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Abstract 
 
Since G-Protein Coupled Receptors (GPCRs) are engaged in a variety of signal 
transduction pathways in many pathophysiological situations, they are important 
targets for the development of novel drugs. GPR21 is a constitutively active orphan 
GPCR, which means that it remains in an active state even in the absence of an intrinsic 
ligand. GPR21 is involved in insulin sensitivity regulation. This suggests that it has 
potential as a therapeutic target for metabolic diseases, including type 2 diabetes. The 
small molecules GRA2 and UCSF924 have been found to interact with GPR21, however 
their binding mechanisms still remain unclear. Here we propose interaction scenarios 
between these ligands and GPR21, using homology modelling and molecular docking 
methods. Our results show that models with refined extracellular loop 2 (ECL2) 
regions, especially the ones where the whole loop or immersed region (residues 169-
178) is refined, display enhanced druggability and better docking outcomes with GRA2 
and UCSF924. In the immersed region and whole loop refined models we observed 
that the residue H174ECL2, which is important for the receptor activation, is displaced 
from the orthosteric pocket. Additionally, AlphaFold predictions suggest a side pocket 
between TM1, TM2, and TM7, similar to that of GPR52, where both ligands could form 
stable hydrophobic interactions. These findings indicate that GRA2 and UCSF924 are 
likely to bind either within the orthosteric pocket or the side pocket, reducing GPR21’s 
constitutive activity and therefore act as GPR21 inhibitors. Our models provide a basis 
for further molecular dynamics simulations and in vitro studies to confirm these 
interactions and explore the therapeutic potential of targeting GPR21. 
 

 
Keywords:  GPR21, GPCR, G-Protein Coupled Receptor, Molecular Docking, Homology 
Modelling, GRA2, UCSF924 
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Purpose of the study 
 
The aim of this work is to investigate the mechanisms of interaction between GRA2 
and UCSF924 and the G protein-coupled receptor 21 (GPR21) using structural analysis, 
docking simulations and homology modeling. GPR21 is a member of the GPCR family, 
which is involved in many physiological and pathological processes and is essential for 
cellular signaling. GPR21 was found to be constitutively active. This activity, in the 
absence of an intrinsic ligand, has been implicated in several diseases, including 
neuroinflammatory and metabolic disorders. GRA2 and UCSF924 have been shown to 
interact with the receptor, but how they interact with GPR21 is not well understood.   

We are refining models of GPR21, focusing on extracellular loop 2 (ECL2), and 
investigating whether the two ligands are likely to interact with the receptor in its 
orthosteric pocket. By comparing the druggability and docking scores of different 
refined models, we aim to identify which structural configurations of GPR21 are most 
likely to effectively accommodate GRA2 and UCSF924. 

In addition, we are investigating the existence of an alternative binding site, such as a 
side pocket, where the ligands could interact with GPR21. For this purpose, models of 
GPR21 were generated using Alphafold2, with the main goal of finding a side pocket 
similar to the one found in GPR52 due to their high sequence homology. Based on this, 
we propose interaction scenarios for GRA2 and UCSF924 with GPR21, which could 
help to understand their effects on the activity of the receptor. 

This study suggests two possible ways that GRA2 and UCSF924 could interact with 
GPR21: either by binding to the main pocket of the receptor to alter its high activity, 
or by binding to a side pocket to disrupt its constant signaling. 

The goal of the study is to deepen the understanding of the structure and function of 
GPR21, which could help in the development of new treatments targeting this 
receptor. By learning more about how GPR21 interacts with specific molecules, this 
research could have a significant impact on drug discovery for diseases related to 
GPCR pathways. 
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2. Introduction 
2.1 G-Protein Coupled Receptors (GPCRs) 

With 4% of all protein-coding genes belonging to the G protein-coupled receptors 
(GPCRs), they are the biggest receptor superfamily [1][2][3]. GPCRs mediate the 
effects of two-thirds of hormones and neurotransmitters. Their influence on human 
physiology is reflected in medicine, where GPCRs are the target of 34% of marketed 
drugs. As a result, a sizable community of researchers studying receptors and drug 
discovery works with GPCRs [4][5].  

The main structural characteristic that is shared among GPCRs is the seven 
hydrophobic transmembrane (TM) segments, with an external amino terminus and an 
intracellular carboxyl terminus. Great homology is found within the TM segments 
among GPCRs. On the contrary, areas such as the carboxyl terminus, intracellular loop 
(ICL) between TM5 and TM6 and the amino terminus present great variability [6]. 

The GPCR superfamily is divided into 6 classes, based on functional similarities and 
amino acid sequence [7] [8]:  

 Class-A: “Rhodopsin-like” GPCRs. 80% of GPCRs 
 Class-B: Secretin receptor family 
 Class-C: Metabotropic glutamate receptors 
 Class-D: Fungal mating pheromone receptors 
 Class-E: Cyclic AMP (cAMP) receptors 
 Class-F: Frizzled/Smoothened 

2.2 Class A GPCRs and activation mechanism 

Seven alpha-helical transmembrane (TM1–7) segments, an eighth intracellular helix 
(H8), three intracellular loop regions (ICL1-3), three extracellular loop regions (ECL1-
3), an extracellular N-terminus, and an intracellular C-terminus make up the structural 
components of class A GPCR. Ligands that activate the class A GPCRs bind to an 
orthosteric site created by the TM domains, which is located at the extracellular side 
of the receptor. Variations in binding pocket size, shape, and electrostatics affect 
receptor-ligand selectivity [9][10]. 

The receptor undergoes a conformational shift upon agonist engagement that causes 
intrahelical residue interactions to reorganize. Activation of Class-A GPCRs results in 
the movement of the intracellular ends of TM5, TM6 and TM7. Therefore, contacts 
between residues of TM3 and TM6 are eliminated, whereas new ones are being 
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formed between TM3 and TM7, along with the structural repacking of TM5 and TM6. 
Since TM3 has state-specific contacts to other TM domains, it frequently experiences 
helical rotation upon receptor activation and operates as a hub for activation state 
stabilization [9]. The outward movement of transmembrane helix 6 (TM6) has been 
characterized as the hallmark of class A GPCR activation [10]. (Fig.1) [10]. (Fig.1)  

 

Figure 1: Common activation model of class A GPCRs (adapted from [11]) 

 

This conformational shift, stimulates the activation of the G protein located to the 
intracellular side of the Class-A receptor. On the Gα subunit of the heterotrimeric G 
protein, guanosine triphosphate (GTP) replaces guanosine diphosphate (GDP) 
following G protein activation. The Gα and Gβγ subunits of the G protein separate when 
GDP is exchanged for GTP, and both subunits can subsequently alter the function of 
effectors downstream in cell signaling pathways. Binding of the regulator of G protein 
signaling protein (RGS) promotes GTPase activity, which aids in the restoration of the 
basal state. Receptor affinity for the ligand is decreased and the complex returns to 
its basal state when GTP is hydrolyzed to GDP (Fig.2) [9].  
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Figure 2: Class A GPCR activation cycle 

 

2.2.1 GPCRs as drug targets 
 
GPCRs are highly effective and promising targets in pharmaceuticals [12][13][14][15]. 
For decades they have been the subject of intense study by the pharmaceutical 
industry, because of their physiological significance and their small molecule targeting 
accessibility [15]. These receptors are essential to how the body reacts to a wide 
variety of external or endogenous stimuli, which includes proteins, peptides or 
macromolecules, small molecules, photons and even ions. This wide variety of input, 
depicts accurately the amount of different functions that GPCRs are involved in. GPCR 
signaling controls immunological response, cell organization, and cognition [15]. The 
receptors  are key targets for small-molecule therapies used in treatments for cancer, 
viral infections, inflammatory conditions, metabolic disorders, and Central Nervous 
System (CNS) disorders [12][15].  

GPCRs are located in the cell membrane which allows pharmacological access to them. 
Many GPCR binding pockets' topology, location, and physical and chemical 
characteristics have assisted the identification of small molecules that have been used 
in medicine for many years [15]. 
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Over 35% of newly introduced medications target GPCRs, a number that represents 
more than 27% of the global pharmaceutical market. Only about 13% of GPCRs (103 
members) are effectively targeted by FDA-approved medications. Of these druggable 
GPCRs, only half have known endogenous ligands [12]. More than 400 of them have 
the potential to be targeted for therapeutic treatments, whereas for roughly 120 
orphan GPCRs (oGPCRs) there are no known endogenous ligands and their functional 
roles are still to be discovered [16][17][18].  

