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Abstract 

Traditionally, Scientific Computing and Computer Aided Engineering software use numerical 

solvers for simulating physics-based models. Despite their high accuracy, numerical solvers can 

become very computationally intensive and often are impractical to be applied in real time 

applications in Hardware-in-the-Loop systems (HiL), Electronic Control Units (ECU) or 

modern edge devices (Microcontrollers). On the other hand, many machine learning models 

such as Artificial Neural Networks are universal function approximators with very small 

inference, time and memory footprint. For the above reasons, modern scientific computing 

makes extensive use of Machine Learning for speeding up simulations or optimization 

processes. However, this use is limited by the presence of measurement or simulation data. In 

many cases, collecting measurements is not an option due to the high experimental costs, while 

in the case of simulation data, the need to run expensive in time simulations will often arise. 

Scientific Machine Learning or Physics-Informed Machine Learning tries to tackle the lack of 

training data by incorporating physics-based laws into the training process of machine learning 

models. More specifically, Physics Informed Neural Networks (PINNs) are a type of Neural 

Networks that are trained not only on data, if data are available, as it is usually the case in deep 

learning, but also on the model of the differential equations describing the underlying laws of 

physics, which makes them extremely accurate and data efficient. This ability to train a Neural 

Network in a non-arbitrary unsupervised way is a real breakthrough for the field of Machine 

Learning in general. 

 

The aim of this MSc thesis is to apply the PINNs methodology in solving a variety of benchmark 

dynamical systems. We experimentally verify the ability of PINNs to solve standard benchmark 

problems such as Burgers equation and Poisson equation. We explore the borders of this 

technology by applying PINNs in challenging Fluid Dynamics problems, such as the Navier-

Stokes equations. In Lid-Driven Cavity Flow, our trained PINNs demonstrate competitive 

performance in terms of accuracy when compared to established numerical solvers. 

Furthermore, they produce more precise results than those reported in a relevant PINN reference 

paper [1], all while utilizing significantly smaller neural network architectures. This becomes 

feasible by proposing and applying alternative optimization schemes. In the case of the Static 

Piston Flow problem, where PINNs failed to find the solution because of high nonlinearity and 

increased turbulence, we solve the problem using the classic Supervised Learning (SL) 

approach, which applies similar in size NN architectures, and we provide comparative results 

for the various optimizers used. The high accuracy achieved using the SL is a clear indication 

that the reason of PINNs’ failure in that case was not the learning capability of the Neural 

Network but the complexity of the optimization problem itself. Finally, after extensive search 

in the bibliography, several candidate solutions have been gathered and are presented that could 

help to expand the limits of this technology and make it applicable to real world applications.  

 

Keywords 

Scientific Computing, Scientific Machine Learning, Deep Learning, Physics Informed Neural 

Networks, Automatic Differentiation. 
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Περίληψη 

Παρά την εκτεταμένη χρήση της Μηχανικής Μάθησης στη σύγχρονη επιστημονική 

υπολογιστική, αυτή περιορίζεται από την παρουσία δεδομένων μέτρησης ή προσομοίωσης. Σε 

πολλές περιπτώσεις, η συλλογή δεδομένων μέσω καταγραφής και μετρήσεων δεν είναι εφικτή 

λόγω του υψηλού κόστους διεξαγωγής πειραμάτων, ενώ όσον αφορά τα δεδομένα 

προσομοίωσης, πολλές φορές απαιτείται η διεξαγωγή χρονοβόρων υπολογιστικών 

προσομοιώσεων. Η Επιστημονική Μηχανική Μάθηση, και πιο συγκεκριμένα το πεδίο Physics 

Informed Machine Learning, προσπαθεί να αντιμετωπίσει την έλλειψη δεδομένων εκπαίδευσης 

ενσωματώνοντας φυσικούς νόμους στην εκπαιδευτική διαδικασία των μοντέλων μηχανικής 

μάθησης. Πιο συγκεκριμένα, τα Physics Informed Neural Networks (PINNs) είναι μια 

κατηγορία Νευρωνικών Δικτύων που εκπαιδεύονται όχι μόνο σε δεδομένα, όπως συνηθίζεται 

στη βαθιά μάθηση, αλλά και στο θεμελιώδες μοντέλο των διαφορικών εξισώσεων που 

περιγράφει τους υποκείμενους φυσικούς νόμους – χαρακτηριστικό που τα καθιστά εξαιρετικά 

ακριβή και αποδοτικά ως προς τα δεδομένα. 

Σκοπός της παρούσας μεταπτυχιακής διπλωματικής εργασίας είναι η εφαρμογή της 

μεθοδολογίας των PINNs για την επίλυση διάφορων δυναμικών συστημάτων αναφοράς. 

Επιβεβαιώνουμε πειραματικά την ικανότητα των PINNs να επιλύουν τυπικά προβλήματα 

αναφοράς, όπως η εξίσωση Burgers και η εξίσωση Poisson. Περαιτέρω, εξερευνούμε τα όρια 

της τεχνολογίας αυτής εφαρμόζοντας τη μέθοδο σε απαιτητικά δυναμικά προβλήματα Ρευστών, 

όπως τις εξισώσεις Navier-Stokes. Στο Lid-Driven Cavity Flow, τα εκπαιδευμένα PINNs μας 

επιδεικνύουν ανταγωνιστική απόδοση όσον αφορά την ακρίβεια, σε σύγκριση με 

καθιερωμένους αριθμητικούς επιλυτές. Επιπλέον, παράγουν πιο ακριβή αποτελέσματα από 

αυτά που αναφέρονται σε ένα σχετικό έγγραφο αναφοράς PINNs [1], ενώ όλα αυτά 

χρησιμοποιούν σημαντικά μικρότερες αρχιτεκτονικές νευρωνικών δικτύων. Αυτό γίνεται 

εφικτό με τη επιλογή και την εφαρμογή εναλλακτικών σχημάτων βελτιστοποίησης. Στην 

περίπτωση του προβλήματος Στατικής Ροής Εμβόλου,  όπου τα PINN απέτυχαν να βρουν τη 

λύση λόγω της υψηλής μη γραμμικότητας και της αυξημένης τυρβώδους ροής, λύνουμε το 

πρόβλημα χρησιμοποιώντας την κλασική προσέγγιση εποπτευόμενης μάθησης (Supervised 

Learning, SL),  εφαρμόζoντας αντίστοιχες σε μέγεθος αρχιτεκτονικές δικτύων, και παρέχουμε 

συγκριτικά αποτελέσματα για τους διάφορους βελτιστοποιητές που χρησιμοποιήθηκαν. Τέλος, 

μετά από εκτενή έρευνα στη βιβλιογραφία, έχουν συγκεντρωθεί και παρουσιάζονται αρκετές 

υποψήφιες λύσεις που θα μπορούσαν να βοηθήσουν στην επέκταση των ορίων αυτής της 

τεχνολογίας και να την καταστήσουν εφαρμόσιμη σε πραγματικές εφαρμογές. 

 

Λέξεις – κλειδιά 

Επιστημονική Υπολογιστική, Επιστημονική Μηχανική Μάθηση, Βαθιά Μάθηση, Νευρωνικά 

Δίκτυα με βάση τη Φυσική, Αυτόματη Παραγώγιση. 
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INTRODUCTION 

Simulation of complex dynamical systems is a critical aspect of any industry that uses design 

software during product development. Scientific Computing and Computer Aided Engineering 

software use state-of-the-art numerical solvers for solving problems in - Fluid Dynamics, 

Thermal Management, Battery Modelling, Electromagnetics, Electro-chemical, multi-body 

dynamics and more. The process, while optimized, requires significant processing power that 

can take anywhere from several minutes to multiple days. This lengthy computation is often 

repeated numerous times due to variations in initial or boundary conditions and system 

parameters, leading to substantial redundant computational costs. 

  

Traditional Neural Networks such as MLPs or other modern Deep Learning architectures, being 

universal function approximators, can learn simulation data that correspond to multiple 

simulation cases that vary in geometry, boundary conditions or system parameters. Such Neural 

Networks trained in diverse cases can be used to generate rapidly results even for unknown 

cases, which can be many orders of magnitude faster compared to the traditional simulation 

approaches, where transferring of results from one scenario to another is not feasible. However, 

these architectures, despite their learning ability and interpolation agility require the presence 

of data to learn from, which should be obtained by expensive experiments or time-consuming 

simulations. Moreover, there is not any theoretical guarantee that the trained Neural Networks 

respect the underlying physical laws of the problem. 

 

The subject of this thesis 

In 1997, Lagaris et al. [2] showed that even shallow Neural Networks that incorporate in their 

training process the differential equations of the system to be simulated, were able to solve the 

system achieving accurate results. Moreover, Raissi et al. [3] revisited Lagaris’ method and 

introduced Physics Informed Neural Networks (PINNs) which take advantage of the modern 

deep neural network architectures and automatic differentiation techniques available in deep 

learning frameworks and so make feasible the solution of more challenging dynamical systems.  

 

More specifically, PINNs is a generic method for solving a system of ordinary differential 

equations (ODEs) and partial differential equations (PDEs). Using the universal approximation 

theorem, the solution of such differential equations can be accurately estimated by a Neural 

Network. To train the parameters of the Neural Network, PINNs introduce a composite loss 

function that has multiple terms. 

• Initial/Boundary conditions Term: This part of the loss function measures the 

difference between the network's predictions and the initial and/or boundary conditions 

data. It ensures that the neural network satisfies the initial and/or boundary conditions 

imposed by the problem. This is done by calculating the mean squared error (MSE) 

between the predicted values and the target values. 

• Physics Constraint Term: This component quantifies the deviation of the network's 

predictions from the physical model described by the differential equations. It involves 

calculating the residuals of the differential equations at the input/collocation points and 

incorporating these residuals into the loss function. The goal is to minimize these 

residuals, indicating that the network's outputs comply with the physical laws.  

• Data Term (If data are present.): This part of the loss function measures the difference 

between the network's predictions and the actual data if any. It ensures that the neural 

network fits the known data points accurately. This is done by calculating the mean 

squared error (MSE) between the predicted values and the target values. 
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By minimizing this composite loss function, the network learns to predict outcomes that are 

not only consistent with the observed data, in the case that are available, but also aligned with 

the underlying physical principles. This dual-objective optimization ensures that the PINNs' 

predictions are physically plausible across a broader range of scenarios, beyond the specific 

instances represented in the training data. 

 

Thesis’ objectives 

PINNs have gained significant attention as a promising method for solving various problems, 

such as computing ODEs or PDEs. The engineering community has started evaluating PINNs 

potential to replace, supplement or accelerate traditional approaches (numerical solvers) in 

various challenging tasks such as: 

• solving linear or non-linear dynamical systems (forward problems) 

• identifying system parameters (inverse problems) 

• solving multi-case scenarios and creating fast surrogate models 

• data assimilation  

• uncertainty quantification 

 

Objective of this thesis is to evaluate PINNs ability to solve well-known PDE benchmark 

problems in terms of accuracy and performance. These objectives will be pursued through a 

series of research questions, including: 

• Can another optimizer outperform the common Adam + L-BFGS-based PINN 

optimization? 

