INANENIZTHMIO AYTIKHX ATTIKHZ UNIVERSITY OF WEST ATTICA

O AYryy,

YXOAH MHXANIKQN & A% FACULTY OF ENGINEERING
TMHMA HAEKTPOAOTI'QN KAI HAEKTPONIKQN g *’. y :;; DEPARTMENT OF ELECTRICAL & ELECTRONICS
MHXANIKQN /: - ENGINEERING
TMHMA MHXANIKQN BIOMHXANIKHX DEPARTMENT OF INDUSTRIAL DESIGN AND
YXEAIAXHX KAI ITIAPAT'QT'HX PRODUCTION ENGINEERING
http://www.eee.uniwa.gr http://www.eee.uniwa.gr
http://www.idpe.uniwa.gr http://www.idpe.uniwa.gr
OnPav 250, ABva-Arydrew 12241 250, Thivon Str., Athens, GR-12241, Greece
TnA: +30210 538-1614 Tel: +30 210 538-1614
Awxtpnpatiko [Mpdypappa MeTamtuxlak®myv TTovdwv Master of Science in
Teyvnty Nonuoovvn kat BaBia Mabnon Artificial Intelligence and Deep Learning
https://aidl.uniwa.gr, https://aidluniwa.gr,

Master of Science Thesis

Physics-Informed Neural Networks for Data-Efficient & Accurate Learning
of Physical Systems

Student: Panagiotis Koutsivitis
Registration Number: AIDL-0023

MSc Thesis Supervisor: Dr. Panagiotis Kasnesis

ATHENS-EGALEO, September 2024


http://www.eee.uniwa.gr/
http://www.idpe.uniwa.gr/
http://www.eee.uniwa.gr/
http://www.idpe.uniwa.gr/
https://aidl.uniwa.gr/
https://aidl.uniwa.gr/

Msc Thesis title

IMANEIIIXETHMIO AYTIKHX ATTIKHX v UNIVERSITY OF WEST ATTICA
YXXOAH MHXANIKQN Q\‘»“\w k"’v} FACULTY OF ENGINEERING
TMHMA HAEKTPOAOT QN KAI HAEKTPONIKQN § '7’, "'; DEPARTMENT OF ELECTRICAL & ELECTRONICS
MHXANIKQN //z - ENGINEERING
TMHMA MHXANIKQN BIOMHXANIKHX DEPARTMENT OF INDUSTRIAL DESIGN AND
YXEAIAXHX KAI TTAPAT'QI'HX PRODUCTION ENGINEERING
http://www.eee.uniwa.gr http://www.eee.uniwa.gr
http://www.idpe.uniwa.gr http://www.idpe.uniwa.gr
OnPav 250, ABnva-Arydrew 12241 250, Thivon Str., Athens, GR-12241, Greece
TnA: +30 210 538-1614 Tel: +30 210 538-1614
Awxtpnpatiko Mpdypappa MeTamtuxlakmv ETovdwv Master of Science in
Teyvnti) Nonuootvn kat BaBik M&6no: Artificial Intelligence and Deep Learnin
nti) Nonuooivr 1ot g p g
https://aidl.uniwa.gr/ https://aidl.uniwa.gr/

Metantoyexn Avmiopatikn Epyocia

Nevpovika Aiktva vrofonBovpeva amé ®vokovg Nopovg yio tny axpipn
(uyovikn) padnon PUOIKAOV GUGTUATMYV IE ATOOOTIKI YP1OT GVLVOLOV
ogdoopuévov

®ovrnmc: Havayiotg Kovtopitng
AM: AIDL-0023

Empiénov : Ap. llavayiotne Kaovéong

AOHNA-AITAAEQ, Sentéppprog 2024

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Panagiotis Koutsivitis 0023 2


http://www.eee.uniwa.gr/
http://www.idpe.uniwa.gr/
http://www.eee.uniwa.gr/
http://www.idpe.uniwa.gr/
https://aidl.uniwa.gr/
https://aidl.uniwa.gr/

Msc Thesis title

This MSc Thesis has been accepted, evaluated and graded by the following committee:

Supervisor

Member

Member

Digitally signed

PANAGI
OTIS by PANASGIOTIS

‘t Date:
KAS N 2024.10.23
S 10:57:12 +03'00'

MARIA
RAGKOUSI Date: 2024.10.23

Digitally signed by
MARIA RAGKOUSI

09:14:02 +03'00'

Digitally signed
PERIKLIS pperikis

PAPADO PAPADOPOULO
S

Date: 2024.10.17
PO U LO 19:29:55 +03'00'

Kasnesis Panagiotis

Rangoussi, Maria

Papadopoulos, Pericles

Lecturer

Professor

Professor

Dept. of Electrical &
Electronics

Engineering

Dept. of Electrical &
Electronics

Engineering

Dept. of Electrical &
Electronics

Engineering

University of West Attica

University of West Attica

University of West Attica

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Panagiotis Koutsivitis 0023




Msc Thesis title

Copyright © Mg emevroén mavtog dwoudpatog. All rights reserved.

IMANEIIIXTHMIO AYTIKHXE ATTIKHX kot [Tavayiotng Kovtoipitng,
Yenténpprog, 2024

AToyopeveTOl 1 OVTIYpOOn, omofnKevon Kot Slovoun g mopovcos epyaciag, €&
OAOKANPOL 1 TUNUOTOC OVTNG, Yo eumopikd okomd. Emtpémetar m avoatvmmon,
amoOnKevoT Kot SLOVOUT| Yo OKOTO U KEPOOOGKOMIKO, EKTALOEVTIKNG N EPEVVITIKNG
@vong, Vo ™V TPoLmdOeoN Vo avaPEPETAL 1| TYN TPOEAELONG KO VO, dloTnpEitan To
Tapov unvopo. Epotuato mov apopovv  ypnon TS pYAciag Yo KEPOOGKOTIKO GKOTTO
TPENEL VO AeLOVHVOVTOL TTPOG TOVS GVYYPOPEIC.

Ol amoOYELG KO TO GOUTEPAGLLATO TTOL TEPIEXOVTOL GE AVTO TO EYYPOPO EKPPALOVY TOV/TNV
oLYYPOQPEN TOL Kol 0gv TPEMEL vo. epunvevdel 6Tt aviummpocwnehovv Tic B€oelg Tov
emPAénovioc, g emitponng eE€taong N TG emionueg Béoelg tov Tunupatog Kot tov
[3pOparoc.

AHAQXH XYITTPA®EA METAINITYXIAKHXE AITAQMATIKHX EPT'AXIAX

O/m kT vroyeypappévog IMavayuntg KovtoPitng tov ['empyiov, pe apbud pntpodov
0023 petamruylakdg gottnng tov AIIME «Teyvnt Nonupoovvn kot Babid Mabnon» tov
Tunuatog Hiektporodyov kot Hiexktpovikdv Mnyovikdv kot tov Tunpatog Mnyovikov
Blopnyavumg Zxediaong kot apaywyng, meg ZyoAng Mnyavikev tov IMavemommuiov
Avtiknc Attikng,

oMAOvVO vaevOvva 6TL:

«Eipot cuyypapéag ovTng e LETOTTUYIOKTG OITA®UATIKTG EpYyaciag kot kb for\Oeia Tnv
omoio €lyo Yo TNV TPOETOWAGIN TNG EIVOL TANPOG AVAYVOPICUEVT] KOL AVOPEPETOL GTNV
epyacia. Eniong, o1 0noteg mnyég amd Tig omoieg EKava ypnom dedopévav, 10emv N Aé&ewv,
elte akpPog €lte TAPAPPUAGUEVES, OVOPEPOVTOL GTO GUVOAO TOVG, HE TANPTN avapopd
OTOVG GLYYPAPELS, TOV €kOOTIKO 01KO 1 TO TEPLOOKO, GULUTEPIAOUPOVOUEVOV KOl TOV
TNYOV OV EVOEXOUEVOS ¥pNoILoTomOnkay amd 1o dadiktvo. Eniong, Befordve ott avt
N epyacio €xel cvyypapel amd HEVO OTOKAEICTIKG KOl OmOTEAEl TPOIOV TVELHOTIKNG
woktnoiog 1060 d1KNG pov, 6co kot Tov Idpduratoc. H epyacia dev €xel katatebel 610
TAOICI0 TOV amOTCEOV Yoo TN ANYN GAAOL TITAOL GTOVLOMV 1| EMAYYEAUOTIKNG
TIGTOTOINONG TANV TOV TAPOVTOC.

[MapdPaocn g avotépw oakadnuaikng pov gvfbvng amotedel ovoidon AOYO Yoo TNV
OVAKAN O™ TOV SIMAMUATOS LOV.»

O Anhov
[Mavayiovng KovtoPitng

7azroyuitys Rovt 07/54%7 IS
(Yroypaen portnt)

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Panagiotis Koutsivitis 0023 4



Msc Thesis title

Copyright ©  All rights reserved.

University of West Attica and (Name and Surname of the student)
Month, Year

You may not copy, reproduce or distribute this work (or any part of it) for commercial purposes.
Copying/reprinting, storage and distribution for any non-profit educational or research purposes
are allowed under the conditions of referring to the original source and of reproducing the
present copyright note. Any inquiries relevant to the use of this thesis for profit/commercial
purposes must be addressed to the author.

The opinions and the conclusions included in this document express solely the author and do
not express the opinion of the MSc thesis supervisor or the examination committee or the formal
position of the Department(s) or the University of West Attica.

Declaration of the author of this MSc thesis
I, Panagiotis Koutsivitis, George with the following student registration number: 0023,
postgraduate student of the MSc programme in “Artificial Intelligence and Deep Learning”,
which is organized by the Department of Electrical and Electronic Engineering and the
Department of Industrial Design and Production Engineering of the Faculty of Engineering of
the University of West Attica, hereby declare that:
| am the author of this MSc thesis and any help | may have received is clearly mentioned in the
thesis. Additionally, all the sources | have used (e.g., to extract data, ideas, words or phrases)
are cited with full reference to the corresponding authors, the publishing house or the journal;
this also applies to the Internet sources that | have used. | also confirm that | have personally
written this thesis and the intellectual property rights belong to myself and to the University of
West Attica. This work has not been submitted for any other degree or professional qualification
except as specified in it.
Any violations of my academic responsibilities, as stated above, constitutes substantial reason
for the cancellation of the conferred MSc degree.

The author
Panagiotis Koutsivitis

ﬂwafwm Aordavindze

(Signature)

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Panagiotis Koutsivitis 0023 5



Msc Thesis title

2 pvnun tov yoviov pov, 'ewpyov kot Mapyopitog.

In memory of my parents, George and Margarita

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Panagiotis Koutsivitis 0023



Msc Thesis title

Acknowledgements

Above all, | extend my sincerest appreciation to my MSc thesis advisor, Dr. Panagiotis Kasnesis,
for his guidance, support, and patience throughout my research journey. His insightful feedback,
patience, and encouragement played a crucial role in the success of this project.

Finally, I would like to thank my colleagues Kai Jin and Navin Foglia at Gamma Technologies,
for sharing their expertise in fluid dynamics and in general their invaluable insights and
suggestions which have been instrumental in shaping this project.

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Panagiotis Koutsivitis 0023 7



Msc Thesis title

Abstract

Traditionally, Scientific Computing and Computer Aided Engineering software use numerical
solvers for simulating physics-based models. Despite their high accuracy, numerical solvers can
become very computationally intensive and often are impractical to be applied in real time
applications in Hardware-in-the-Loop systems (HiL), Electronic Control Units (ECU) or
modern edge devices (Microcontrollers). On the other hand, many machine learning models
such as Artificial Neural Networks are universal function approximators with very small
inference, time and memory footprint. For the above reasons, modern scientific computing
makes extensive use of Machine Learning for speeding up simulations or optimization
processes. However, this use is limited by the presence of measurement or simulation data. In
many cases, collecting measurements is not an option due to the high experimental costs, while
in the case of simulation data, the need to run expensive in time simulations will often arise.
Scientific Machine Learning or Physics-Informed Machine Learning tries to tackle the lack of
training data by incorporating physics-based laws into the training process of machine learning
models. More specifically, Physics Informed Neural Networks (PINNSs) are a type of Neural
Networks that are trained not only on data, if data are available, as it is usually the case in deep
learning, but also on the model of the differential equations describing the underlying laws of
physics, which makes them extremely accurate and data efficient. This ability to train a Neural
Network in a non-arbitrary unsupervised way is a real breakthrough for the field of Machine
Learning in general.