According to GPCRdb 94% of approved drugs are targeting Class-A GPCRs, 4% of them 
target Class-B, and Classes C and F occupy 1% respectively. (Fig. 3) 

 

Figure 3: Class targets of approved and distinct drugs. Data was extracted from 
https://gpcrdb.org/drugs/drugstatistics 

 

There are many reasons regarding the low number of FDA-approved drugs targeting 
GPCRs. First, many GPCRs that could be potentially targeted by drugs, especially 
oGPCRs, have biological roles that are still not fully understood [12][15]. Also, even in 
cases of GPCRs that are already linked to specific diseases, traditional drugs (agonists 
or antagonists) that bind into the highly conserved orthosteric pocket have not always 
found clinical application, because they cause off-target effects [15][19][20]. 

Despite the clear interest in GPCRs as potential drug targets, another reason why they 
remain understudied is due to technical and handling difficulties. Many of the 
understudied receptors are challenging to analyze in assay settings because of their 
low cell expression levels, their unique and complex behaviors and their involvement 

Class Targets

Class A Class B Class C Class F
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in pathways that require more costly, time-consuming methods. Additionally, lack of 
detailed structural information and specific ligands further complicates research in 
silico. In vivo studies also face challenges because of the differences between animal 
models and humans in receptor subtypes and signaling mechanisms [21]. 

2.3 Diseases linked to GPCRs 
 
GPCRs are involved in a wide range of cellular and physiological processes. Therefore, 
their abnormal activity or expression is connected to many disorders.[22] In Figure 4 
there are listed some of the most common disease indications of approved drugs that 
are targeting GPCRs according to GPCRdb. 

 

Figure 4: Disease indications of approved drugs linked to GPCRs. Data extracted from 
https://gpcrdb.org/drugs/drugstatistics [23] 

More and more studies are finding that abnormal GPCR expression and activation are 
linked to various types of human cancers. For example, some GPCRs are found in high 
levels in different tumors, and certain GPCR variants can increase the risk of cancer 
[24]. A study has shown that alterations in the melanocortin-1 receptor (MC1R) gene 
are connected to an increased risk of skin cancer development.[25] Abnormal 
activation of GPCRs due to exposure to high concentrations of specific chemicals, such 
as LPA (lysophosphatidic acid), S1P (sphingosine-1-phosphate) (bioactive lipids), and 
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chemokines, has been linked with processes such as drug resistance, cancer spread, 
blood vessel development, cell transformation, and growth [24]. 

GPCRs play important roles in metabolism and energy homeostasis. Some have been 
linked to metabolic diseases like obesity and type 2 diabetes [26]. Studies have found 
that some GPCRs n chare involved in processes like nutrient sensing, appetite control, 
and the metabolism of glucose and fatty acids and respond to endogenous 
metabolites (fatty acids, sugars, amino acids) that are usually dysregulated in 
metabolic diseases [26][27]. 

Over 30 diseases are linked to GPCR loss or gain, which can be caused by mutations.  
Apart for cancer, these mutations can activate GPCRs constitutively, potentially 
leading to cellular transformation as well. For instance, mutations in α1B-adrenergic 
receptor can enhance receptor/G protein coupling even without agonist ligands. 
Diseases like autosomal dominant non-autoimmune hyperthyroidism and familial 
male-limited precocious puberty are caused by activating mutations in TSH receptor 
and LHR genes, respectively. Conversely, loss-of-function mutations in GPCRs are 
associated with diseases like nephrogenic diabetes insipidus syndrome and retinitis 
pigmentosa, disorders that are both caused by gene mutations [28]. 

Over 800 GPCRs exist in the body, and mutations in different ones lead to conditions 
like hypothyroidism, hyperthyroidism, nephrogenic diabetes insipidus, and fertility 
issues [28]. 

 

2.4 Orphan GPCRs (oGPCRs) 
 
Most GPCRs were initially discovered as "orphan" receptors [29]. That means that 
their ligands were still unknown [29][30]. It was believed that they belonged to a 
supergene family and subsequently they would share sequence similarities. 
Researchers proceeded the search for new GPCRs using techniques like homology 
screening and low stringency hybridization. However, the discovery of receptors 
through homology screening faces the serious challenge of not knowing their 
pharmacological role and their involvement in various functions, and therefore not 
having any information about their endogenous ligands [29]. 

The GPCR superfamily consists of more than 800 members [28]. 49% of them are 
olfactory receptors, most of which are orphans, 30% are natural ligand receptors, 15% 
are orphan GPCRs and 6% are used are identified drug target receptors and are used 
in clinical applications [31]. (Figure 5) 
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Figure 5: Percentage of the orphan GPCRs in the GPCR superfamily. Graph adapted from [31] 

  

oGPCRs are discovered to be abundant in tissues associated to immunity and 
metabolism, as well as the brain, and they have a clear tissue-specific distribution. 
Many physiological and pathological processes, such as cell growth and survival, 
metabolism, immunological response, allergic reaction, cognition, movement control, 
and reward, are mediated by oGPCRs and the downstream proteins that are 
associated with them [12]. One major area impacted by orphan GPCR research is 
sleep, and in recent years it has been shown than GPCR systems are involved in many 
aspects of sleep and the circadian rhythm as well. Other physiological responses that 
are affected by GPCRs is appetite and food intake, and stress-related anxiety [29]. 

On the other hand, malfunctions of known GPCRs and oGPCRs may result in cancer, 
neuropsychiatric disorders, metabolic disorders, immunological diseases, and other 
human disorders. For this reason, the creation of small compounds that specifically 
target oGPCRs offers a valuable and unexplored field for medication research and 
development [12]. 

 

2.5 Deorphanization approaches 
 
The process of identifying ligands that are highly selective to orphan GPCRs is called 
deorphanization [31]. 

Olfactory GPCRs 
(most are orphans)

49%

Natural ligand 
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Orphan GPCRs 
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targets
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Before deorphanization, it is crucial to determine the clinical relevance of the orphan 
GPCR. The GPCR’s physiological role is explored by phenotypic characterization of 
knockout (KO) mouse models, and in situ hybridization which both assist in evaluating 
the receptor’s potential as a therapeutic target. Reliable screening techniques, good 
ligands, and sufficient receptor expression are necessary for successful reverse 
pharmacology, which is the first method that was used to deorphanize GPCRs [1]. It is 
a widely used method, where the orphan GPCR is first expressed in eukaryotic cells so 
it can be studied. Then the receptor is tested in various functional assays to screen for 
potential ligands. Once a specific ligand is identified, it is used to explore and 
understand the biological and physiological roles of the receptor [30].  

The first successful deorphanizations in 1988 involved serotonin 5-HT1A [32] and 
dopamine D2 receptors [33]. GPCR discovery involved low-stringency hybridization for 
identifying GPCR subtypes [34]and PCR-based methods for discovering novel orphan 
GPCRs [1][29].  

GPCR deorphanization peaked in the late 1990s and early 2000s, with about 10 
deorphanization reports per year, fueled by industrial funding, high-throughput 
reverse pharmacology, and human genome sequencing [1]. In recent years, the 
number of newly discovered orphan GPCRs has grown, however, research into their 
functions has been slowed down by the challenge of identifying their ligands and by 
the unique structures of these receptors [31] [35].  

 

2.6 GPR21 
 
GPR21 is a class A orphan GPCR with a potential role in type 2 diabetes [7][36]. In 
humans Gpr21 gene is located in chromosome 9 (chromosome 2 in mice) [37]. Its 
amino acid sequence is shown in Figure 6. GPR21 forms a stable complex with Gαs and 
is essential for transducing intracellular signals via cAMP [7]. It is broadly expressed, 
including in macrophages and some brain regions, especially the hypothalamus 
[36][37][38]. Knockout mice lacking GPR21 display improved glucose tolerance and 
increased insulin response, suggesting a role in regulating body weight and glucose 
metabolism [36]. Other studies have mentioned that inhibition of GPR21 increases 
glucose uptake in liver cells, indicating a negative effect on glucose uptake [39].  
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Figure 6: GPR21 amino acid sequence 

 

Mouse Gpr21 gene is located within the Rabgap1 gene on chromosome 2, and 
therefore it was questioned whether these metabolic improvements were due to the 
Rabgap1 disruption. In order to further examine the question that occurred, 
researchers developed CRISPR-Cas9 knockout mouse models, to ensure that the 
Rabgap1 gene remained intact. They found that removing the Gpr21 gene in human 
and mouse monocytes reduces their movement towards MCP-1, an inflammatory 
signal, without changing the level of its receptor, CCR2. Monocytes lacking GPR21 
show delayed movement in response to the inflammatory signal MCP-1. This delay is 
linked to lower activity in certain genes responsible for cell movement and adhesion, 
which might explain their reduced migration. This change in monocyte behavior 
suggests that GPR21 plays a role in controlling inflammation, which can impact both 
glucose control and inflammatory responses. Mice without GPR21 showed better 
glucose tolerance and less inflammation, while higher levels of GPR21 are linked to 
type 2 diabetes [40]. 

