7] 26

Figure 5. Computational Graph used for calculating the reverse pass of y=σ(tanh(xW1)W2) [7] 27

Figure 6. Gradient Descent using 1st order optimizers [8] 29

Figure 7. Gradient Descent using 2nd order optimizers [8] 30

Figure 8. Illustration of how the loss function of PINNs is formed using the computed derivatives of

the NN by Automatic Differentiation and boundary & data loss terms [11] 33

Figure 9. Illustration of when PINNs can be used based on how many data of theory are available [12]

 34

Figure 10. Illustration of the domain and state space of Burgers equation [3] 35

Figure 11. Illustration of the domain and state space of the Poisson equation for the specific source

terms [13] 36

Figure 12. Lid Driven Cavity Flow for Re=100, Illustration of u & v velocity field using streamlines. Can

be seen the primary vortex on the center and the two secondary vortices on the left & right bottom

corners. [14] 37

Figure 13. Lid Driven Cavity Flow for Re=100, Illustration of u & v velocity fields using 2d contour

plots. The picture has been taken by the following research paper [1] 38

Figure 14. Static Piston Flow for Re = 15625, Illustration of u & v velocity field using Quiver plot. This

velocity field corresponds to time=6.256 ms and xInj=0.5m. 40

Figure 15. Static Piston Flow for Re = 15625, Illustration of u & v velocity field using 2d contour plots.

This velocity field corresponds to time=2 ms and xInj=0.5m. 41

Figure 16. The PINN architecture that represents the solution of Burgers Equation. 43

Figure 17. The composed Mean Squared Error of Burgers equation over the number of training

epochs. 44

Figure 18. An illustration of the predicted solution of Burgers equation using PINN. Can be clearly

seen the formed shock wave at t=1. 44

Figure 19. The PINN architecture that represents the solution of Poisson equation. 45

Figure 20. The composed Mean Squared Error of Poisson equation over the number of training

epochs. 46

Figure 21. An illustration of the predicted solution of the Poisson equation using PINN. 46

Msc Thesis title

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Panagiotis Koutsivitis 0023 13

Figure 22. The PINN architecture that represents the solution of Lid Driven Cavity Flow problem. 47

Figure 23. The Physics & Boundary Condition Mean Squared Errors separately reported for Re=100

over the number of epochs. 48

Figure 24. The predicted by the PINN u & v velocity field for Re=100 illustrated as 2d contour plots on

the left plot column. On the right plot column can be seen the PINN prediction for the mid-section

values compared with the numerical solution (red dots) 49

Figure 25. On the top plot row can be seen the best results achieved for Re=100 by the research

paper while on the bottom plot row can be seen the results using our trained PINN. 49

Figure 26. The Physics & Boundary Condition Mean Squared Errors separately reported for Re=400

over the number of epochs. 50

Figure 27. The predicted by the PINN u & v velocity field for Re=400 illustrated as 2d contour plots on

the left plot column. On the right plot column can be seen the PINN prediction for the mid-section

values compared with the numerical solution (red dots). 51

Figure 28. The Physics & Boundary Condition Mean Squared Errors separately reported for Re=1000

over the number of epochs. 52

Figure 29. The predicted by the PINN u & v velocity field for Re=1000 illustrated as 2d contour plots

on the left plot column. On the right plot column can be seen the PINN prediction for the mid-section

values compared with the numerical solution (red dots). 52

Figure 30. The PINN architecture that represents the solution of Static Piston Flow problem. 53

Figure 31. The Physics, Boundary Condition and Data validation Mean Squared Errors separately

reported over the number of epochs. Illustrates the weakness of the PINN to reduce the data

validation error while the Physics & Boundary Condition error have achieved low values. 54

Figure 32. The Root Mean Squared Errors achieved by Adam, BFGS and LM using supervised learning

against the PINN. 55

Figure 33. The prediction of v velocity by an MLP (4x20) trained by the LM using supervised learning.

 56

Figure 34. The prediction of v velocity by an MLP (4x30) trained by the BFGS using supervised

learning. 56

Figure 35. The paradox of an unphysical solution (magenta) that satisfies almost to machine precision

the PDE and the boundary conditions [19]. 59

Figure 36. A qualitative comparison plot of the 3 different differentiation approaches [19]. 60

Figure 37. An illustration of how the domain decomposition works in X-PINNs [22] 62

Msc Thesis title

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Panagiotis Koutsivitis 0023 14

Acronym Index

CAE: Computer Aided Engineering

CFD: Computational Fluid Dynamis

FEM: Finite Element Method

ODE: Ordinary Differential Equation

PDE: Partial Differential Equation

AD: Automatic Differentiation

SL: Supervised Learning

NN: Neural Network

ANN: Artificial Neural Network

MLP: Multilayer Perceptron

RNN: Recurrent Neural Network

LSTM: Long Short-Term Memory

GRU: Gated Recurrent Unit

CNN: Convolutional Neural Network

GAN: Generative Adversarial Networks

PINN: Physics Informed Neural Network

NLP: Natural Language Processing

GD: Gradient Descent

SGD: Stochastic Gradient Descent

Adam: Adaptive Moment Estimation

BFGS: Broyden-Fletcher-Goldfarb-Shanno

L-BFGS: Limited Memory BFGS

LM: Levenberg-Marquardt

α-PINN: Automatic differentiation PINN

n-PINN: Numerical differentiation PINN

can-PINN: Coupled Automatic and Numerical differentiation PINN

XPINN: eXtended Physics-Informed Neural Networks

Re: Reynolds Number

MSE: Mean Squared Error

RMSE: Root Mean Squared Error

HiL: Hardware in the loop

ECU: Electronic Control Unit

Tanh: Hyperbolic Tangent

Msc Thesis title

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Panagiotis Koutsivitis 0023 15

ReLU: Rectified Linear Function

MLA: Machine Learning Assistant

Msc Thesis title

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Panagiotis Koutsivitis 0023 16

INTRODUCTION

Simulation of complex dynamical systems is a critical aspect of any industry that uses design

software during product development. Scientific Computing and Computer Aided Engineering

software use state-of-the-art numerical solvers for solving problems in - Fluid Dynamics,

Thermal Management, Battery Modelling, Electromagnetics, Electro-chemical, multi-body

dynamics and more. The process, while optimized, requires significant processing power that

can take anywhere from several minutes to multiple days. This lengthy computation is often

repeated numerous times due to variations in initial or boundary conditions and system

parameters, leading to substantial redundant computational costs.

Traditional Neural Networks such as MLPs or other modern Deep Learning architectures, being

universal function approximators, can learn simulation data that correspond to multiple

simulation cases that vary in geometry, boundary conditions or system parameters. Such Neural

Networks trained in diverse cases can be used to generate rapidly results even for unknown

cases, which can be many orders of magnitude faster compared to the traditional simulation

approaches, where transferring of results from one scenario to another is not feasible. However,

these architectures, despite their learning ability and interpolation agility require the presence

of data to learn from, which should be obtained by expensive experiments or time-consuming

simulations. Moreover, there is not any theoretical guarantee that the trained Neural Networks

respect the underlying physical laws of the problem.

The subject of this thesis

In 1997, Lagaris et al. [2] showed that even shallow Neural Networks that incorporate in their

training process the differential equations of the system to be simulated, were able to solve the

system achieving accurate results. Moreover, Raissi et al. [3] revisited Lagaris’ method and

introduced Physics Informed Neural Networks (PINNs) which take advantage of the modern

deep neural network architectures and automatic differentiation techniques available in deep

learning frameworks and so make feasible the solution of more challenging dynamical systems.

More specifically, PINNs is a generic method for solving a system of ordinary differential

equations (ODEs) and partial differential equations (PDEs). Using the universal approximation

theorem, the solution of such differential equations can be accurately estimated by a Neural

Network. To train the parameters of the Neural Network, PINNs introduce a composite loss

function that has multiple terms.

• Initial/Boundary conditions Term: This part of the loss function measures the

difference between the network's predictions and the initial and/or boundary conditions

data. It ensures that the neural network satisfies the initial and/or boundary conditions

imposed by the problem. This is done by calculating the mean squared error (MSE)

between the predicted values and the target values.

• Physics Constraint Term: This component quantifies the deviation of the network's

predictions from the physical model described by the differential equations. It involves

calculating the residuals of the differential equations at the input/collocation points and

incorporating these residuals into the loss function. The goal is to minimize these

residuals, indicating that the network's outputs comply with the physical laws.

• Data Term (If data are present.): This part of the loss function measures the difference

between the network's predictions and the actual data if any. It ensures that the neural

network fits the known data points accurately. This is done by calculating the mean

squared error (MSE) between the predicted values and the target values.

Msc Thesis title

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Panagiotis Koutsivitis 0023 17

By minimizing this composite loss function, the network learns to predict outcomes that are

not only consistent with the observed data, in the case that are available, but also aligned with

the underlying physical principles. This dual-objective optimization ensures that the PINNs'

predictions are physically plausible across a broader range of scenarios, beyond the specific

instances represented in the training data.

Thesis’ objectives

PINNs have gained significant attention as a promising method for solving various problems,

such as computing ODEs or PDEs. The engineering community has started evaluating PINNs

potential to replace, supplement or accelerate traditional approaches (numerical solvers) in

various challenging tasks such as:

• solving linear or non-linear dynamical systems (forward problems)

• identifying system parameters (inverse problems)

• solving multi-case scenarios and creating fast surrogate models

• data assimilation

• uncertainty quantification

Objective of this thesis is to evaluate PINNs ability to solve well-known PDE benchmark

problems in terms of accuracy and performance. These objectives will be pursued through a

series of research questions, including:

• Can another optimizer outperform the common Adam + L-BFGS-based PINN

optimization?

• How do PINNs perform to challenging multi-case dynamic fluid problems compared to

data-driven approaches?

• What are the limitations and best practices of PINNs when it comes to solving complex

PDEs?

The main contributions of this thesis

The main contributions of this thesis are summarized as follows:

• We implement a Python application using TensorFlow deep learning framework able to

solve the following benchmark problems:

o Burgers equation

o 2-Dimensional Poisson equation

• We solve the Lid-Driven Cavity Flow problem for various system parameter values.

We diverge from the mainstream optimization approaches that use Adam + L-BFGS as

main optimizers and we suggest the use of Broyden–Fletcher–Goldfarb–Shanno (BFGS)

algorithm (L-BFGS, a low memory version of BFGS, in particular). Our trained PINNs

achieve a very competitive accuracy compared to state-of-the-art numerical solvers

while giving more accurate results compared to a PINN reference paper [1], using

significantly smaller neural network architectures.

Msc Thesis title

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Panagiotis Koutsivitis 0023 18

• We stress test our solution and PINNs method in a challenging multi-case dynamic fluid

problem that simulates the flow inside a static piston for different initial conditions. In

this problem where the PINNs encountered difficulties due to the high nonlinearity and

increased turbulence, we employed a traditional Supervised Learning (SL) approach to

find a solution. We then compared the performance of various optimization algorithms

within this framework. The high accuracy obtained through Supervised Learning clearly

demonstrates that the limitations of PINNs were not related to the neural network's

ability to learn complex patterns, but rather stemmed from the inherent complexity of

the optimization problem itself.

• Following, we underline all the problems, weaknesses and pathologies found during

these tests. Finally, after detailed research in the bibliography we present possible

solutions to the weaknesses to make PINNs a more robust, effective and applicable

method in engineering and beyond.