• How do PINNs perform to challenging multi-case dynamic fluid problems compared to 

data-driven approaches? 

• What are the limitations and best practices of PINNs when it comes to solving complex 

PDEs? 

 

The main contributions of this thesis 

The main contributions of this thesis are summarized as follows: 

• We implement a Python application using TensorFlow deep learning framework able to 

solve the following benchmark problems: 

o Burgers equation 

o 2-Dimensional Poisson equation 

• We solve the Lid-Driven Cavity Flow problem for various system parameter values. 

We diverge from the mainstream optimization approaches that use Adam + L-BFGS as 

main optimizers and we suggest the use of Broyden–Fletcher–Goldfarb–Shanno (BFGS) 

algorithm (L-BFGS, a low memory version of BFGS, in particular). Our trained PINNs 

achieve a very competitive accuracy compared to state-of-the-art numerical solvers 

while giving more accurate results compared to a PINN reference paper [1], using 

significantly smaller neural network architectures. 
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• We stress test our solution and PINNs method in a challenging multi-case dynamic fluid 

problem that simulates the flow inside a static piston for different initial conditions. In 

this problem where the PINNs encountered difficulties due to the high nonlinearity and 

increased turbulence, we employed a traditional Supervised Learning (SL) approach to 

find a solution. We then compared the performance of various optimization algorithms 

within this framework. The high accuracy obtained through Supervised Learning clearly 

demonstrates that the limitations of PINNs were not related to the neural network's 

ability to learn complex patterns, but rather stemmed from the inherent complexity of 

the optimization problem itself. 

• Following, we underline all the problems, weaknesses and pathologies found during 

these tests. Finally, after detailed research in the bibliography we present possible 

solutions to the weaknesses to make PINNs a more robust, effective and applicable 

method in engineering and beyond. 

 

Structure 

The rest of the thesis is organized as follows: 

 

In Chapter 1, we will delve into the fundamental ideas and technological foundations that form 

the basis of PINNs. We'll explore how these concepts have developed over time and examine 

the current state of the Scientific Computing, differential equations (ODEs and PDEs), Neural 

Networks as universal function approximators, Automatic Differentiation, Optimization 

algorithms and PINNs. 

Chapter 2 will present in detail all the benchmark problems will be solved using PINNs. This 

includes the specific theoretical background, differential equations and description of the 

domain and boundary conditions of the problems. 

Chapter 3 will describe in detail the methodology followed for solving all the problems. The 

results of PINNs training are presented using advance visualizations. Additionally, comparisons 

are made between PINNs and Supervised Learning where a detailed dataset was available. 

Chapter 4 aims to provide a comprehensive understanding of the limitations and challenges 

associated with PINNs, while at the same highlights many state-of-the-art improvements 

suggested in the literature to make PINNs more robust and effective to solving PDEs and 

complex physical systems. 

Finally, the thesis concludes with a Conclusion section, where are summarized all the 

achievements, findings and comparative results, as well as certain suggestions for future work. 
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1 CHAPTER 1: Background 

We will embark on an exploration of the core principles and technological building blocks that 

underpin PINNs. We will trace the evolution of these concepts over time and examine the 

present state of several key areas within Scientific Computing.  

1.1 Scientific Computing 

Scientific computing encompasses a broad spectrum of methodologies and technologies 

designed to solve complex in Science and Engineering through the application of computational 

mathematical models. Numerical analysis, a cornerstone of scientific computing, has its roots 

in mathematical concepts and techniques that predate the invention of electronic computers. 

These foundational principles, developed over centuries through continuous refinement, form 

the bedrock upon which modern scientific computing is built. The introduction of electronic 

computers was a pivotal moment in scientific problem-solving. This technological advancement 

necessitated a radical reassessment of established numerical methods, prompting widespread 

revision and, in some cases, complete overhaul of existing techniques. As electronic computers 

entered the scene, factors once considered trivial in manual calculations suddenly became 

paramount for optimal performance and accuracy in large-scale computations. This shift 

necessitated the establishment of a new academic discipline - Computer Science - which would 

encompass a wide range of critical components essential for effective scientific computing. 

However, Mathematics remains an indispensable cornerstone of scientific computing, serving 

multiple crucial functions in this interdisciplinary field. Its influence extends beyond problem 

formulation, encompassing key aspects of model validation, algorithmic development, and 

computational strategy. In summary, Scientific computing represents a synergistic fusion of 

mathematical principles and computational expertise in various Science Disciplines. This fusion 

can be seen in Figure 1. 

 

Figure 1. Scientific Computing [4] 
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1.1.1 Computer Aided Engineering (CAE) 

Computer-aided engineering (CAE) has become an indispensable tool across various industries, 

particularly those relying on sophisticated design software. This innovative approach 

revolutionizes the product development process by leveraging digital technologies to streamline 

design, testing, and simulation phases. 

Some of the most used simulation types in CAE are the following: 

• Structural Analysis Simulations 

• Computational Fluid Dynamics 

• Multiphysics Simulations 

• Design optimization 

These simulation types often overlap or are combined in various ways depending on the specific 

product and industry. The choice of simulation type(s) depends on the nature of the product, the 

environmental conditions it will face, and the specific performance criteria that need to be met. 

Modern CAE tools often offer integrated multi-physics simulations, allowing engineers to 

analyze complex systems involving multiple physical phenomena within a single analysis 

framework.  

1.1.1.1 Computational Fluid Dynamics (CFD) 

Computational Fluid Dynamics (CFD) is a computational methodology that leverages advanced 

algorithms and numerical techniques to simulate and analyze fluid behavior in various 

engineering contexts. This sophisticated tool enables researchers and engineers to predict and 

understand complex fluid dynamics phenomena without the need for physical prototypes. CFD 

is based on the conservation laws of mass, momentum, and energy. These governing equations 

form the mathematical foundation upon which fluid simulations are built.  CFD is utilized across 

a wide range of industries and engineering disciplines, including: 

• Aerospace and Defense: One of the primary uses of CFD in aerospace is 

aerodynamics analysis. Engineers can simulate airflow around aircraft components 

such as wings, fuselages, and control surfaces. This allows them to: 

o Optimize airfoil shapes for better lift-to-drag ratios 

o Analyze drag reduction techniques 

o Study vortex flows and stall characteristics 

o Design more efficient wing shapes for various flight conditions 

By leveraging CFD, aerospace companies can significantly reduce wind tunnel testing 

requirements, saving time and resources while still achieving accurate aerodynamic 

performance predictions. 

• Automotive: CFD has become an essential tool in the automotive industry, 

revolutionizing various aspects of vehicle design, development, and optimization. 

Here's how CFD is utilized in automotive applications:  

o Aerodynamics and Drag Reduction 

o Thermal Management 

o Fuel Efficiency and Emissions 
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o Electric Vehicle Battery Performance 

 

1.1.1.2 Finite Element Method (FEM) 

The Finite Element Method (FEM) is a computational approach used extensively in engineering 

and scientific fields. This method breaks down intricate problems into manageable, discrete 

components known as finite elements. These simplified elements are then combined to form a 

comprehensive system of equations that accurately represents the original problem. FEM proves 

particularly valuable in scenarios involving complex geometries or systems where finding 

analytical solutions is challenging. By leveraging this technique, researchers and engineers can 

overcome difficulties associated with complex mathematical modeling and gain insights into 

various physical phenomena. 

The key concept of FEM is: 

• Discretization: Problem’s domain is divided into small elements, typically triangles or 

quadrilaterals in 2D or tetrahedra in 3D. This process is known as discretization. 

• Element Matrices: For each element, a system of equations is formulated based on the 

governing differential equations of the problem. These equations are assembled into 

matrices, which describe the behavior of the element under various conditions. 

• Assembly Process: The individual element matrices are combined to form a global 

matrix that represents the entire domain. This process considers the connectivity 

between elements. 

• Solving the Global System: Once the global matrix is formed, it can be solved using 

standard numerical methods such as Gaussian elimination or iterative solvers such as the 

conjugate gradient method. The solution provides the values at discrete points within the 

domain. 

FEM finds extensive applications across various fields: 

• Structural Analysis: To analyze stresses, strains, and deflections in structures under 

load. 

• Heat Transfer: For modeling heat distribution in materials or fluids. 

• Fluid Dynamics: In simulating fluid flow and pressure distribution around objects. 

• Electromagnetics: For analyzing electromagnetic fields and wave propagation. 

• Geophysics: In seismic analysis and oil exploration. 

Advantages of FEM 

• Flexibility: Can handle complex geometries and material properties. 

• Accuracy: By refining the mesh, the accuracy of the solution can be improved. 

• Robustness: Can handle both linear and nonlinear problems, including those involving 

large deformations. 

Disadvantages of FEM 

• Computational Cost: As the complexity of the model increases, so does the 

computational cost. 

• Mesh Sensitivity: Solution’s quality depends heavily on the detail of the mesh. Poorly 

shaped or irregular elements can lead to inaccurate results. 
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• Complexity: Setting up a FEM model requires a deep knowledge of the physical 

problem, and the numerical techniques involved. 

In summary, the Finite Element Method is a powerful tool for solving complex engineering and 

scientific problems numerically. Its ability to handle complex geometries and material behaviors 

makes it indispensable in many areas of modern technology. 

1.2 Differential Equations 

Differential equations are mathematical equations that describe how quantities change over time 

or space. They are fundamental tools in many areas of science, engineering, economics, and 

mathematics itself. The term "differential" comes from the fact that these equations involve 

derivatives, which measure rates of change. There are wo fundamental categories within the 

realm of differential equations, the Ordinary Differential Equations (ODEs) and Partial 

Differential Equations (PDEs). 

1.2.1 Ordinary Differential Equations (ODEs) 

Ordinary Differential Equations (ODEs) are a type of differential equations that deals with 

functions of a single variable. This variable typically represents time, although it could also 

represent other parameters. Unlike Partial Differential Equations (PDEs), which involve 

multiple independent variables, ODEs focus solely on one variable. This makes them simpler to 

solve compared to PDEs, though they still encompass a wide range of complexity and difficulty 

levels. 

The main characteristics of ODEs are the following: 

• Single Independent Variable: The primary characteristic of ODEs is that they involve 

only one independent variable, most commonly time ((t)), but it could also be another 

parameter relevant to the problem being modeled. 

• Order: An ODE is defined by the highest order of its derivatives. For example, an 

equation containing the first derivative is a first-order ODE, one with the second 

derivative is a second-order ODE, and so on. There is no upper limit to the order of an 

ODE. 

• Types: 

First Order: Incorporates the first derivative of the dependent variable. 

Second Order: Incorporates the second derivative of the dependent variable. 

Higher Order: Incorporates derivatives of higher orders. 

 

1.2.2 Partial Differential Equations (PDEs) 

Partial Differential Equations (PDEs) are a wide-ranging category of differential equations that 

incorporate linear or non-linear multivariable functions and their partial derivatives. Unlike 

Ordinary Differential Equations (ODEs), which address single variable functions, PDEs can 

describe phenomena involving spatial variations, making them indispensable in fields such as 

physics, engineering, and applied mathematics. 