Targeting GPR21 could be a new way to treat diseases like atherosclerosis, where the 
inflammatory signals MCP-1 and CCR2 play harmful roles [40]. Additionally, GPR21 is 
a potential target for type 2 diabetes treatment, with its overexpression attenuating 
insulin signaling [41]. 

 

2.6.1 GPR21 and Type 2 Diabetes 
 
Obesity occurs, leading to chronic low-grade inflammation [42][43][44].  The body 
responds to obesity with an inflammatory response causing macrophages and other 
immune cells infiltrate adipose tissue and the liver. Adipose Tissue Macrophages 
(ATMs) accumulate in increased numbers within adipose tissue leading to the 
activation of proinflammatory pathways and the secretion of proinflammatory 
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cytokines. These cytokines impair insulin action in adipose tissue, leading to insulin 
resistance [45][46]. At the same time, macrophages are also recruited to the liver [47], 
where they activate proinflammatory pathways, resulting in decreased insulin-
mediated suppression of hepatic glucose production (HGP) [48][49][50][51]. The 
circulation of proinflammatory cytokines in blood, leads to insulin resistance in other 
tissues- apart from liver (Fig. 7). It has been found that GPR21 is highly expressed in 
temperature-sensing hypothalamic neurons and in macrophages. Therefore it poses 
as a potential target for new treatments for obesity and type 2 diabetes [38].  

 

 

Figure 7: The process of the development of insulin resistance as a result of obesity 
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2.7 Structural properties of GPR21 
 
As other Class-A GPCR members, GPR21 is comprised from seven transmembrane a-
helixes. These helixes are connected with three intracellular loops, responsible for the 
communication with the G-Protein and three extracellular loops. The N-terminus of 
GPR21 is located extracellularly, and the C-terminus is intracellular. 

In 2023, the 3D structures of GPR21 were determined by two different teams, with 
the use of Cryo-EM. The structures of the human GPR21 show the receptor coupled 
with different G-proteins [7][52]. In general, the transition from inactive to active state 
class A GPCRs is usually accompanied by structural conformation changes. Wong et. 
al compared Gs-coupled GPR21 with apo-GPR52 structures and mini-Gs-coupled 
GPR52, due to the high structural similarity that the two receptors show [7]. The 
GPR21 structure showed great conformational similarity to the mini-Gs-coupled 
GPR52, which is in an active state. Also, the outward movement of TM6 was observed 
(Fig. 8), which is a characteristic feature of Class-A GPCR activation. These 
observations strongly suggested that the GPR21 structure indicates that the receptor 
is in an active state [7].  

 

 

Figure 8: Superposition of GPR21-active state structure 8HMV (gray) and GPR21-inactive state model 
(downloaded from GPCRdb) (teal). The characteristic outward movement of TM6 is shown in orange. 

 
Figure 9A shows the W2656.48 rotation within the CWxP motif on TM6 upon ligand 
activation. This switch is crucial as it leads to the rotation of the side chains of F2616.44, 
in the PMF domain and W2656.48, causing TM6 to move closer to TM3 (Fig.9B). 
Regarding the sodium pocket, GPR21 side chains maintain a conformation that 
resembles more the GPR52 inactive state (Fig. 9C). Within the NPxxY motif, Y3047.53 
appears to have obtained a conformation indicating more similar to the active GPR52 
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(Fig. 9D). There is a salt bridge between D1263.49 and R1273.50 of the DRY motif, which 
keeps GPCRs in the inactive state. In the GPR21 structure, a rotameric switch is 
observed in the side chain of R1273.50, breaking the ionic lock (Fig. 9E). This allows 
change is important for the receptor to be able to couple with the G-protein. These 
observations further support that the GPR21 structure is in an active state [7] .  
 
 

 
 

Figure 9: Comparison of conserved motifs between GPR21 (8HMV), apo- GPR52 (6LI2) and miniGs-GPR52 complex 
(6LI3). A) transmission switch, B)PMF domain, C) Na+ Pocket, D) NpxxY domain, E) DRY domain ( Adapted from[7]) 

 
Studies have shown that ECL2 acts as a built-in agonist, promoting high basal signaling 
and stabilizing GPR21-G protein complexes. ECL2 contains a conserved 22-residue 
sequence, similar to GPR52 where a constitutive activity has also been observed. First 
half of ECL2 (residues 169–178) are found buried in the pocket (immersed region), 
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while the second half (residues 179–186) protrudes to the extracellular surface (cap 
region) (Fig. 10) [7][52].  

 

Figure 10: Regions of ECL2: cap region is represented with pink, and immersed region is represented with blue 

 

The placement of ECL2 is characterized by a few stabilizing interactions (Fig. 11): 

 K170 forms a key salt bridge with D176 
 Two π-π interactions: H174-Y268 and F178-F105 
 Conserved disulfide bond between C181 and C102 in TM3 

 

Figure 11: ECL2 stabilizing interactions 
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2.8 Constitutive activity and mechanism 
 
It has been shown that disrupting ECL2 conformation, by introducing mutations like 
replacing C181ECL2 to Alanine or K170 to Glutamic Acid, significantly reduces GPR21 
basal activity, which refers to the intrinsic receptor activity in the absence of a ligand.  
The deletion of ECL2 prevents GPR21 from forming a GPCR-G protein complex, 
explaining the reduction of GPR21 basal activity in both Gs and G15 cases.  Replacing 
parts of ECL2 (residues 170-178, and residues 179-186 respectively) with a 6-residue 
GS linker (GGSGGS) also results in a drop of the receptors basal activity (Fig. 12) [52].  

 

 

Figure 12: Constitutive activities of WT GPR21 and GPR21 ECL2 mutants in Gs (left) and G15 (right) signaling were 
assessed using the BRET (C181A: Cysteine to Alanine mutation, K170E: Lysine to Glutamic Acid mutation, 170-186: 
deleting these residues from WT GPR21, 170-178(GS) and 178-186(GS): replacing each region of WT GPR21 with  6-
residue linker (GGSGGS).  DRD2 and P2Y12: negative controls for Gs and G15 signaling (adapted from [52]) 

 

Additionally, replacing ECL2 with a flexible GS linker reduces cAMP accumulation 
mediated by Gαs protein. Three scenarios were explored, where two different 
sections of ECL2 (residues 169-178, and residues 179-186 respectively), and the whole 
ECL2 were replaced by a 6-residue GS linker (GGSGGS). In every scenario the cAMP 
accumulation was significantly reduced, whereas the overall expression of the 
receptor was not affected by any of these mutations (Figure 13) [7].  



 

27 
 
 

 

 

Figure 13:The effect of replacing different regions of ECL2 to cAMP accumulation compared to WT GPR21 (left), 
while the receptor expression remained unchanged by those mutations(right). (Adapted from [7]) 

 
When combined, these findings demonstrate how crucial ECL2 is for the baseline 
activation of the receptor in the absence of a ligand [7][52].  

 

2.9 Ligands 
 
Even though GPR21 is an orphan receptor, there are two compounds that have been 
found to interact with the receptor.  

GRA2 
  
The effect of GRA2 (Fig. 14) has been studied in macrophages, M1 (pro-inflammatory 
phenotype) and M2 (anti-inflammatory phenotype) macrophages and it was found 
that it can reduce GPR21 basal activity. 

Additionally, the same study shown that GPR21 caused MAPKs activation and 
negatively affected insulin signaling, results that have been linked to the promotion of 
macrophage concentration in the tissue [39], [41]. Since GRA2 is an inverse agonist of 
GPR21, it can prevent receptor activation and therefore prevent these events. Its 
properties are shown in TABLE 1. 