The aim of this MSc thesis is to apply the PINNs methodology in solving a variety of benchmark
dynamical systems. We experimentally verify the ability of PINNSs to solve standard benchmark
problems such as Burgers equation and Poisson equation. We explore the borders of this
technology by applying PINNs in challenging Fluid Dynamics problems, such as the Navier-
Stokes equations. In Lid-Driven Cavity Flow, our trained PINNs demonstrate competitive
performance in terms of accuracy when compared to established numerical solvers.
Furthermore, they produce more precise results than those reported in a relevant PINN reference
paper [1], all while utilizing significantly smaller neural network architectures. This becomes
feasible by proposing and applying alternative optimization schemes. In the case of the Static
Piston Flow problem, where PINNSs failed to find the solution because of high nonlinearity and
increased turbulence, we solve the problem using the classic Supervised Learning (SL)
approach, which applies similar in size NN architectures, and we provide comparative results
for the various optimizers used. The high accuracy achieved using the SL is a clear indication
that the reason of PINNs’ failure in that case was not the learning capability of the Neural
Network but the complexity of the optimization problem itself. Finally, after extensive search
in the bibliography, several candidate solutions have been gathered and are presented that could
help to expand the limits of this technology and make it applicable to real world applications.

Keywords

Scientific Computing, Scientific Machine Learning, Deep Learning, Physics Informed Neural
Networks, Automatic Differentiation.
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Hepiinyn

[Mapd Vv extetapévn ypnon g Mnyovikng Mdabnong ot ocOyypovn EMIGTNUOVIKY
VTOAOYIOTIKT], vt Teplopiletor amd TV Tapovcio dESOUEVOV HETPNONG 1] TPOCOUOIMONC. €
TOAAEG TEPIMTMOELS, 1| GLALOYN OEOOUEVDV HECH KATOYPAPNG KOl LETPNOEMV OEV EIVOL EQIKTN
AOYy®m TOL VYNAOD KOoTOVG OeEaymyng TEPAUATOV, EVO OGOV 0QOopd TO. OEdOUEVA
npocopoimone, mOAAEG @opég amorteitor M deEaymynq  ypovoBOpmV  VTOAOYIGTIKMV
npocopowwoewv. H Emommuovikn Mnyavikn Mabnon, kot wio cuykekpuéva to tedio Physics
Informed Machine Learning, tpocrafei va avtipetonicel Ty EAAenyT S£S0UEVOV EKTAIOEVONG
EVOOUATMOVOVTOS (PLGIKOVS VOLOLG GTNV EKTOLOELTIKY S1AOIKOGIO TV HOVTEAMV UNYOVIKNG
puédbnone. I ovykexpiuéva, to Physics Informed Neural Networks (PINNs) eivol puo
Katnyopio Nevpovik®v AKTOH®V TOL EKTAOELOVTAL O)l LOVO GE dedouéva, Ommg cuvnBileTon
ot Pabid pabnomn, oAAd Kot oto OepeAddeg HOVIEAO T®V O0POPIKOV €E1I0MGEMY TOV
TEPLYPAPEL TOVS VIOKEIUEVOVS PLGIKOVS VOLLOVS — YOPAKTNPIOTIKO TOL To Ka1oTd eEonpeTikd
aKpiPn Kot amodoTikd ©¢ TPOgS T dedouéva.

YKOMOG NG TOPOVCOG HETAMTUYIOKNG OWAMUATIKNG €pyociag &ivar M €Qapupoyq g
pebodoroyiag twv PINNs yio v emilvon S1d@opwv SLUVOUIKOV GUGTNUATOV oVOQPOPdS.
EmBePoardvovpe mepapotikd v kavotnta tov PINNS va emddovv tumikd mpofinquota
avagopds, 0nmg 1 e&icmon Burgers kot 1 e&icmon Poisson. Tlepattépm, e&epevvoipe ta opla
™G TEXVOLOYiG LT EQaprdlovtag T nEBodo oe amartnTikd Suvoptkd tpopfAnuata Pevotmv,
onwg t1g e€lodoelg Navier-Stokes. Xto Lid-Driven Cavity Flow, ta exmoidevopéva PINNS pog
EMOEIKVOOLV  OVTAYOVIOTIKY] OOd00T) OGOV  agopd Tnv okpifewa, o€ ovykplon e
Kabepopévous apluntikong emavtés. EmmAéov, mopdyovv mo akpif| anoteAéopata ond
aVTO OV OVOPEPOVIOL GE Eva OXETIKO £yypago ovagopds PINNs [1], eved Ooia oavtd
YPNOUOTOOVV CNUOVTIKA HIKPOTEPEG OPYITEKTOVIKEG VELPOVIK®OV OIKTO®V. AvTO YiveTon
EPIKTO HE TN EMAOYN KOl TNV EQPAPUOYT EVOAALOKTIKOV GYNUatev PeAtictomoinong. Xtnv
nepintwon tov tpofAnuotog Xratikng Porig Euporov, émov ta PINN anétvyav va Bpovv
AOon Ady® ™G VYNANG UN YPOLLKOTNTOS Kot THG avEnuévng TupPmddovg pong, AVvovue to
TPOPANLO XPNCILOTOIOVTAS TNV KANGIKY TPOGEYYIoN E€TOTTELONEVNG Habnong (Supervised
Learning, SL), epapupolovtag aviictoyeg o pEYeHOC opyIteKTOVIKEG SIKTOMV, KOl TOPEYOVLLE
GLYKPITIKA OTOTEAEGLLOTO Y10 TOVS SLAPOPOVG PEATIGTOTOMTES OV YpnoiomoOnkay. TEAoc,
HeTd amd ektevn épgvva ot PipAtoypaeia, £xovv cvykevipmBel kot Tapovoidlovionr apKeETEG
vroyneleg Avoelg mov Ba umopovcav va Pondncovv otnv enékToon TOV 0PV OWTAG NG
TEYVOAOYLOG KOL VO TV KOTAGTNGOLY EQAPUOGIUN GE TPUYUOTIKES EQAPLOYEC.

A&Eearg — KA1,

Emompovikn Yroloyiotikn, Emotpovik Mnyavikn Méonon, Badid Madnon, Nevpovucd
Aiktoa pe Baon ) @voikn, Avtoparn [apaydyion.
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INTRODUCTION

Simulation of complex dynamical systems is a critical aspect of any industry that uses design
software during product development. Scientific Computing and Computer Aided Engineering
software use state-of-the-art numerical solvers for solving problems in - Fluid Dynamics,
Thermal Management, Battery Modelling, Electromagnetics, Electro-chemical, multi-body
dynamics and more. The process, while optimized, requires significant processing power that
can take anywhere from several minutes to multiple days. This lengthy computation is often
repeated numerous times due to variations in initial or boundary conditions and system
parameters, leading to substantial redundant computational costs.

Traditional Neural Networks such as MLPs or other modern Deep Learning architectures, being
universal function approximators, can learn simulation data that correspond to multiple
simulation cases that vary in geometry, boundary conditions or system parameters. Such Neural
Networks trained in diverse cases can be used to generate rapidly results even for unknown
cases, which can be many orders of magnitude faster compared to the traditional simulation
approaches, where transferring of results from one scenario to another is not feasible. However,
these architectures, despite their learning ability and interpolation agility require the presence
of data to learn from, which should be obtained by expensive experiments or time-consuming
simulations. Moreover, there is not any theoretical guarantee that the trained Neural Networks
respect the underlying physical laws of the problem.

The subject of this thesis

In 1997, Lagaris et al. [2] showed that even shallow Neural Networks that incorporate in their
training process the differential equations of the system to be simulated, were able to solve the
system achieving accurate results. Moreover, Raissi et al. [3] revisited Lagaris’ method and
introduced Physics Informed Neural Networks (PINNs) which take advantage of the modern
deep neural network architectures and automatic differentiation techniques available in deep
learning frameworks and so make feasible the solution of more challenging dynamical systems.

More specifically, PINNs is a generic method for solving a system of ordinary differential
equations (ODEs) and partial differential equations (PDES). Using the universal approximation
theorem, the solution of such differential equations can be accurately estimated by a Neural
Network. To train the parameters of the Neural Network, PINNs introduce a composite loss
function that has multiple terms.

e Initial/Boundary conditions Term: This part of the loss function measures the
difference between the network’s predictions and the initial and/or boundary conditions
data. It ensures that the neural network satisfies the initial and/or boundary conditions
imposed by the problem. This is done by calculating the mean squared error (MSE)
between the predicted values and the target values.

e Physics Constraint Term: This component quantifies the deviation of the network's
predictions from the physical model described by the differential equations. It involves
calculating the residuals of the differential equations at the input/collocation points and
incorporating these residuals into the loss function. The goal is to minimize these
residuals, indicating that the network's outputs comply with the physical laws.

e Data Term (If data are present.): This part of the loss function measures the difference
between the network's predictions and the actual data if any. It ensures that the neural
network fits the known data points accurately. This is done by calculating the mean
squared error (MSE) between the predicted values and the target values.
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By minimizing this composite loss function, the network learns to predict outcomes that are
not only consistent with the observed data, in the case that are available, but also aligned with
the underlying physical principles. This dual-objective optimization ensures that the PINNs'
predictions are physically plausible across a broader range of scenarios, beyond the specific
instances represented in the training data.

Thesis’ objectives

PINNs have gained significant attention as a promising method for solving various problems,
such as computing ODEs or PDEs. The engineering community has started evaluating PINNs
potential to replace, supplement or accelerate traditional approaches (numerical solvers) in
various challenging tasks such as:

e solving linear or non-linear dynamical systems (forward problems)
e identifying system parameters (inverse problems)

e solving multi-case scenarios and creating fast surrogate models

e data assimilation

e uncertainty quantification

Objective of this thesis is to evaluate PINNs ability to solve well-known PDE benchmark
problems in terms of accuracy and performance. These objectives will be pursued through a
series of research questions, including:

e Can another optimizer outperform the common Adam + L-BFGS-based PINN
optimization?

e How do PINNSs perform to challenging multi-case dynamic fluid problems compared to
data-driven approaches?

e What are the limitations and best practices of PINNs when it comes to solving complex
PDEs?

The main contributions of this thesis

The main contributions of this thesis are summarized as follows:

e We implement a Python application using TensorFlow deep learning framework able to
solve the following benchmark problems:
o Burgers equation
o 2-Dimensional Poisson equation
e We solve the Lid-Driven Cavity Flow problem for various system parameter values.
We diverge from the mainstream optimization approaches that use Adam + L-BFGS as
main optimizers and we suggest the use of Broyden—Fletcher—Goldfarb—Shanno (BFGS)
algorithm (L-BFGS, a low memory version of BFGS, in particular). Our trained PINNs
achieve a very competitive accuracy compared to state-of-the-art numerical solvers
while giving more accurate results compared to a PINN reference paper [1], using
significantly smaller neural network architectures.
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e We stress test our solution and PINNs method in a challenging multi-case dynamic fluid
problem that simulates the flow inside a static piston for different initial conditions. In
this problem where the PINNs encountered difficulties due to the high nonlinearity and
increased turbulence, we employed a traditional Supervised Learning (SL) approach to
find a solution. We then compared the performance of various optimization algorithms
within this framework. The high accuracy obtained through Supervised Learning clearly
demonstrates that the limitations of PINNs were not related to the neural network’s
ability to learn complex patterns, but rather stemmed from the inherent complexity of
the optimization problem itself.

e Following, we underline all the problems, weaknesses and pathologies found during
these tests. Finally, after detailed research in the bibliography we present possible
solutions to the weaknesses to make PINNs a more robust, effective and applicable
method in engineering and beyond.