The main characteristics of PDEs are the following: 
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• Multiple Independent Variables: PDEs involve functions of multiple independent 

variables, typically representing both space and time. For example, in a heat conduction 

problem, the temperature might depend on both location (spatial coordinates) and time. 

• Partial Derivatives: The term "partial" refers to the fact that the derivatives in PDEs are 

taken with respect to some of the variables while holding others constant. This 

distinguishes them from total (or full) derivatives found in ODEs. 

• Complexity: PDEs can vary greatly in complexity, ranging from simple linear equations 

to highly nonlinear ones. Their solutions can exhibit a wide range of behaviors, from 

smooth and continuous to discontinuous and chaotic. 

1.3 Artificial Neural Networks 

Artificial Neural Networks are fundamental tools in machine learning, powering many state-of-

the-art algorithms and applications across various scientific and engineering domains, including 

scientific computing, time-series forecasting, natural language processing, computer vision, 

robotics, and more. 

A neural network is composed of interconnected units called neurons, arranged in layers. These 

neurons, inspired initially by the biological neurons (Figure 2), act as processing nodes within 

the network. They receive incoming signals, process this information through mathematical 

non-linear operations, called activation functions, and then generate output signals. This output 

can be propagated to other neurons within the network. The typical structure of a neural network 

includes: 

1. Input Layer: Where initial data enters the network 

2. Hidden Layers: Perform complex computations on the input data 

3. Output Layer: Generates predictions or makes decisions based on the processed 

information 

Within these layers, neurons communicate through weighted connections. These connections, 

represented by numerical weights, determine the strength of influence one neuron's output has 

on another neuron's input. Think of these weights as the "importance" of each connection in 

shaping the overall network behavior. During the training process, the network learns to adjust 

these weights based on examples provided in a training dataset. This adjustment allows the 

network to refine its understanding of patterns and relationships within the data. The learning 

process involves iterative adjustments to these weights and biases. As the network processes 

more data and receives feedback, it continually refines its internal representations of the world, 

gradually improving its ability to make accurate predictions or decisions.  

 

Figure 2. Biological Neuron versus Artificial Neural Network [5] 
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There are many kinds of Neural Networks such as: 

Feedforward Neural Networks (FNN) 

These are the most basic and straightforward form of Artificial Neural Networks (ANNs). In 

these networks, information flows in a linear, unidirectional manner, moving from the input 

layer to the output layer without any backtracking or circular paths. Multilayer perceptron 

(MLP) is a specific architecture of feedforward neural network. 

Recurrent Neural Networks (RNN) 

Recurrent Neural Networks (RNNs) are a type of neural network characterized by their unique 

architectural feature: recurrent connections. These connections create directed cycles within the 

network, enabling information to circulate and accumulate over time. This temporal memory 

capability makes RNNs particularly well-suited for tackling complex problems involving 

sequential or time-dependent data. 

Convolutional Neural Networks (CNN) 

CNNs are specialized neural networks engineered to efficiently process and analyze data that 

exhibits a grid-like structure, particularly images. These networks are built around a 

fundamental principle: the use of convolutional layers to extract meaningful features from the 

input data. They are composed of successive layers of convolutional filters that progressively 

build up hierarchical representations of features within the input data. CNNs are widely used in 

tasks such as image recognition, object detection, and image segmentation. 

Long Short-Term Memory Networks (LSTM) and Gated Recurrent Units (GRU) 

Long Short-Term Memory Networks (LSTMs) and Gated Recurrent Units (GRUs) represent 

advanced variants of recurrent neural networks (RNNs). These specialized architectures were 

developed to overcome the limitations of traditional RNNs, particularly the vanishing gradient 

problem. LSTMs and GRUs excel in processing sequential data with varying time scales. 

Autoencoder 

Autoencoders are unsupervised neural networks that excel at compressing and reconstructing 

data. They consist of an encoder network that condenses high-dimensional inputs into lower-

dimensional latent representations, followed by a decoder that attempts to recreate the original 

data from these compressed forms. This process allows autoencoders to learn compact feature 

embeddings while discarding redundant information. They find applications in dimensionality 

reduction, anomaly detection, image denoising, and generative modeling. By learning 

hierarchical representations of data, autoencoders serve as powerful tools for exploratory data 

analysis and feature learning, enabling machines to identify and represent complex patterns 

within large datasets. Their unsupervised nature makes them particularly valuable for 

discovering hidden structures in unlabeled data, paving the way for various machine learning 

tasks and data preprocessing steps. 

Generative Adversarial Networks (GAN) 

Generative Adversarial Networks (GANs) are a revolutionary deep learning framework 

consisting of two neural networks locked in a perpetual game of deception. The generator 
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creates synthetic data samples that mimic the real thing, while the discriminator tries to spot the 

fakes. Through this adversarial dance, both networks continuously improve, with the generator 

becoming increasingly skilled at producing convincing forgeries and the discriminator 

developing superhuman abilities to detect authenticity. GANs have transformed the field of 

computer vision, effortlessly conjuring photorealistic images, videos, and even entire worlds 

from scratch. Their applications extend far beyond mere aesthetics, powering cutting-edge 

technologies in data augmentation, style transfer, and even creative endeavors like artistic 

collaborations between humans and AI. However, GANs are not without their challenges, as 

researchers grapple with issues like mode collapse and ensuring ethical use of these powerful 

generative models. Despite these hurdles, GANs remain at the forefront of AI innovation, 

pushing the boundaries of what's possible in data generation and manipulation. 

Multilayer Perceptron 

Multi-Layer Perceptrons (MLPs) are foundational neural network architectures that consist of 

multiple layers of interconnected nodes (neurons) processing information in a feedforward 

manner. Characterized by their layered structure (Figure 3), MLPs sequentially apply 

transformations to the input data, with each layer building upon the previous one to create 

increasingly complex representations. The MLP consists of an input layer, one or more hidden 

layers, and an output layer. MLPs are versatile tools capable of solving a wide range of 

problems, including classification, regression, and clustering tasks. Their layered structure 

allows them to learn hierarchical features, making them effective for pattern recognition and 

decision-making. While simpler than some modern neural network architectures, MLPs remain 

powerful and widely used, especially in scenarios requiring interpretable models or when 

computational resources are limited. Their linear flow of information and ease of 

implementation make MLPs accessible entry points for exploring neural network concepts and 

applying them to various machine learning challenges. Under certain mathematical conditions, 

MLPs possess the remarkable ability to approximate any function with arbitrary precision. This 

property makes them an indispensable tool in the field of artificial intelligence, providing a 

foundation upon which more advanced neural network architectures are built. The combination 

of their flexibility, computational efficiency, and theoretical robustness has cemented MLPs as 

a fundamental component in the development of deep learning models and ongoing research in 

neural network theory.  

 

Figure 3. Abstract diagram of an MLP [6] 
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1.4 Computational Graphs 

A computational graph, also known as a data flow graph or a dependency graph, is a graphical 

representation of computations performed during the execution of a program or algorithm. It 

visually maps out how data flows through an algorithm or system, showing dependencies 

between operations and the sequence in which they occur. Computational graphs are widely 

used in various fields such as computer science, mathematics, and engineering, particularly in 

areas like machine learning, optimization problems, and digital signal processing.  

 

The key components of a Computational Graph are: 

• Nodes: Represent individual operations or functions within the computation. Each node 

performs a specific task, such as arithmetic operations (addition, multiplication), 

activation functions in neural networks, or any other type of operation relevant to the 

problem being solved. 

• Edges: Connect nodes and represent the flow of data between them. The direction of an 

edge indicates the order in which operations should be executed, ensuring that all 

necessary inputs are available when an operation is performed. 

• Data Flow: Shows how information moves from one part of the graph to another (Figure 

4). In some cases, the graph might have feedback loops where the output of a later stage 

feeds back into an earlier stage, allowing for iterative processes. 

 

The main applications of Computational Graphs are: 

• Machine Learning: Neural networks, particularly convolutional neural networks 

(CNNs) and recurrent neural networks (RNNs), are frequently depicted and analyzed 

using computational graphs. These graphs help in understanding the architecture of the 

network, including layers, connections, and the flow of data. 

• Optimization Problems: Many optimization algorithms, such as gradient descent, can 

be visualized using computational graphs. This visualization aids in understanding the 

steps involved in finding the optimal solution. 

• Algorithm Design and Analysis: Computational graphs can help in analyzing the 

complexity of algorithms by visualizing the number of operations and their 

dependencies. 

 

 
Figure 4. Computational Graph used for calculating the forward pass of y=σ(tanh(xW1)W2) [7] 
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1.5 Automatic Differentiation 

Automatic Differentiation (AD) is a powerful technique that enables efficient computation of 

derivatives for complex functions. It leverages the fact that all computer calculations can be 

represented as a sequence of elementary operations and functions. By analyzing these operations 

within a computational graph, AD applies the chain rule repeatedly (Figure 5) to compute partial 

derivatives automatically. This process yields accurate results up to working precision, requiring 

only a small constant factor more arithmetic operations than the original program. AD's 

efficiency and accuracy make it an invaluable tool in machine learning and optimization, 

particularly for training deep neural networks. Its ability to handle intricate functions seamlessly 

has revolutionized gradient-based methods, enabling rapid development and deployment of 

sophisticated models across various domains. 

Unlike numerical differentiation, which introduces round-off errors and cancels out terms, AD 

provides exact derivatives up to floating-point precision. AD excels at computing higher-order 

derivatives and partial derivatives with respect to many inputs, crucial for gradient-based 

optimization. This method solves the problems inherent in classical differentiation techniques, 

offering efficient and accurate computation of gradients. AD's power lies in its ability to handle 

complex functions seamlessly, making it an invaluable tool in machine learning and 

optimization, particularly for training deep neural networks.  

 

The main Applications of AD are the following: 

• Optimization: AD is crucial in optimization algorithms like any variant of gradient 

descent, which rely on gradients to update model parameters iteratively. 

• Machine Learning: In deep learning, AD is used to train neural networks by optimizing 

the weights based on the gradients of the loss function with respect to these weights. 

• Scientific Computing: AD can accelerate the computation of derivatives in simulations 

and experiments, enabling more accurate and efficient modeling. 

 

 

 
Figure 5. Computational Graph used for calculating the reverse pass of y=σ(tanh(xW1)W2) [7] 
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1.6 Optimization algorithms 

Optimization is a broad concept that can be applied across various fields, including mathematics, 

computer science, engineering, and more. At its core, optimization involves finding the best 

solution among a set of possible solutions to achieve a specific goal or objective. In Scientific 

computing and CAE, optimization is used for model design optimization or model calibration. 

During the years have been developed many optimization algorithms that belong to different 

categories and can be applied to solve different types of problems. In this thesis we present 

briefly some of the most important categories of optimization algorithms. 

1.6.1 Heuristic algorithms 

The number of the possible solutions in an optimization problem depends on the number of 

variables that form the problem space and whether these variables are continuous or discrete 

(Integer Programming). The fact that this number can be very large or even infinite, finding the 

exact solution is impractical due to time constraints. Heuristic optimization algorithms are 

designed to solve complex problems by providing good-enough solutions within reasonable 

time frames, rather than always finding the absolute best solution. These algorithms are 

particularly useful in scenarios where the problem space is too vast, or the computation required 

to find the optimal solution is prohibitively expensive. 