 

28 
 
 

 

Figure 14: 2-naphthalen-1-yloxy-N-(2-phenoxyphenyl)acetamide (GRA2) 

TABLE 1: PROPERTIES OF GRA2 

Property Name Property Value 
Molecular Weight 369.4 g/mol 
Hydrogen Bond Donor Count 1 
Hydrogen Bond Acceptor Count 3 
Rotatable Bond Count 6 

 
UCSF924 
 
UCSF924 (Fig. 15) (properties shown in TABLE 2) is included in the ChEMBL database 
as a compound evaluated against GPR21 as it was part in  a high-throughput screening 
using PRESTO-Tango assay. The purpose of the PRESTO-Tango system is to quantify 
the important GPCR signaling event known as β-arrestin2 recruitment. With the help 
of this assay, substances can be profiled across a variety of GPCRs to determine 
whether they have the potential to be agonists or antagonists [53]. Since UCSF924 is 
the only listed compound linked to GPR21 in ChEMBL, we used molecular docking to 
investigate more of its possible interactions with the receptor. 

 

Figure 15: 6-Methyl-2-{[(3-phenoxypropyl)amino]methyl}quinolin-4-OL (UCSF924) 
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TABLE 2: PROPERTIES OF UCSF924 

Property Name Property Value 
Molecular Weight 322.4 g/mol 
Hydrogen Bond Donor Count 2 
Hydrogen Bond Acceptor Count 4 
Rotatable Bond Count 7 

 
 
2.10 Comparison with GPR52  

 
The Gpr52 gene was discovered through homology searches of high-throughput 
genome databases [54]. Studies have linked the Gpr52 gene with the risk of 
schizophrenia development [55][56]. GPR52 is another oGPCR, with a promising 
potential for being a druggable target. About 70% of this receptor’s expression in 
human tissues is in striatal brain regions [12][57]. 

It has been found that GPR21 has a high structural similarity to GPR52 (Fig.17) and the 
two receptors share 71% sequence homology (Fig16) [7]. 

 

 

Figure 16: Sequence alignment of GPR52 and GPR21: green denotes essential residues for structural characteristics; 
yellow, less than 5.0 Å to ligand 
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Figure 17: Superposition of GPR21 (8HMV-grey) and GPR52 (6LI3-blue). Extracellular side is on the left, and the 
intracellular side view is on the right. 

Like in GPR21, the ECL2 domain is found inside the orthosteric pocket, resulting in a 
high basal activity in the absence of an intrinsic ligand [12]. Figure 18 shows the side 
chains of the amino acids that are deeper into the orthosteric pocket of the two 
receptor, and they have very similar conformations in both.  

 

Figure 18: Superposition of GPR52 (blue) and GPR21 (gray). The amino acids that are deeper in the orthosteric 
pocket are shown as sticks 

While ECL2 occupies the orthosteric binding site of GPR52, a side pocket has been 
found, surrounded by TM1, TM2 and TM7 (Fig. 19) [52]. Studies have shown that even 
though the similarity between the two receptors in the side pocket region is quite high 
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(59% identity), neither of the GPR52 agonists (c17, m7), are capable of increasing the 
basal activity of GPR21 as well [58][59][60].  

 

 

Figure 19: Side pocket of GPR52 (yellow) 

 
One study explored whether GPR21 has a similar side pocket with GPR52. It was 
determined that the N-terminal region is crucial, since GPR52 agonists could activate 
GPR21 signaling when the N-terminal region of GPR21 was replaced with that of 
GPR52 [52]. Mutations in the transmembrane domain did not enable GPR21 to bind 
GPR52 agonists. Finally, the single residue L16 in GPR21 (corresponding to P28 in 
GPR52) is of great importance. The absence of proline at this position in GPR21 leads 
to the loss of binding capability for GPR52 ligands [52].  

2.11 Advances in Drug Discovery 
In 2015, more than 120 structures from 32 different receptors were available [61][62]. 
Now, according to GPCRdb, there are a total of 249 entries referring to representative 
structures (state and receptor) of human receptors. 164 of them were solved by cryo-
electron microscopy (cryo-EM) and 85 by X-ray crystallography [4][63].  

2.11.1 Structural biology methods 
 
X-Ray Crystallography 
 
X-ray crystallography was first reported in the early 1930s [64][65], while the atomic 
structure of myoglobin was published nearly 30 years later [66]. In this method, a 
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single crystal is exposed to a focused beam electromagnetic waves, the X-rays. When 
the X-rays hit the crystal, they create a diffraction pattern that is captured as 2D 
images. By rotating the crystal and taking multiple 2D images from different angles, in 
order to combine them into a detailed, atomic-level picture of the crystal [67]. 

It was not until 1976 that the concept was introduced that knowing the structure of a 
protein could greatly aid in the design of specific ligands [68]. This idea led to the 
"rational drug design cycle", where knowing the structure of a drug-target complex 
can help optimize the drug.[69] Now, X-ray Crystallography is commonly used for drug 
characterization, with the modern techniques such as crystallization automation 
faster detectors, and automated structure solutions. The benefit of these 
developments is that macromolecular structures may now be determined quickly, 
sometimes in a matter of days [70][71].  

 
Cryo- EM 
 
Cryo-EM is a method of creating microscopic images of individual molecules, which 
does not require crystals. This is achieved by freezing the solution of the protein (or 
other molecule) and then exposing it to an electron beam. These help to reconstruct 
the 3D structure of the molecule. These structures are helpful in understanding how 
proteins function, how they might be affected by disease, and how they might be 
targeted by drugs.  

For many years, X-ray crystallography was the preferred method for determining 
protein structures. It can produce high quality images, but it comes with the limitation 
of some proteins being difficult or impossible to crystallize. Cryo-EM was dismissed by 
some scientists because it produced low resolution images. In 2012–2013, 
advancements in hardware and software led to the development of more sensitive 
electron microscopes and better software for processing images into clearer 
molecular structures [72].   

 

2.11.2 Computational methods assisting drug discovery 
Protein structure prediction 
 
3D protein models can be predicted by following one of two approaches:  

 Physical Interaction methods that uses kinetic and thermodynamic models to 
simulate molecular physics. 
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 Evolutionary history approach, which has benefited by from the growing of 
PDB, deep learning advances and genomic sequencing. These methods use 
bioinformatics to analyze evolutionary history, homology to already known 
structures and pairwise correlations. 

Both approaches have produced unreliable results, with their accuracy being far from 
the experiments [73]. 

 
Homology Modelling 
 
Homology modelling is a method that predicts the 3D structure of the protein from its 
amino acid sequence [74]. It is based on two major observations: The amino acid 
sequence of a protein specifically dictates its three-dimensional structure and during 
evolution the structure tends to change in a much slower rate and remain more 
conserved, compared to the sequence [75]. 

The process of homology modelling (Fig. 20) starts with identifying and selecting the 
template structure from PDB of a protein that presents significant amino acid 
sequence similarity to the protein whose 3D structure is to be predicted. Usually tools 
like BLAST, are used to find proteins with high sequence homology. The next step is to 
perform alignment of the query sequence with the selected template. Then the 3D 
model of the target protein can be built, using methods like rigid-body assembly, 
segment matching, spatial restraints, or artificial evolution. The less conserved 
regions, the loops, are later added to the model, after comparing with known 
structures (database search) or after conformational search. Conformational search 
includes the generation of random conformations of the loop, from which the one 
with the lowest energy is selected. Side chains are typically modeled using rotamers, 
which are preferred conformations stored in rotamer libraries. Then the model is 
optimized with adjustments that reduce steric clashes to minimize energy. For the 
optimization, molecular dynamics and Monte Carlo simulations are often used in 
order to find the most stable and energetically favorable structure. After constructing 
the 3D model, it must be validated to ensure it is biologically relevant. This involves 
comparing the model to experimental structures and using evaluation to assess the 
model’s stereochemistry, physical parameters, and overall quality [75]. 
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Figure 20: The steps of homology modelling 

 
 MODELLER (among others) is a type of software that is used for homology modelling. 
It creates models of 3D structures of proteins complying with the restraints on the 
spatial structure of the amino acid sequence. MODELLER automatically takes these 
restraints from the already known structures and their alignment with the sequence 
of interest. It is also possible to produce models with only parts of the sequence 
refined. MODELLER also provides the option to evaluate the produced models, by 
DOPE (Discrete Optimized Protein Energy) score assessment and determine the 
quality of a structure model as a whole [76].  