Structure

The rest of the thesis is organized as follows:

In Chapter 1, we will delve into the fundamental ideas and technological foundations that form
the basis of PINNs. We'll explore how these concepts have developed over time and examine
the current state of the Scientific Computing, differential equations (ODEs and PDESs), Neural
Networks as universal function approximators, Automatic Differentiation, Optimization
algorithms and PINNSs.

Chapter 2 will present in detail all the benchmark problems will be solved using PINNSs. This
includes the specific theoretical background, differential equations and description of the
domain and boundary conditions of the problems.

Chapter 3 will describe in detail the methodology followed for solving all the problems. The
results of PINNSs training are presented using advance visualizations. Additionally, comparisons
are made between PINNSs and Supervised Learning where a detailed dataset was available.

Chapter 4 aims to provide a comprehensive understanding of the limitations and challenges
associated with PINNs, while at the same highlights many state-of-the-art improvements
suggested in the literature to make PINNs more robust and effective to solving PDEs and
complex physical systems.

Finally, the thesis concludes with a Conclusion section, where are summarized all the
achievements, findings and comparative results, as well as certain suggestions for future work.
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1 CHAPTER 1: Background

We will embark on an exploration of the core principles and technological building blocks that
underpin PINNs. We will trace the evolution of these concepts over time and examine the
present state of several key areas within Scientific Computing.

1.1 Scientific Computing

Scientific computing encompasses a broad spectrum of methodologies and technologies
designed to solve complex in Science and Engineering through the application of computational
mathematical models. Numerical analysis, a cornerstone of scientific computing, has its roots
in mathematical concepts and techniques that predate the invention of electronic computers.
These foundational principles, developed over centuries through continuous refinement, form
the bedrock upon which modern scientific computing is built. The introduction of electronic
computers was a pivotal moment in scientific problem-solving. This technological advancement
necessitated a radical reassessment of established numerical methods, prompting widespread
revision and, in some cases, complete overhaul of existing techniques. As electronic computers
entered the scene, factors once considered trivial in manual calculations suddenly became
paramount for optimal performance and accuracy in large-scale computations. This shift
necessitated the establishment of a new academic discipline - Computer Science - which would
encompass a wide range of critical components essential for effective scientific computing.
However, Mathematics remains an indispensable cornerstone of scientific computing, serving
multiple crucial functions in this interdisciplinary field. Its influence extends beyond problem
formulation, encompassing key aspects of model validation, algorithmic development, and
computational strategy. In summary, Scientific computing represents a synergistic fusion of
mathematical principles and computational expertise in various Science Disciplines. This fusion
can be seen in Figure 1.

Science
Discipline

Computer
Science

Scientific
Computing

Applied Mathematics
&

Numerical Models

Figure 1. Scientific Computing [4]
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111 Computer Aided Engineering (CAE)

Computer-aided engineering (CAE) has become an indispensable tool across various industries,
particularly those relying on sophisticated design software. This innovative approach
revolutionizes the product development process by leveraging digital technologies to streamline
design, testing, and simulation phases.

Some of the most used simulation types in CAE are the following:

e Structural Analysis Simulations
e Computational Fluid Dynamics
e Multiphysics Simulations

e Design optimization

These simulation types often overlap or are combined in various ways depending on the specific
product and industry. The choice of simulation type(s) depends on the nature of the product, the
environmental conditions it will face, and the specific performance criteria that need to be met.
Modern CAE tools often offer integrated multi-physics simulations, allowing engineers to
analyze complex systems involving multiple physical phenomena within a single analysis
framework.

1111 Computational Fluid Dynamics (CFD)

Computational Fluid Dynamics (CFD) is a computational methodology that leverages advanced
algorithms and numerical techniques to simulate and analyze fluid behavior in various
engineering contexts. This sophisticated tool enables researchers and engineers to predict and
understand complex fluid dynamics phenomena without the need for physical prototypes. CFD
is based on the conservation laws of mass, momentum, and energy. These governing equations
form the mathematical foundation upon which fluid simulations are built. CFD is utilized across
a wide range of industries and engineering disciplines, including:

e Aerospace and Defense: One of the primary uses of CFD in aerospace is
aerodynamics analysis. Engineers can simulate airflow around aircraft components
such as wings, fuselages, and control surfaces. This allows them to:

o Optimize airfoil shapes for better lift-to-drag ratios

o Analyze drag reduction techniques

o Study vortex flows and stall characteristics

o Design more efficient wing shapes for various flight conditions

By leveraging CFD, aerospace companies can significantly reduce wind tunnel testing
requirements, saving time and resources while still achieving accurate aerodynamic
performance predictions.

e Automotive: CFD has become an essential tool in the automotive industry,
revolutionizing various aspects of vehicle design, development, and optimization.
Here's how CFD is utilized in automotive applications:

o Aerodynamics and Drag Reduction
o Thermal Management
o Fuel Efficiency and Emissions
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o Electric Vehicle Battery Performance

Finite Element Method (FEM)

The Finite Element Method (FEM) is a computational approach used extensively in engineering
and scientific fields. This method breaks down intricate problems into manageable, discrete
components known as finite elements. These simplified elements are then combined to form a
comprehensive system of equations that accurately represents the original problem. FEM proves
particularly valuable in scenarios involving complex geometries or systems where finding
analytical solutions is challenging. By leveraging this technique, researchers and engineers can
overcome difficulties associated with complex mathematical modeling and gain insights into
various physical phenomena.

The key concept of FEM is:

Discretization: Problem’s domain is divided into small elements, typically triangles or
quadrilaterals in 2D or tetrahedra in 3D. This process is known as discretization.
Element Matrices: For each element, a system of equations is formulated based on the
governing differential equations of the problem. These equations are assembled into
matrices, which describe the behavior of the element under various conditions.
Assembly Process: The individual element matrices are combined to form a global
matrix that represents the entire domain. This process considers the connectivity
between elements.

Solving the Global System: Once the global matrix is formed, it can be solved using
standard numerical methods such as Gaussian elimination or iterative solvers such as the
conjugate gradient method. The solution provides the values at discrete points within the
domain.

FEM finds extensive applications across various fields:

Structural Analysis: To analyze stresses, strains, and deflections in structures under
load.

Heat Transfer: For modeling heat distribution in materials or fluids.

Fluid Dynamics: In simulating fluid flow and pressure distribution around objects.
Electromagnetics: For analyzing electromagnetic fields and wave propagation.
Geophysics: In seismic analysis and oil exploration.

Advantages of FEM

Flexibility: Can handle complex geometries and material properties.

Accuracy: By refining the mesh, the accuracy of the solution can be improved.
Robustness: Can handle both linear and nonlinear problems, including those involving
large deformations.

Disadvantages of FEM

Computational Cost: As the complexity of the model increases, so does the
computational cost.

Mesh Sensitivity: Solution’s quality depends heavily on the detail of the mesh. Poorly
shaped or irregular elements can lead to inaccurate results.
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o Complexity: Setting up a FEM model requires a deep knowledge of the physical
problem, and the numerical techniques involved.

In summary, the Finite Element Method is a powerful tool for solving complex engineering and
scientific problems numerically. Its ability to handle complex geometries and material behaviors
makes it indispensable in many areas of modern technology.

1.2 Differential Equations

Differential equations are mathematical equations that describe how quantities change over time
or space. They are fundamental tools in many areas of science, engineering, economics, and
mathematics itself. The term "differential” comes from the fact that these equations involve
derivatives, which measure rates of change. There are wo fundamental categories within the
realm of differential equations, the Ordinary Differential Equations (ODEs) and Partial
Differential Equations (PDES).

121 Ordinary Differential Equations (ODEsS)

Ordinary Differential Equations (ODEs) are a type of differential equations that deals with
functions of a single variable. This variable typically represents time, although it could also
represent other parameters. Unlike Partial Differential Equations (PDEs), which involve
multiple independent variables, ODEs focus solely on one variable. This makes them simpler to
solve compared to PDEs, though they still encompass a wide range of complexity and difficulty
levels.

The main characteristics of ODEs are the following:

e Single Independent Variable: The primary characteristic of ODEs is that they involve
only one independent variable, most commonly time ((t)), but it could also be another
parameter relevant to the problem being modeled.

e Order: An ODE is defined by the highest order of its derivatives. For example, an
equation containing the first derivative is a first-order ODE, one with the second
derivative is a second-order ODE, and so on. There is no upper limit to the order of an
ODE.

e Types:

First Order: Incorporates the first derivative of the dependent variable.
Second Order: Incorporates the second derivative of the dependent variable.

Higher Order: Incorporates derivatives of higher orders.

1.2.2 Partial Differential Equations (PDESs)

Partial Differential Equations (PDES) are a wide-ranging category of differential equations that
incorporate linear or non-linear multivariable functions and their partial derivatives. Unlike
Ordinary Differential Equations (ODEs), which address single variable functions, PDEs can
describe phenomena involving spatial variations, making them indispensable in fields such as
physics, engineering, and applied mathematics.

The main characteristics of PDEs are the following:
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e Multiple Independent Variables: PDEs involve functions of multiple independent
variables, typically representing both space and time. For example, in a heat conduction
problem, the temperature might depend on both location (spatial coordinates) and time.

e Partial Derivatives: The term "partial” refers to the fact that the derivatives in PDEs are
taken with respect to some of the variables while holding others constant. This
distinguishes them from total (or full) derivatives found in ODEs.

e Complexity: PDEs can vary greatly in complexity, ranging from simple linear equations
to highly nonlinear ones. Their solutions can exhibit a wide range of behaviors, from
smooth and continuous to discontinuous and chaotic.

1.3 Artificial Neural Networks

Acrtificial Neural Networks are fundamental tools in machine learning, powering many state-of-
the-art algorithms and applications across various scientific and engineering domains, including
scientific computing, time-series forecasting, natural language processing, computer vision,
robotics, and more.

A neural network is composed of interconnected units called neurons, arranged in layers. These
neurons, inspired initially by the biological neurons (Figure 2), act as processing nodes within
the network. They receive incoming signals, process this information through mathematical
non-linear operations, called activation functions, and then generate output signals. This output
can be propagated to other neurons within the network. The typical structure of a neural network
includes:

1. Input Layer: Where initial data enters the network

2. Hidden Layers: Perform complex computations on the input data

3. Output Layer: Generates predictions or makes decisions based on the processed
information

Within these layers, neurons communicate through weighted connections. These connections,
represented by numerical weights, determine the strength of influence one neuron's output has
on another neuron's input. Think of these weights as the "importance" of each connection in
shaping the overall network behavior. During the training process, the network learns to adjust
these weights based on examples provided in a training dataset. This adjustment allows the
network to refine its understanding of patterns and relationships within the data. The learning
process involves iterative adjustments to these weights and biases. As the network processes
more data and receives feedback, it continually refines its internal representations of the world,
gradually improving its ability to make accurate predictions or decisions.

Biological Neuron versus Artificial Neural Network
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Figure 2. Biological Neuron versus Artificial Neural Network [5]
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There are many kinds of Neural Networks such as:
Feedforward Neural Networks (FNN)

These are the most basic and straightforward form of Artificial Neural Networks (ANNS). In
these networks, information flows in a linear, unidirectional manner, moving from the input
layer to the output layer without any backtracking or circular paths. Multilayer perceptron
(MLP) is a specific architecture of feedforward neural network.

Recurrent Neural Networks (RNN)

Recurrent Neural Networks (RNNs) are a type of neural network characterized by their unique
architectural feature: recurrent connections. These connections create directed cycles within the
network, enabling information to circulate and accumulate over time. This temporal memory
capability makes RNNs particularly well-suited for tackling complex problems involving
sequential or time-dependent data.