1.6.2 Genetic algorithms 

Genetic algorithms are evolutionary computation techniques inspired by Darwin's theory of 

natural selection and genetics. They operate on a population of candidate solutions, applying 

principles of evolution to iteratively improve the solution set. The algorithm starts with an initial 

population of potential solutions, representing possible answers to a problem. It then applies 

genetic operators like selection, crossover, and mutation to these solutions, mimicking 

biological processes. Through repeated iterations, fitter solutions (those better addressing the 

problem) become more prevalent in the population. This evolutionary process allows the 

algorithm to explore vast solution spaces efficiently, often finding optimal or near-optimal 

solutions to complex problems. Genetic algorithms have been applied successfully in various 

fields, including optimization, scheduling, machine learning, and engineering design. Their 

ability to handle non-linear relationships and parallel processing makes them particularly 

effective for solving real-world problems with multiple constraints and objectives. 

1.6.3 Gradient Descent 

Gradient Descent (GD) is a deterministic optimization algorithm and belong specifically to the 

gradient-based optimization methods. GD is one of the simplest and most widely used first-

order optimizers. It iteratively updates parameters in the direction opposite to the gradient of the 

loss function. 

1.6.3.1 1st Order Optimizers 

First-order optimizers are a fundamental class of optimization algorithms commonly used in 

machine learning and deep learning. These optimizers rely solely on the 1st order gradient 

information of the loss function (Figure 6) to update model parameters. 
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Figure 6. Gradient Descent using 1st order optimizers [8] 

Some of the advantages and disadvantages of the 1st order optimizers are the following: 

• Pros: 

➢ Low computational cost per epoch 

➢ Scalable to any number of parameters 

➢ Perform well in stochastic objective functions. 

• Cons 

➢ Slow convergence due to the small steps taken 

➢ Sensitive to hyper-parameters 

➢ Need more parameters for finding accurate solutions than it should. 

1.6.3.1.1 Stochastic Gradient Descent (SGD) 

Stochastic Gradient Descent is a variant of Gradient Descent that uses only one or a limited 

number of examples from the training dataset at a time to compute the gradient. This approach 

contrasts with traditional Gradient Descent, which computes the gradient using the entire 

dataset. This stochastic approach to the calculation of gradient has been found to have the 

following advantages compared to the GD: 

• Faster computation compared to full batch GD 

• Noisier updates, leading to better generalization 

• Often converges to a good solution quickly 
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1.6.3.1.2 Adam 

The Adam algorithm [9] is a first-order stochastic gradient-based optimizer that has gained 

popularity for its effectiveness in training large and complex deep neural networks. This method 

stands out for its robustness and computational efficiency, making it particularly well-suited for 

models with millions of parameters. Adam's success in deep learning can be attributed to its 

ability to adapt learning rates for different parameters automatically, reducing the need for 

manual tuning. However, achieving optimal performance often requires careful consideration 

of several hyper-parameters which in practice can be challenging and time consuming. 

1.6.3.2 2nd Order Optimizers 

Second-order optimizers in machine learning refer to optimization algorithms that utilize both 

the first and second derivatives of the loss function (Figure 7) during the training process. These 

optimizers aim to converge faster and more efficiently compared to first-order methods, which 

only rely on the gradient (first derivative) information. 

1. Utilize Hessian matrix: Second-order optimizers make use of the Hessian matrix, 

which contains the second partial derivatives of the loss function. 

2. Faster convergence: By incorporating curvature information from the Hessian matrix, 

second-order methods often converge faster than first-order methods. 

3. Computational complexity: Second-order optimizers typically require more 

computational resources due to the need to compute and invert the Hessian matrix. 

 

Figure 7. Gradient Descent using 2nd order optimizers [8] 

Some of the advantages and disadvantages of the 2nd order optimizers are the following: 

• Pros: 

➢  By incorporating curvature information from the Hessian matrix, 2nd order 

methods often converge faster than 1st order methods. 

➢ Not at all or few hyper-parameters 
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➢ Need less parameters for finding accurate solutions than 1st order optimizers. 

• Cons 

➢ High computational cost per epoch because of the required estimation & 

inversion of the Hessian matrix. 

➢ High memory consumption because of the allocation of the Hessian matrix. 

➢ Impractical for large number of parameters. 

➢ Do not perform well in stochastic objective functions. 

 

1.6.3.2.1 BFGS 

The Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm is a second-order optimization 

method that approximates the Hessian matrix of the loss function. It achieves this by evaluating 

gradients, resulting in a computational complexity of O(N2) where N is the number of 

parameters. A significant advantage of BFGS is that it updates the curvature matrix without 

requiring matrix inversion, significantly reducing computational costs. However, this method 

comes with memory constraints, as the Hessian matrix grows quadratically with the number of 

parameters. This limitation makes BFGS unsuitable for large-scale neural networks, where 

memory usage becomes prohibitively expensive as the model size increases. Despite these 

challenges, BFGS remains valuable in certain scenarios due to its ability to handle complex 

landscapes efficiently. Its effectiveness in finding optimal solutions has led to continued 

research into variants and applications of the algorithm in various optimization problems beyond 

deep learning. 

1.6.3.2.2 L-BFGS 

The Limited-memory BFGS (L-BFGS) algorithm [10] is an improved version of the BFGS 

algorithm that addresses memory usage concerns by storing only a few vectors approximating 

the full Hessian matrix. This approach enhances computational efficiency and allows L-BFGS 

to handle problems with larger parameter sets compared to BFGS.  

Both BFGS and L-BFGS can still fall prey to local minima traps. To mitigate this risk, 

researchers have developed hybrid optimization strategies. One such approach involves using 

Adam as an initial optimizer, running for hundreds of epochs, followed by BFGS or L-BFGS 

using the weights produced by Adam. This multi-stage strategy aims to leverage Adam's global 

exploration capabilities with the local refinement offered by BFGS variants. This combined 

approach has shown promise in physics-informed machine learning applications, particularly in 

solving systems of partial differential equations (PDEs) [3]. By combining these methods, 

researchers can potentially achieve better convergence and avoid getting stuck in suboptimal 

solutions, especially in challenging optimization landscapes encountered in complex scientific 

computing tasks.  

1.6.3.2.3 Levenberg-Marquardt 

The Levenberg-Marquardt (LM) method originated from Levenberg's work on non-linear least 

squares optimization in 1944. He observed that gradient descent and Gauss-Newton iteration 

were complementary approaches. Marquardt later extended this method in 1963 by 

incorporating the Hessian matrix's diagonal, scaling each component of the gradient according 
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to curvature. This extension, now known as the Levenberg-Marquardt algorithm, combines the 

strengths of both methods. While LM is generally extremely effective for moderate-sized 

models, it has limitations due to its requirement for matrix inversion, which is computationally 

expensive and memory-intensive. This constraint traditionally restricted LM to models with 

thousands of parameters. However, advancements in modern computing hardware have 

significantly increased the size of models that can benefit from LM optimization. Today, LM 

remains a valuable tool in the optimization toolkit, particularly for problems where a good 

balance between fast convergence and robustness is desired. Its ability to handle non-linear 

relationships makes it applicable to various real-world optimization problems, though care must 

still be taken regarding model size and computational resources. 

1.7 PINNs 

In many cases, a system of differential equations can be described by 

 

D[u(x); λ] = f (x) , x ∈ Ω , 

Bk[u(x)] = gk(x) , x ∈ Γk ⊂ ∂Ω , 

for k = (1, 2 . . , nb) 

 

D is a differential operator, Bk is a set of boundary operators, u ∈ Rdu is the solution to the 

differential equation(s), f (x) is a forcing function, gk(x) is a set of boundary functions, x is an 

input vector in the domain Ω ⊂ Rd (i.e. x is a d-dimensional vector), ∂Ω denotes the boundary 

of Ω and λ is a set of additional parameters of the differential operator. 

A PINN is a neural network, NN(x; θ), with trainable weights and biases θ that aims to 

approximate the exact solution u(x) of the underlying differential equation, i.e. NN(x; θ) ≈ u(x). 

To train the PINN, a multi-component loss function is employed, consisting of at least two terms 

or more when observational data is present (Figure 8). 

 

L(θ) = α1 Lbound(θ) + α2 Lphysics(θ) + α3 Ldata(θ)   

 

• The term Lbound(θ) is the “boundary” loss which tries to match the PINN solution to the 

known solution along the boundaries of the domain and typically is calculated using the 

following formula Lbound(θ) = Σ (u(x) - NN(x; θ))2  

• The term Lphysics(θ) is the “physics” loss which tries to minimize the residual of the 

underlying equation(s) at a set of locations within the domain. The derivatives of the 

PINN solution with respect to its inputs required by the boundary and physics loss are 

obtained using automatic differentiation. 

• The term Ldata(θ) is the “data” loss which tries to match the PINN solution to measured 

known solutions. Usually, these solutions are located within the domain of the problem. 

The Ldata(θ) is usually used when an inverse problem should be solved. 

 

The hyper-parameters α1, α2, α3 control the influence of each loss term in the optimization 

problem and can play a significant role in the convergence time and results accuracy. 
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Figure 8. Illustration of how the loss function of PINNs is formed using the computed derivatives of the NN by Automatic 

Differentiation and boundary & data loss terms [11] 

1.7.1 Forward 

Traditionally, given a system of differential equations, simulation software is used for solving 

forward problems where you have a set of initial or boundary conditions and want to predict the 

state of the system at future times or under different conditions. From the very beginning, PINNs 

methodology has been used for solving this type of problems with a good success. Despite their 

success, PINNs have been found to meet several challenges because of: 

• Large training times compared to traditional numerical approaches. 

• Poor accuracy in highly non-linear problems and large domains. 

• Difficulty in generalization to new problem cases. 

 

However, PINNs still offer some advantages that is very difficult to find in the traditional 

solvers: 

• are Mesh free, which means that do not rely necessarily on traditional numerical 

discretization methods that require a structured grid or mesh and so can be:  

1. Efficient in high-dimensional problems: Traditional methods often suffer from 

the curse of dimensionality, where the computational cost grows exponentially 

with the number of dimensions. Mesh-free methods like PINNs can handle high-

dimensional problems more efficiently because they do not require the explicit 

construction of a mesh. 

2. Flexible in Complex Geometries: PINNs can naturally accommodate complex 

geometries without needing to adapt or refine meshes. This flexibility is crucial 

in applications involving irregular domains or interfaces. 

3. Parallelizable: The structure of PINNs lends itself well to parallel computing 

architectures, allowing for efficient scaling across multiple processors or GPUs. 
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• are tolerant to the low-quality or absence of initial or boundary conditions when 

experimental data are provided and integrated into the training process alongside with 

the differential equations, even if the provided data are corrupted by noise. 