Structure

The rest of the thesis is organized as follows:

In Chapter 1, we will delve into the fundamental ideas and technological foundations that form

the basis of PINNs. We'll explore how these concepts have developed over time and examine

the current state of the Scientific Computing, differential equations (ODEs and PDEs), Neural

Networks as universal function approximators, Automatic Differentiation, Optimization

algorithms and PINNs.

Chapter 2 will present in detail all the benchmark problems will be solved using PINNs. This

includes the specific theoretical background, differential equations and description of the

domain and boundary conditions of the problems.

Chapter 3 will describe in detail the methodology followed for solving all the problems. The

results of PINNs training are presented using advance visualizations. Additionally, comparisons

are made between PINNs and Supervised Learning where a detailed dataset was available.

Chapter 4 aims to provide a comprehensive understanding of the limitations and challenges

associated with PINNs, while at the same highlights many state-of-the-art improvements

suggested in the literature to make PINNs more robust and effective to solving PDEs and

complex physical systems.

Finally, the thesis concludes with a Conclusion section, where are summarized all the

achievements, findings and comparative results, as well as certain suggestions for future work.

Msc Thesis title

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Panagiotis Koutsivitis 0023 19

1 CHAPTER 1: Background

We will embark on an exploration of the core principles and technological building blocks that

underpin PINNs. We will trace the evolution of these concepts over time and examine the

present state of several key areas within Scientific Computing.

1.1 Scientific Computing

Scientific computing encompasses a broad spectrum of methodologies and technologies

designed to solve complex in Science and Engineering through the application of computational

mathematical models. Numerical analysis, a cornerstone of scientific computing, has its roots

in mathematical concepts and techniques that predate the invention of electronic computers.

These foundational principles, developed over centuries through continuous refinement, form

the bedrock upon which modern scientific computing is built. The introduction of electronic

computers was a pivotal moment in scientific problem-solving. This technological advancement

necessitated a radical reassessment of established numerical methods, prompting widespread

revision and, in some cases, complete overhaul of existing techniques. As electronic computers

entered the scene, factors once considered trivial in manual calculations suddenly became

paramount for optimal performance and accuracy in large-scale computations. This shift

necessitated the establishment of a new academic discipline - Computer Science - which would

encompass a wide range of critical components essential for effective scientific computing.

However, Mathematics remains an indispensable cornerstone of scientific computing, serving

multiple crucial functions in this interdisciplinary field. Its influence extends beyond problem

formulation, encompassing key aspects of model validation, algorithmic development, and

computational strategy. In summary, Scientific computing represents a synergistic fusion of

mathematical principles and computational expertise in various Science Disciplines. This fusion

can be seen in Figure 1.

Figure 1. Scientific Computing [4]

Msc Thesis title

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Panagiotis Koutsivitis 0023 20

1.1.1 Computer Aided Engineering (CAE)

Computer-aided engineering (CAE) has become an indispensable tool across various industries,

particularly those relying on sophisticated design software. This innovative approach

revolutionizes the product development process by leveraging digital technologies to streamline

design, testing, and simulation phases.

Some of the most used simulation types in CAE are the following:

• Structural Analysis Simulations

• Computational Fluid Dynamics

• Multiphysics Simulations

• Design optimization

These simulation types often overlap or are combined in various ways depending on the specific

product and industry. The choice of simulation type(s) depends on the nature of the product, the

environmental conditions it will face, and the specific performance criteria that need to be met.

Modern CAE tools often offer integrated multi-physics simulations, allowing engineers to

analyze complex systems involving multiple physical phenomena within a single analysis

framework.

1.1.1.1 Computational Fluid Dynamics (CFD)

Computational Fluid Dynamics (CFD) is a computational methodology that leverages advanced

algorithms and numerical techniques to simulate and analyze fluid behavior in various

engineering contexts. This sophisticated tool enables researchers and engineers to predict and

understand complex fluid dynamics phenomena without the need for physical prototypes. CFD

is based on the conservation laws of mass, momentum, and energy. These governing equations

form the mathematical foundation upon which fluid simulations are built. CFD is utilized across

a wide range of industries and engineering disciplines, including:

• Aerospace and Defense: One of the primary uses of CFD in aerospace is

aerodynamics analysis. Engineers can simulate airflow around aircraft components

such as wings, fuselages, and control surfaces. This allows them to:

o Optimize airfoil shapes for better lift-to-drag ratios

o Analyze drag reduction techniques

o Study vortex flows and stall characteristics

o Design more efficient wing shapes for various flight conditions

By leveraging CFD, aerospace companies can significantly reduce wind tunnel testing

requirements, saving time and resources while still achieving accurate aerodynamic

performance predictions.

• Automotive: CFD has become an essential tool in the automotive industry,

revolutionizing various aspects of vehicle design, development, and optimization.

Here's how CFD is utilized in automotive applications:

o Aerodynamics and Drag Reduction

o Thermal Management

o Fuel Efficiency and Emissions

Msc Thesis title

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Panagiotis Koutsivitis 0023 21

o Electric Vehicle Battery Performance

1.1.1.2 Finite Element Method (FEM)

The Finite Element Method (FEM) is a computational approach used extensively in engineering

and scientific fields. This method breaks down intricate problems into manageable, discrete

components known as finite elements. These simplified elements are then combined to form a

comprehensive system of equations that accurately represents the original problem. FEM proves

particularly valuable in scenarios involving complex geometries or systems where finding

analytical solutions is challenging. By leveraging this technique, researchers and engineers can

overcome difficulties associated with complex mathematical modeling and gain insights into

various physical phenomena.

The key concept of FEM is:

• Discretization: Problem’s domain is divided into small elements, typically triangles or

quadrilaterals in 2D or tetrahedra in 3D. This process is known as discretization.

• Element Matrices: For each element, a system of equations is formulated based on the

governing differential equations of the problem. These equations are assembled into

matrices, which describe the behavior of the element under various conditions.

• Assembly Process: The individual element matrices are combined to form a global

matrix that represents the entire domain. This process considers the connectivity

between elements.

• Solving the Global System: Once the global matrix is formed, it can be solved using

standard numerical methods such as Gaussian elimination or iterative solvers such as the

conjugate gradient method. The solution provides the values at discrete points within the

domain.

FEM finds extensive applications across various fields:

• Structural Analysis: To analyze stresses, strains, and deflections in structures under

load.

• Heat Transfer: For modeling heat distribution in materials or fluids.

• Fluid Dynamics: In simulating fluid flow and pressure distribution around objects.

• Electromagnetics: For analyzing electromagnetic fields and wave propagation.

• Geophysics: In seismic analysis and oil exploration.

Advantages of FEM

• Flexibility: Can handle complex geometries and material properties.

• Accuracy: By refining the mesh, the accuracy of the solution can be improved.

• Robustness: Can handle both linear and nonlinear problems, including those involving

large deformations.

Disadvantages of FEM

• Computational Cost: As the complexity of the model increases, so does the

computational cost.

• Mesh Sensitivity: Solution’s quality depends heavily on the detail of the mesh. Poorly

shaped or irregular elements can lead to inaccurate results.

Msc Thesis title

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Panagiotis Koutsivitis 0023 22

• Complexity: Setting up a FEM model requires a deep knowledge of the physical

problem, and the numerical techniques involved.

In summary, the Finite Element Method is a powerful tool for solving complex engineering and

scientific problems numerically. Its ability to handle complex geometries and material behaviors

makes it indispensable in many areas of modern technology.

1.2 Differential Equations

Differential equations are mathematical equations that describe how quantities change over time

or space. They are fundamental tools in many areas of science, engineering, economics, and

mathematics itself. The term "differential" comes from the fact that these equations involve

derivatives, which measure rates of change. There are wo fundamental categories within the

realm of differential equations, the Ordinary Differential Equations (ODEs) and Partial

Differential Equations (PDEs).

1.2.1 Ordinary Differential Equations (ODEs)

Ordinary Differential Equations (ODEs) are a type of differential equations that deals with

functions of a single variable. This variable typically represents time, although it could also

represent other parameters. Unlike Partial Differential Equations (PDEs), which involve

multiple independent variables, ODEs focus solely on one variable. This makes them simpler to

solve compared to PDEs, though they still encompass a wide range of complexity and difficulty

levels.

The main characteristics of ODEs are the following:

• Single Independent Variable: The primary characteristic of ODEs is that they involve

only one independent variable, most commonly time ((t)), but it could also be another

parameter relevant to the problem being modeled.

• Order: An ODE is defined by the highest order of its derivatives. For example, an

equation containing the first derivative is a first-order ODE, one with the second

derivative is a second-order ODE, and so on. There is no upper limit to the order of an

ODE.

• Types:

First Order: Incorporates the first derivative of the dependent variable.

Second Order: Incorporates the second derivative of the dependent variable.

Higher Order: Incorporates derivatives of higher orders.

1.2.2 Partial Differential Equations (PDEs)

Partial Differential Equations (PDEs) are a wide-ranging category of differential equations that

incorporate linear or non-linear multivariable functions and their partial derivatives. Unlike

Ordinary Differential Equations (ODEs), which address single variable functions, PDEs can

describe phenomena involving spatial variations, making them indispensable in fields such as

physics, engineering, and applied mathematics.

The main characteristics of PDEs are the following:

Msc Thesis title

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Panagiotis Koutsivitis 0023 23

• Multiple Independent Variables: PDEs involve functions of multiple independent

variables, typically representing both space and time. For example, in a heat conduction

problem, the temperature might depend on both location (spatial coordinates) and time.

• Partial Derivatives: The term "partial" refers to the fact that the derivatives in PDEs are

taken with respect to some of the variables while holding others constant. This

distinguishes them from total (or full) derivatives found in ODEs.

• Complexity: PDEs can vary greatly in complexity, ranging from simple linear equations

to highly nonlinear ones. Their solutions can exhibit a wide range of behaviors, from

smooth and continuous to discontinuous and chaotic.

1.3 Artificial Neural Networks

Artificial Neural Networks are fundamental tools in machine learning, powering many state-of-

the-art algorithms and applications across various scientific and engineering domains, including

scientific computing, time-series forecasting, natural language processing, computer vision,

robotics, and more.

A neural network is composed of interconnected units called neurons, arranged in layers. These

neurons, inspired initially by the biological neurons (Figure 2), act as processing nodes within

the network. They receive incoming signals, process this information through mathematical

non-linear operations, called activation functions, and then generate output signals. This output

can be propagated to other neurons within the network. The typical structure of a neural network

includes:

1. Input Layer: Where initial data enters the network

2. Hidden Layers: Perform complex computations on the input data

3. Output Layer: Generates predictions or makes decisions based on the processed

information

Within these layers, neurons communicate through weighted connections. These connections,

represented by numerical weights, determine the strength of influence one neuron's output has

on another neuron's input. Think of these weights as the "importance" of each connection in

shaping the overall network behavior. During the training process, the network learns to adjust

these weights based on examples provided in a training dataset. This adjustment allows the

network to refine its understanding of patterns and relationships within the data. The learning

process involves iterative adjustments to these weights and biases. As the network processes

more data and receives feedback, it continually refines its internal representations of the world,

gradually improving its ability to make accurate predictions or decisions.

Figure 2. Biological Neuron versus Artificial Neural Network [5]

Msc Thesis title

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Panagiotis Koutsivitis 0023 24

There are many kinds of Neural Networks such as:

Feedforward Neural Networks (FNN)

These are the most basic and straightforward form of Artificial Neural Networks (ANNs). In

these networks, information flows in a linear, unidirectional manner, moving from the input

layer to the output layer without any backtracking or circular paths. Multilayer perceptron

(MLP) is a specific architecture of feedforward neural network.