Convolutional Neural Networks (CNN)

CNNs are specialized neural networks engineered to efficiently process and analyze data that
exhibits a grid-like structure, particularly images. These networks are built around a
fundamental principle: the use of convolutional layers to extract meaningful features from the
input data. They are composed of successive layers of convolutional filters that progressively
build up hierarchical representations of features within the input data. CNNs are widely used in
tasks such as image recognition, object detection, and image segmentation.

Long Short-Term Memory Networks (LSTM) and Gated Recurrent Units (GRU)

Long Short-Term Memory Networks (LSTMs) and Gated Recurrent Units (GRUS) represent
advanced variants of recurrent neural networks (RNNs). These specialized architectures were
developed to overcome the limitations of traditional RNNSs, particularly the vanishing gradient
problem. LSTMs and GRUs excel in processing sequential data with varying time scales.

Autoencoder

Autoencoders are unsupervised neural networks that excel at compressing and reconstructing
data. They consist of an encoder network that condenses high-dimensional inputs into lower-
dimensional latent representations, followed by a decoder that attempts to recreate the original
data from these compressed forms. This process allows autoencoders to learn compact feature
embeddings while discarding redundant information. They find applications in dimensionality
reduction, anomaly detection, image denoising, and generative modeling. By learning
hierarchical representations of data, autoencoders serve as powerful tools for exploratory data
analysis and feature learning, enabling machines to identify and represent complex patterns
within large datasets. Their unsupervised nature makes them particularly valuable for
discovering hidden structures in unlabeled data, paving the way for various machine learning
tasks and data preprocessing steps.

Generative Adversarial Networks (GAN)

Generative Adversarial Networks (GANs) are a revolutionary deep learning framework
consisting of two neural networks locked in a perpetual game of deception. The generator

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Panagiotis Koutsivitis 0023 24



Msc Thesis title

creates synthetic data samples that mimic the real thing, while the discriminator tries to spot the
fakes. Through this adversarial dance, both networks continuously improve, with the generator
becoming increasingly skilled at producing convincing forgeries and the discriminator
developing superhuman abilities to detect authenticity. GANs have transformed the field of
computer vision, effortlessly conjuring photorealistic images, videos, and even entire worlds
from scratch. Their applications extend far beyond mere aesthetics, powering cutting-edge
technologies in data augmentation, style transfer, and even creative endeavors like artistic
collaborations between humans and Al. However, GANs are not without their challenges, as
researchers grapple with issues like mode collapse and ensuring ethical use of these powerful
generative models. Despite these hurdles, GANs remain at the forefront of Al innovation,
pushing the boundaries of what's possible in data generation and manipulation.

Multilayer Perceptron

Multi-Layer Perceptrons (MLPs) are foundational neural network architectures that consist of
multiple layers of interconnected nodes (neurons) processing information in a feedforward
manner. Characterized by their layered structure (Figure 3), MLPs sequentially apply
transformations to the input data, with each layer building upon the previous one to create
increasingly complex representations. The MLP consists of an input layer, one or more hidden
layers, and an output layer. MLPs are versatile tools capable of solving a wide range of
problems, including classification, regression, and clustering tasks. Their layered structure
allows them to learn hierarchical features, making them effective for pattern recognition and
decision-making. While simpler than some modern neural network architectures, MLPs remain
powerful and widely used, especially in scenarios requiring interpretable models or when
computational resources are limited. Their linear flow of information and ease of
implementation make MLPs accessible entry points for exploring neural network concepts and
applying them to various machine learning challenges. Under certain mathematical conditions,
MLPs possess the remarkable ability to approximate any function with arbitrary precision. This
property makes them an indispensable tool in the field of artificial intelligence, providing a
foundation upon which more advanced neural network architectures are built. The combination
of their flexibility, computational efficiency, and theoretical robustness has cemented MLPs as
a fundamental component in the development of deep learning models and ongoing research in
neural network theory.
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Figure 3. Abstract diagram of an MLP [6]
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1.4

Computational Graphs

A computational graph, also known as a data flow graph or a dependency graph, is a graphical
representation of computations performed during the execution of a program or algorithm. It
visually maps out how data flows through an algorithm or system, showing dependencies
between operations and the sequence in which they occur. Computational graphs are widely
used in various fields such as computer science, mathematics, and engineering, particularly in
areas like machine learning, optimization problems, and digital signal processing.

The key components of a Computational Graph are:

Nodes: Represent individual operations or functions within the computation. Each node
performs a specific task, such as arithmetic operations (addition, multiplication),
activation functions in neural networks, or any other type of operation relevant to the
problem being solved.

Edges: Connect nodes and represent the flow of data between them. The direction of an
edge indicates the order in which operations should be executed, ensuring that all
necessary inputs are available when an operation is performed.

Data Flow: Shows how information moves from one part of the graph to another (Figure
4). In some cases, the graph might have feedback loops where the output of a later stage
feeds back into an earlier stage, allowing for iterative processes.

The main applications of Computational Graphs are:

Machine Learning: Neural networks, particularly convolutional neural networks
(CNNSs) and recurrent neural networks (RNNSs), are frequently depicted and analyzed
using computational graphs. These graphs help in understanding the architecture of the
network, including layers, connections, and the flow of data.

Optimization Problems: Many optimization algorithms, such as gradient descent, can
be visualized using computational graphs. This visualization aids in understanding the
steps involved in finding the optimal solution.

Algorithm Design and Analysis: Computational graphs can help in analyzing the
complexity of algorithms by visualizing the number of operations and their

dependencies.

y=o(tanh(zW, )W;)
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Figure 4. Computational Graph used for calculating the forward pass of y=c(tanh(xW)W5) [7]
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15 Automatic Differentiation

Automatic Differentiation (AD) is a powerful technique that enables efficient computation of
derivatives for complex functions. It leverages the fact that all computer calculations can be
represented as a sequence of elementary operations and functions. By analyzing these operations
within a computational graph, AD applies the chain rule repeatedly (Figure 5) to compute partial
derivatives automatically. This process yields accurate results up to working precision, requiring
only a small constant factor more arithmetic operations than the original program. AD's
efficiency and accuracy make it an invaluable tool in machine learning and optimization,
particularly for training deep neural networks. Its ability to handle intricate functions seamlessly
has revolutionized gradient-based methods, enabling rapid development and deployment of
sophisticated models across various domains.

Unlike numerical differentiation, which introduces round-off errors and cancels out terms, AD
provides exact derivatives up to floating-point precision. AD excels at computing higher-order
derivatives and partial derivatives with respect to many inputs, crucial for gradient-based
optimization. This method solves the problems inherent in classical differentiation techniques,
offering efficient and accurate computation of gradients. AD's power lies in its ability to handle
complex functions seamlessly, making it an invaluable tool in machine learning and
optimization, particularly for training deep neural networks.

The main Applications of AD are the following:
e Optimization: AD is crucial in optimization algorithms like any variant of gradient
descent, which rely on gradients to update model parameters iteratively.
e Machine Learning: In deep learning, AD is used to train neural networks by optimizing
the weights based on the gradients of the loss function with respect to these weights.
e Scientific Computing: AD can accelerate the computation of derivatives in simulations
and experiments, enabling more accurate and efficient modeling.

00000

Figure 5. Computational Graph used for calculating the reverse pass of y=o(tanh(xW:)W,) [7]
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1.6 Optimization algorithms

Optimization is a broad concept that can be applied across various fields, including mathematics,
computer science, engineering, and more. At its core, optimization involves finding the best
solution among a set of possible solutions to achieve a specific goal or objective. In Scientific
computing and CAE, optimization is used for model design optimization or model calibration.
During the years have been developed many optimization algorithms that belong to different
categories and can be applied to solve different types of problems. In this thesis we present
briefly some of the most important categories of optimization algorithms.

1.6.1 Heuristic algorithms

The number of the possible solutions in an optimization problem depends on the number of
variables that form the problem space and whether these variables are continuous or discrete
(Integer Programming). The fact that this number can be very large or even infinite, finding the
exact solution is impractical due to time constraints. Heuristic optimization algorithms are
designed to solve complex problems by providing good-enough solutions within reasonable
time frames, rather than always finding the absolute best solution. These algorithms are
particularly useful in scenarios where the problem space is too vast, or the computation required
to find the optimal solution is prohibitively expensive.

1.6.2 Genetic algorithms

Genetic algorithms are evolutionary computation techniques inspired by Darwin's theory of
natural selection and genetics. They operate on a population of candidate solutions, applying
principles of evolution to iteratively improve the solution set. The algorithm starts with an initial
population of potential solutions, representing possible answers to a problem. It then applies
genetic operators like selection, crossover, and mutation to these solutions, mimicking
biological processes. Through repeated iterations, fitter solutions (those better addressing the
problem) become more prevalent in the population. This evolutionary process allows the
algorithm to explore vast solution spaces efficiently, often finding optimal or near-optimal
solutions to complex problems. Genetic algorithms have been applied successfully in various
fields, including optimization, scheduling, machine learning, and engineering design. Their
ability to handle non-linear relationships and parallel processing makes them particularly
effective for solving real-world problems with multiple constraints and objectives.

1.6.3 Gradient Descent

Gradient Descent (GD) is a deterministic optimization algorithm and belong specifically to the
gradient-based optimization methods. GD is one of the simplest and most widely used first-
order optimizers. It iteratively updates parameters in the direction opposite to the gradient of the
loss function.

1.6.3.1 15t Order Optimizers

First-order optimizers are a fundamental class of optimization algorithms commonly used in
machine learning and deep learning. These optimizers rely solely on the 1% order gradient
information of the loss function (Figure 6) to update model parameters.
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(1) Use gradient form linear approximation
(2) Step to minimize the approximation

Loss

wi

\J

Figure 6. Gradient Descent using 1st order optimizers [8]
Some of the advantages and disadvantages of the 1% order optimizers are the following:
e Pros:
» Low computational cost per epoch
» Scalable to any number of parameters

» Perform well in stochastic objective functions.

» Slow convergence due to the small steps taken
» Sensitive to hyper-parameters
> Need more parameters for finding accurate solutions than it should.

1.6.3.1.1 Stochastic Gradient Descent (SGD)

Stochastic Gradient Descent is a variant of Gradient Descent that uses only one or a limited
number of examples from the training dataset at a time to compute the gradient. This approach
contrasts with traditional Gradient Descent, which computes the gradient using the entire
dataset. This stochastic approach to the calculation of gradient has been found to have the
following advantages compared to the GD:

o Faster computation compared to full batch GD
e Noisier updates, leading to better generalization

« Often converges to a good solution quickly
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16.3.1.2 Adam

The Adam algorithm [9] is a first-order stochastic gradient-based optimizer that has gained
popularity for its effectiveness in training large and complex deep neural networks. This method
stands out for its robustness and computational efficiency, making it particularly well-suited for
models with millions of parameters. Adam's success in deep learning can be attributed to its
ability to adapt learning rates for different parameters automatically, reducing the need for
manual tuning. However, achieving optimal performance often requires careful consideration
of several hyper-parameters which in practice can be challenging and time consuming.

1.6.3.2 2"d Order Optimizers

Second-order optimizers in machine learning refer to optimization algorithms that utilize both
the first and second derivatives of the loss function (Figure 7) during the training process. These
optimizers aim to converge faster and more efficiently compared to first-order methods, which
only rely on the gradient (first derivative) information.

1. Utilize Hessian matrix: Second-order optimizers make use of the Hessian matrix,
which contains the second partial derivatives of the loss function.

2. Faster convergence: By incorporating curvature information from the Hessian matrix,
second-order methods often converge faster than first-order methods.

3. Computational complexity: Second-order optimizers typically require more
computational resources due to the need to compute and invert the Hessian matrix.