1.7.2 Inverse 

Inverse problems play a vital role in numerous real-world applications. Here the goal is to 

estimate the parameters of a system given a set of real-world observations of the system that 

potentially can be corrupted by noise (Figure 9). Inversion can be challenging computationally 

wise. Solving inverse problems using black-box optimizations algorithms can be extremely 

demanding due to the need for extensive forward simulations to match model predictions with 

observations. This approach can become prohibitively expensive, especially for high-

dimensional complex systems, rendering many applications infeasible. On the contrary, PINNs 

can be a viable solution for solving challenging inverse problems since with one single training, 

can estimate the system parameters of the underlying differential equations alongside with the 

optimized θ neural network parameters. 

 

 
Figure 9. Illustration of when PINNs can be used based on how many data of theory are available [12] 

 

2 CHAPTER 2: Experiments 

In this chapter will be presented the theoretical background about the problems to be solved 

using PINNs. Even though PINNs have been found to be most effective in solving inverse 

problems, in this thesis all the problems to be solved belong to the class of forward problems. 

The reason behind this decision is to explore the capabilities of this innovative technology and 

examine whether could be competitive to the established traditional numerical methods in 

several benchmark problems. 

2.1 Burgers equation 

Burgers equation emerges across numerous fields within applied mathematics such as fluid 

mechanics, nonlinear acoustics, gas dynamics, and traffic flow. This equation serves as a 

foundational partial differential equation, which can be obtained by simplifying the Navier-

Stokes equations related to velocity fields through the omission of the pressure gradient term. 

 

When dealing with low viscosity parameters, Burgers equation may result in shock waves that 

pose significant challenges for resolution via traditional numerical approaches. Specifically, in 
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a one-dimensional space setting, Burgers equation, accompanied by Dirichlet boundary 

conditions, is expressed as follows. 

 

𝛛𝑢

𝛛𝑡
+ 𝑢

𝛛𝑢

𝛛𝑥
− 𝒗

𝛛𝟐𝑢

𝛛𝑥𝟐
= 𝟎, 𝑥 ∈ [−𝟏, 𝟏], 𝑡 ∈ [𝟎, 𝟏] 

𝒖(𝟎, 𝒙) = −𝒔𝒊𝒏(𝝅𝒙), 

𝒖(𝒕,−𝟏) = 𝒖(𝒕, 𝟏) = 𝟎, 

Eq. 1 

 

Where v is the kinematic viscosity parameter and for our case will be equal to 0.01/π. 

 
Figure 10. Illustration of the domain and state space of Burgers equation [3] 

In Figure 10 it is illustrated the solution where can be seen the shock waves (discontinuities) 

generated as the time increases. 

 

2.2 Poisson equation 

The Poisson differential equation is a partial differential equation that arises in many areas of 

physics and engineering. It is named after Simeon Denis Poisson, a French mathematician who 

made significant contributions to the field of mathematical physics. 

The importance of the Poisson differential equation lies in its wide range of applications across 

various fields. Its versatility stems from its ability to model the spatial distribution of physical 

quantities under the influence of sources or sinks, thereby providing a mathematical framework 

for understanding complex natural processes. It describes phenomena related to electrostatics, 

heat conduction, fluid dynamics, and many other areas. Here are some reasons why it is 

important: 

• Electrostatics: It helps in calculating electric potentials given charge distributions. 

• Heat Conduction: It models how heat diffuses through materials. 
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• Fluid Dynamics: It can describe the velocity potential in an irrotational flow. 

• Gravitational Fields: It is used to calculate gravitational potentials and fields. 

Without loss of generality in this example we are going to solve the Poisson equation in a unit 

square domain and Dirichlet boundary conditions described as follows:  

 𝝏𝟐𝑢(𝑥, 𝑦)

𝝏𝑥𝟐
+
𝝏𝟐𝑢(𝑥, 𝑦)

𝝏𝑦𝟐
=
𝟏

𝟒
∑(−𝟏)𝑘+𝟏
𝟒

𝑘=𝟏

𝟐𝑘𝑠𝑖𝑛(𝑘𝝅𝑥)𝑠𝑖𝑛(𝑘𝝅𝑦), 

𝑥 ∈ [𝟎, 𝟏], 

𝑦 ∈ [𝟎, 𝟏], 

𝑢(𝟎, 𝑦) = 𝟎, 𝑢(𝟏, 𝑦) = 𝟎, 𝑢(𝑥, 𝟎) = 𝟎, 𝑢(𝑥, 𝟏) = 𝟎 

Eq. 2 

 

The specific formulation of the problem together with the source term in the right-hand side of 

the equation found in the scientific paper “Physics-Informed Deep-Learning for Scientific 

Computing” [13] by Stefano Markidis. 

 
Figure 11. Illustration of the domain and state space of the Poisson equation for the specific source terms [13] 

In Figure 11  can be seen the solution in the form of a 2-dimensional contour plot as has been 

found in the aforementioned research paper. 

2.3 Lid Driven Cavity Flow Problem 

 The lid-driven cavity flow represents a classic problem in fluid dynamics that serves as a 

benchmark for testing numerical methods used to solve viscous, incompressible fluid flows. 
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This problem involves a square domain where three sides are stationary walls, while the top 

wall (the "lid") moves at a constant velocity 𝑈𝑙𝑖𝑑. The movement of the lid induces a complex 

flow pattern within the cavity, characterized by a large primary vortex in the center and smaller 

secondary vortices near the corners (Figure 12). 

This phenomenon is significant because it encapsulates several fundamental aspects of fluid 

dynamics, including boundary layer effects, vortex formation, and the influence of viscosity on 

flow patterns. The behavior of the fluid within the cavity is highly dependent on the Reynolds 

number, which quantifies the ratio of inertial forces to viscous forces within the fluid. At low 

Reynolds numbers, the flow is laminar and predictable, but as the Reynolds number increases, 

the flow becomes turbulent, leading to more complex and chaotic patterns. 

The lid-driven cavity problem is particularly valuable because it provides a controlled 

environment for studying these effects. By varying parameters such as the lid velocity and the 

fluid viscosity, researchers can explore how changes in Reynolds number affect the flow 

dynamics. This makes it an excellent test case for validating computational fluid dynamics 

(CFD) algorithms and turbulence models. 

Moreover, understanding the lid-driven cavity flow has practical applications in engineering and 

industrial processes. Many real-world fluid flow problems involve moving boundaries or 

surfaces that induce flow patterns like those observed in the cavity problem. Examples include 

the mixing processes in chemical reactors, the cooling systems in electronic devices, and the 

aerodynamics of vehicles. By studying the lid-driven cavity flow, engineers can gain insights 

into these complex flow phenomena, which can lead to more efficient designs and improved 

performance in various applications. 

In summary, the lid-driven cavity flow problem is a cornerstone in fluid dynamics research due 

to its simplicity yet richness in demonstrating fundamental principles of viscous flows. It serves 

both as a theoretical benchmark for testing numerical methods and as a practical model for 

understanding and optimizing real-world engineering applications involving fluid flow. 

For the lid-driven cavity flow, we consider a 1.0 × 1.0 m2 square domain, with 𝑈𝑙𝑖𝑑 = 1 m/s, 

and 𝑅𝑒 = 100, 400, and 1000. 

 
Figure 12. Lid Driven Cavity Flow for Re=100, Illustration of u & v velocity field using streamlines. Can be seen the 

primary vortex on the center and the two secondary vortices on the left & right bottom corners. [14] 
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Figure 13. Lid Driven Cavity Flow for Re=100, Illustration of u & v velocity fields using 2d contour plots. The picture has 

been taken by the following research paper [1] 
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In Figure 13Figure 11 can be seen the solution for Re=100 in the form of a 2-dimensional contour 

plot as has been found in the following paper [1]. 

The formulation of Navier-Stokes equations that describe the problem is the following. 

 

 𝛛𝒖

𝛛𝒙
+
𝛛𝒗

𝛛𝒚
= 𝟎 

𝒖
𝛛𝒖

𝛛𝒙
+ 𝒗

𝛛𝒖

𝛛𝒚
+
𝟏

𝛠

𝛛𝒑

𝛛𝒙
−
𝛍

𝛠
(
𝛛𝟐𝒖

𝛛𝒙𝟐
+
𝛛𝟐𝒖

𝛛𝒚𝟐
) = 𝟎 

𝒖
𝛛𝒗

𝛛𝒙
+ 𝒗

𝛛𝒗

𝛛𝒚
+
𝟏

𝛠

𝛛𝒑

𝛛𝒚
−
𝛍

𝛠
(
𝛛𝟐𝒗

𝛛𝒙𝟐
+
𝛛𝟐𝒗

𝛛𝒚𝟐
) = 𝟎 

 

Eq. 3 

 

where the dimensionless variables are, 

x – coordinate along the x direction, 0 < x < 1 

y – coordinate along the y direction, 0 < y < 1 

u – velocity in x direction 

v – velocity in y direction 

p – pressure 

μ – kinematic viscosity, [0.01, 0.0025, 0.001] m2/s for Re = [100, 400, 1000] 

ρ – density, 1.0 kg/m 

 

2.4 Static Piston Flow Problem 

The Static Piston Flow problem is the most challenging problem compared to all the previous 

ones. We consider a square domain, shown in Figure 14, with all the four walls have a dimension 

of 1m. For the bottom, left and right walls the velocities u and v are always zero. Instead, for 

the top wall, the horizontal velocity u is everywhere 0 but the vertical velocity v at the injection 

position xInjection is 1 m/s for a short period of time when 0.1042<t<1.1156 ms. The 

phenomenon is transient but periodic and has a simulation period of 42.38 ms. The injection 

point in the top wall is a parameter which means that for different values of it, the solution of 

the following system of differential equations changes. 

 𝛛𝑢

𝛛𝑥
+
𝛛𝑣

𝛛𝑦
= 𝟎 

𝛛𝑢

𝛛𝑡
+ 𝑢

𝛛𝑢

𝛛𝑥
+ 𝑣

𝛛𝑢

𝛛𝑦
+
𝟏

𝛠

𝛛𝑝

𝛛𝑥
−
𝛍

𝛠
(
𝛛𝟐𝑢

𝛛𝑥𝟐
+
𝛛𝟐𝑢

𝛛𝑦𝟐
) = 𝟎 

𝛛𝑣

𝛛𝑡
+ 𝑢

𝛛𝑣

𝛛𝑥
+ 𝑣

𝛛𝑣

𝛛𝑦
+
𝟏

𝛠

𝛛𝑝

𝛛𝑦
−
𝛍

𝛠
(
𝛛𝟐𝑣

𝛛𝑥𝟐
+
𝛛𝟐𝑣

𝛛𝑦𝟐
) = 𝟎 

 

Eq. 4 
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where the dimensionless variables are, 

x – coordinate along the x direction, 0 < x < 1 

y – coordinate along the y direction, 0 < y < 1 

t – time, 0 < t < 42.38 ms 

u – velocity in x direction 

v – velocity in y direction 

p – pressure 

μ – kinematic viscosity, 2.0e-6 m2/s 

ρ – density, 1.0 kg/m 

 

Given the above, it can be calculated the Reynolds number of the flow based on the injection as 

Re = u*L/v. The kinematic viscosity is v = 2e-6 [m2/s], so at near the injector (the top region) 

if we use L the injector hold width, which is L = (1/32) [m], we have injection velocity u = 1.0 

[m/s], then we end up with Re = 1.0 * 1/32 / (2e-6) = 15625. 