Recurrent Neural Networks (RNN)

Recurrent Neural Networks (RNNs) are a type of neural network characterized by their unique

architectural feature: recurrent connections. These connections create directed cycles within the

network, enabling information to circulate and accumulate over time. This temporal memory

capability makes RNNs particularly well-suited for tackling complex problems involving

sequential or time-dependent data.

Convolutional Neural Networks (CNN)

CNNs are specialized neural networks engineered to efficiently process and analyze data that

exhibits a grid-like structure, particularly images. These networks are built around a

fundamental principle: the use of convolutional layers to extract meaningful features from the

input data. They are composed of successive layers of convolutional filters that progressively

build up hierarchical representations of features within the input data. CNNs are widely used in

tasks such as image recognition, object detection, and image segmentation.

Long Short-Term Memory Networks (LSTM) and Gated Recurrent Units (GRU)

Long Short-Term Memory Networks (LSTMs) and Gated Recurrent Units (GRUs) represent

advanced variants of recurrent neural networks (RNNs). These specialized architectures were

developed to overcome the limitations of traditional RNNs, particularly the vanishing gradient

problem. LSTMs and GRUs excel in processing sequential data with varying time scales.

Autoencoder

Autoencoders are unsupervised neural networks that excel at compressing and reconstructing

data. They consist of an encoder network that condenses high-dimensional inputs into lower-

dimensional latent representations, followed by a decoder that attempts to recreate the original

data from these compressed forms. This process allows autoencoders to learn compact feature

embeddings while discarding redundant information. They find applications in dimensionality

reduction, anomaly detection, image denoising, and generative modeling. By learning

hierarchical representations of data, autoencoders serve as powerful tools for exploratory data

analysis and feature learning, enabling machines to identify and represent complex patterns

within large datasets. Their unsupervised nature makes them particularly valuable for

discovering hidden structures in unlabeled data, paving the way for various machine learning

tasks and data preprocessing steps.

Generative Adversarial Networks (GAN)

Generative Adversarial Networks (GANs) are a revolutionary deep learning framework

consisting of two neural networks locked in a perpetual game of deception. The generator

Msc Thesis title

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Panagiotis Koutsivitis 0023 25

creates synthetic data samples that mimic the real thing, while the discriminator tries to spot the

fakes. Through this adversarial dance, both networks continuously improve, with the generator

becoming increasingly skilled at producing convincing forgeries and the discriminator

developing superhuman abilities to detect authenticity. GANs have transformed the field of

computer vision, effortlessly conjuring photorealistic images, videos, and even entire worlds

from scratch. Their applications extend far beyond mere aesthetics, powering cutting-edge

technologies in data augmentation, style transfer, and even creative endeavors like artistic

collaborations between humans and AI. However, GANs are not without their challenges, as

researchers grapple with issues like mode collapse and ensuring ethical use of these powerful

generative models. Despite these hurdles, GANs remain at the forefront of AI innovation,

pushing the boundaries of what's possible in data generation and manipulation.

Multilayer Perceptron

Multi-Layer Perceptrons (MLPs) are foundational neural network architectures that consist of

multiple layers of interconnected nodes (neurons) processing information in a feedforward

manner. Characterized by their layered structure (Figure 3), MLPs sequentially apply

transformations to the input data, with each layer building upon the previous one to create

increasingly complex representations. The MLP consists of an input layer, one or more hidden

layers, and an output layer. MLPs are versatile tools capable of solving a wide range of

problems, including classification, regression, and clustering tasks. Their layered structure

allows them to learn hierarchical features, making them effective for pattern recognition and

decision-making. While simpler than some modern neural network architectures, MLPs remain

powerful and widely used, especially in scenarios requiring interpretable models or when

computational resources are limited. Their linear flow of information and ease of

implementation make MLPs accessible entry points for exploring neural network concepts and

applying them to various machine learning challenges. Under certain mathematical conditions,

MLPs possess the remarkable ability to approximate any function with arbitrary precision. This

property makes them an indispensable tool in the field of artificial intelligence, providing a

foundation upon which more advanced neural network architectures are built. The combination

of their flexibility, computational efficiency, and theoretical robustness has cemented MLPs as

a fundamental component in the development of deep learning models and ongoing research in

neural network theory.

Figure 3. Abstract diagram of an MLP [6]

Msc Thesis title

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Panagiotis Koutsivitis 0023 26

1.4 Computational Graphs

A computational graph, also known as a data flow graph or a dependency graph, is a graphical

representation of computations performed during the execution of a program or algorithm. It

visually maps out how data flows through an algorithm or system, showing dependencies

between operations and the sequence in which they occur. Computational graphs are widely

used in various fields such as computer science, mathematics, and engineering, particularly in

areas like machine learning, optimization problems, and digital signal processing.

The key components of a Computational Graph are:

• Nodes: Represent individual operations or functions within the computation. Each node

performs a specific task, such as arithmetic operations (addition, multiplication),

activation functions in neural networks, or any other type of operation relevant to the

problem being solved.

• Edges: Connect nodes and represent the flow of data between them. The direction of an

edge indicates the order in which operations should be executed, ensuring that all

necessary inputs are available when an operation is performed.

• Data Flow: Shows how information moves from one part of the graph to another (Figure

4). In some cases, the graph might have feedback loops where the output of a later stage

feeds back into an earlier stage, allowing for iterative processes.

The main applications of Computational Graphs are:

• Machine Learning: Neural networks, particularly convolutional neural networks

(CNNs) and recurrent neural networks (RNNs), are frequently depicted and analyzed

using computational graphs. These graphs help in understanding the architecture of the

network, including layers, connections, and the flow of data.

• Optimization Problems: Many optimization algorithms, such as gradient descent, can

be visualized using computational graphs. This visualization aids in understanding the

steps involved in finding the optimal solution.

• Algorithm Design and Analysis: Computational graphs can help in analyzing the

complexity of algorithms by visualizing the number of operations and their

dependencies.

Figure 4. Computational Graph used for calculating the forward pass of y=σ(tanh(xW1)W2) [7]

Msc Thesis title

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Panagiotis Koutsivitis 0023 27

1.5 Automatic Differentiation

Automatic Differentiation (AD) is a powerful technique that enables efficient computation of

derivatives for complex functions. It leverages the fact that all computer calculations can be

represented as a sequence of elementary operations and functions. By analyzing these operations

within a computational graph, AD applies the chain rule repeatedly (Figure 5) to compute partial

derivatives automatically. This process yields accurate results up to working precision, requiring

only a small constant factor more arithmetic operations than the original program. AD's

efficiency and accuracy make it an invaluable tool in machine learning and optimization,

particularly for training deep neural networks. Its ability to handle intricate functions seamlessly

has revolutionized gradient-based methods, enabling rapid development and deployment of

sophisticated models across various domains.

Unlike numerical differentiation, which introduces round-off errors and cancels out terms, AD

provides exact derivatives up to floating-point precision. AD excels at computing higher-order

derivatives and partial derivatives with respect to many inputs, crucial for gradient-based

optimization. This method solves the problems inherent in classical differentiation techniques,

offering efficient and accurate computation of gradients. AD's power lies in its ability to handle

complex functions seamlessly, making it an invaluable tool in machine learning and

optimization, particularly for training deep neural networks.

The main Applications of AD are the following:

• Optimization: AD is crucial in optimization algorithms like any variant of gradient

descent, which rely on gradients to update model parameters iteratively.

• Machine Learning: In deep learning, AD is used to train neural networks by optimizing

the weights based on the gradients of the loss function with respect to these weights.

• Scientific Computing: AD can accelerate the computation of derivatives in simulations

and experiments, enabling more accurate and efficient modeling.

Figure 5. Computational Graph used for calculating the reverse pass of y=σ(tanh(xW1)W2) [7]

Msc Thesis title

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Panagiotis Koutsivitis 0023 28

1.6 Optimization algorithms

Optimization is a broad concept that can be applied across various fields, including mathematics,

computer science, engineering, and more. At its core, optimization involves finding the best

solution among a set of possible solutions to achieve a specific goal or objective. In Scientific

computing and CAE, optimization is used for model design optimization or model calibration.

During the years have been developed many optimization algorithms that belong to different

categories and can be applied to solve different types of problems. In this thesis we present

briefly some of the most important categories of optimization algorithms.

1.6.1 Heuristic algorithms

The number of the possible solutions in an optimization problem depends on the number of

variables that form the problem space and whether these variables are continuous or discrete

(Integer Programming). The fact that this number can be very large or even infinite, finding the

exact solution is impractical due to time constraints. Heuristic optimization algorithms are

designed to solve complex problems by providing good-enough solutions within reasonable

time frames, rather than always finding the absolute best solution. These algorithms are

particularly useful in scenarios where the problem space is too vast, or the computation required

to find the optimal solution is prohibitively expensive.

1.6.2 Genetic algorithms

Genetic algorithms are evolutionary computation techniques inspired by Darwin's theory of

natural selection and genetics. They operate on a population of candidate solutions, applying

principles of evolution to iteratively improve the solution set. The algorithm starts with an initial

population of potential solutions, representing possible answers to a problem. It then applies

genetic operators like selection, crossover, and mutation to these solutions, mimicking

biological processes. Through repeated iterations, fitter solutions (those better addressing the

problem) become more prevalent in the population. This evolutionary process allows the

algorithm to explore vast solution spaces efficiently, often finding optimal or near-optimal

solutions to complex problems. Genetic algorithms have been applied successfully in various

fields, including optimization, scheduling, machine learning, and engineering design. Their

ability to handle non-linear relationships and parallel processing makes them particularly

effective for solving real-world problems with multiple constraints and objectives.

1.6.3 Gradient Descent

Gradient Descent (GD) is a deterministic optimization algorithm and belong specifically to the

gradient-based optimization methods. GD is one of the simplest and most widely used first-

order optimizers. It iteratively updates parameters in the direction opposite to the gradient of the

loss function.

1.6.3.1 1st Order Optimizers

First-order optimizers are a fundamental class of optimization algorithms commonly used in

machine learning and deep learning. These optimizers rely solely on the 1st order gradient

information of the loss function (Figure 6) to update model parameters.

Msc Thesis title

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Panagiotis Koutsivitis 0023 29

Figure 6. Gradient Descent using 1st order optimizers [8]

Some of the advantages and disadvantages of the 1st order optimizers are the following:

• Pros:

➢ Low computational cost per epoch

➢ Scalable to any number of parameters

➢ Perform well in stochastic objective functions.

• Cons

➢ Slow convergence due to the small steps taken

➢ Sensitive to hyper-parameters

➢ Need more parameters for finding accurate solutions than it should.

1.6.3.1.1 Stochastic Gradient Descent (SGD)

Stochastic Gradient Descent is a variant of Gradient Descent that uses only one or a limited

number of examples from the training dataset at a time to compute the gradient. This approach

contrasts with traditional Gradient Descent, which computes the gradient using the entire

dataset. This stochastic approach to the calculation of gradient has been found to have the

following advantages compared to the GD:

• Faster computation compared to full batch GD

• Noisier updates, leading to better generalization

• Often converges to a good solution quickly

Msc Thesis title

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Panagiotis Koutsivitis 0023 30

1.6.3.1.2 Adam

The Adam algorithm [9] is a first-order stochastic gradient-based optimizer that has gained

popularity for its effectiveness in training large and complex deep neural networks. This method

stands out for its robustness and computational efficiency, making it particularly well-suited for

models with millions of parameters. Adam's success in deep learning can be attributed to its

ability to adapt learning rates for different parameters automatically, reducing the need for

manual tuning. However, achieving optimal performance often requires careful consideration

of several hyper-parameters which in practice can be challenging and time consuming.