(1) Use gradient and Hessian to form quadratic approximation
(2) Step to the minima of the approximation

Loss

wi1

Figure 7. Gradient Descent using 2nd order optimizers [8]
Some of the advantages and disadvantages of the 2" order optimizers are the following:
e Pros:

> By incorporating curvature information from the Hessian matrix, 2" order
methods often converge faster than 1% order methods.

> Not at all or few hyper-parameters
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> Need less parameters for finding accurate solutions than 1% order optimizers.
e Cons

» High computational cost per epoch because of the required estimation &
inversion of the Hessian matrix.

» High memory consumption because of the allocation of the Hessian matrix.

Impractical for large number of parameters.

» Do not perform well in stochastic objective functions.

Y

16321 BFGS

The Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm is a second-order optimization
method that approximates the Hessian matrix of the loss function. It achieves this by evaluating
gradients, resulting in a computational complexity of O(N?) where N is the number of
parameters. A significant advantage of BFGS is that it updates the curvature matrix without
requiring matrix inversion, significantly reducing computational costs. However, this method
comes with memory constraints, as the Hessian matrix grows quadratically with the number of
parameters. This limitation makes BFGS unsuitable for large-scale neural networks, where
memory usage becomes prohibitively expensive as the model size increases. Despite these
challenges, BFGS remains valuable in certain scenarios due to its ability to handle complex
landscapes efficiently. Its effectiveness in finding optimal solutions has led to continued
research into variants and applications of the algorithm in various optimization problems beyond
deep learning.

1.6.3.2.2 L-BFGS

The Limited-memory BFGS (L-BFGS) algorithm [10] is an improved version of the BFGS
algorithm that addresses memory usage concerns by storing only a few vectors approximating
the full Hessian matrix. This approach enhances computational efficiency and allows L-BFGS
to handle problems with larger parameter sets compared to BFGS.

Both BFGS and L-BFGS can still fall prey to local minima traps. To mitigate this risk,
researchers have developed hybrid optimization strategies. One such approach involves using
Adam as an initial optimizer, running for hundreds of epochs, followed by BFGS or L-BFGS
using the weights produced by Adam. This multi-stage strategy aims to leverage Adam's global
exploration capabilities with the local refinement offered by BFGS variants. This combined
approach has shown promise in physics-informed machine learning applications, particularly in
solving systems of partial differential equations (PDEs) [3]. By combining these methods,
researchers can potentially achieve better convergence and avoid getting stuck in suboptimal
solutions, especially in challenging optimization landscapes encountered in complex scientific
computing tasks.

1.6.3.2.3 Levenberg-Marquardt

The Levenberg-Marquardt (LM) method originated from Levenberg's work on non-linear least
squares optimization in 1944. He observed that gradient descent and Gauss-Newton iteration
were complementary approaches. Marquardt later extended this method in 1963 by
incorporating the Hessian matrix’s diagonal, scaling each component of the gradient according
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to curvature. This extension, now known as the Levenberg-Marquardt algorithm, combines the
strengths of both methods. While LM is generally extremely effective for moderate-sized
models, it has limitations due to its requirement for matrix inversion, which is computationally
expensive and memory-intensive. This constraint traditionally restricted LM to models with
thousands of parameters. However, advancements in modern computing hardware have
significantly increased the size of models that can benefit from LM optimization. Today, LM
remains a valuable tool in the optimization toolkit, particularly for problems where a good
balance between fast convergence and robustness is desired. Its ability to handle non-linear
relationships makes it applicable to various real-world optimization problems, though care must
still be taken regarding model size and computational resources.

1.7 PINNSs

In many cases, a system of differential equations can be described by

Dux);Al=f(x),x€Q,
Bk[u(X)] = gk(X) , x ETk Cc 0Q ,
fork=(1,2.., )

D is a differential operator, Bk is a set of boundary operators, u € R® is the solution to the
differential equation(s), f (x) is a forcing function, gk(x) is a set of boundary functions, x is an
input vector in the domain Q < Rd (i.e. X is a d-dimensional vector), 0Q denotes the boundary
of Q and A is a set of additional parameters of the differential operator.
A PINN is a neural network, NN(x; 0), with trainable weights and biases 6 that aims to
approximate the exact solution u(x) of the underlying differential equation, i.e. NN(x; 0) = u(x).
To train the PINN, a multi-component loss function is employed, consisting of at least two terms
or more when observational data is present (Figure 8).

L(e) =01 Lbound(e) + o2 Lphysics(e) + a3 Ldata(e)

e The term Loound(0) is the “boundary” loss which tries to match the PINN solution to the
known solution along the boundaries of the domain and typically is calculated using the
following formula Loound(0) = = (u(X) - NN(x; 6))>

e The term Lpnysics(0) is the “physics” loss which tries to minimize the residual of the
underlying equation(s) at a set of locations within the domain. The derivatives of the
PINN solution with respect to its inputs required by the boundary and physics loss are
obtained using automatic differentiation.

e The term Lgata(0) is the “data” loss which tries to match the PINN solution to measured
known solutions. Usually, these solutions are located within the domain of the problem.
The Lagata(0) is usually used when an inverse problem should be solved.

The hyper-parameters aa, a2, az control the influence of each loss term in the optimization
problem and can play a significant role in the convergence time and results accuracy.

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Panagiotis Koutsivitis 0023 32



Msc Thesis title

Boundary loss

Ly ()

Physics loss

Lp(9)

Data loss

La(8)

Minimise underlying

I
|
I
]
I
I
I
I
|
I
]
I
I
|
I
I
I
]
I
I
|
I
|
I
I
I . .
| equation residual

Compute derivatives Compare to
training data

Figure 8. lllustration of how the loss function of PINNs is formed using the computed derivatives of the NN by Automatic
Differentiation and boundary & data loss terms [11]

1.7.1 Forward

Traditionally, given a system of differential equations, simulation software is used for solving
forward problems where you have a set of initial or boundary conditions and want to predict the
state of the system at future times or under different conditions. From the very beginning, PINNs
methodology has been used for solving this type of problems with a good success. Despite their
success, PINNs have been found to meet several challenges because of:

e Large training times compared to traditional numerical approaches.
e Poor accuracy in highly non-linear problems and large domains.
e Difficulty in generalization to new problem cases.

However, PINNs still offer some advantages that is very difficult to find in the traditional
solvers:

e are Mesh free, which means that do not rely necessarily on traditional numerical
discretization methods that require a structured grid or mesh and so can be:

1. Efficientin high-dimensional problems: Traditional methods often suffer from
the curse of dimensionality, where the computational cost grows exponentially
with the number of dimensions. Mesh-free methods like PINNs can handle high-
dimensional problems more efficiently because they do not require the explicit
construction of a mesh.

2. Flexible in Complex Geometries: PINNs can naturally accommodate complex
geometries without needing to adapt or refine meshes. This flexibility is crucial
in applications involving irregular domains or interfaces.

3. Parallelizable: The structure of PINNSs lends itself well to parallel computing
architectures, allowing for efficient scaling across multiple processors or GPUSs.
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e are tolerant to the low-quality or absence of initial or boundary conditions when
experimental data are provided and integrated into the training process alongside with
the differential equations, even if the provided data are corrupted by noise.

1.7.2 Inverse

Inverse problems play a vital role in numerous real-world applications. Here the goal is to
estimate the parameters of a system given a set of real-world observations of the system that
potentially can be corrupted by noise (Figure 9). Inversion can be challenging computationally
wise. Solving inverse problems using black-box optimizations algorithms can be extremely
demanding due to the need for extensive forward simulations to match model predictions with
observations. This approach can become prohibitively expensive, especially for high-
dimensional complex systems, rendering many applications infeasible. On the contrary, PINNs
can be a viable solution for solving challenging inverse problems since with one single training,
can estimate the system parameters of the underlying differential equations alongside with the
optimized 6 neural network parameters.

No data Some data : Plenty of data cdriw
Traditional i : D;x’la driven
- c
Scientific . - ,.a-hmc
Computation $ : Learning

Theoretical Some theory H No theory
model :

Figure 9. lllustration of when PINNs can be used based on how many data of theory are available [12]

2 CHAPTER 2: Experiments

In this chapter will be presented the theoretical background about the problems to be solved
using PINNs. Even though PINNs have been found to be most effective in solving inverse
problems, in this thesis all the problems to be solved belong to the class of forward problems.
The reason behind this decision is to explore the capabilities of this innovative technology and
examine whether could be competitive to the established traditional numerical methods in
several benchmark problems.

2.1 Burgers equation

Burgers equation emerges across numerous fields within applied mathematics such as fluid
mechanics, nonlinear acoustics, gas dynamics, and traffic flow. This equation serves as a
foundational partial differential equation, which can be obtained by simplifying the Navier-
Stokes equations related to velocity fields through the omission of the pressure gradient term.

When dealing with low viscosity parameters, Burgers equation may result in shock waves that
pose significant challenges for resolution via traditional numerical approaches. Specifically, in
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a one-dimensional space setting, Burgers equation, accompanied by Dirichlet boundary
conditions, is expressed as follows.

au+ ou azu—O €[-1,1] t €[0,1]
ac " Yox Vaz 7 P ’

u(0,x) = —sin(mx),
u(t,—1) =u(t,1) =0,

Eq.1

Where v is the kinematic viscosity parameter and for our case will be equal to 0.01/x.

wu(t, ) o

0.5
—0.5
T T
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t

t = 0.25 t = 0.50 t =0.75

u(t, )
u(t, x)

[
[
u(t, )
|

—— Solution

Figure 10. lllustration of the domain and state space of Burgers equation [3]

In Figure 10 it is illustrated the solution where can be seen the shock waves (discontinuities)
generated as the time increases.

2.2 Poisson equation

The Poisson differential equation is a partial differential equation that arises in many areas of
physics and engineering. It is named after Simeon Denis Poisson, a French mathematician who
made significant contributions to the field of mathematical physics.
The importance of the Poisson differential equation lies in its wide range of applications across
various fields. Its versatility stems from its ability to model the spatial distribution of physical
quantities under the influence of sources or sinks, thereby providing a mathematical framework
for understanding complex natural processes. It describes phenomena related to electrostatics,
heat conduction, fluid dynamics, and many other areas. Here are some reasons why it is
important:

e Electrostatics: It helps in calculating electric potentials given charge distributions.

e Heat Conduction: It models how heat diffuses through materials.
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Fluid Dynamics: It can describe the velocity potential in an irrotational flow.
e Gravitational Fields: It is used to calculate gravitational potentials and fields.

Without loss of generality in this example we are going to solve the Poisson equation in a unit
square domain and Dirichlet boundary conditions described as follows:

azu(x,y)+azu(x,y)_1i( 1)+ 2kt siniony)
axz ayz —4k_1 SIN(KTTX )Sn ﬂy )
x € [0,1],

y €[0,1],
u(0,y) =0,u(1,y) =0,u(x,0) =0,u(x,1) =0

Eq. 2

The specific formulation of the problem together with the source term in the right-hand side of
the equation found in the scientific paper “Physics-Informed Deep-Learning for Scientific

Computing” [13] by Stefano Markidis.

-0.05

Figure 11. lllustration of the domain and state space of the Poisson equation for the specific source terms [13]

In Figure 11 can be seen the solution in the form of a 2-dimensional contour plot as has been
found in the aforementioned research paper.

2.3 Lid Driven Cavity Flow Problem

The lid-driven cavity flow represents a classic problem in fluid dynamics that serves as a
benchmark for testing numerical methods used to solve viscous, incompressible fluid flows.
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This problem involves a square domain where three sides are stationary walls, while the top
wall (the "lid") moves at a constant velocity Uiia. The movement of the lid induces a complex
flow pattern within the cavity, characterized by a large primary vortex in the center and smaller
secondary vortices near the corners (Figure 12).