Goal of this problem is to try training a PINN that will solve and will learn all the solutions of 

the above system for different cases (injection points). 

In Figure 14 and Figure 15 is illustrated the solution of the problem for Re = 15625 of u & v 

velocity field using Quiver and 2D Contour plots. 

 

Figure 14. Static Piston Flow for Re = 15625, Illustration of u & v velocity field using Quiver plot. This velocity field 

corresponds to time=6.256 ms and xInj=0.5m. 
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Figure 15. Static Piston Flow for Re = 15625, Illustration of u & v velocity field using 2d contour plots. This velocity field 

corresponds to time=2 ms and xInj=0.5m. 
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3 CHAPTER 3: Implementation and Detailed results 

In this chapter we present the results that have been achieved for all the problems descripted in 

CHAPTER 2: Experiments. The Goal of all the problems was to approximate the solution of the 

physical system with a PINN that minimizes the physics error everywhere in the domain and at 

the same time satisfies with high accuracy the boundary and/or initial conditions. This 

practically means that all the PINNs have not used any known data for their training 

(unsupervised learning), instead in some cases that known data were available have been used 

only for validation purposes or for training MLP models using clearly supervised learning 

approaches which were used for comparison and visualization purposes. PINNs because of their 

characteristic to calculate high order derivatives of the outputs with respect to the inputs do not 

work at all when use activation functions such as ReLU or Leaky ReLU where the 2nd derivative 

is zero. For this reason and without loss of generality in all our experiments we use fully 

connected multi-layer PINNs that incorporate Tanh activation functions for the hidden layers 

and Linear activation functions for the output layer.  

 

Modern Deep Learning applications, such as NLP and Computer Vision are dominated by the 

stochastic gradient descent 1st order optimizers, like SGD or Adam, mainly because of their 

ability to scale to millions of parameters and to avoid local minima assisted by their stochastic 

nature. Despite their advantages these algorithms many times suffer from slow convergence and 

insufficient accuracy in demanding physics based scientific and engineering scenarios. In 

contrary, 2nd order optimizers such as BFGS or Levenberg-Marquardt despite their superiority, 

in terms of accuracy and convergence speed, against 1st order optimizers, are practically limited 

only to medium size NNs (less than 10000 parameters). This is because of their increased 

computational complexity caused by the existence of the squared Hessian matrix with 

dimensions ΘxΘ where Θ is the number of parameters in the NN. 

However, the community has developed limited memory versions of 2nd order optimizers with 

the most popular algorithm to be the L-BFGS [10] followed by the newest addition of the 

AdaHessian [15]. 

In the field of PINNs, Issac Lagaris [2] reported that he achieved the best results using the BFGS 

among other algorithms. Raissi el al. [3] used for the first time very deep NNs of 10 hidden 

layers for solving the Burgers equation problem and for this purpose used as an optimization 

scheme the Adam optimizer as a warm starter followed by the L-BFGS for finetuning further 

the solution. The last years the above optimization scheme has become the dominant way for 

training PINNs. In this thesis, along with the previous scheme, we are going to follow a slightly 

different approach by using the BFGS exclusively or together with the Adam as a warm starter. 

These alternative approaches have been found to achieve superior results in accuracy with 

smaller NN architectures.  
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3.1 Results of Burgers equation 

Burgers equation serves as an essential benchmark problem in PINNs. This equation was 

initially addressed by Raissi et al. [3] in their groundbreaking paper introducing PINNs. 

Although Burgers equation may seem straightforward, solving it is crucial for our research. By 

tackling this relatively simple problem, we can verify the accuracy of our implementation and 

validate our chosen methodology.  

As has been explained in Eq. 1, the domain of the problem can be defined as follows: 

 𝑥 ∈ [−𝟏, 𝟏], 𝑡 ∈ [𝟎, 𝟏] 

𝒖(𝟎, 𝒙) = −𝒔𝒊𝒏(𝝅𝒙), 

𝒖(𝒕,−𝟏) = 𝒖(𝒕, 𝟏) = 𝟎, 

Eq. 5 

 

To cover sufficiently the domain must be sampled  

• 50 points equally distributed in x axis within the range [-1, 1] for t=0 as initial 

conditions. 

• 50 points equally distributed in t axis within the range [0,1] for x=-1 as boundary 

conditions. 

• 50 points equally distributed in t axis within the range [0,1] for x= 1 as boundary 

conditions. 

• 1000 collocations points uniformly distributed within the domain.  

 

The PINN model that will approximate the solution takes as inputs the spatial variable x and 

time t and outputs the solution u as can be seen in Error! Reference source not found. . We 

utilized a PINN architecture consisting of 4 hidden layers, each containing 30 neurons with a 

hyperbolic tangent (tanh) activation function.  

 

 
Figure 16. The PINN architecture that represents the solution of Burgers Equation. 
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Regarding the optimization, we followed the standard practice, and we used the Adam for 1000 

iterations as a warm starter followed by the L-BFGS for about another 1000 iterations until 

converged. The training progress is reported in Figure 17 where can be seen the 2 different 

phases of the optimization and how the use of L-BFGS helps to minimize drastically the 

composed Mean Squared Error of Burgers equation. Finally, in Figure 18 is presented the 

predicted solution of Burgers equation using the trained PINN where can be clearly can be seen 

the formed shock wave at t=1. 

 
Figure 17. The composed Mean Squared Error of Burgers equation over the number of training epochs. 

 
Figure 18. An illustration of the predicted solution of Burgers equation using PINN. Can be clearly seen the formed shock 

wave at t=1. 
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3.2 Results of Poisson equation 

The second benchmark problem to be solved is Poisson equation. As mentioned in Poisson 

equation the formulation of the problem including the domain and the source terms were taken 

from the scientific paper “Physics-Informed Deep-Learning for Scientific Computing” by 

Stefano Markidis [13]. Our main purpose for solving the Poisson equation is to verify the results 

and so to build confidence in the overall framework and reduces the likelihood of errors in 

subsequent, more complex simulations.  

As has been explained in Eq. 2 the domain of the problem can be defined as follows: 

 𝑥 ∈ [𝟎, 𝟏], 

𝑦 ∈ [𝟎, 𝟏], 

𝑢(𝟎, 𝑦) = 𝟎, 𝑢(𝟏, 𝑦) = 𝟎, 𝑢(𝑥, 𝟎) = 𝟎, 𝑢(𝑥, 𝟏) = 𝟎 

Eq. 6 

 

Our dataset consists of: 

• 4x50 boundary points equally distributed in the boundaries of the square domain. 

• 1000 collocations points uniformly distributed within the domain. 

The PINN model that will approximate the solution takes as inputs the spatial variables x, y and 

outputs the solution u as can be seen in Figure 19Error! Reference source not found. . 

Similarly to the Burgers equation we utilized a PINN architecture consisting of 4 hidden layers, 

each containing 30 neurons with a hyperbolic tangent (tanh) activation function. 

 

 

Figure 19. The PINN architecture that represents the solution of Poisson equation. 
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We trained the PINN using the Adam optimizer for 2,000 epochs, followed by BFGS optimizer 

for about 2000 iterations until converged. We used BFGS instead of L-BFGS because BFGS 

according to our experiments achieved much better accuracy than the limited memory version 

of it. In Figure 20 it is demonstrated the positive impact of BFGS to the optimization by reducing 

further the composed Mean Squared Error of Poisson equation by 3 orders of magnitude 

compared to Adam. While, in Figure 21 is presented the predicted solution of Poisson equation 

using the trained PINN drawn in a 3d contour plot. In the plot someone can see the multiple 

extrema caused by the various source terms introduced in the equation Eq. 2. 

 

Figure 20. The composed Mean Squared Error of Poisson equation over the number of training epochs. 

 
Figure 21. An illustration of the predicted solution of the Poisson equation using PINN. 
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3.3 Results of Lid-Driven Cavity Flow problem 

The lid-driven cavity flow problem is a fundamental benchmark in computational fluid 

dynamics, characterized by its complex velocity field and recirculating flows. This study aims 

to investigate the application of PINNs to solve this challenging fluid mechanics problem across 

various Reynolds numbers (Re), which pose significant challenges due to increased turbulence 

and complexity in the flow field.  

Our research focused on three primary objectives: 

1. Comparing our PINN solution for Re = 100 with the best results of the "On Physics-

Informed Deep Learning for Solving Navier-Stokes Equations" [1] research paper. 

2. Assessing the applicability of PINNs to higher Reynolds numbers, specifically Re=400 

and Re=1000, and comparing the results with established numerical methods, as 

presented in the seminal work by Ghia et al. [16]. 

3. Investigating the impact of neural network architecture, boundary condition density, and 

collocation grid size on the accuracy and efficiency of PINN solutions across these 

Reynolds regimes. 

3.3.1 Re = 100 

The research paper reported the best results using a PINN architecture with 10 hidden layers, 

each containing 40 neurons. The model utilized 2500 boundary condition points and a 200x200 

grid of collocation points, resulting in 40,000 total points. Training was conducted using Adam 

optimization for 5000 iterations, followed by L-BFGS for an additional 2451 iterations until 

convergence was achieved. 

To demonstrate the significance of optimizer training capabilities, we employed BFGS 

optimization exclusively until convergence after 2420 iterations. We utilized a smaller PINN 

architecture consisting of 5 hidden layers, each containing 40 neurons, to minimize memory 

consumption and computational overhead associated with Hessian matrix calculations. By 

reducing the number of parameters in the PINN, we opted to evaluate the loss function using 

fewer boundary conditions and collocation points. Specifically, we chose 4x50 boundary 

condition points and a 50x50 grid of collocation points. The PINN model takes as inputs the 

spatial variables x and y and outputs u and v velocities, followed by pressure p as can be seen 

in Figure 22 

 
Figure 22. The PINN architecture that represents the solution of Lid Driven Cavity Flow problem. 
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In Figure 23. is reported the Mean Squared Error for both physics and Boundary conditions 

loss terms over the training epochs. 

 
Figure 23. The Physics & Boundary Condition Mean Squared Errors separately reported for Re=100 over the number of 

epochs. 

Using the trained PINN, a set of visualizations has been generated to evaluate the calculated 

solution (Figure 24). On the left-hand side, the two 2-dimensional contour plots represent the 

predicted solution of the u & v velocity field across the entire domain. The yellow vertical and 

horizontal lines indicate the midpoint sections of these solutions. On right-hand side can be 

found the predicted solution calculated for x=0.5m and y=0.5m respectively. The red dots 

represent the exact solution for Re=100 which were originally presented in the study by Ghia et 

al [16]. 