1.6.3.2 2nd Order Optimizers

Second-order optimizers in machine learning refer to optimization algorithms that utilize both

the first and second derivatives of the loss function (Figure 7) during the training process. These

optimizers aim to converge faster and more efficiently compared to first-order methods, which

only rely on the gradient (first derivative) information.

1. Utilize Hessian matrix: Second-order optimizers make use of the Hessian matrix,

which contains the second partial derivatives of the loss function.

2. Faster convergence: By incorporating curvature information from the Hessian matrix,

second-order methods often converge faster than first-order methods.

3. Computational complexity: Second-order optimizers typically require more

computational resources due to the need to compute and invert the Hessian matrix.

Figure 7. Gradient Descent using 2nd order optimizers [8]

Some of the advantages and disadvantages of the 2nd order optimizers are the following:

• Pros:

➢ By incorporating curvature information from the Hessian matrix, 2nd order

methods often converge faster than 1st order methods.

➢ Not at all or few hyper-parameters

Msc Thesis title

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Panagiotis Koutsivitis 0023 31

➢ Need less parameters for finding accurate solutions than 1st order optimizers.

• Cons

➢ High computational cost per epoch because of the required estimation &

inversion of the Hessian matrix.

➢ High memory consumption because of the allocation of the Hessian matrix.

➢ Impractical for large number of parameters.

➢ Do not perform well in stochastic objective functions.

1.6.3.2.1 BFGS

The Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm is a second-order optimization

method that approximates the Hessian matrix of the loss function. It achieves this by evaluating

gradients, resulting in a computational complexity of O(N2) where N is the number of

parameters. A significant advantage of BFGS is that it updates the curvature matrix without

requiring matrix inversion, significantly reducing computational costs. However, this method

comes with memory constraints, as the Hessian matrix grows quadratically with the number of

parameters. This limitation makes BFGS unsuitable for large-scale neural networks, where

memory usage becomes prohibitively expensive as the model size increases. Despite these

challenges, BFGS remains valuable in certain scenarios due to its ability to handle complex

landscapes efficiently. Its effectiveness in finding optimal solutions has led to continued

research into variants and applications of the algorithm in various optimization problems beyond

deep learning.

1.6.3.2.2 L-BFGS

The Limited-memory BFGS (L-BFGS) algorithm [10] is an improved version of the BFGS

algorithm that addresses memory usage concerns by storing only a few vectors approximating

the full Hessian matrix. This approach enhances computational efficiency and allows L-BFGS

to handle problems with larger parameter sets compared to BFGS.

Both BFGS and L-BFGS can still fall prey to local minima traps. To mitigate this risk,

researchers have developed hybrid optimization strategies. One such approach involves using

Adam as an initial optimizer, running for hundreds of epochs, followed by BFGS or L-BFGS

using the weights produced by Adam. This multi-stage strategy aims to leverage Adam's global

exploration capabilities with the local refinement offered by BFGS variants. This combined

approach has shown promise in physics-informed machine learning applications, particularly in

solving systems of partial differential equations (PDEs) [3]. By combining these methods,

researchers can potentially achieve better convergence and avoid getting stuck in suboptimal

solutions, especially in challenging optimization landscapes encountered in complex scientific

computing tasks.

1.6.3.2.3 Levenberg-Marquardt

The Levenberg-Marquardt (LM) method originated from Levenberg's work on non-linear least

squares optimization in 1944. He observed that gradient descent and Gauss-Newton iteration

were complementary approaches. Marquardt later extended this method in 1963 by

incorporating the Hessian matrix's diagonal, scaling each component of the gradient according

Msc Thesis title

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Panagiotis Koutsivitis 0023 32

to curvature. This extension, now known as the Levenberg-Marquardt algorithm, combines the

strengths of both methods. While LM is generally extremely effective for moderate-sized

models, it has limitations due to its requirement for matrix inversion, which is computationally

expensive and memory-intensive. This constraint traditionally restricted LM to models with

thousands of parameters. However, advancements in modern computing hardware have

significantly increased the size of models that can benefit from LM optimization. Today, LM

remains a valuable tool in the optimization toolkit, particularly for problems where a good

balance between fast convergence and robustness is desired. Its ability to handle non-linear

relationships makes it applicable to various real-world optimization problems, though care must

still be taken regarding model size and computational resources.

1.7 PINNs

In many cases, a system of differential equations can be described by

D[u(x); λ] = f (x) , x ∈ Ω ,

Bk[u(x)] = gk(x) , x ∈ Γk ⊂ ∂Ω ,

for k = (1, 2 . . , nb)

D is a differential operator, Bk is a set of boundary operators, u ∈ Rdu is the solution to the

differential equation(s), f (x) is a forcing function, gk(x) is a set of boundary functions, x is an

input vector in the domain Ω ⊂ Rd (i.e. x is a d-dimensional vector), ∂Ω denotes the boundary

of Ω and λ is a set of additional parameters of the differential operator.

A PINN is a neural network, NN(x; θ), with trainable weights and biases θ that aims to

approximate the exact solution u(x) of the underlying differential equation, i.e. NN(x; θ) ≈ u(x).

To train the PINN, a multi-component loss function is employed, consisting of at least two terms

or more when observational data is present (Figure 8).

L(θ) = α1 Lbound(θ) + α2 Lphysics(θ) + α3 Ldata(θ)

• The term Lbound(θ) is the “boundary” loss which tries to match the PINN solution to the

known solution along the boundaries of the domain and typically is calculated using the

following formula Lbound(θ) = Σ (u(x) - NN(x; θ))2

• The term Lphysics(θ) is the “physics” loss which tries to minimize the residual of the

underlying equation(s) at a set of locations within the domain. The derivatives of the

PINN solution with respect to its inputs required by the boundary and physics loss are

obtained using automatic differentiation.

• The term Ldata(θ) is the “data” loss which tries to match the PINN solution to measured

known solutions. Usually, these solutions are located within the domain of the problem.

The Ldata(θ) is usually used when an inverse problem should be solved.

The hyper-parameters α1, α2, α3 control the influence of each loss term in the optimization

problem and can play a significant role in the convergence time and results accuracy.

Msc Thesis title

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Panagiotis Koutsivitis 0023 33

Figure 8. Illustration of how the loss function of PINNs is formed using the computed derivatives of the NN by Automatic

Differentiation and boundary & data loss terms [11]

1.7.1 Forward

Traditionally, given a system of differential equations, simulation software is used for solving

forward problems where you have a set of initial or boundary conditions and want to predict the

state of the system at future times or under different conditions. From the very beginning, PINNs

methodology has been used for solving this type of problems with a good success. Despite their

success, PINNs have been found to meet several challenges because of:

• Large training times compared to traditional numerical approaches.

• Poor accuracy in highly non-linear problems and large domains.

• Difficulty in generalization to new problem cases.

However, PINNs still offer some advantages that is very difficult to find in the traditional

solvers:

• are Mesh free, which means that do not rely necessarily on traditional numerical

discretization methods that require a structured grid or mesh and so can be:

1. Efficient in high-dimensional problems: Traditional methods often suffer from

the curse of dimensionality, where the computational cost grows exponentially

with the number of dimensions. Mesh-free methods like PINNs can handle high-

dimensional problems more efficiently because they do not require the explicit

construction of a mesh.

2. Flexible in Complex Geometries: PINNs can naturally accommodate complex

geometries without needing to adapt or refine meshes. This flexibility is crucial

in applications involving irregular domains or interfaces.

3. Parallelizable: The structure of PINNs lends itself well to parallel computing

architectures, allowing for efficient scaling across multiple processors or GPUs.

Msc Thesis title

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Panagiotis Koutsivitis 0023 34

• are tolerant to the low-quality or absence of initial or boundary conditions when

experimental data are provided and integrated into the training process alongside with

the differential equations, even if the provided data are corrupted by noise.

1.7.2 Inverse

Inverse problems play a vital role in numerous real-world applications. Here the goal is to

estimate the parameters of a system given a set of real-world observations of the system that

potentially can be corrupted by noise (Figure 9). Inversion can be challenging computationally

wise. Solving inverse problems using black-box optimizations algorithms can be extremely

demanding due to the need for extensive forward simulations to match model predictions with

observations. This approach can become prohibitively expensive, especially for high-

dimensional complex systems, rendering many applications infeasible. On the contrary, PINNs

can be a viable solution for solving challenging inverse problems since with one single training,

can estimate the system parameters of the underlying differential equations alongside with the

optimized θ neural network parameters.

Figure 9. Illustration of when PINNs can be used based on how many data of theory are available [12]

2 CHAPTER 2: Experiments

In this chapter will be presented the theoretical background about the problems to be solved

using PINNs. Even though PINNs have been found to be most effective in solving inverse

problems, in this thesis all the problems to be solved belong to the class of forward problems.

The reason behind this decision is to explore the capabilities of this innovative technology and

examine whether could be competitive to the established traditional numerical methods in

several benchmark problems.

2.1 Burgers equation

Burgers equation emerges across numerous fields within applied mathematics such as fluid

mechanics, nonlinear acoustics, gas dynamics, and traffic flow. This equation serves as a

foundational partial differential equation, which can be obtained by simplifying the Navier-

Stokes equations related to velocity fields through the omission of the pressure gradient term.

When dealing with low viscosity parameters, Burgers equation may result in shock waves that

pose significant challenges for resolution via traditional numerical approaches. Specifically, in

Msc Thesis title

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Panagiotis Koutsivitis 0023 35

a one-dimensional space setting, Burgers equation, accompanied by Dirichlet boundary

conditions, is expressed as follows.

𝛛𝑢

𝛛𝑡
+ 𝑢

𝛛𝑢

𝛛𝑥
− 𝒗

𝛛𝟐𝑢

𝛛𝑥𝟐
= 𝟎, 𝑥 ∈ [−𝟏, 𝟏], 𝑡 ∈ [𝟎, 𝟏]

𝒖(𝟎, 𝒙) = −𝒔𝒊𝒏(𝝅𝒙),

𝒖(𝒕,−𝟏) = 𝒖(𝒕, 𝟏) = 𝟎,

Eq. 1

Where v is the kinematic viscosity parameter and for our case will be equal to 0.01/π.

Figure 10. Illustration of the domain and state space of Burgers equation [3]

In Figure 10 it is illustrated the solution where can be seen the shock waves (discontinuities)

generated as the time increases.

2.2 Poisson equation

The Poisson differential equation is a partial differential equation that arises in many areas of

physics and engineering. It is named after Simeon Denis Poisson, a French mathematician who

made significant contributions to the field of mathematical physics.

The importance of the Poisson differential equation lies in its wide range of applications across

various fields. Its versatility stems from its ability to model the spatial distribution of physical

quantities under the influence of sources or sinks, thereby providing a mathematical framework

for understanding complex natural processes. It describes phenomena related to electrostatics,

heat conduction, fluid dynamics, and many other areas. Here are some reasons why it is

important:

• Electrostatics: It helps in calculating electric potentials given charge distributions.

• Heat Conduction: It models how heat diffuses through materials.

Msc Thesis title

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Panagiotis Koutsivitis 0023 36

• Fluid Dynamics: It can describe the velocity potential in an irrotational flow.