 
Protein- Ligand interaction prediction 
 
Molecular docking 
 
Molecular docking is a method that examines how two structures, for example a 
protein and a ligand, interact with each other (Fig. 21) [77].  A molecular docking 
algorithm was first developed in the 1980s [78]. The method revolves around two 
classical models of molecular recognition: Lock-and-key, and Induced fit. The lock-and-
key model suggests that the receptor will recognize only a specific ligand. On the 
contrary, the induced fit model suggests that the receptor can change its 
conformation when binding with the ligand [79].  
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Figure 21: Schematic illustration of docking a small molecule ligand (green) to a protein target (black) forming a 
protein-ligand complex. (By Scigenis - Own work, CC BY-SA 4.0) 

Types of Docking 
 
The docking methods are divided according to the flexibility that the receptor and/ or 
ligand have during the process. In rigid docking, like the receptor and ligand are 
considered static, and no movement being taken into account. For example, the first 
docking algorithm belongs to the rigid docking method. The receptor was modeled by 
filling its surface openings (binding sites) with spheres that represent the shape of the 
binding site. The ligand was also modeled by spheres that represent its structure. A 
search algorithm was used to find the best alignment between the spheres of the 
ligand and those of the receptor binding site. This aims to determine how well the 
ligand fits into the receptor's binding site based on their steric (spatial) compatibility.  
In the flexible docking method, both the receptor and the ligand are considered 
flexible, and not static. Lastly, there is the semi-flexible docking method, where only 
the ligand is flexible, and the protein remains rigid [78]. 
 
Types of algorithms 
 
Search algorithms are used to pose the ligand in the area of interest. They can be 
divided in three basic categories that are systematic, stochastic and simulation 
methods. Systematic algorithms explore all the possible rotations, translations, bond 
angles, etc. in a molecule during docking. They often run into the issue of an 
overwhelming number of possibilities to consider [80]. The stochastic algorithms work 
by making random changes to the ligand, which are evaluated to determine if they 
resulted in a better conformation. Some widely used stochastic algorithms are Monte 
Carlo and Genetic algorithms [80]. The simulation approaches aim to simulate how 
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the receptor and ligand interact. The most popular simulation method at the moment 
is Molecular Dynamics [78][80]. 
 
Scoring functions (SF) play a very important role in molecular docking since they 
evaluate and rank the predicted conformations of the protein-ligand complex [80]. 
There are three types of scoring functions: 

 Force-field based SF: it is used to approximate the potential energy of the 
protein-ligand system, involving both intramolecular and intermolecular 
interactions [78][80]. 

 Empirical SF: it is usually the sum of empirical term such as van der Waals, 
electrostatic, hydrogen bond, desolvation, entropy, hydrophobicity, etc. Each 
term is weighed by a coefficient and are optimized through least squares fitting 
to match binding affinity data from a training set of known complexes [78][80].  

 Knowledge-based SF: they operate on the assumption that ligand-protein 
interactions that are statistically more frequent have a correlation to favorable 
interactions [78][80] 

 

Docking Software 
Docking software are computational tools that are used to predict interactions 
between two molecules. Usually a small molecule, which is a potential drug candidate, 
and a larger molecule like a protein. They aim to predict where and how the two 
molecules interact with each other. The docking software predicts the orientation and 
conformation that the small molecule is most likely to have, when it binds to the 
protein. The different potential conformations that the ligand can have, are called 
binding poses. Some programs allow for the protein and/or the ligand to have some 
flexibility during the docking process [81].  

After the docking poses have been produced, the molecular docking software use a 
scoring function (SF), which is another computational tool, in order to evaluate and 
rank them. The SF calculates the binding energy of the ligand-protein complex, after 
taking into consideration the strength and stability of their interaction. Lower binding 
energy indicates a stronger interaction [81].  

Autodock Vina, one of the engines of AutoDock Suite, is one of the most successful 
and widely used docking software. It is a molecular docking program that is used to 
forecast the affinities and patterns of binding of small molecules, or ligands, to a target 
protein. It uses a scoring function along with an effective search algorithm to forecast 
the ligands' binding affinities and modes of binding. It can be used as a command-line 
tool, but there are also graphical interfaces available, such as PyMOL plugin 
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DockingPie. DockingPie 1.2 is a platform made especially for the investigation of 
molecular docking. It incorporates other software that enable the user to prepare the 
protein structures and ligands, add hydrogens to perform docking. Its goal is to make 
docking data from molecular docking simulations easier to visualize and analyze. The 
plugin offers a graphical user interface in PyMOL that also enables users to load and 
examine docking poses produced by docking software [82].  

 

Modular Synthon-Based Approaches 
 
The V-SYNTHES algorithm creates molecules from a small set of fragments and uses a 
modular, hierarchical approach to docking-based screening. It reduces the 
requirement for specialized synthesis. This method is able to achieve screening large 
chemical regions with great efficiency. Another method that relies on docking 
individual fragments before combining them into forming the final molecule is 
Chemical Space docking [83]. 

 
Hybrid Computational Approaches 
 
Another approach to drug discovery is combining both physics-based and also data 
driven methods, in order to take advantage of the unique strengths of both. An 
example of this hybrid approach, is using results that have occurred from docking, to 
train machine learning models for screening [83]. 

In 2021, AlphaFold2 was introduced. It is a neural network, which is like a network of 
virtual nodes that are connected by links that can be made stronger or weaker. It is 
able to predict protein structures, and in most cases its results’ accuracy is close to the 
experimental ones. This network improves the 3D structure prediction accuracy 
because it uses network architectures and training methods that are based on 
evolutionary, physical and geometric constraints. Alphafold2 has many layers of 
virtual nodes and it is considered a "deep learning" algorithm. The data that was used 
to train the network came from PDB [73].  

The network in Alphafold2 functions in two main stages. First, the input data is being 
processed repeatedly by Evoformer blocks, which are a set of layers and operations 
that process the protein sequence. At this stage, the network starts forming a rough 
idea of the protein's structure and refines it continuously. In the second stage, a 3D 
structure is added, by rotating and positioning each part of the protein [73].  

Shortly after the release of Alphafold, RoseTTAfold was released by the Baker Lab. 
RoseTTAFold is a "three-track" neural network that analyzes protein structures by 
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looking at three things at once: patterns in protein sequences, how the amino acids 
interact, and the possible 3D shape of the protein. This design lets information move 
between the one-, two-, and three-dimensional levels, helping the network 
understand how the chemical components of a protein relate to its final folded 
structure [84]. Earlier this year, AlphaFold3 was presented, with new capabilities such 
as prediction of complexes of proteins, nucleic acids, small molecules, ions, and 
modified residues [85].   
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3. Methods and Materials 
 

3.1 PyMOL - Visualization 
 
PyMOL is an open source molecular visualization tool. It can produce high-quality 3D 
images of small molecules and biological macromolecules, such as proteins [86]. We 
used this software (version 2.5) to visualize the different receptor refined models, 
ligands and also, explore the rotameric conformations of residues by using the 
Mutagenesis Wizard. 

We studied the structure of GPR21 in active state, using Protein Data Bank (PDB) code 
8HMV (Fig. 22).  The model contains the GPR21-Gs complex without a ligand present, 
produced by Cryo-EM (resolution: 2.91 Å- best one, compared to the rest available 
structures).  

 

Figure 22: 8HMV - Structure of GPR21-Gs complex 

In this structure, we included the disulfide bond between C1023.25 and C181ECL2  (Fig. 
23) which was mentioned in the relevant paper [7] but not shown in the 8HMV model. 

 

Figure 23: Disulfide bond between CYS102-CYS181 
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The 3D structures for GRA2 and UCSF924 (Fig 24), were downloaded from PubChem. 

 

Figure 24: 3D structures of UCSF924 (left-yellow) and GRA2 (right- teal) 

   
3.2 MODELLER – Loop Refinement 

 

With MODELLER, we explored the refinement of three different regions of ECL2: 

 Immersed region 169-178 
 Cap region 179-186 
 Whole loop 169-186 

A python script was used for each region (Immersed- Cap- Whole), where the desired 
amino acid range was specified, respectively, while maintaining the disulfide bond 
between C1023.25 and C181ECL2. We produced twenty refined models for each region, 
and with a second python script we calculated the Discrete Optimized Protein Energy 
(DOPE) scores for each one for later evaluation. DOPE is a statistical potential that 
depends on atomic distance. It calculates the energy of a protein structure based on 
atomic distances and compares them to a reference state. This state assumes that the 
protein consists of non-interacting atoms inside a uniform spherical space, with the 
sphere's radius matching the protein’s size. This helps account for the natural shape 
and size of proteins when evaluating how accurate or stable a given protein model is. 
The models with the lowest DOPE scores are considered to be better [87]. TABLES 3 
and 4 present the scripts for immersed region as an example. (See Appendix 1 for the 
other two regions).  