 

Accordingly, in Figure 25 a set of comparison plots is presented that showcase the superior 

accuracy achieved by our PINN, despite its relatively shallow architecture compared to the 

deeper networks suggested in the reference paper. This outcome strongly suggests that many 

researchers may employ unnecessarily deep architectures instead of focusing on optimizing their 

models with better algorithms. Our results indicate that achieving high performance doesn't 

necessarily require extremely deep neural networks, but rather effective optimization 

techniques. This finding challenges the conventional wisdom that deeper networks always lead 

to better results, highlighting the potential benefits of exploring alternative optimization 

strategies in PINN implementations. 
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Figure 24. The predicted by the PINN u & v velocity field for Re=100 illustrated as 2d contour plots on the left plot 

column. On the right plot column can be seen the PINN prediction for the mid-section values compared with the 

numerical solution (red dots) 

 

 
Figure 25. On the top plot row can be seen the best results achieved for Re=100 by the research paper while on the 

bottom plot row can be seen the results using our trained PINN. 
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3.3.2 Re = 400 

Trying to assess further the applicability of our PINN methodology has been decided to try 

solving the problem for a higher Reynold number equal to 400. The solution of the Lid Driven 

Cavity Flow for Re = 400 is known to be more difficult because of the high nonlinearity that is 

caused by the increased turbulence. 

Similarly to our previous experiment for Re = 100, a PINN architecture it has been utilized 

consisting of 5 hidden layers, each containing 40 neurons, a 4x50 boundary condition points 

and a 50x50 grid of collocation points. Several experiments have been conducted without being 

possible to get an accurate solution. After many trials and error, the problem has been solved 

successfully by increasing the boundary condition points to 4x100 and the grid of collocation 

points to 128x128. 

 

Figure 26 illustrates both the Physics and Boundary conditions loss terms where can be seen 

between iterations 100 and 300 the competing nature of PINN optimization problem where 

when the BC error decreases but the Physics error increases. 

 
Figure 26. The Physics & Boundary Condition Mean Squared Errors separately reported for Re=400 over the number of 

epochs. 
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Despite the success of our PINN methodology for R=400, in Figure 27 it is obvious that PINN 

has difficulty to capture with high accuracy the dynamics. 

 
Figure 27. The predicted by the PINN u & v velocity field for Re=400 illustrated as 2d contour plots on the left plot 

column. On the right plot column can be seen the PINN prediction for the mid-section values compared with the 

numerical solution (red dots). 

 

3.3.3 Re = 1000 

As a final more challenging step we decided to evaluate PINNs methodology in solving the 

problem at a Reynolds number (Re) of 1000. For solving the Navier-Stokes equations for 

Re=1000, has been used initially a PINN with the same architecture, boundary condition points 

and collocation points as for the lower Re=400 case. Despite numerous attempts, we were 

unable to obtain satisfactory results using this approach. In an effort to overcome these 

challenges, we explored several strategies such as, employing larger neural network 

architectures, increasing the number of boundary condition points and implementing a denser 

grid of collocation points. However, regardless of these adjustments, we were consistently 

unable to achieve a successful solution to the problem. It seems that, the complexity of the 

problem at higher Reynolds numbers appears to be beyond the capabilities of our current 
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implementation, necessitating further research or alternative approaches to tackle this 

challenging scenario. 

Figure 28Figure 26 shows how both the Physics loss and Boundary conditions loss terms for 

Re=1000 evolve over time (number of epochs). Finally, in Figure 29Figure 27 we see an 

illustration of the failure of PINNs to approximate the numerical solution provided by Ghia et 

al [16]. 

 
Figure 28. The Physics & Boundary Condition Mean Squared Errors separately reported for Re=1000 over the number of 

epochs. 

 
Figure 29. The predicted by the PINN u & v velocity field for Re=1000 illustrated as 2d contour plots on the left plot 

column. On the right plot column can be seen the PINN prediction for the mid-section values compared with the 

numerical solution (red dots). 
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3.4 Results of Static Piston Flow problem 

The Static Piston Flow problem serves as our final and most demanding evaluation of the PINNs 

within this thesis. In Static Piston Flow Problem, we determined that the Reynolds number of the 

flow was 15625, indicating a chaotic turbulent flow regime. This problem involves a four-

dimensional domain, including x and y spatial coordinates, time t, and the position of injection, 

representing various initial conditions applied to the top wall of the piston. Static Piston Flow 

is not a standard benchmark problem found in literature, making it difficult to obtain solutions 

from public sources. Typically, such complex problems are solved using computational fluid 

dynamics (CFD) software like OpenFOAM or similar tools. In our case, the numerical solution 

was provided by Gamma Technologies, a leading company in automotive computer-aided 

engineering (CAE), utilizing the Stable Fluid method.  

The problem was solved seven times, each corresponding to a different injection position as 

shown in Figure 14. Our dataset consists of a four-dimensional regular grid with the following 

dimensions: 

• [X * Y * T * #Of Injection Pts] = [32 * 32 * 250 * 7]  

o Total collocation points: 1,792,000 

o Boundary condition points: 224,000 

o Initial condition points: 7,168 

For each point in the dataset, we know the values of the system states U, V, and P. 

We intend to apply PINNs (Figure 30. The PINN architecture that represents the solution of Static 

Piston Flow problem.) in an unsupervised learning manner. Therefore, the provided dataset will 

not be used to train the neural network parameters. Instead, it will serve to evaluate the validation 

data error, providing a metric to assess whether the PINN can accurately approximate the 

problem's solution. 

 
Figure 30. The PINN architecture that represents the solution of Static Piston Flow problem. 
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Similarly, as our previous experiments in Lid Driven Cavity Flow, we initially relied solely on 

the BFGS optimization method until convergence. Our approach utilized a PINN architecture 

featuring five hidden layers, each containing 40 neurons. Despite achieving low levels of 

physics and initial/boundary condition errors, the PINN consistently struggled to significantly 

reduce the data validation error. We conducted further experiments, exploring various 

combinations of neural network architectures and optimization techniques, including 

incorporating the Adam optimizer as a warm starter. Unfortunately, these additional training 

attempts yielded similar results, maintaining the error pattern illustrated in Figure 31 throughout 

all iterations.  

 
Figure 31. The Physics, Boundary Condition and Data validation Mean Squared Errors separately reported over the 

number of epochs. Illustrates the weakness of the PINN to reduce the data validation error while the Physics & Boundary 

Condition error have achieved low values. 

Given the complexity of the problem at hand, some might argue that the current neural network 

architecture of 5 hidden layers lacks sufficient capacity to fully capture the underlying dynamics 

of the system.  To investigate this hypothesis, we've chosen to leverage the available dataset and 

employ a traditional supervised learning approach with the existing neural network architecture. 

This strategy allows us to assess whether the network's performance improves when trained 

using a more conventional method, potentially revealing insights about weaknesses and 

limitations of PINN methodology. 

We conducted the following training scenarios using the corresponding pairs of NN 

architectures and optimizers.  

 

• 4 Hidden layers, 30 neurons each using Adam  

• 4 Hidden layers, 30 neurons each using BFGS 

• 4 Hidden layers, 20 neurons each using Levenberg-Marquardt 
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The Machine Learning Assistant (MLA) tool from Gamma Technologies was utilized for this 

study. All training sessions were conducted for 1000 epochs to ensure a fair comparison. Figure 

32. The Root Mean Squared Errors achieved by Adam, BFGS and LM using supervised learning against the PINN.presents 

the Root Mean Squared Errors (RMSE) for the vertical velocity across various training methods. 

Upon analyzing the results, we observe that supervised learning techniques consistently 

outperform the PINN method by at least one order of magnitude in terms of accuracy. Notably, 

both BFGS and Adam were employed to optimize the same neural network architecture, yet 

BFGS demonstrates superior performance compared to Adam, indicating potential premature 

stagnation in Adam's optimization process. LM stands out as the clear winner among the tested 

optimizers, achieving accuracy one order of magnitude higher than its counterparts (Figure 33. 

The prediction of v velocity by an MLP (4x20) trained by the LM using supervised learning.and Figure 34) and two 

orders of magnitude better than PINN. Furthermore, LM accomplishes this level of accuracy 

using a smaller architecture and exhibits faster convergence rates compared to the other two 

optimizers. 

The significant advantage of the Supervised Learning approach over PINN suggests that the 

primary cause of PINN's underperformance is not related to the neural network's ability to learn, 

but rather stems from the inherent challenges in optimizing the more complex optimization 

landscape of PINN training process. PINN requires satisfying both data (boundary/initial 

conditions) fitting and physical constraint satisfaction simultaneously. This dual objective often 

leads to more challenging optimization problems compared to standard supervised learning 

tasks. 

 

Figure 32. The Root Mean Squared Errors achieved by Adam, BFGS and LM using supervised learning against the PINN. 
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Figure 33. The prediction of v velocity by an MLP (4x20) trained by the LM using supervised learning. 

 
Figure 34. The prediction of v velocity by an MLP (4x30) trained by the BFGS using supervised learning. 
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4 Chapter 4: PINN’s pathologies – Possible Enhancements 

PINNs have emerged as a promising tool for PDEs and modeling complex physical systems. 

Despite their potential, PINNs can fail in various scenarios. Training a PINN is a hard 

optimization problem that under some conditions can lead to a Neural Network that does not 

represent a physical solution. This chapter indicates the pathologies and explores the primary 

reasons behind PINN failures, providing insight into the challenges faced by this innovative 

approach. 

4.1 PINNs’ issues 

4.1.1 Automatic differentiation is not without a cost  

In PINNs, Automatic differentiation (AD) is used to compute derivatives of the neural network 

output with respect to the inputs. This is essential for enforcing physical laws and boundary 

conditions within the network. AD allows for efficient computation of gradients required for 

optimization algorithms. It eliminates the need for manual derivation of analytical derivatives, 

which would be impractical for complex differential equations and neural networks. 

However, the incorporation of AD into PINNs leads to an increased computational effort 

compared to a more classic Supervised Learning scenario: 

Each calculation of a 1st order derivative with respect to an input doubles the size of the 

generated computational graph which affects accordingly the computational effort and the 

memory consumption as well. Calculating a 2nd order derivative with respect to an input 

demands four times more calculations and memory than a simple forward propagation of a 

classic MLP in Supervised Learning. Considering that the loss function often involves multiple 

evaluations of the network and its derivatives, someone can easily understand that the 

computational cost and memory consumption become a very considerable factor in PINN’s 

training. 

4.1.2 Overfitting and Under-constrained Optimization 

A fundamental issue in PINN implementation is the risk of overfitting and under-constrained 

optimization. When the neural network's capacity exceeds the information provided by the 

collocation and boundary condition points, it may memorize noise rather than learn meaningful 

patterns. This phenomenon is particularly pronounced in sparse sampling regimes, where 

insufficient constraints allow the network to converge to unphysical solutions despite achieving 

low training loss values. On the other hand, this problem could be mitigated by increasing the 

sampling density, but this would make PINNs suffer more from the curse of dimensionality 

losing so one advantage against the traditional numerical methods. 

4.1.3 Competing optimization terms 

The main reason PINNs suffer from competing optimization terms is due to the nature of their 

objective function. Typically, a PINN's loss function consists of two primary components: 

• Boundary Conditions loss term: Encourages the network to fit the given boundary 

conditions points accurately. 

• Physics loss term: Ensures that the predicted solutions satisfy the underlying physical 

laws. 
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These two terms can vary significantly in scale or in error landscape and often compete during 

the training process. The competition leads to a hard multimodal optimization problem which is 

difficult to be solved. 

Minimizing the boundary conditions loss term may lead to solutions that don't perfectly adhere 

to the physical laws. Conversely, strictly enforcing the physics loss term might result in poor 

fitting of the actual boundary conditions. If during PINN optimization one of these terms is not 

minimized sufficiently the solution found will be sub-optimal or even unphysical. 