• Gravitational Fields: It is used to calculate gravitational potentials and fields.

Without loss of generality in this example we are going to solve the Poisson equation in a unit

square domain and Dirichlet boundary conditions described as follows:

 𝝏𝟐𝑢(𝑥, 𝑦)

𝝏𝑥𝟐
+
𝝏𝟐𝑢(𝑥, 𝑦)

𝝏𝑦𝟐
=
𝟏

𝟒
∑(−𝟏)𝑘+𝟏
𝟒

𝑘=𝟏

𝟐𝑘𝑠𝑖𝑛(𝑘𝝅𝑥)𝑠𝑖𝑛(𝑘𝝅𝑦),

𝑥 ∈ [𝟎, 𝟏],

𝑦 ∈ [𝟎, 𝟏],

𝑢(𝟎, 𝑦) = 𝟎, 𝑢(𝟏, 𝑦) = 𝟎, 𝑢(𝑥, 𝟎) = 𝟎, 𝑢(𝑥, 𝟏) = 𝟎

Eq. 2

The specific formulation of the problem together with the source term in the right-hand side of

the equation found in the scientific paper “Physics-Informed Deep-Learning for Scientific

Computing” [13] by Stefano Markidis.

Figure 11. Illustration of the domain and state space of the Poisson equation for the specific source terms [13]

In Figure 11 can be seen the solution in the form of a 2-dimensional contour plot as has been

found in the aforementioned research paper.

2.3 Lid Driven Cavity Flow Problem

 The lid-driven cavity flow represents a classic problem in fluid dynamics that serves as a

benchmark for testing numerical methods used to solve viscous, incompressible fluid flows.

Msc Thesis title

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Panagiotis Koutsivitis 0023 37

This problem involves a square domain where three sides are stationary walls, while the top

wall (the "lid") moves at a constant velocity 𝑈𝑙𝑖𝑑. The movement of the lid induces a complex

flow pattern within the cavity, characterized by a large primary vortex in the center and smaller

secondary vortices near the corners (Figure 12).

This phenomenon is significant because it encapsulates several fundamental aspects of fluid

dynamics, including boundary layer effects, vortex formation, and the influence of viscosity on

flow patterns. The behavior of the fluid within the cavity is highly dependent on the Reynolds

number, which quantifies the ratio of inertial forces to viscous forces within the fluid. At low

Reynolds numbers, the flow is laminar and predictable, but as the Reynolds number increases,

the flow becomes turbulent, leading to more complex and chaotic patterns.

The lid-driven cavity problem is particularly valuable because it provides a controlled

environment for studying these effects. By varying parameters such as the lid velocity and the

fluid viscosity, researchers can explore how changes in Reynolds number affect the flow

dynamics. This makes it an excellent test case for validating computational fluid dynamics

(CFD) algorithms and turbulence models.

Moreover, understanding the lid-driven cavity flow has practical applications in engineering and

industrial processes. Many real-world fluid flow problems involve moving boundaries or

surfaces that induce flow patterns like those observed in the cavity problem. Examples include

the mixing processes in chemical reactors, the cooling systems in electronic devices, and the

aerodynamics of vehicles. By studying the lid-driven cavity flow, engineers can gain insights

into these complex flow phenomena, which can lead to more efficient designs and improved

performance in various applications.

In summary, the lid-driven cavity flow problem is a cornerstone in fluid dynamics research due

to its simplicity yet richness in demonstrating fundamental principles of viscous flows. It serves

both as a theoretical benchmark for testing numerical methods and as a practical model for

understanding and optimizing real-world engineering applications involving fluid flow.

For the lid-driven cavity flow, we consider a 1.0 × 1.0 m2 square domain, with 𝑈𝑙𝑖𝑑 = 1 m/s,

and 𝑅𝑒 = 100, 400, and 1000.

Figure 12. Lid Driven Cavity Flow for Re=100, Illustration of u & v velocity field using streamlines. Can be seen the

primary vortex on the center and the two secondary vortices on the left & right bottom corners. [14]

Msc Thesis title

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Panagiotis Koutsivitis 0023 38

Figure 13. Lid Driven Cavity Flow for Re=100, Illustration of u & v velocity fields using 2d contour plots. The picture has

been taken by the following research paper [1]

Msc Thesis title

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Panagiotis Koutsivitis 0023 39

In Figure 13Figure 11 can be seen the solution for Re=100 in the form of a 2-dimensional contour

plot as has been found in the following paper [1].

The formulation of Navier-Stokes equations that describe the problem is the following.

 𝛛𝒖

𝛛𝒙
+
𝛛𝒗

𝛛𝒚
= 𝟎

𝒖
𝛛𝒖

𝛛𝒙
+ 𝒗

𝛛𝒖

𝛛𝒚
+
𝟏

𝛠

𝛛𝒑

𝛛𝒙
−
𝛍

𝛠
(
𝛛𝟐𝒖

𝛛𝒙𝟐
+
𝛛𝟐𝒖

𝛛𝒚𝟐
) = 𝟎

𝒖
𝛛𝒗

𝛛𝒙
+ 𝒗

𝛛𝒗

𝛛𝒚
+
𝟏

𝛠

𝛛𝒑

𝛛𝒚
−
𝛍

𝛠
(
𝛛𝟐𝒗

𝛛𝒙𝟐
+
𝛛𝟐𝒗

𝛛𝒚𝟐
) = 𝟎

Eq. 3

where the dimensionless variables are,

x – coordinate along the x direction, 0 < x < 1

y – coordinate along the y direction, 0 < y < 1

u – velocity in x direction

v – velocity in y direction

p – pressure

μ – kinematic viscosity, [0.01, 0.0025, 0.001] m2/s for Re = [100, 400, 1000]

ρ – density, 1.0 kg/m

2.4 Static Piston Flow Problem

The Static Piston Flow problem is the most challenging problem compared to all the previous

ones. We consider a square domain, shown in Figure 14, with all the four walls have a dimension

of 1m. For the bottom, left and right walls the velocities u and v are always zero. Instead, for

the top wall, the horizontal velocity u is everywhere 0 but the vertical velocity v at the injection

position xInjection is 1 m/s for a short period of time when 0.1042<t<1.1156 ms. The

phenomenon is transient but periodic and has a simulation period of 42.38 ms. The injection

point in the top wall is a parameter which means that for different values of it, the solution of

the following system of differential equations changes.

 𝛛𝑢

𝛛𝑥
+
𝛛𝑣

𝛛𝑦
= 𝟎

𝛛𝑢

𝛛𝑡
+ 𝑢

𝛛𝑢

𝛛𝑥
+ 𝑣

𝛛𝑢

𝛛𝑦
+
𝟏

𝛠

𝛛𝑝

𝛛𝑥
−
𝛍

𝛠
(
𝛛𝟐𝑢

𝛛𝑥𝟐
+
𝛛𝟐𝑢

𝛛𝑦𝟐
) = 𝟎

𝛛𝑣

𝛛𝑡
+ 𝑢

𝛛𝑣

𝛛𝑥
+ 𝑣

𝛛𝑣

𝛛𝑦
+
𝟏

𝛠

𝛛𝑝

𝛛𝑦
−
𝛍

𝛠
(
𝛛𝟐𝑣

𝛛𝑥𝟐
+
𝛛𝟐𝑣

𝛛𝑦𝟐
) = 𝟎

Eq. 4

Msc Thesis title

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Panagiotis Koutsivitis 0023 40

where the dimensionless variables are,

x – coordinate along the x direction, 0 < x < 1

y – coordinate along the y direction, 0 < y < 1

t – time, 0 < t < 42.38 ms

u – velocity in x direction

v – velocity in y direction

p – pressure

μ – kinematic viscosity, 2.0e-6 m2/s

ρ – density, 1.0 kg/m

Given the above, it can be calculated the Reynolds number of the flow based on the injection as

Re = u*L/v. The kinematic viscosity is v = 2e-6 [m2/s], so at near the injector (the top region)

if we use L the injector hold width, which is L = (1/32) [m], we have injection velocity u = 1.0

[m/s], then we end up with Re = 1.0 * 1/32 / (2e-6) = 15625.

Goal of this problem is to try training a PINN that will solve and will learn all the solutions of

the above system for different cases (injection points).

In Figure 14 and Figure 15 is illustrated the solution of the problem for Re = 15625 of u & v

velocity field using Quiver and 2D Contour plots.

Figure 14. Static Piston Flow for Re = 15625, Illustration of u & v velocity field using Quiver plot. This velocity field

corresponds to time=6.256 ms and xInj=0.5m.

Msc Thesis title

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Panagiotis Koutsivitis 0023 41

Figure 15. Static Piston Flow for Re = 15625, Illustration of u & v velocity field using 2d contour plots. This velocity field

corresponds to time=2 ms and xInj=0.5m.

Msc Thesis title

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Panagiotis Koutsivitis 0023 42

3 CHAPTER 3: Implementation and Detailed results

In this chapter we present the results that have been achieved for all the problems descripted in

CHAPTER 2: Experiments. The Goal of all the problems was to approximate the solution of the

physical system with a PINN that minimizes the physics error everywhere in the domain and at

the same time satisfies with high accuracy the boundary and/or initial conditions. This

practically means that all the PINNs have not used any known data for their training

(unsupervised learning), instead in some cases that known data were available have been used

only for validation purposes or for training MLP models using clearly supervised learning

approaches which were used for comparison and visualization purposes. PINNs because of their

characteristic to calculate high order derivatives of the outputs with respect to the inputs do not

work at all when use activation functions such as ReLU or Leaky ReLU where the 2nd derivative

is zero. For this reason and without loss of generality in all our experiments we use fully

connected multi-layer PINNs that incorporate Tanh activation functions for the hidden layers

and Linear activation functions for the output layer.

Modern Deep Learning applications, such as NLP and Computer Vision are dominated by the

stochastic gradient descent 1st order optimizers, like SGD or Adam, mainly because of their

ability to scale to millions of parameters and to avoid local minima assisted by their stochastic

nature. Despite their advantages these algorithms many times suffer from slow convergence and

insufficient accuracy in demanding physics based scientific and engineering scenarios. In

contrary, 2nd order optimizers such as BFGS or Levenberg-Marquardt despite their superiority,

in terms of accuracy and convergence speed, against 1st order optimizers, are practically limited

only to medium size NNs (less than 10000 parameters). This is because of their increased

computational complexity caused by the existence of the squared Hessian matrix with

dimensions ΘxΘ where Θ is the number of parameters in the NN.

However, the community has developed limited memory versions of 2nd order optimizers with

the most popular algorithm to be the L-BFGS [10] followed by the newest addition of the

AdaHessian [15].

In the field of PINNs, Issac Lagaris [2] reported that he achieved the best results using the BFGS

among other algorithms. Raissi el al. [3] used for the first time very deep NNs of 10 hidden

layers for solving the Burgers equation problem and for this purpose used as an optimization

scheme the Adam optimizer as a warm starter followed by the L-BFGS for finetuning further

the solution. The last years the above optimization scheme has become the dominant way for

training PINNs. In this thesis, along with the previous scheme, we are going to follow a slightly

different approach by using the BFGS exclusively or together with the Adam as a warm starter.

These alternative approaches have been found to achieve superior results in accuracy with

smaller NN architectures.

Msc Thesis title

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Panagiotis Koutsivitis 0023 43

3.1 Results of Burgers equation

Burgers equation serves as an essential benchmark problem in PINNs. This equation was

initially addressed by Raissi et al. [3] in their groundbreaking paper introducing PINNs.