This phenomenon is significant because it encapsulates several fundamental aspects of fluid
dynamics, including boundary layer effects, vortex formation, and the influence of viscosity on
flow patterns. The behavior of the fluid within the cavity is highly dependent on the Reynolds
number, which quantifies the ratio of inertial forces to viscous forces within the fluid. At low
Reynolds numbers, the flow is laminar and predictable, but as the Reynolds number increases,
the flow becomes turbulent, leading to more complex and chaotic patterns.

The lid-driven cavity problem is particularly valuable because it provides a controlled
environment for studying these effects. By varying parameters such as the lid velocity and the
fluid viscosity, researchers can explore how changes in Reynolds number affect the flow
dynamics. This makes it an excellent test case for validating computational fluid dynamics
(CFD) algorithms and turbulence models.

Moreover, understanding the lid-driven cavity flow has practical applications in engineering and
industrial processes. Many real-world fluid flow problems involve moving boundaries or
surfaces that induce flow patterns like those observed in the cavity problem. Examples include
the mixing processes in chemical reactors, the cooling systems in electronic devices, and the
aerodynamics of vehicles. By studying the lid-driven cavity flow, engineers can gain insights
into these complex flow phenomena, which can lead to more efficient designs and improved
performance in various applications.

In summary, the lid-driven cavity flow problem is a cornerstone in fluid dynamics research due
to its simplicity yet richness in demonstrating fundamental principles of viscous flows. It serves
both as a theoretical benchmark for testing numerical methods and as a practical model for
understanding and optimizing real-world engineering applications involving fluid flow.

For the lid-driven cavity flow, we consider a 1.0 x 1.0 m2 square domain, with Ulid = 1 m/s,
and Re = 100, 400, and 1000.

y

Primary vortex

u=v=_0 X

O\

Figure 12. Lid Driven Cavity Flow for Re=100, lllustration of u & v velocity field using streamlines. Can be seen the
primary vortex on the center and the two secondary vortices on the left & right bottom corners. [14]
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Figure 13. Lid Driven Cavity Flow for Re=100, lllustration of u & v velocity fields using 2d contour plots. The picture has
been taken by the following research paper [1]
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In Figure 13Figure 11 can be seen the solution for Re=100 in the form of a 2-dimensional contour
plot as has been found in the following paper [1].
The formulation of Navier-Stokes equations that describe the problem is the following.

ou v

ox oy

ou Ou 19p p/0*’u 0%u
ua+V@+Ea—E<W ayz)ZO Eq. 3

where the dimensionless variables are,

X — coordinate along the x direction, 0 <x <1

y — coordinate along the y direction,0 <y <1

u — velocity in x direction

v — velocity in y direction

p — pressure

u — kinematic viscosity, [0.01, 0.0025, 0.001] m2/s for Re = [100, 400, 1000]

p — density, 1.0 kg/m

2.4 Static Piston Flow Problem

The Static Piston Flow problem is the most challenging problem compared to all the previous
ones. We consider a square domain, shown in Figure 14, with all the four walls have a dimension
of 1m. For the bottom, left and right walls the velocities u and v are always zero. Instead, for
the top wall, the horizontal velocity u is everywhere 0 but the vertical velocity v at the injection
position XlInjection is 1 m/s for a short period of time when 0.1042<t<1.1156 ms. The
phenomenon is transient but periodic and has a simulation period of 42.38 ms. The injection
point in the top wall is a parameter which means that for different values of it, the solution of
the following system of differential equations changes.

Ju OJv
ox Ty
Ju Ju ou 19p p/d*u d*u

S At et
ov ov dv 10dp u<62v 62v>_0

a-l“lla'l'va'l'a@—g @-l_a_yz

0

0
Eq. 4
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where the dimensionless variables are,

X — coordinate along the x direction, 0 <x <1
y — coordinate along the y direction, 0 <y <1
t—time, 0 <t<42.38ms

u — velocity in x direction

v — velocity in y direction

p — pressure

u — Kinematic viscosity, 2.0e-6 m2/s

p — density, 1.0 kg/m

Given the above, it can be calculated the Reynolds number of the flow based on the injection as
Re = u*L/v. The kinematic viscosity is v = 2e-6 [m2/s], so at near the injector (the top region)
if we use L the injector hold width, which is L = (1/32) [m], we have injection velocity u = 1.0

[m/s], then we end up with Re = 1.0 * 1/32 / (2e-6) = 15625.

Goal of this problem is to try training a PINN that will solve and will learn all the solutions of

the above system for different cases (injection points).

In Figure 14 and Figure 15 is illustrated the solution of the problem for Re = 15625 of u & v

velocity field using Quiver and 2D Contour plots.

gas injection point at the middle (varies from case fo case)
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Figure 14. Static Piston Flow for Re = 15625, lllustration of u & v velocity field using Quiver plot. This velocity field
corresponds to time=6.256 ms and xInj=0.5m.
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u velocity for time = 2ms
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Figure 15. Static Piston Flow for Re = 15625, lllustration of u & v velocity field using 2d contour plots. This velocity field
corresponds to time=2 ms and xInj=0.5m.
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3 CHAPTER 3: Implementation and Detailed results

In this chapter we present the results that have been achieved for all the problems descripted in
CHAPTER 2: Experiments. The Goal of all the problems was to approximate the solution of the
physical system with a PINN that minimizes the physics error everywhere in the domain and at
the same time satisfies with high accuracy the boundary and/or initial conditions. This
practically means that all the PINNs have not used any known data for their training
(unsupervised learning), instead in some cases that known data were available have been used
only for validation purposes or for training MLP models using clearly supervised learning
approaches which were used for comparison and visualization purposes. PINNs because of their
characteristic to calculate high order derivatives of the outputs with respect to the inputs do not
work at all when use activation functions such as ReLU or Leaky ReLU where the 2" derivative
is zero. For this reason and without loss of generality in all our experiments we use fully
connected multi-layer PINNSs that incorporate Tanh activation functions for the hidden layers
and Linear activation functions for the output layer.

Modern Deep Learning applications, such as NLP and Computer Vision are dominated by the
stochastic gradient descent 1%t order optimizers, like SGD or Adam, mainly because of their
ability to scale to millions of parameters and to avoid local minima assisted by their stochastic
nature. Despite their advantages these algorithms many times suffer from slow convergence and
insufficient accuracy in demanding physics based scientific and engineering scenarios. In
contrary, 2" order optimizers such as BFGS or Levenberg-Marquardt despite their superiority,
in terms of accuracy and convergence speed, against 1% order optimizers, are practically limited
only to medium size NNs (less than 10000 parameters). This is because of their increased
computational complexity caused by the existence of the squared Hessian matrix with
dimensions Ox® where O is the number of parameters in the NN.

However, the community has developed limited memory versions of 2" order optimizers with
the most popular algorithm to be the L-BFGS [10] followed by the newest addition of the
AdaHessian [15].

In the field of PINNSs, Issac Lagaris [2] reported that he achieved the best results using the BFGS
among other algorithms. Raissi el al. [3] used for the first time very deep NNs of 10 hidden
layers for solving the Burgers equation problem and for this purpose used as an optimization
scheme the Adam optimizer as a warm starter followed by the L-BFGS for finetuning further
the solution. The last years the above optimization scheme has become the dominant way for
training PINNSs. In this thesis, along with the previous scheme, we are going to follow a slightly
different approach by using the BFGS exclusively or together with the Adam as a warm starter.
These alternative approaches have been found to achieve superior results in accuracy with
smaller NN architectures.
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3.1 Results of Burgers equation

Burgers equation serves as an essential benchmark problem in PINNs. This equation was
initially addressed by Raissi et al. [3] in their groundbreaking paper introducing PINNS.
Although Burgers equation may seem straightforward, solving it is crucial for our research. By
tackling this relatively simple problem, we can verify the accuracy of our implementation and
validate our chosen methodology.

As has been explained in Eq. 1, the domain of the problem can be defined as follows:
x €[-1,1],t € [0,1]
u(0,x) = —sin(mx),
u(t,—1) =u(t,1) =0,

Eqg. 5

To cover sufficiently the domain must be sampled

e 50 points equally distributed in x axis within the range [-1, 1] for t=0 as initial
conditions.

e 50 points equally distributed in t axis within the range [0,1] for x=-1 as boundary
conditions.

e 50 points equally distributed in t axis within the range [0,1] for x= 1 as boundary
conditions.

e 1000 collocations points uniformly distributed within the domain.

The PINN model that will approximate the solution takes as inputs the spatial variable x and
time t and outputs the solution u as can be seen in Error! Reference source not found. . We
utilized a PINN architecture consisting of 4 hidden layers, each containing 30 neurons with a
hyperbolic tangent (tanh) activation function.

Figure 16. The PINN architecture that represents the solution of Burgers Equation.
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Regarding the optimization, we followed the standard practice, and we used the Adam for 1000
iterations as a warm starter followed by the L-BFGS for about another 1000 iterations until
converged. The training progress is reported in Figure 17 where can be seen the 2 different
phases of the optimization and how the use of L-BFGS helps to minimize drastically the
composed Mean Squared Error of Burgers equation. Finally, in Figure 18 is presented the
predicted solution of Burgers equation using the trained PINN where can be clearly can be seen
the formed shock wave at t=1.

100
(NN -1 4
N 10
=
S Adam L-BFGS

1072 4

103 5

0 250 500 750 1000 1250 1500 1750 2000
Nepoch

Figure 17. The composed Mean Squared Error of Burgers equation over the number of training epochs.
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Figure 18. An illustration of the predicted solution of Burgers equation using PINN. Can be clearly seen the formed shock

wave at t=1.

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Panagiotis Koutsivitis 0023 44



Msc Thesis title

3.2 Results of Poisson equation

The second benchmark problem to be solved is Poisson equation. As mentioned in Poisson
equation the formulation of the problem including the domain and the source terms were taken
from the scientific paper “Physics-Informed Deep-Learning for Scientific Computing” by
Stefano Markidis [13]. Our main purpose for solving the Poisson equation is to verify the results
and so to build confidence in the overall framework and reduces the likelihood of errors in
subsequent, more complex simulations.

As has been explained in Eqg. 2 the domain of the problem can be defined as follows:
x € [0,1],
y €[0,1],
u(0,y) =0,u(1,y) =0,u(x,0) =0,u(x,1) =0

Eq. 6

Our dataset consists of:

e 4x50 boundary points equally distributed in the boundaries of the square domain.
e 1000 collocations points uniformly distributed within the domain.

The PINN model that will approximate the solution takes as inputs the spatial variables X, y and
outputs the solution u as can be seen in Figure 19Error! Reference source not found. .
Similarly to the Burgers equation we utilized a PINN architecture consisting of 4 hidden layers,
each containing 30 neurons with a hyperbolic tangent (tanh) activation function.

Figure 19. The PINN architecture that represents the solution of Poisson equation.
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We trained the PINN using the Adam optimizer for 2,000 epochs, followed by BFGS optimizer
for about 2000 iterations until converged. We used BFGS instead of L-BFGS because BFGS
according to our experiments achieved much better accuracy than the limited memory version
of it. In Figure 20 it is demonstrated the positive impact of BFGS to the optimization by reducing
further the composed Mean Squared Error of Poisson equation by 3 orders of magnitude
compared to Adam. While, in Figure 21 is presented the predicted solution of Poisson equation
using the trained PINN drawn in a 3d contour plot. In the plot someone can see the multiple
extrema caused by the various source terms introduced in the equation Eq. 2.
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Figure 20. The composed Mean Squared Error of Poisson equation over the number of training epochs.
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Figure 21. An illustration of the predicted solution of the Poisson equation using PINN.
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3.3 Results of Lid-Driven Cavity Flow problem

The lid-driven cavity flow problem is a fundamental benchmark in computational fluid
dynamics, characterized by its complex velocity field and recirculating flows. This study aims
to investigate the application of PINNs to solve this challenging fluid mechanics problem across
various Reynolds numbers (Re), which pose significant challenges due to increased turbulence
and complexity in the flow field.