TABLE 3: Script for loop refinement of immersed region of GPR21, while maintaining the disulfide bond. Highlighted 
(gray) parts are modified accordingly to produce the desired refined region 

from modeller import * 
from modeller.automodel import * 
 
env = environ() 
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class MyLoop(loopmodel): 
    def select_loop_atoms(self): 
        return selection(self.residue_range('169:A', '178:A')) 
    def special_patches(self, aln): 
        self.patch(residue_type='DISU', 
                   residues=(self.residues['102:A'], 
                             self.residues['181:A'])) 
 
m = MyLoop(env, 
           inimodel='8hmva_disu.pdb', 
           sequence='8hmva_disu_im') 
m.loop.starting_model = 1 
m.loop.ending_model = 20 
m.loop.md_level = refine.very_fast 
m.make() 

 

TABLE 4: Script for DOPE score regarding immersed region refined models. Highlighted (gray) parts are modified 
according to the refined region 

 
from modeller import * 
from modeller.scripts import complete_pdb 
 
# Create a MODELLER environment 
env = Environ() 
 
# Load the topology and parameters 
env.libs.topology.read(file='$(LIB)/top_heav.lib') 
env.libs.parameters.read(file='$(LIB)/par.lib') 
 
# List of PDB filenames 
pdb_filenames = [ 
    "8hmva_disu_im.BL00010001.pdb", 
    … 
    "8hmva_disu_im.BL00200001.pdb" 
] 
 
# Create a list to store DOPE scores 
dope_scores = [] 
 
# Loop through and score each PDB file 
for pdb_filename in pdb_filenames: 
    # Create a model for scoring 
    mdl = complete_pdb(env, pdb_filename) 
 
    # Select all atoms in the first chain 
    atmsel = selection(mdl.chains[0]) 
 
    # Calculate DOPE score 
    score = atmsel.assess_dope() 
 
    # Append the score to the list 
    dope_scores.append((pdb_filename, score)) 
 
# Output the results to a text file 
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#output_filename = "dope_scores.txt" 
#with open(output_filename, "w") as f: 
 #   for filename, score in dope_scores: 
  #      f.write(f"File: {filename}, DOPE Score: {score}\n") 
 
 
# Finalize and clean up 
env.io.atom_files_directory = ['./']  # Set the directory where 
your PDB files are located 
env.io.hetatm = True  # If your PDB files contain HETATM records 
env.io.water = True   # If your PDB files contain water molecules 
env.io.stop_at_pdb = True 
 
env.cleanup() 

 

3.3 Cavity search 
 
CavityPlus is a web server that allows the user to search for cavities within protein 
structures. The tool CAVITY uses the protein 3D structure as input, in order to identify 
potential binding sites on the surface of the protein, and then ranks them. It is possible 
to achieve further analysis of the discovered cavities by 3 other submodules,  
CavPharmer, CorrSite, and CovCys. CavPharmer uses a receptor-based 
pharmacophore modeling application to extract the pharmacophore properties of the 
cavities. Allosteric binding sites can be found by using CorrSite, while CovCys can 
automatically find druggable cysteine residues [88].  

Each refined model was loaded on the web server CavityPlus as a pbd file to search 
for potential binding sites. We used the tool CAVITY with default settings (Fig. 25).  

 

 Figure 25: Default settings for CAVITY 

This tool is used to find cavities (or pockets) in proteins where molecules might bind. 
First it maps the protein onto a 3D grid with points spaced 0.5 Å apart. A sphere that 
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is representing a large molecule, moves around the protein surface. If the sphere 
touches a grid point, that point is marked as "outside", and all the points that were 
not touched by the sphere are considered potential cavity spaces (vacant points). 
Vacant points are grouped into layers based on how deep they are inside the protein, 
starting with layer 1  which is the closest to the outside, followed by layer 2 that is 
deeper, and so on. The layers are then gradually erased from the outside in, which can 
split cavities into smaller sub-cavities. This is the shrinking stage. After that, the 
cavities are expanded back to their original size, but the sub-cavities remain separate. 
This is called the expanding stage. All of the parameters that can be adjusted by the 
user are listed in TABLE 5 [89]. 

TABLE 5: CAVITY tool parameter explanation 

Parameter Name  Explanation 
ERASER_BALL_RADIUS The radius of the sphere used to simulate molecule 

binding. It influences the shape of the cavity’s external 
surface. Larger radius results in a flatter surface. 

MIN_ABSTRACT_DEPTH 
(MAD) 

Determines the depth at which the shrinking process 
stops. Higher values stop shrinking earlier, preserving 
deeper layers. 

MIN_ABSTRACT_DEPTH 
(MAD) 

Determines the depth at which the shrinking process 
stops. Higher values stop shrinking earlier, preserving 
deeper layers. 

SEPARATE_MIN_DEPTH 
(SMD) 

Controls the minimum number of shrinking steps. It 
also influences whether a cavity is divided into sub-
cavities. Lower values stop shrinking sooner. 

MIN_ABSTRACT_LIMIT 
(MAL) 

Ensures that the shrinking process continues until the 
cavity is smaller than this set value. Higher values stop 
shrinking sooner if the cavity is still large. 

SEPARATE_MAX_LIMIT 
(SML) 

Similar to MAL, but it controls the maximum size of the 
final cavity after all shrinking and expansion steps. 
Higher values continue shrinking if the final cavity is still 
too big. 

MIN_CAVITY_VOLUME 
Filters out cavities that are smaller than the specified 
volume, ensuring that only cavities larger than this 
value are considered. 

RANK_SCORE Only cavities with a score higher than this threshold are 
output, helping to filter out less significant cavities. 

Rescue Large Cavities An option to recover large, valid cavities that might 
have been mistakenly excluded during processing. 

Apply Soft Separation 
An option to recover parts of a cavity that might have 
been separated and discarded incorrectly during the 
shrinking process. 
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The CAVITY tool presents cavities and ranks them according to ligandability and 
druggability scores. Ligandability stands for the possibility of designing a small 
molecule that has high affinity for a specific cavity. How good of a target the specific 
cavity might be, is described by the druggability value. The CavityScore is influenced 
by cavity surface area and volume, pocket size, the surface that is covered by 
hydrophobic residues, and lastly hydrogen-bond-forming surface area [88]. 

 
3.4 Docking 

 
To perform molecular docking we used the PyMOL plugin DockingPie (Version: 1.2.1) 
[82]. DockingPie is a platform that integrates four external docking tools: Vina, Smina, 
RxDock, and ADFR along with several chemoinformatics python modules like 
AutoDockTools, Openbabel, sPyRMSD and other external tools like sdsorter. Here we 
will use Vina. For every model we followed the process described below: 

Protein and Ligand Preparation 
The pbd files are loaded in PyMOL and then the action “remove waters” was 
performed. The receptor and ligand tabs in the plugin are similar and the preparation 
steps are shown in Figure 26. First, we import the object from PyMOL (steps 2, 3), 
select it (step 4), then add hydrogens (step 5). Then the receptor and ligands are 
generated and set in the “docking” tab (steps 6, 7, 8).  

 

Figure 26: Import from PyMOL and receptor/ligand preparation steps for docking. In this figure the “Receptors” tab 
(similar to the “Ligands” tab) is shown.  

Grid box settings 
We used H174 as the center of the grid box (x:156, y:150, z:115), and set grid 
dimensions to x:20 y:20 z:20 for the docking sessions that were performed by 
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DockingPie (Fig. 27), and x:30 y:30 z:30 for sessions that were performed by AutoDock 
Vina. In every session we set the number of desired poses to 10, exhaustiveness to 8 
and energy range to 3. 

 

Figure 27: Grid settings for docking. (1) Importing the reference object from PyMOL, (2) Make selection from the 
drop down list, (3)Use the objects coordinates for the center, (4) Set the grid dimensions, (5) Set it in the docking 
tab 

 
3.5 Alphafold Models 

 
We explored three different alternatives by using ColabFold v1.5.5: AlphaFold2 using 
MMseqs2 [90] Then, we proceeded to explore for cavities in a similar manner to the 
refined models that was described above, and performed molecular docking. In this 
case, the grid box settings were defined by the CavityPlus results, which included the 
box size and box center for each cavity of interest. 