Although Burgers equation may seem straightforward, solving it is crucial for our research. By

tackling this relatively simple problem, we can verify the accuracy of our implementation and

validate our chosen methodology.

As has been explained in Eq. 1, the domain of the problem can be defined as follows:

 𝑥 ∈ [−𝟏, 𝟏], 𝑡 ∈ [𝟎, 𝟏]

𝒖(𝟎, 𝒙) = −𝒔𝒊𝒏(𝝅𝒙),

𝒖(𝒕,−𝟏) = 𝒖(𝒕, 𝟏) = 𝟎,

Eq. 5

To cover sufficiently the domain must be sampled

• 50 points equally distributed in x axis within the range [-1, 1] for t=0 as initial

conditions.

• 50 points equally distributed in t axis within the range [0,1] for x=-1 as boundary

conditions.

• 50 points equally distributed in t axis within the range [0,1] for x= 1 as boundary

conditions.

• 1000 collocations points uniformly distributed within the domain.

The PINN model that will approximate the solution takes as inputs the spatial variable x and

time t and outputs the solution u as can be seen in Error! Reference source not found. . We

utilized a PINN architecture consisting of 4 hidden layers, each containing 30 neurons with a

hyperbolic tangent (tanh) activation function.

Figure 16. The PINN architecture that represents the solution of Burgers Equation.

Msc Thesis title

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Panagiotis Koutsivitis 0023 44

Regarding the optimization, we followed the standard practice, and we used the Adam for 1000

iterations as a warm starter followed by the L-BFGS for about another 1000 iterations until

converged. The training progress is reported in Figure 17 where can be seen the 2 different

phases of the optimization and how the use of L-BFGS helps to minimize drastically the

composed Mean Squared Error of Burgers equation. Finally, in Figure 18 is presented the

predicted solution of Burgers equation using the trained PINN where can be clearly can be seen

the formed shock wave at t=1.

Figure 17. The composed Mean Squared Error of Burgers equation over the number of training epochs.

Figure 18. An illustration of the predicted solution of Burgers equation using PINN. Can be clearly seen the formed shock

wave at t=1.

Msc Thesis title

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Panagiotis Koutsivitis 0023 45

3.2 Results of Poisson equation

The second benchmark problem to be solved is Poisson equation. As mentioned in Poisson

equation the formulation of the problem including the domain and the source terms were taken

from the scientific paper “Physics-Informed Deep-Learning for Scientific Computing” by

Stefano Markidis [13]. Our main purpose for solving the Poisson equation is to verify the results

and so to build confidence in the overall framework and reduces the likelihood of errors in

subsequent, more complex simulations.

As has been explained in Eq. 2 the domain of the problem can be defined as follows:

 𝑥 ∈ [𝟎, 𝟏],

𝑦 ∈ [𝟎, 𝟏],

𝑢(𝟎, 𝑦) = 𝟎, 𝑢(𝟏, 𝑦) = 𝟎, 𝑢(𝑥, 𝟎) = 𝟎, 𝑢(𝑥, 𝟏) = 𝟎

Eq. 6

Our dataset consists of:

• 4x50 boundary points equally distributed in the boundaries of the square domain.

• 1000 collocations points uniformly distributed within the domain.

The PINN model that will approximate the solution takes as inputs the spatial variables x, y and

outputs the solution u as can be seen in Figure 19Error! Reference source not found. .

Similarly to the Burgers equation we utilized a PINN architecture consisting of 4 hidden layers,

each containing 30 neurons with a hyperbolic tangent (tanh) activation function.

Figure 19. The PINN architecture that represents the solution of Poisson equation.

Msc Thesis title

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Panagiotis Koutsivitis 0023 46

We trained the PINN using the Adam optimizer for 2,000 epochs, followed by BFGS optimizer

for about 2000 iterations until converged. We used BFGS instead of L-BFGS because BFGS

according to our experiments achieved much better accuracy than the limited memory version

of it. In Figure 20 it is demonstrated the positive impact of BFGS to the optimization by reducing

further the composed Mean Squared Error of Poisson equation by 3 orders of magnitude

compared to Adam. While, in Figure 21 is presented the predicted solution of Poisson equation

using the trained PINN drawn in a 3d contour plot. In the plot someone can see the multiple

extrema caused by the various source terms introduced in the equation Eq. 2.

Figure 20. The composed Mean Squared Error of Poisson equation over the number of training epochs.

Figure 21. An illustration of the predicted solution of the Poisson equation using PINN.

Msc Thesis title

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Panagiotis Koutsivitis 0023 47

3.3 Results of Lid-Driven Cavity Flow problem

The lid-driven cavity flow problem is a fundamental benchmark in computational fluid

dynamics, characterized by its complex velocity field and recirculating flows. This study aims

to investigate the application of PINNs to solve this challenging fluid mechanics problem across

various Reynolds numbers (Re), which pose significant challenges due to increased turbulence

and complexity in the flow field.

Our research focused on three primary objectives:

1. Comparing our PINN solution for Re = 100 with the best results of the "On Physics-

Informed Deep Learning for Solving Navier-Stokes Equations" [1] research paper.

2. Assessing the applicability of PINNs to higher Reynolds numbers, specifically Re=400

and Re=1000, and comparing the results with established numerical methods, as

presented in the seminal work by Ghia et al. [16].

3. Investigating the impact of neural network architecture, boundary condition density, and

collocation grid size on the accuracy and efficiency of PINN solutions across these

Reynolds regimes.

3.3.1 Re = 100

The research paper reported the best results using a PINN architecture with 10 hidden layers,

each containing 40 neurons. The model utilized 2500 boundary condition points and a 200x200

grid of collocation points, resulting in 40,000 total points. Training was conducted using Adam

optimization for 5000 iterations, followed by L-BFGS for an additional 2451 iterations until

convergence was achieved.

To demonstrate the significance of optimizer training capabilities, we employed BFGS

optimization exclusively until convergence after 2420 iterations. We utilized a smaller PINN

architecture consisting of 5 hidden layers, each containing 40 neurons, to minimize memory

consumption and computational overhead associated with Hessian matrix calculations. By

reducing the number of parameters in the PINN, we opted to evaluate the loss function using

fewer boundary conditions and collocation points. Specifically, we chose 4x50 boundary

condition points and a 50x50 grid of collocation points. The PINN model takes as inputs the

spatial variables x and y and outputs u and v velocities, followed by pressure p as can be seen

in Figure 22

Figure 22. The PINN architecture that represents the solution of Lid Driven Cavity Flow problem.

Msc Thesis title

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Panagiotis Koutsivitis 0023 48

In Figure 23. is reported the Mean Squared Error for both physics and Boundary conditions

loss terms over the training epochs.

Figure 23. The Physics & Boundary Condition Mean Squared Errors separately reported for Re=100 over the number of

epochs.

Using the trained PINN, a set of visualizations has been generated to evaluate the calculated

solution (Figure 24). On the left-hand side, the two 2-dimensional contour plots represent the

predicted solution of the u & v velocity field across the entire domain. The yellow vertical and

horizontal lines indicate the midpoint sections of these solutions. On right-hand side can be

found the predicted solution calculated for x=0.5m and y=0.5m respectively. The red dots

represent the exact solution for Re=100 which were originally presented in the study by Ghia et

al [16].

Accordingly, in Figure 25 a set of comparison plots is presented that showcase the superior

accuracy achieved by our PINN, despite its relatively shallow architecture compared to the

deeper networks suggested in the reference paper. This outcome strongly suggests that many

researchers may employ unnecessarily deep architectures instead of focusing on optimizing their

models with better algorithms. Our results indicate that achieving high performance doesn't

necessarily require extremely deep neural networks, but rather effective optimization

techniques. This finding challenges the conventional wisdom that deeper networks always lead

to better results, highlighting the potential benefits of exploring alternative optimization

strategies in PINN implementations.

Msc Thesis title

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Panagiotis Koutsivitis 0023 49

Figure 24. The predicted by the PINN u & v velocity field for Re=100 illustrated as 2d contour plots on the left plot

column. On the right plot column can be seen the PINN prediction for the mid-section values compared with the

numerical solution (red dots)

Figure 25. On the top plot row can be seen the best results achieved for Re=100 by the research paper while on the

bottom plot row can be seen the results using our trained PINN.

Msc Thesis title

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Panagiotis Koutsivitis 0023 50

3.3.2 Re = 400

Trying to assess further the applicability of our PINN methodology has been decided to try

solving the problem for a higher Reynold number equal to 400. The solution of the Lid Driven

Cavity Flow for Re = 400 is known to be more difficult because of the high nonlinearity that is

caused by the increased turbulence.

Similarly to our previous experiment for Re = 100, a PINN architecture it has been utilized

consisting of 5 hidden layers, each containing 40 neurons, a 4x50 boundary condition points

and a 50x50 grid of collocation points. Several experiments have been conducted without being

possible to get an accurate solution. After many trials and error, the problem has been solved

successfully by increasing the boundary condition points to 4x100 and the grid of collocation

points to 128x128.

Figure 26 illustrates both the Physics and Boundary conditions loss terms where can be seen

between iterations 100 and 300 the competing nature of PINN optimization problem where

when the BC error decreases but the Physics error increases.

Figure 26. The Physics & Boundary Condition Mean Squared Errors separately reported for Re=400 over the number of

epochs.

Msc Thesis title

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Panagiotis Koutsivitis 0023 51

Despite the success of our PINN methodology for R=400, in Figure 27 it is obvious that PINN

has difficulty to capture with high accuracy the dynamics.

Figure 27. The predicted by the PINN u & v velocity field for Re=400 illustrated as 2d contour plots on the left plot

column. On the right plot column can be seen the PINN prediction for the mid-section values compared with the

numerical solution (red dots).

3.3.3 Re = 1000

As a final more challenging step we decided to evaluate PINNs methodology in solving the

problem at a Reynolds number (Re) of 1000. For solving the Navier-Stokes equations for

Re=1000, has been used initially a PINN with the same architecture, boundary condition points

and collocation points as for the lower Re=400 case. Despite numerous attempts, we were

unable to obtain satisfactory results using this approach. In an effort to overcome these

challenges, we explored several strategies such as, employing larger neural network

architectures, increasing the number of boundary condition points and implementing a denser

grid of collocation points. However, regardless of these adjustments, we were consistently

unable to achieve a successful solution to the problem. It seems that, the complexity of the

problem at higher Reynolds numbers appears to be beyond the capabilities of our current

Msc Thesis title

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Panagiotis Koutsivitis 0023 52

implementation, necessitating further research or alternative approaches to tackle this

challenging scenario.

Figure 28Figure 26 shows how both the Physics loss and Boundary conditions loss terms for

Re=1000 evolve over time (number of epochs). Finally, in Figure 29Figure 27 we see an

illustration of the failure of PINNs to approximate the numerical solution provided by Ghia et

al [16].

Figure 28. The Physics & Boundary Condition Mean Squared Errors separately reported for Re=1000 over the number of

epochs.

Figure 29. The predicted by the PINN u & v velocity field for Re=1000 illustrated as 2d contour plots on the left plot

column. On the right plot column can be seen the PINN prediction for the mid-section values compared with the

numerical solution (red dots).