4.1.4 Sensitivity to Hyperparameters 

PINNs exhibit high sensitivity to various hyperparameters, including network architecture, 

optimization algorithms, and collocation point selection. Finding the optimal configuration for 

these parameters can be challenging, especially for complex problems. Suboptimal choices may 

lead to poor performance or failure to converge. Additionally, even for an optimal configuration 

found the solution can vary drastically for different training trials. All the above highlight the 

need for systematic approaches to hyperparameter tuning.  

4.1.5 Difficulty in Capturing Complex Dynamics with large domains 

PINNs face significant obstacles when applied to certain classes of physical problems 

characterized by intricate dynamics. These challenges arise primarily in systems that exhibit 

pronounced nonlinearity, broad spectral energy distributions, and heightened sensitivity to 

initial conditions [17] [18]. 

Two paradigmatic examples of such complex systems are: 

1. Kuramoto-Sivashinsky Equation: This partial differential equation models various 

physical phenomena, including flame propagation and fluid flow. It is renowned for its 

chaotic behavior, presenting a formidable challenge for PINNs due to its highly 

nonlinear dynamics and sensitivity to initial conditions. 

2. Navier-Stokes Equations in Turbulent Regime: These equations govern fluid motion and 

heat transfer. When applied to turbulent flows, they exhibit complex, multiscale 

phenomena characterized by broadband energy spectra. The chaotic nature of turbulence 

poses significant difficulties for PINNs in capturing both large-scale structures and 

small-scale fluctuations accurately. 

 

 

 

 



Msc Thesis title  
 
 

MSc in Artificial Intelligence & Deep Learning, MSc Thesis 

Panagiotis Koutsivitis 0023    59 

4.2 PINNs’ enhancements 

4.2.1 Coupled Automatic and Numerical differentiation 

Coupled-Automatic-Numerical Differentiation Method as per Pao-Hsiung Chiu et al [19] has 

been presented as one of the candidate solutions for handling the Overfitting and Under-

constrained Optimization problem of PINNs.  

To better understand the nature of this problem one can think the following scenario of the plot 

in Figure 35. Is given a solution of a hypothetical PDE which is represented by the black curve. 

A training process of a PINN that will evaluate the error in the following boundary and 

collocation points (dotted) using AD is possible to lead to the paradox of an unphysical solution 

(magenta) that satisfies almost to machine precision the PDE and the boundary conditions. 

  

 

Figure 35. The paradox of an unphysical solution (magenta) that satisfies almost to machine precision the PDE and the 

boundary conditions [19]. 

The authors to alleviate this issue, they employed Numerical Differentiation to replace AD for 

the computation of differential operators required in PINNs.  

 𝛛𝐮

𝛛𝐱
≈
𝑢̂(𝑥 + 𝚫𝑥;𝑤) − 𝑢̂(𝑥 − 𝚫𝑥;𝑤)

𝟐𝚫𝑥
 

𝛛𝟐𝒖

𝛛𝒙𝟐
≈
𝑢̂(𝑥 + 𝚫𝑥;𝑤) − 𝟐𝑢̂(𝑥;𝑤) + 𝑢̂(𝑥 − 𝚫𝑥;𝑤)

𝚫𝑥2
 

Eq. 7 
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The numerical differentiation method computes differential operators using nearby support 

points around each collocation point. This novel approach, termed n-PINNs, seeks to adjust 

gradient behaviors during training within localized regions of the solution space, rather than 

focusing solely on individual collocation points. Applying n-PINNs to various benchmark 

problems resulted in enhanced accuracy. These experiments demonstrated that n-PINNs can 

consistently produce reliable solutions across both sparse and dense sampling scenarios.  

However, Numerical differentiation despite the positive impact to PINNs training, it is known 

that introduces error in the calculation of the derivative terms of the PDE. The authors going 

even further tried a Coupled Automatic and Numerical differentiation method for calculating 

the derivatives that gave even better accuracy levels in PINNs training as can be shown in Figure 

36. 

 

Figure 36. A qualitative comparison plot of the 3 different differentiation approaches [19]. 

4.2.2 Respect Temporal & Spatial Causality 

Sifan Wang et al [20] in “Respecting causality is all you need for training physics-informed 

neural networks” claim that classic PINNs during their training do not respect spatio-temporal 

causal structure which is embedded to the evolution of dynamical systems. The authors believe 

that this fundamental limitation lead PINN models to erroneous solutions.  

To grasp this concept, consider how traditional numerical techniques approach solving Partial 

Differential Equations (PDEs). These methods generally employ sequential algorithms that 

discretize time in a specific manner. The key point here is that the solution at any given time (t) 

must be fully determined before attempting to approximate the solution at the next time step (t 

+ Δt). In PINNs instead, the PDE is treated as a global optimization problem that should be 

solved at once to the whole time or spatial domain. Such an optimization problem that does uses 

incorrect local state information is very difficult to be solved or even to converge to a valid 

physical solution. 

The research paper tackles this issue by introducing a straightforward modification to the loss 

function used in PINNs as follows: 

 
𝑳𝒓(𝛉) =

𝟏

𝑵
∑𝒘𝒊𝑳𝒓(𝒕𝒊, 𝛉)

𝑵𝒕

𝟏

 

 

Eq. 8 
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Where wi is 

 
𝒘𝒊 = 𝒆𝒙𝒑(−𝛆∑𝑳𝒓(𝒕𝒌, 𝛉)

𝑵𝒕

𝒌=𝟏

) Eq. 9 

 

From these equations, we can deduce that the weight (wi) assigned to the current time step's 

residual loss is inversely related to the magnitude of the cumulative residual losses accumulated 

from previous time steps. As a result, the current time step's loss function Lr(ti, θ) will not be 

minimized unless all previous residuals Lr (t, θ) decrease to some small value such that wi 

becomes large enough. 

4.2.3 Levenberg Marquardt for PINNs 

In the following paper [21] “Shallow Physics Informed Neural Networks Using Levenberg-

Marquardt Optimization” the researchers are trying to examine the potential use of Levenberg-

Marquardt (LM) as a candidate game changer for the training of PINNs. So far, the most 

research on PINNs is focused on finding novel NN architectures or modifying the loss function 

accordingly to achieve better results in accuracy and training robustness.  Based on their 

research it is established that the choice of the training algorithm is as important as the 

architecture and loss function. Traditionally, PINNs use MLPs and employ gradient descent 

optimization algorithms such as Adam and L-BFGS for training the parameters of the Neural 

Network. Adam and L-BFGS are the algorithms of choice in scientific deep-learning because 

of their attractive ability to scale efficiently in large numbers of parameters. Replacing them 

with LM is no so simple, mainly because the LM introduces an important burden per epoch in 

both calculations and memory consumption. LM needs the maintenance, calculation and 

inversion of large and dense matrices such as Jacobian and Hessian’s approximation. To keep 

this burden in acceptable levels, the researchers trained using LM only shallow neural networks. 

MLPs with only 1 hidden layer even if there are simple NN architectures are quite powerful if 

are trained correctly. The results of this paper show that LM with shallow neural networks 

consistently outperforms in accuracy by orders of magnitude the pair of Adam+L-BFGS with 

multilayer neural networks for a specific class of problems. 

Finally, the authors express their belief that by using better optimization algorithms along with 

applying domain decomposition of complex problems into smaller subdomains, Shallow 

Networks might be able to compete with Deep Networks in representing complex physical 

phenomena. 

4.2.4 Domain Decomposition & XPINNs 

XPINNs stand for eXtended Physics-Informed Neural Networks [22]. They represent an 

extension of the original PINN architecture. One of the key features of XPINNs is their use of 

domain decomposition. This means the entire space-time continuum is divided into smaller 

subdomains (Figure 37).  

The domain decomposition strategy employed by XPINNs offers several benefits: 

1. Parallelization Capacity:  
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o Each subdomain can potentially be processed independently. 

o This allows for efficient parallel computing, which can significantly reduce 

computation time for large-scale problems. 

2. Large Representation Capacity:  

o By dividing the problem into smaller subdomains, XPINNs can handle larger and 

more complex problems. 

o Each subnetwork can focus on a specific part of the problem, potentially leading 

to better overall accuracy. 

3. Efficient Hyperparameter Tuning:  

o With XPINNs, hyperparameters can be optimized separately for each 

subdomain. 

o This allows for more tailored solutions to different aspects of the problem. 

4. Effectiveness for Multi-scale and Multi-physics Problems:  

o Different subdomains can capture phenomena at various scales or physics 

simultaneously. 

o This makes XPINNs particularly well-suited for problems involving multiple 

physical processes or vastly different characteristic lengths/timescales. 

 

Figure 37. An illustration of how the domain decomposition works in X-PINNs [22] 
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5 Conclusions 

PINNs is an innovative technology which expands the learning capabilities of standard NNs 

beyond their current limits. PINNs can approximate physical systems not only by learning from 

simulation data, as their ancestors, but also by solving directly the underlying system of 

differential equations.  

Our conducted experiments have shown that this technology is competitive in accuracy to 

standard numerical methods for several benchmark problems. Our PINNs found to have the 

same or even better accuracy levels compared to other implementations in the literature while 

using smaller NN architectures and less boundary and collocation points.  

However, the computational cost of their training introduced mainly by the Automatic 

Differentiation overhead and its iterative nature make PINNs less efficient and appealing 

compared to the established numerical solvers. Additionally, PINNs have shown difficulties in 

finding reliable solutions as the complexity and non-linearity of the problem increases. We 

showed that using MLPs having the same architecture as PINNs were able to learn the 

underlying dataset, indicating in this way that the learning weakness of PINNs is not related to 

the learning capacity of the neural network but instead is consequence of the optimization 

problem's complexity itself. Trying to locate answers to the endogenous pathologies of PINNs, 

we studied several research papers, and we presented the most important as candidate solutions 

for a future state-of-the-art implementation.  

Finally, this master thesis is dedicated to those who have the belief that PINNs will play a vital 

role to the shaping of the next generation neural network based PDE solvers. 
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6 Future work 

The findings of this study highlight several areas where further research could significantly 

enhance the performance and applicability of Physics-Informed Neural Networks (PINNs). 

Future work should focus on addressing the computational efficiency issues and improving the 

reliability of PINNs for complex problems. 

1. GPU acceleration: Implementing PINN training on GPU hardware could significantly 

reduce computation time and enable larger-scale simulations. Optimizing the automatic 

differentiation process for parallel execution on GPUs would be crucial. 

2. Scalable second-order optimization: Developing more efficient second-order 

optimization algorithms tailored for PINN training could lead to faster convergence and 

improved accuracy. Adapting existing methods like BFGS or implementing scalable 

novel variants of Levenberg-Marquardt could be a game changer in PINNs training. 

3. Coupling traditional numerical solvers with PINN methodology: Integrating PINN 

methodology within established numerical methods could create hybrid approaches that 

leverage the strengths of both paradigms. This could potentially combine the reliability 

and efficiency of traditional solvers with the flexibility and generalization capabilities 

of PINNs. 
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