First, we only used the full sequence of GPR21 without a template sequence. Then we 
used the same full sequence of GPR21, but this time we used GPR52 structure as a 
custom template. For the last run, we used the GPR21 without N-Terminus sequence 
with GPR52 structure as a custom template. 

 Full GPR21 Sequence used: 
MNSTLDGNQSSHPFCLLAFGYLETVNFCLLEVLIIVFLTVLIISGNIIVIFVFHCAPLLNHHT
TSYFIQTMAYADLFVGVSCVVPSLSLLHHPLPVEESLTCQIFGFVVSVLKSVSMASLACISI
DRYIAITKPLTYNTLVTPWRLRLCIFLIWLYSTLVFLPSFFHWGKPGYHGDVFQWCAES
WHTDSYFTLFIVMMLYAPAALIVCFTYFNIFRICQQHTKDISERQARFSSQSGETGEVQ
ACPDKRYAMVLFRITSVFYILWLPYIIYFLLESSTGHSNRFASFLTTWLAISNSFCNCVIYSL
SNSVFQRGLKRLSGAMCTSCASQTTANDPYTVRSKGPLNGCHI 
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 GPR21 without N-Terminus sequence: 
VNFCLLEVLIIVFLTVLIISGNIIVIFVFHCAPLLNHHTTSYFIQTMAYADLFVGVSCVVPSLS
LLHHPLPVEESLTCQIFGFVVSVLKSVSMASLACISIDRYIAITKPLTYNTLVTPWRLRLCIF
LIWLYSTLVFLPSFFHWGKPGYHGDVFQWCAESWHTDSYFTLFIVMMLYAPAALIVCF
TYFNIFRICQQHTKDISERQARFSSQSGETGEVQACPDKRYAMVLFRITSVFYILWLPYII
YFLLESSTGHSNRFASFLTTWLAISNSFCNCVIYSLSNSVFQRGLKRLSGAMCTSCASQTT
ANDPYTVRSKGPLNGCHI 
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4. Results 
 
Recently, structures of orphan GPR21-G-protein complexes were presented. A section 
of the ECL2 of GPR21 reaches deep in the orthosteric pocket, causing receptor 
activation. This observation explains the high basal activity of GPR21, without the 
presence of a ligand. Consequently, it was an area of interest to investigate the 
different conformations of ECL2, in order to explore the different pockets formed by 
each one. We started with the 8HMV structure, and proceeded with three loop 
refinement scenarios: 

 The immersed region of ECL2 (Fig. 28A), referring to the amino acids 169-178, 
that reach in the orthosteric pocket, was refined, in order to explore the 
possibility of forming a cavity where GRA2 and/or UCSF924 could interact with 
the receptor, disrupting its self-activation.  

 the cap region, referring to the residues 179-186 (Fig. 28B) 
 The entire ECL2 (Fig. 28C) 

 

 

Figure 28: Regions of ECL2 that are going to be refined in each scenario are highlighted with light blue. (A) Immersed 
region, (B) Cap region, (C) Whole loop 
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4.1 Refined Models and Evaluation 
 
With MODELLER we produced 20 models for each refinement scenario. We explored 
the different pockets formed by different loop conformation with CavityPlus, and 
ranked the refined models. They were evaluated by their DOPE scores produced by 
MODELLER, and by the druggability and DrugScore of their cavities, which were 
calculated by CavityPlus. Out of the 60 refined models that were produced by 
MODELLER, we selected the top 5 per refined region based on DOPE Score, DrugScore 
and Druggability score, and therefore we had 5 different conformations of the 
immersed region (amino acids 169-178) (Fig. 29), 5 of the cap region (amino acids 179-
186) (Fig. 30), and 5 of the whole ECL2 (amino acids 169-189) (Fig. 31).  

H174ECL2 is the amino acid that reaches the deepest into the orthosteric pocket of 
GPR21 interacting with surrounding amino acid side chains, and therefore keeping 
ECL2 inside the pocket. We chose to produce refined models of the immersed region 
to explore the possibility of having a model where the ECL2 is positioned in a way that 
leaves enough space for small molecules like GRA2 and UCSF924, to enter in the 
orthosteric pocket. This could displace ECL2, and disrupt the receptor’s activation. 

 

 

Figure 29: Top 5 refined immersed region models 

 
The refined cap region models (Fig. 30) were produced in order to examine if there 
could be a pocket on the top side of the receptor, where GRA2 and UCSF924 could 
bind.  
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Figure 30: Top 5 refined cap region models 

Finally, the third scenario of the whole ECL2 refinement aimed to explore different 
loop conformations and potential cavities, while maintaining the conserved disulfide 
bond between C181 and C102 in TM3. 

 

 

Figure 31: Top 5 refined whole loop models 

Tables 6-8 show the top 5 model for each refined region (Immersed- Cap- Whole loop). 
For each model there is information about the DOPE Score that was calculated by 
MODELLER. It is used to assess energy of the models, so the ones with lower DOPE 
scores are considered better. Furthermore, there is information about the druggability 
(weak/medium/strong) of the cavity that was detected from CavityPlus. In the last 
columns there is the DrugScore of each cavity, which was also calculated by CavityPlus.  
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The immersed region and whole loop refined models show cavities with strong 
druggability and higher DrugScore compared to the cap region refined ones. 

TABLE 6 DOPE Scores/ Druggability/ DrugScore/ for models with refined immersed region 

Model 
Immersed Region (169-178) 

DOPE Score Druggability DrugScore 
immersed 1 -32475.77 Strong 1643.00 

immersed 14 -32458.23 Strong 1640.00 
immersed 20 -32394.85 Strong 1687.00 
immersed 5 -32356.52 Strong 1500.00 

immersed 12 -32348.17 Strong 1124.00 
 

TABLE 7 DOPE Scores/ Druggability/ DrugScore/ for models with refined cap region 

Model 
Cap Region (179- 186) 

DOPE Score Druggability DrugScore 
cap 2 -32969.88 Medium -61.00 

cap 10 -32944.01 Medium 158.00 
cap 4 -32863.50 Medium 55.00 

cap 19 -32825.12 Medium 11.00 
cap 3 -32818.45 Medium 72.00 

 

TABLE 8 DOPE Scores/ Druggability/ DrugScore/ for models with refined whole loop 

Model 
Whole Loop (169-186) 

DOPE Score Druggability DrugScore 
whole 13 -32635.56 Strong 612.00 
whole 19 -32446.96 Strong 1700.00 
whole 18 -32194.00 Strong 1125.00 
whole 4 -32069.14 Strong 880.00 

whole 10 -31786.29 Strong 2559.00 
 

4.2 Docking Scores and Top Poses 
 
After determining the top 5 models for each refined region, we performed molecular 
docking with GRA2 and UCSF924. All the poses of both ligands were visualized in 
PyMOL to examine the ligands’ interactions with the surrounding amino acid side 
chains.  
 
4.2.1 Immersed Region 
For the immersed region refined models, we performed docking with GRA2 and 
UCSF924 and the docking scores are presented for each ligand separately, per model 
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and per pose. For GRA2, we found that the best docking scores were achieved with 
model 1 (poses 1-4) and model 14 (pose 1) (Fig. 32). 

 

Figure 32: Docking scores for immersed region refined models with GRA2. There are 10 poses for each model, the 
top scores are in bold. 

 
In pose 3 (Fig. 33), we found that there are two H-bonds between GRA2 and the side 
chains of Y2686.51 and S1103.33. There is also π-π interaction between two aromatic 
rings of GRA2 and  F1915.39.  

 

Figure 33: Pose 3 for immersed region refined model 1. Hydrogen bonds are shown with yellow dotted lines, π- π 
interactions are represented by a pink line, and GRA2 is shown in teal. 

However, for UCSF924 models 5 (poses 1-4) and 12 (pose1) produced the best scores 
(Fig. 34). 
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Figure 34: Docking scores for immersed region refined models with UCSF924. There are 10 poses for each model, 
the top scores are in bold. 

 
For the first pose of UCSF924 with immersed region refined model 12 (Fig. 35), we 
observed H-bonds between the O atom of UCSF924’s bicyclic group and K1133.36  and 
Y2005.48 side chains. There is another hydrogen bond interaction between H174ECL2  
side chain and NH of the bicyclic group of UCSF924. In addition, we observed π-π 
interaction between the ligands aromatic ring and W185185.  