Msc Thesis title

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Panagiotis Koutsivitis 0023 53

3.4 Results of Static Piston Flow problem

The Static Piston Flow problem serves as our final and most demanding evaluation of the PINNs

within this thesis. In Static Piston Flow Problem, we determined that the Reynolds number of the

flow was 15625, indicating a chaotic turbulent flow regime. This problem involves a four-

dimensional domain, including x and y spatial coordinates, time t, and the position of injection,

representing various initial conditions applied to the top wall of the piston. Static Piston Flow

is not a standard benchmark problem found in literature, making it difficult to obtain solutions

from public sources. Typically, such complex problems are solved using computational fluid

dynamics (CFD) software like OpenFOAM or similar tools. In our case, the numerical solution

was provided by Gamma Technologies, a leading company in automotive computer-aided

engineering (CAE), utilizing the Stable Fluid method.

The problem was solved seven times, each corresponding to a different injection position as

shown in Figure 14. Our dataset consists of a four-dimensional regular grid with the following

dimensions:

• [X * Y * T * #Of Injection Pts] = [32 * 32 * 250 * 7]

o Total collocation points: 1,792,000

o Boundary condition points: 224,000

o Initial condition points: 7,168

For each point in the dataset, we know the values of the system states U, V, and P.

We intend to apply PINNs (Figure 30. The PINN architecture that represents the solution of Static

Piston Flow problem.) in an unsupervised learning manner. Therefore, the provided dataset will

not be used to train the neural network parameters. Instead, it will serve to evaluate the validation

data error, providing a metric to assess whether the PINN can accurately approximate the

problem's solution.

Figure 30. The PINN architecture that represents the solution of Static Piston Flow problem.

Msc Thesis title

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Panagiotis Koutsivitis 0023 54

Similarly, as our previous experiments in Lid Driven Cavity Flow, we initially relied solely on

the BFGS optimization method until convergence. Our approach utilized a PINN architecture

featuring five hidden layers, each containing 40 neurons. Despite achieving low levels of

physics and initial/boundary condition errors, the PINN consistently struggled to significantly

reduce the data validation error. We conducted further experiments, exploring various

combinations of neural network architectures and optimization techniques, including

incorporating the Adam optimizer as a warm starter. Unfortunately, these additional training

attempts yielded similar results, maintaining the error pattern illustrated in Figure 31 throughout

all iterations.

Figure 31. The Physics, Boundary Condition and Data validation Mean Squared Errors separately reported over the

number of epochs. Illustrates the weakness of the PINN to reduce the data validation error while the Physics & Boundary

Condition error have achieved low values.

Given the complexity of the problem at hand, some might argue that the current neural network

architecture of 5 hidden layers lacks sufficient capacity to fully capture the underlying dynamics

of the system. To investigate this hypothesis, we've chosen to leverage the available dataset and

employ a traditional supervised learning approach with the existing neural network architecture.

This strategy allows us to assess whether the network's performance improves when trained

using a more conventional method, potentially revealing insights about weaknesses and

limitations of PINN methodology.

We conducted the following training scenarios using the corresponding pairs of NN

architectures and optimizers.

• 4 Hidden layers, 30 neurons each using Adam

• 4 Hidden layers, 30 neurons each using BFGS

• 4 Hidden layers, 20 neurons each using Levenberg-Marquardt

Msc Thesis title

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Panagiotis Koutsivitis 0023 55

The Machine Learning Assistant (MLA) tool from Gamma Technologies was utilized for this

study. All training sessions were conducted for 1000 epochs to ensure a fair comparison. Figure

32. The Root Mean Squared Errors achieved by Adam, BFGS and LM using supervised learning against the PINN.presents

the Root Mean Squared Errors (RMSE) for the vertical velocity across various training methods.

Upon analyzing the results, we observe that supervised learning techniques consistently

outperform the PINN method by at least one order of magnitude in terms of accuracy. Notably,

both BFGS and Adam were employed to optimize the same neural network architecture, yet

BFGS demonstrates superior performance compared to Adam, indicating potential premature

stagnation in Adam's optimization process. LM stands out as the clear winner among the tested

optimizers, achieving accuracy one order of magnitude higher than its counterparts (Figure 33.

The prediction of v velocity by an MLP (4x20) trained by the LM using supervised learning.and Figure 34) and two

orders of magnitude better than PINN. Furthermore, LM accomplishes this level of accuracy

using a smaller architecture and exhibits faster convergence rates compared to the other two

optimizers.

The significant advantage of the Supervised Learning approach over PINN suggests that the

primary cause of PINN's underperformance is not related to the neural network's ability to learn,

but rather stems from the inherent challenges in optimizing the more complex optimization

landscape of PINN training process. PINN requires satisfying both data (boundary/initial

conditions) fitting and physical constraint satisfaction simultaneously. This dual objective often

leads to more challenging optimization problems compared to standard supervised learning

tasks.

Figure 32. The Root Mean Squared Errors achieved by Adam, BFGS and LM using supervised learning against the PINN.

Msc Thesis title

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Panagiotis Koutsivitis 0023 56

Figure 33. The prediction of v velocity by an MLP (4x20) trained by the LM using supervised learning.

Figure 34. The prediction of v velocity by an MLP (4x30) trained by the BFGS using supervised learning.

Msc Thesis title

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Panagiotis Koutsivitis 0023 57

4 Chapter 4: PINN’s pathologies – Possible Enhancements

PINNs have emerged as a promising tool for PDEs and modeling complex physical systems.

Despite their potential, PINNs can fail in various scenarios. Training a PINN is a hard

optimization problem that under some conditions can lead to a Neural Network that does not

represent a physical solution. This chapter indicates the pathologies and explores the primary

reasons behind PINN failures, providing insight into the challenges faced by this innovative

approach.

4.1 PINNs’ issues

4.1.1 Automatic differentiation is not without a cost

In PINNs, Automatic differentiation (AD) is used to compute derivatives of the neural network

output with respect to the inputs. This is essential for enforcing physical laws and boundary

conditions within the network. AD allows for efficient computation of gradients required for

optimization algorithms. It eliminates the need for manual derivation of analytical derivatives,

which would be impractical for complex differential equations and neural networks.

However, the incorporation of AD into PINNs leads to an increased computational effort

compared to a more classic Supervised Learning scenario:

Each calculation of a 1st order derivative with respect to an input doubles the size of the

generated computational graph which affects accordingly the computational effort and the

memory consumption as well. Calculating a 2nd order derivative with respect to an input

demands four times more calculations and memory than a simple forward propagation of a

classic MLP in Supervised Learning. Considering that the loss function often involves multiple

evaluations of the network and its derivatives, someone can easily understand that the

computational cost and memory consumption become a very considerable factor in PINN’s

training.

4.1.2 Overfitting and Under-constrained Optimization

A fundamental issue in PINN implementation is the risk of overfitting and under-constrained

optimization. When the neural network's capacity exceeds the information provided by the

collocation and boundary condition points, it may memorize noise rather than learn meaningful

patterns. This phenomenon is particularly pronounced in sparse sampling regimes, where

insufficient constraints allow the network to converge to unphysical solutions despite achieving

low training loss values. On the other hand, this problem could be mitigated by increasing the

sampling density, but this would make PINNs suffer more from the curse of dimensionality

losing so one advantage against the traditional numerical methods.

4.1.3 Competing optimization terms

The main reason PINNs suffer from competing optimization terms is due to the nature of their

objective function. Typically, a PINN's loss function consists of two primary components:

• Boundary Conditions loss term: Encourages the network to fit the given boundary

conditions points accurately.

• Physics loss term: Ensures that the predicted solutions satisfy the underlying physical

laws.

Msc Thesis title

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Panagiotis Koutsivitis 0023 58

These two terms can vary significantly in scale or in error landscape and often compete during

the training process. The competition leads to a hard multimodal optimization problem which is

difficult to be solved.

Minimizing the boundary conditions loss term may lead to solutions that don't perfectly adhere

to the physical laws. Conversely, strictly enforcing the physics loss term might result in poor

fitting of the actual boundary conditions. If during PINN optimization one of these terms is not

minimized sufficiently the solution found will be sub-optimal or even unphysical.

4.1.4 Sensitivity to Hyperparameters

PINNs exhibit high sensitivity to various hyperparameters, including network architecture,

optimization algorithms, and collocation point selection. Finding the optimal configuration for

these parameters can be challenging, especially for complex problems. Suboptimal choices may

lead to poor performance or failure to converge. Additionally, even for an optimal configuration

found the solution can vary drastically for different training trials. All the above highlight the

need for systematic approaches to hyperparameter tuning.

4.1.5 Difficulty in Capturing Complex Dynamics with large domains

PINNs face significant obstacles when applied to certain classes of physical problems

characterized by intricate dynamics. These challenges arise primarily in systems that exhibit

pronounced nonlinearity, broad spectral energy distributions, and heightened sensitivity to

initial conditions [17] [18].

Two paradigmatic examples of such complex systems are:

1. Kuramoto-Sivashinsky Equation: This partial differential equation models various

physical phenomena, including flame propagation and fluid flow. It is renowned for its

chaotic behavior, presenting a formidable challenge for PINNs due to its highly

nonlinear dynamics and sensitivity to initial conditions.

2. Navier-Stokes Equations in Turbulent Regime: These equations govern fluid motion and

heat transfer. When applied to turbulent flows, they exhibit complex, multiscale

phenomena characterized by broadband energy spectra. The chaotic nature of turbulence

poses significant difficulties for PINNs in capturing both large-scale structures and

small-scale fluctuations accurately.

Msc Thesis title

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Panagiotis Koutsivitis 0023 59

4.2 PINNs’ enhancements

4.2.1 Coupled Automatic and Numerical differentiation

Coupled-Automatic-Numerical Differentiation Method as per Pao-Hsiung Chiu et al [19] has

been presented as one of the candidate solutions for handling the Overfitting and Under-

constrained Optimization problem of PINNs.

To better understand the nature of this problem one can think the following scenario of the plot

in Figure 35. Is given a solution of a hypothetical PDE which is represented by the black curve.

A training process of a PINN that will evaluate the error in the following boundary and

collocation points (dotted) using AD is possible to lead to the paradox of an unphysical solution

(magenta) that satisfies almost to machine precision the PDE and the boundary conditions.

Figure 35. The paradox of an unphysical solution (magenta) that satisfies almost to machine precision the PDE and the

boundary conditions [19].

The authors to alleviate this issue, they employed Numerical Differentiation to replace AD for

the computation of differential operators required in PINNs.

 𝛛𝐮

𝛛𝐱
≈
𝑢̂(𝑥 + 𝚫𝑥;𝑤) − 𝑢̂(𝑥 − 𝚫𝑥;𝑤)

𝟐𝚫𝑥

𝛛𝟐𝒖

𝛛𝒙𝟐
≈
𝑢̂(𝑥 + 𝚫𝑥;𝑤) − 𝟐𝑢̂(𝑥;𝑤) + 𝑢̂(𝑥 − 𝚫𝑥;𝑤)

𝚫𝑥2

Eq. 7

Msc Thesis title

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Panagiotis Koutsivitis 0023 60

The numerical differentiation method computes differential operators using nearby support

points around each collocation point. This novel approach, termed n-PINNs, seeks to adjust

gradient behaviors during training within localized regions of the solution space, rather than

focusing solely on individual collocation points. Applying n-PINNs to various benchmark

problems resulted in enhanced accuracy. These experiments demonstrated that n-PINNs can

consistently produce reliable solutions across both sparse and dense sampling scenarios.

However, Numerical differentiation despite the positive impact to PINNs training, it is known

that introduces error in the calculation of the derivative terms of the PDE. The authors going

even further tried a Coupled Automatic and Numerical differentiation method for calculating

the derivatives that gave even better accuracy levels in PINNs training as can be shown in Figure

36.