Our research focused on three primary objectives:

1. Comparing our PINN solution for Re = 100 with the best results of the "On Physics-
Informed Deep Learning for Solving Navier-Stokes Equations™ [1] research paper.

2. Assessing the applicability of PINNSs to higher Reynolds numbers, specifically Re=400
and Re=1000, and comparing the results with established numerical methods, as
presented in the seminal work by Ghia et al. [16].

3. Investigating the impact of neural network architecture, boundary condition density, and
collocation grid size on the accuracy and efficiency of PINN solutions across these
Reynolds regimes.

33.1 Re =100

The research paper reported the best results using a PINN architecture with 10 hidden layers,
each containing 40 neurons. The model utilized 2500 boundary condition points and a 200x200
grid of collocation points, resulting in 40,000 total points. Training was conducted using Adam
optimization for 5000 iterations, followed by L-BFGS for an additional 2451 iterations until
convergence was achieved.

To demonstrate the significance of optimizer training capabilities, we employed BFGS
optimization exclusively until convergence after 2420 iterations. We utilized a smaller PINN
architecture consisting of 5 hidden layers, each containing 40 neurons, to minimize memory
consumption and computational overhead associated with Hessian matrix calculations. By
reducing the number of parameters in the PINN, we opted to evaluate the loss function using
fewer boundary conditions and collocation points. Specifically, we chose 4x50 boundary
condition points and a 50x50 grid of collocation points. The PINN model takes as inputs the
spatial variables x and y and outputs u and v velocities, followed by pressure p as can be seen
in Figure 22

Figure 22. The PINN architecture that represents the solution of Lid Driven Cavity Flow problem.
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In Figure 23. is reported the Mean Squared Error for both physics and Boundary conditions
loss terms over the training epochs.
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Figure 23. The Physics & Boundary Condition Mean Squared Errors separately reported for Re=100 over the number of
epochs.

Using the trained PINN, a set of visualizations has been generated to evaluate the calculated
solution (Figure 24). On the left-hand side, the two 2-dimensional contour plots represent the
predicted solution of the u & v velocity field across the entire domain. The yellow vertical and
horizontal lines indicate the midpoint sections of these solutions. On right-hand side can be
found the predicted solution calculated for x=0.5m and y=0.5m respectively. The red dots
represent the exact solution for Re=100 which were originally presented in the study by Ghia et
al [16].

Accordingly, in Figure 25 a set of comparison plots is presented that showcase the superior
accuracy achieved by our PINN, despite its relatively shallow architecture compared to the
deeper networks suggested in the reference paper. This outcome strongly suggests that many
researchers may employ unnecessarily deep architectures instead of focusing on optimizing their
models with better algorithms. Our results indicate that achieving high performance doesn't
necessarily require extremely deep neural networks, but rather effective optimization
techniques. This finding challenges the conventional wisdom that deeper networks always lead
to better results, highlighting the potential benefits of exploring alternative optimization
strategies in PINN implementations.
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Figure 24. The predicted by the PINN u & v velocity field for Re=100 illustrated as 2d contour plots on the left plot
column. On the right plot column can be seen the PINN prediction for the mid-section values compared with the
numerical solution (red dots)
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Figure 25. On the top plot row can be seen the best results achieved for Re=100 by the research paper while on the
bottom plot row can be seen the results using our trained PINN.

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Panagiotis Koutsivitis 0023 49



Msc Thesis title

3.3.2 Re =400

Trying to assess further the applicability of our PINN methodology has been decided to try
solving the problem for a higher Reynold number equal to 400. The solution of the Lid Driven
Cavity Flow for Re =400 is known to be more difficult because of the high nonlinearity that is
caused by the increased turbulence.

Similarly to our previous experiment for Re = 100, a PINN architecture it has been utilized
consisting of 5 hidden layers, each containing 40 neurons, a 4x50 boundary condition points
and a 50x50 grid of collocation points. Several experiments have been conducted without being
possible to get an accurate solution. After many trials and error, the problem has been solved
successfully by increasing the boundary condition points to 4x100 and the grid of collocation
points to 128x128.

Figure 26 illustrates both the Physics and Boundary conditions loss terms where can be seen
between iterations 100 and 300 the competing nature of PINN optimization problem where
when the BC error decreases but the Physics error increases.
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Figure 26. The Physics & Boundary Condition Mean Squared Errors separately reported for Re=400 over the number of
epochs.
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Despite the success of our PINN methodology for R=400, in Figure 27 it is obvious that PINN
has difficulty to capture with high accuracy the dynamics.
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Figure 27. The predicted by the PINN u & v velocity field for Re=400 illustrated as 2d contour plots on the left plot
column. On the right plot column can be seen the PINN prediction for the mid-section values compared with the
numerical solution (red dots).

3.3.3 Re =1000

As a final more challenging step we decided to evaluate PINNs methodology in solving the
problem at a Reynolds number (Re) of 1000. For solving the Navier-Stokes equations for
Re=1000, has been used initially a PINN with the same architecture, boundary condition points
and collocation points as for the lower Re=400 case. Despite humerous attempts, we were
unable to obtain satisfactory results using this approach. In an effort to overcome these
challenges, we explored several strategies such as, employing larger neural network
architectures, increasing the number of boundary condition points and implementing a denser
grid of collocation points. However, regardless of these adjustments, we were consistently
unable to achieve a successful solution to the problem. It seems that, the complexity of the
problem at higher Reynolds numbers appears to be beyond the capabilities of our current
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implementation, necessitating further research or alternative approaches to tackle this
challenging scenario.

Figure 28Figure 26 shows how both the Physics loss and Boundary conditions loss terms for
Re=1000 evolve over time (number of epochs). Finally, in Figure 29Figure 27 we see an
illustration of the failure of PINNSs to approximate the numerical solution provided by Ghia et
al [16].
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Figure 28. The Physics & Boundary Condition Mean Squared Errors separately reported for Re=1000 over the number of
epochs.
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Figure 29. The predicted by the PINN u & v velocity field for Re=1000 illustrated as 2d contour plots on the left plot
column. On the right plot column can be seen the PINN prediction for the mid-section values compared with the
numerical solution (red dots).
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3.4 Results of Static Piston Flow problem

The Static Piston Flow problem serves as our final and most demanding evaluation of the PINNs
within this thesis. In Static Piston Flow Problem, we determined that the Reynolds number of the
flow was 15625, indicating a chaotic turbulent flow regime. This problem involves a four-
dimensional domain, including x and y spatial coordinates, time t, and the position of injection,
representing various initial conditions applied to the top wall of the piston. Static Piston Flow
is not a standard benchmark problem found in literature, making it difficult to obtain solutions
from public sources. Typically, such complex problems are solved using computational fluid
dynamics (CFD) software like OpenFOAM or similar tools. In our case, the numerical solution
was provided by Gamma Technologies, a leading company in automotive computer-aided
engineering (CAE), utilizing the Stable Fluid method.

The problem was solved seven times, each corresponding to a different injection position as
shown in Figure 14. Our dataset consists of a four-dimensional regular grid with the following
dimensions:

e [X*Y *T=*#Of Injection Pts] = [32 * 32 * 250 * 7]
o Total collocation points: 1,792,000
o Boundary condition points: 224,000
o Initial condition points: 7,168
For each point in the dataset, we know the values of the system states U, V, and P.

We intend to apply PINNSs (Figure 30. The PINN architecture that represents the solution of Static
Piston Flow problem.) in an unsupervised learning manner. Therefore, the provided dataset will
not be used to train the neural network parameters. Instead, it will serve to evaluate the validation
data error, providing a metric to assess whether the PINN can accurately approximate the
problem's solution.
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Figure 30. The PINN architecture that represents the solution of Static Piston Flow problem.
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Similarly, as our previous experiments in Lid Driven Cavity Flow, we initially relied solely on
the BFGS optimization method until convergence. Our approach utilized a PINN architecture
featuring five hidden layers, each containing 40 neurons. Despite achieving low levels of
physics and initial/boundary condition errors, the PINN consistently struggled to significantly
reduce the data validation error. We conducted further experiments, exploring various
combinations of neural network architectures and optimization techniques, including
incorporating the Adam optimizer as a warm starter. Unfortunately, these additional training
attempts yielded similar results, maintaining the error pattern illustrated in Figure 31 throughout
all iterations.
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Figure 31. The Physics, Boundary Condition and Data validation Mean Squared Errors separately reported over the
number of epochs. lllustrates the weakness of the PINN to reduce the data validation error while the Physics & Boundary
Condition error have achieved low values.

Given the complexity of the problem at hand, some might argue that the current neural network
architecture of 5 hidden layers lacks sufficient capacity to fully capture the underlying dynamics
of the system. To investigate this hypothesis, we've chosen to leverage the available dataset and
employ a traditional supervised learning approach with the existing neural network architecture.
This strategy allows us to assess whether the network's performance improves when trained
using a more conventional method, potentially revealing insights about weaknesses and
limitations of PINN methodology.

We conducted the following training scenarios using the corresponding pairs of NN
architectures and optimizers.

e 4 Hidden layers, 30 neurons each using Adam
e 4 Hidden layers, 30 neurons each using BFGS
e 4 Hidden layers, 20 neurons each using Levenberg-Marquardt
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The Machine Learning Assistant (MLA) tool from Gamma Technologies was utilized for this
study. All training sessions were conducted for 1000 epochs to ensure a fair comparison. Figure
32. The Root Mean Squared Errors achieved by Adam, BEGS and LM using supervised learning against the PlNN.presents
the Root Mean Squared Errors (RMSE) for the vertical velocity across various training methods.
Upon analyzing the results, we observe that supervised learning techniques consistently
outperform the PINN method by at least one order of magnitude in terms of accuracy. Notably,
both BFGS and Adam were employed to optimize the same neural network architecture, yet
BFGS demonstrates superior performance compared to Adam, indicating potential premature
stagnation in Adam's optimization process. LM stands out as the clear winner among the tested
optimizers, achieving accuracy one order of magnitude higher than its counterparts (Figure 33.
The prediction of v velocity by an MLP (4x20) trained by the LM using supervised Iearning.and Figure 34) and two
orders of magnitude better than PINN. Furthermore, LM accomplishes this level of accuracy
using a smaller architecture and exhibits faster convergence rates compared to the other two
optimizers.

The significant advantage of the Supervised Learning approach over PINN suggests that the
primary cause of PINN's underperformance is not related to the neural network's ability to learn,
but rather stems from the inherent challenges in optimizing the more complex optimization
landscape of PINN training process. PINN requires satisfying both data (boundary/initial
conditions) fitting and physical constraint satisfaction simultaneously. This dual objective often
leads to more challenging optimization problems compared to standard supervised learning
tasks.

Error vs. Iteration for Dataset Combined_Dataset, Case - 1, Response vo[mis]
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Figure 32. The Root Mean Squared Errors achieved by Adam, BFGS and LM using supervised learning against the PINN.
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Prediction of v velocity using a NN (4 hidden leyers 20 neurons each) trained with LM
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Figure 33. The prediction of v velocity by an MLP (4x20) trained by the LM using supervised learning.
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Figure 34. The prediction of v velocity by an MLP (4x30) trained by the BFGS using supervised learning.
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4 Chapter 4: PINN’s pathologies — Possible Enhancements

PINNs have emerged as a promising tool for PDEs and modeling complex physical systems.
Despite their potential, PINNs can fail in various scenarios. Training a PINN is a hard
optimization problem that under some conditions can lead to a Neural Network that does not
represent a physical solution. This chapter indicates the pathologies and explores the primary
reasons behind PINN failures, providing insight into the challenges faced by this innovative
approach.

4.1 PINNS’ issues

41.1 Automatic differentiation is not without a cost

In PINNs, Automatic differentiation (AD) is used to compute derivatives of the neural network
output with respect to the inputs. This is essential for enforcing physical laws and boundary
conditions within the network. AD allows for efficient computation of gradients required for
optimization algorithms. It eliminates the need for manual derivation of analytical derivatives,
which would be impractical for complex differential equations and neural networks.

However, the incorporation of AD into PINNs leads to an increased computational effort
compared to a more classic Supervised Learning scenario:

Each calculation of a 1% order derivative with respect to an input doubles the size of the
generated computational graph which affects accordingly the computational effort and the
memory consumption as well. Calculating a 2" order derivative with respect to an input
demands four times more calculations and memory than a simple forward propagation of a
classic MLP in Supervised Learning. Considering that the loss function often involves multiple
evaluations of the network and its derivatives, someone can easily understand that the
computational cost and memory consumption become a very considerable factor in PINN’s
training.

4.1.2 Overfitting and Under-constrained Optimization

A fundamental issue in PINN implementation is the risk of overfitting and under-constrained
optimization. When the neural network's capacity exceeds the information provided by the
collocation and boundary condition points, it may memorize noise rather than learn meaningful
patterns. This phenomenon is particularly pronounced in sparse sampling regimes, where
insufficient constraints allow the network to converge to unphysical solutions despite achieving
low training loss values. On the other hand, this problem could be mitigated by increasing the
sampling density, but this would make PINNs suffer more from the curse of dimensionality
losing so one advantage against the traditional numerical methods.

4.1.3 Competing optimization terms
The main reason PINNs suffer from competing optimization terms is due to the nature of their
objective function. Typically, a PINN's loss function consists of two primary components:

e Boundary Conditions loss term: Encourages the network to fit the given boundary
conditions points accurately.
e Physics loss term: Ensures that the predicted solutions satisfy the underlying physical
laws.
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These two terms can vary significantly in scale or in error landscape and often compete during
the training process. The competition leads to a hard multimodal optimization problem which is
difficult to be solved.

Minimizing the boundary conditions loss term may lead to solutions that don't perfectly adhere
to the physical laws. Conversely, strictly enforcing the physics loss term might result in poor
fitting of the actual boundary conditions. If during PINN optimization one of these terms is not
minimized sufficiently the solution found will be sub-optimal or even unphysical.

4.1.4 Sensitivity to Hyperparameters

PINNs exhibit high sensitivity to various hyperparameters, including network architecture,
optimization algorithms, and collocation point selection. Finding the optimal configuration for
these parameters can be challenging, especially for complex problems. Suboptimal choices may
lead to poor performance or failure to converge. Additionally, even for an optimal configuration
found the solution can vary drastically for different training trials. All the above highlight the
need for systematic approaches to hyperparameter tuning.

4.1.5 Difficulty in Capturing Complex Dynamics with large domains

PINNs face significant obstacles when applied to certain classes of physical problems
characterized by intricate dynamics. These challenges arise primarily in systems that exhibit
pronounced nonlinearity, broad spectral energy distributions, and heightened sensitivity to
initial conditions [17] [18].

Two paradigmatic examples of such complex systems are:

1. Kuramoto-Sivashinsky Equation: This partial differential equation models various
physical phenomena, including flame propagation and fluid flow. It is renowned for its
chaotic behavior, presenting a formidable challenge for PINNs due to its highly
nonlinear dynamics and sensitivity to initial conditions.

2. Navier-Stokes Equations in Turbulent Regime: These equations govern fluid motion and
heat transfer. When applied to turbulent flows, they exhibit complex, multiscale
phenomena characterized by broadband energy spectra. The chaotic nature of turbulence
poses significant difficulties for PINNs in capturing both large-scale structures and
small-scale fluctuations accurately.
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4.2 PINNSs’ enhancements

421 Coupled Automatic and Numerical differentiation

Coupled-Automatic-Numerical Differentiation Method as per Pao-Hsiung Chiu et al [19] has
been presented as one of the candidate solutions for handling the Overfitting and Under-
constrained Optimization problem of PINNSs.

To better understand the nature of this problem one can think the following scenario of the plot
in Figure 35. Is given a solution of a hypothetical PDE which is represented by the black curve.
A training process of a PINN that will evaluate the error in the following boundary and
collocation points (dotted) using AD is possible to lead to the paradox of an unphysical solution
(magenta) that satisfies almost to machine precision the PDE and the boundary conditions.
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Figure 35. The paradox of an unphysical solution (magenta) that satisfies almost to machine precision the PDE and the
boundary conditions [19].

The authors to alleviate this issue, they employed Numerical Differentiation to replace AD for
the computation of differential operators required in PINNSs.

ou uUlx+Ax;w)—1(x —Ax;w)

ax 2Ax

Eq. 7
u  U(x + Ax;w) = 20(x; w) + 0(x — Ax; w)
ax2 Ax?
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The numerical differentiation method computes differential operators using nearby support
points around each collocation point. This novel approach, termed n-PINNs, seeks to adjust
gradient behaviors during training within localized regions of the solution space, rather than
focusing solely on individual collocation points. Applying n-PINNs to various benchmark
problems resulted in enhanced accuracy. These experiments demonstrated that n-PINNs can
consistently produce reliable solutions across both sparse and dense sampling scenarios.

However, Numerical differentiation despite the positive impact to PINNs training, it is known
that introduces error in the calculation of the derivative terms of the PDE. The authors going
even further tried a Coupled Automatic and Numerical differentiation method for calculating
the derivatives that gave even better accuracy levels in PINNSs training as can be shown in Figure
36.

0.0 0.1 0.2 03 04 05 06 0.7 0.8 u.n u'| 2 y & .
X x X

(a) a-PINN (b) n-PINN (c¢) can-PINN
Figure 36. A qualitative comparison plot of the 3 different differentiation approaches [19].

4.2.2 Respect Temporal & Spatial Causality

Sifan Wang et al [20] in “Respecting causality is all you need for training physics-informed
neural networks” claim that classic PINNs during their training do not respect spatio-temporal
causal structure which is embedded to the evolution of dynamical systems. The authors believe
that this fundamental limitation lead PINN models to erroneous solutions.

To grasp this concept, consider how traditional numerical techniques approach solving Partial
Differential Equations (PDEs). These methods generally employ sequential algorithms that
discretize time in a specific manner. The key point here is that the solution at any given time (t)
must be fully determined before attempting to approximate the solution at the next time step (t
+ At). In PINNSs instead, the PDE is treated as a global optimization problem that should be
solved at once to the whole time or spatial domain. Such an optimization problem that does uses
incorrect local state information is very difficult to be solved or even to converge to a valid
physical solution.

The research paper tackles this issue by introducing a straightforward modification to the loss
function used in PINNs as follows:

14
L(8) =7 > Wil (¢, ©) .
1
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Where w; is

N
w; = exp —sz L,(t,, 0) Eq.9
k=1

From these equations, we can deduce that the weight (wi) assigned to the current time step's
residual loss is inversely related to the magnitude of the cumulative residual losses accumulated
from previous time steps. As a result, the current time step's loss function L(ti, 6) will not be
minimized unless all previous residuals Lr (t, 8) decrease to some small value such that wi;
becomes large enough.

4.2.3 Levenberg Marquardt for PINNs

In the following paper [21] “Shallow Physics Informed Neural Networks Using Levenberg-
Marquardt Optimization” the researchers are trying to examine the potential use of Levenberg-
Marquardt (LM) as a candidate game changer for the training of PINNs. So far, the most
research on PINNS is focused on finding novel NN architectures or modifying the loss function
accordingly to achieve better results in accuracy and training robustness. Based on their
research it is established that the choice of the training algorithm is as important as the
architecture and loss function. Traditionally, PINNs use MLPs and employ gradient descent
optimization algorithms such as Adam and L-BFGS for training the parameters of the Neural
Network. Adam and L-BFGS are the algorithms of choice in scientific deep-learning because
of their attractive ability to scale efficiently in large numbers of parameters. Replacing them
with LM is no so simple, mainly because the LM introduces an important burden per epoch in
both calculations and memory consumption. LM needs the maintenance, calculation and
inversion of large and dense matrices such as Jacobian and Hessian’s approximation. To keep
this burden in acceptable levels, the researchers trained using LM only shallow neural networks.
MLPs with only 1 hidden layer even if there are simple NN architectures are quite powerful if
are trained correctly. The results of this paper show that LM with shallow neural networks
consistently outperforms in accuracy by orders of magnitude the pair of Adam+L-BFGS with
multilayer neural networks for a specific class of problems.
Finally, the authors express their belief that by using better optimization algorithms along with
applying domain decomposition of complex problems into smaller subdomains, Shallow
Networks might be able to compete with Deep Networks in representing complex physical
phenomena.

4.2.4 Domain Decomposition & XPINNs

XPINNs stand for eXtended Physics-Informed Neural Networks [22]. They represent an
extension of the original PINN architecture. One of the key features of XPINNS is their use of
domain decomposition. This means the entire space-time continuum is divided into smaller
subdomains (Figure 37).

The domain decomposition strategy employed by XPINNSs offers several benefits:
1. Parallelization Capacity:
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o Each subdomain can potentially be processed independently.

o This allows for efficient parallel computing, which can significantly reduce
computation time for large-scale problems.

2. Large Representation Capacity:

o By dividing the problem into smaller subdomains, XPINNSs can handle larger and
more complex problems.

o Each subnetwork can focus on a specific part of the problem, potentially leading
to better overall accuracy.

3. Efficient Hyperparameter Tuning:

o With XPINNs, hyperparameters can be optimized separately for each
subdomain.

o This allows for more tailored solutions to different aspects of the problem.
4. Effectiveness for Multi-scale and Multi-physics Problems:

o Different subdomains can capture phenomena at various scales or physics
simultaneously.

o This makes XPINNSs particularly well-suited for problems involving multiple
physical processes or vastly different characteristic lengths/timescales.
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Figure 37. An illustration of how the domain decomposition works in X-PINNs [22]
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5 Conclusions

PINNSs is an innovative technology which expands the learning capabilities of standard NNs
beyond their current limits. PINNs can approximate physical systems not only by learning from
simulation data, as their ancestors, but also by solving directly the underlying system of
differential equations.

Our conducted experiments have shown that this technology is competitive in accuracy to
standard numerical methods for several benchmark problems. Our PINNs found to have the
same or even better accuracy levels compared to other implementations in the literature while
using smaller NN architectures and less boundary and collocation points.
However, the computational cost of their training introduced mainly by the Automatic
Differentiation overhead and its iterative nature make PINNs less efficient and appealing
compared to the established numerical solvers. Additionally, PINNs have shown difficulties in
finding reliable solutions as the complexity and non-linearity of the problem increases. We
showed that using MLPs having the same architecture as PINNs were able to learn the
underlying dataset, indicating in this way that the learning weakness of PINNSs is not related to
the learning capacity of the neural network but instead is consequence of the optimization
problem's complexity itself. Trying to locate answers to the endogenous pathologies of PINNS,
we studied several research papers, and we presented the most important as candidate solutions
for a future state-of-the-art implementation.

Finally, this master thesis is dedicated to those who have the belief that PINNs will play a vital
role to the shaping of the next generation neural network based PDE solvers.
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6 Future work

The findings of this study highlight several areas where further research could significantly
enhance the performance and applicability of Physics-Informed Neural Networks (PINNS).
Future work should focus on addressing the computational efficiency issues and improving the
reliability of PINNs for complex problems.

1. GPU acceleration: Implementing PINN training on GPU hardware could significantly
reduce computation time and enable larger-scale simulations. Optimizing the automatic
differentiation process for parallel execution on GPUs would be crucial.

2. Scalable second-order optimization: Developing more efficient second-order
optimization algorithms tailored for PINN training could lead to faster convergence and
improved accuracy. Adapting existing methods like BFGS or implementing scalable
novel variants of Levenberg-Marquardt could be a game changer in PINNSs training.

3. Coupling traditional numerical solvers with PINN methodology: Integrating PINN
methodology within established numerical methods could create hybrid approaches that
leverage the strengths of both paradigms. This could potentially combine the reliability
and efficiency of traditional solvers with the flexibility and generalization capabilities
of PINNSs.
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