Figure 36. A qualitative comparison plot of the 3 different differentiation approaches [19].

4.2.2 Respect Temporal & Spatial Causality

Sifan Wang et al [20] in “Respecting causality is all you need for training physics-informed

neural networks” claim that classic PINNs during their training do not respect spatio-temporal

causal structure which is embedded to the evolution of dynamical systems. The authors believe

that this fundamental limitation lead PINN models to erroneous solutions.

To grasp this concept, consider how traditional numerical techniques approach solving Partial

Differential Equations (PDEs). These methods generally employ sequential algorithms that

discretize time in a specific manner. The key point here is that the solution at any given time (t)

must be fully determined before attempting to approximate the solution at the next time step (t

+ Δt). In PINNs instead, the PDE is treated as a global optimization problem that should be

solved at once to the whole time or spatial domain. Such an optimization problem that does uses

incorrect local state information is very difficult to be solved or even to converge to a valid

physical solution.

The research paper tackles this issue by introducing a straightforward modification to the loss

function used in PINNs as follows:

𝑳𝒓(𝛉) =

𝟏

𝑵
∑𝒘𝒊𝑳𝒓(𝒕𝒊, 𝛉)

𝑵𝒕

𝟏

Eq. 8

Msc Thesis title

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Panagiotis Koutsivitis 0023 61

Where wi is

𝒘𝒊 = 𝒆𝒙𝒑(−𝛆∑𝑳𝒓(𝒕𝒌, 𝛉)

𝑵𝒕

𝒌=𝟏

) Eq. 9

From these equations, we can deduce that the weight (wi) assigned to the current time step's

residual loss is inversely related to the magnitude of the cumulative residual losses accumulated

from previous time steps. As a result, the current time step's loss function Lr(ti, θ) will not be

minimized unless all previous residuals Lr (t, θ) decrease to some small value such that wi

becomes large enough.

4.2.3 Levenberg Marquardt for PINNs

In the following paper [21] “Shallow Physics Informed Neural Networks Using Levenberg-

Marquardt Optimization” the researchers are trying to examine the potential use of Levenberg-

Marquardt (LM) as a candidate game changer for the training of PINNs. So far, the most

research on PINNs is focused on finding novel NN architectures or modifying the loss function

accordingly to achieve better results in accuracy and training robustness. Based on their

research it is established that the choice of the training algorithm is as important as the

architecture and loss function. Traditionally, PINNs use MLPs and employ gradient descent

optimization algorithms such as Adam and L-BFGS for training the parameters of the Neural

Network. Adam and L-BFGS are the algorithms of choice in scientific deep-learning because

of their attractive ability to scale efficiently in large numbers of parameters. Replacing them

with LM is no so simple, mainly because the LM introduces an important burden per epoch in

both calculations and memory consumption. LM needs the maintenance, calculation and

inversion of large and dense matrices such as Jacobian and Hessian’s approximation. To keep

this burden in acceptable levels, the researchers trained using LM only shallow neural networks.

MLPs with only 1 hidden layer even if there are simple NN architectures are quite powerful if

are trained correctly. The results of this paper show that LM with shallow neural networks

consistently outperforms in accuracy by orders of magnitude the pair of Adam+L-BFGS with

multilayer neural networks for a specific class of problems.

Finally, the authors express their belief that by using better optimization algorithms along with

applying domain decomposition of complex problems into smaller subdomains, Shallow

Networks might be able to compete with Deep Networks in representing complex physical

phenomena.

4.2.4 Domain Decomposition & XPINNs

XPINNs stand for eXtended Physics-Informed Neural Networks [22]. They represent an

extension of the original PINN architecture. One of the key features of XPINNs is their use of

domain decomposition. This means the entire space-time continuum is divided into smaller

subdomains (Figure 37).

The domain decomposition strategy employed by XPINNs offers several benefits:

1. Parallelization Capacity:

Msc Thesis title

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Panagiotis Koutsivitis 0023 62

o Each subdomain can potentially be processed independently.

o This allows for efficient parallel computing, which can significantly reduce

computation time for large-scale problems.

2. Large Representation Capacity:

o By dividing the problem into smaller subdomains, XPINNs can handle larger and

more complex problems.

o Each subnetwork can focus on a specific part of the problem, potentially leading

to better overall accuracy.

3. Efficient Hyperparameter Tuning:

o With XPINNs, hyperparameters can be optimized separately for each

subdomain.

o This allows for more tailored solutions to different aspects of the problem.

4. Effectiveness for Multi-scale and Multi-physics Problems:

o Different subdomains can capture phenomena at various scales or physics

simultaneously.

o This makes XPINNs particularly well-suited for problems involving multiple

physical processes or vastly different characteristic lengths/timescales.

Figure 37. An illustration of how the domain decomposition works in X-PINNs [22]

Msc Thesis title

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Panagiotis Koutsivitis 0023 63

5 Conclusions

PINNs is an innovative technology which expands the learning capabilities of standard NNs

beyond their current limits. PINNs can approximate physical systems not only by learning from

simulation data, as their ancestors, but also by solving directly the underlying system of

differential equations.

Our conducted experiments have shown that this technology is competitive in accuracy to

standard numerical methods for several benchmark problems. Our PINNs found to have the

same or even better accuracy levels compared to other implementations in the literature while

using smaller NN architectures and less boundary and collocation points.

However, the computational cost of their training introduced mainly by the Automatic

Differentiation overhead and its iterative nature make PINNs less efficient and appealing

compared to the established numerical solvers. Additionally, PINNs have shown difficulties in

finding reliable solutions as the complexity and non-linearity of the problem increases. We

showed that using MLPs having the same architecture as PINNs were able to learn the

underlying dataset, indicating in this way that the learning weakness of PINNs is not related to

the learning capacity of the neural network but instead is consequence of the optimization

problem's complexity itself. Trying to locate answers to the endogenous pathologies of PINNs,

we studied several research papers, and we presented the most important as candidate solutions

for a future state-of-the-art implementation.

Finally, this master thesis is dedicated to those who have the belief that PINNs will play a vital

role to the shaping of the next generation neural network based PDE solvers.

Msc Thesis title

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Panagiotis Koutsivitis 0023 64

6 Future work

The findings of this study highlight several areas where further research could significantly

enhance the performance and applicability of Physics-Informed Neural Networks (PINNs).

Future work should focus on addressing the computational efficiency issues and improving the

reliability of PINNs for complex problems.

1. GPU acceleration: Implementing PINN training on GPU hardware could significantly

reduce computation time and enable larger-scale simulations. Optimizing the automatic

differentiation process for parallel execution on GPUs would be crucial.

2. Scalable second-order optimization: Developing more efficient second-order

optimization algorithms tailored for PINN training could lead to faster convergence and

improved accuracy. Adapting existing methods like BFGS or implementing scalable

novel variants of Levenberg-Marquardt could be a game changer in PINNs training.

3. Coupling traditional numerical solvers with PINN methodology: Integrating PINN

methodology within established numerical methods could create hybrid approaches that

leverage the strengths of both paradigms. This could potentially combine the reliability

and efficiency of traditional solvers with the flexibility and generalization capabilities

of PINNs.

Msc Thesis title

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Panagiotis Koutsivitis 0023 65

Bibliography – References – Online sources

[1] C. A. Putra, P. Palar, R. Stevenson and L. R. Zuhal, "On Physics-Informed Deep Learning for

Solving Navier-Stokes Equations," in AIAA SCITECH 2022 ForumAt: San Diego, California, 2022.

[2] I. E. Lagaris, A. Likas and D. I. Fotiadis, "Artificial Neural Networks for Solving Ordinary and

Partial Differential Equations," Physics - Computational Physics, 1997.

[3] M. Raissi, P. Perdikaris and G. E. Karniadakis, "Physics-informed neural networks: A deep

learning framework for solving forward and inverse problems involving nonlinear partial

differential equations," Journal of Computational Physics, 2019.

[4] "COMPUTER SCIENCE," [Online]. Available: https://computingstudy.wordpress.com/scientific-

computing/.

[5] B. Mwandau and M. Nyanchama, "Investigating Keystroke Dynamics as a Two-Factor Biometric

Security," 2018.

[6] "Javatpoint," [Online]. Available: https://www.javatpoint.com/multi-layer-perceptron-in-

tensorflow.

[7] "pvigier's blog," [Online]. Available: https://pvigier.github.io/2017/07/21/pychain-part1-

computational-graphs.html.

[8] "dongminlee.tistory.com," [Online]. Available: https://dongminlee.tistory.com/24.

[9] D. P. Kingma and J. Ba, "Adam: A Method for Stochastic Optimization," 2017.

[10] D. C. Liu and J. Nocedal, "On the limited memory BFGS method for large scale optimization," in

Mathematical programming, 1989.

[11] B. Moseley, "BEN MOSELEY. Scientific Machine Learning," [Online]. Available:

https://benmoseley.blog/my-research/.

[12] I. d. C. Guerra, W. Li and R. Wang, "A Comprehensive Analysis of PINNs for Power System

Transient Stability," Electronics, 2024.

[13] S. Markidis, "Physics-Informed Deep-Learning for Scientific Computing," in arXiv:2103.09655v1,

2021.

[14] P. Sikdar, S. M. Dash and K. P. Sinhamahapatra, "Lattice Boltzmann Simulations of a Lid-Driven

Cavity at Different Moving Lengths of the Top Lid," 2019.

[15] Z. Yao, A. Gholami, S. Shen, M. Mustafa, K. Keutzer and M. W. Mahoney, "ADAHESSIAN: An

Adaptive Second Order Optimizer for Machine Learning," 2020.

Msc Thesis title

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Panagiotis Koutsivitis 0023 66

[16] U. Ghia, K. N. Ghia and C. T. Shin, "High-Re Solutions for Incompressible Flow Using the Navier-

Stokes Equations and a Multigrid Method," JOURNAL OF COMPUTATIONAL PHYSICS, 1982.

[17] S. Wang, H. Wang and P. Perdikari, "On the eigenvector bias of fourier feature networks:

Fromregression to solving multi-scale PDEs with physics-informed neural networks.," in

Computer Methods in Applied, 2021.

[18] G. E. Karniadakis, I. G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang and L. Yang, "Physics-informed

machine learning.," in Nature Reviews Physics, 2021.

[19] P.-H. Chiu, J. C. Wong, C. Ooi, M. H. Dao and Y.-S. Ong, "CAN-PINN: A Fast Physics-Informed

Neural Network Based on Coupled-Automatic-Numerical Differentiation Method," in

arXiv:2110.15832, 2022.

[20] S. Wang, S. Sankaran and P. Perdikaris, "Respecting causality is all you need for training physics-

informed neural networks," arXiv:2203.07404, 2022.

[21] G. K. Yadav and B. Srinivasan, "Shallow Physics Informed Neural Networks Using Levenberg-

Marquardt Optimization," in OPT2020: 12th Annual Workshop on Optimization for Machine

Learning, 2020.

[22] K. Shukla, A. D. Jagtap and G. E. Karniadakis, "Parallel Physics-Informed Neural Networks via

Domain Decomposition," arXiv:2104.10013, 2021.

Msc Thesis title

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Panagiotis Koutsivitis 0023 67

		2024-10-17T19:29:55+0300
	PERIKLIS PAPADOPOULOS

		2024-10-23T09:14:02+0300
	MARIA RAGKOUSI

		2024-10-23T10:57:12+0300
	PANAGIOTIS KASNESIS