 

Figure 35: Pose 1 for immersed region refined model 12. Hydrogen bonds are shown with yellow dotted lines. 
UCSF924  is shown in yellow. 
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4.2.2 Whole Loop  
 
Model 19, from the whole loop refined models, gave the best docking scores for GRA2 
with poses 1-5 (Fig. 36), while for UCSF924 we received better scores from model 4 
(poses 1-4), followed by the first pose of model 19 (Fig. 38). 

 

Figure 36: Docking scores for whole loop refined models with GRA2. There are 10 poses for each model, the top 
scores are in bold 

In the 2nd pose of GRA2 in the whole loop refined model 19 (Fig. 37), we see that the 
aromatic ring and the bicyclic group of the ligand are in hydrophobic environments, 
created by hydrophobic amino acids V842.59, P852.60, F1053.28, V1093.32, V177ECL2, 
F178ECL2, W2917.40, I2947.43. The amino acid W2917.40 also creates a hydrogen bond 
with GRA2. 

 
Figure 37: Pose 2 for whole loop refined model 19. Hydrogen bonds are represented with yellow dotted lines.  
GRA2 is shown in teal. 
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Docking scores for the whole loop refined models are shown in Figure 38. Refined 
models 4 (poses 1-4) and 9 (pose 1) had the best scores. 

 

Figure 38: Docking scores for whole loop refined models with UCSF924. There are 10 poses for each model, the top 
scores are in bold 

 
In the pose shown in Figure 39, UCSF924 is forming a hydrogen bond with the side 
chain of T2907.39. Hydrophobic interactions are observed between the aromatic ring 
of the ligand and Y2716.54 , F2726.55 , F178ECL2. 

 

Figure 39: Pose 1 for whole loop refined model 4. Hydrogen bonds are shown with yellow dotted lines. UCSF924 is 
shown in yellow. 
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4.2.3 Cap Region 
When examining the docking results for the cap region (Fig. 40, Fig. 42), we found that 
in many of the produced poses, the ligand was located outside of the desired cavity 
(bars shown in white). From the poses where the ligand is found in the desired location 
(bars shown in blue), model 2 (pose 9) (Fig. 41) gave the best score for GRA2, and 
model 4 (poses 7 (Fig. 43) and 8) for UCSF924. 

 
 

Figure 40: Docking scores for cap region refined models with GRA2. There are 10 poses for each model, the top 
scores are in bold 

For the cap region refined model 2, GRA2 is forming a hydrogen bond with the side 
chain of R2837.32. The aromatic ring of the ligand forms hydrophobic interactions with 
L892.64, F178ECL2, and the bicyclic group of GRA2 with V177ECL2, F2877.36 , W180ECL2 (Fig. 
41). 

 
Figure 41: Top pose (9) for cap region refined model 2. Hydrogen bonds are represented with yellow dotted lines.  
GRA2 is shown in teal. 
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Figure 42: Docking scores for cap region refined models with UCSF924. There are 10 poses for each model, the top 
scores are in bold 

 
There are H-bonds between the O atom of UCSF924’s bicyclic group and D176ECL2 and 
H186ECL2. The side chain of R2837.32 is forming another hydrogen bond with the 
ligand’s carbonyl group (Fig. 43).  

 

Figure 43: Top pose (7) for whole loop refined model 4. Hydrogen bonds are shown with yellow dotted lines. 
UCSF924 is shown in yellow. 
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4.3 ARG283 Rotamers – Docking 
 
GPR21 has a great structural similarity to GPR52. Since GPR52 was found to have a 
side pocket close to the receptor surface that could interact with ligands, we examined 
GPR21 for a similarly located cavity. We found that the R2837.32 side chain in the 8HMV 
structure was shifted inward, leaving less space for a cavity. Therefore we looked into 
the different rotational conformations of this side chain, to determine whether a 
“better” cavity could be formed in order to perform molecular docking with the two 
potential ligands. 

We used CavityPlus to explore the different cavities that may form on the surface of 
GPR21 (8HMV structure), for different rotamers of R2837.32 since it presents a high 
structural similarity to GPR52 which has a side pocket that is surrounded by TM1, TM2 
and TM7. In the cavity shown below (Fig. 44), we noticed that the side chain of R2837.32 
is shifted inwards, closing the space of the cavity which resulted in a weak druggability 
score. Therefore, we examined the different rotational conformations of this side 
chain.  

 

Figure 44: GPR21 (green), Cavity (pink) and R2837.32  (white) 
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With PyMOL Mutagenesis wizard we found the conformations of R2837.32 and 
examined all of them to investigate if there are any changes in the druggability and 
DrugScore of the cavity shown in Figure 44. One of the rotational conformations (Fig. 
45) of R2837.32 gave us a slightly more open cavity with medium Druggability, with 
which we proceeded to perform molecular docking, with both GRA2 and UCSF924.  

 

 

Figure 45: GPR21 (green), new cavity (purple) and shifted R2837.32  (white) 

 
The docking scores are presented in Figure 46 even though they are not better than 
the ones produced by the refined models. Both GRA2 and UCSF924 gave similar 
docking scores to this cavity. 
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Figure 46: Docking scores for the cavity created by slightly shifting R283 side chain. GRA2 results are on the left 
and UCSF924 on the right 

4.4 Alphafold Models - Docking 
 
Finally, we looked at Alphafold's ability to create models of GPR21 with a cavity 
resembling that of the GPR52 side pocket in order to perform docking with GRA2 and 
UCSF924 and explore the possibility of them binding in this pocket.  
 
Apart from the predicted models, Alphafold produces three types of graphs. The first 
is a Predicted Alignment Error plot that refers to the confidence in the relative 
positions of different residues within a predicted protein structure. Specifically, PAE 
indicates the expected positional error between two residues (X and Y) in the 
predicted structure, expressed in Angstroms (Å). This error estimate is based on how 
well AlphaFold2 expects the structure to match the actual protein when aligned on 
one of those residues. Low PAE is a high confidence indicator, while high PAE shows 
low confidence in the predicted positions [91]. 

The sequence coverage graph visualizes how well sequences from a database align 
with the input sequence. The red to blue color scale represents the identity score, with 
red indicating low, and blue indicating high sequence similarity. The sequences are 
positioned from bottom to top according to their similarity, low to high, respectively. 
The white sections represent uncovered regions, and the black line represents the 
relative coverage of the input sequence to the total number of aligned sequences from 
the database [91].  

Last is the predicted local distance difference test (pLDDT). It gives a confidence score 
per-residue, indicating the likelihood of the predicted position to be the correct one. 
The scores scale from 0 (low confidence) to 100 (high confidence). Scores above 90 
are very high, 70-90 is moderate, 50-70 is low, and below 50 the scores are considered 
to be very low [91]. 

The Alphafold results of GPR21 models without using another structure as a template 
are shown in Figure 47. There were 5 models that were produced, but none of them 
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presented a cavity similar, or close to where we would expect to see the GPR52 side 
pocket. 

 
Figure 47: Alphafold results for GPR21 models without a template sequence. A) PAE Plot for each one of the 5 
predicted models (rank 1-5). B) Sequence coverage graph. C) Predicted lDDT for each one of the 5 models, rank 1-5 
presented with different color lines 

 
In Figure 48, we present the results for the predicted models of GPR21 with the use of 
GPR52 sequence as template.  They seem to be very similar to the results that were 
produced by the previous run, without GPR52 structure as template. 
 

 
Figure 48: Alphafold results for GPR21 models with the GPR52 sequence as template. . A) PAE Plot for each one of 
the 5 predicted models (rank 1-5). B) Sequence coverage graph. C) Predicted lDDT for each one of the 5 models, 
rank 1-5 presented with different color lines 
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After visualizing the predicted structures (Fig. 49), we notice that a small section of 
the N-terminus is folded between TM1, TM2 and TM7, covering some of the space 
that we would anticipate to find the side pocket that is present in GPR52.  

 
Figure 49: Superposition of the 5 predicted models of GPR21 with the GPR52 sequence as template. The red dotted 
circle is highlighting the small part of the N-terminus that is shifted inwards. 

 
Therefore, we proceeded with exploring Alphafold predictions of GPR21 models 
without the N-terminus, using the GPR52 sequence as template (Fig. 50). Even though 
they still look quite similar, we notice in that the predicted models are show higher 
confidence, since the N-terminus, an area of low confidence is eliminated (Fig. 50A, 
Fig. 50C) 
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Figure 50: Alphafold results for GPR21 models without the N-terminus, using the GPR52 sequence as template. A) 
PAE Plot for each one of the 5 predicted models (rank 1-5). B) Sequence coverage graph. C) Predicted lDDT for each 
one of the 5 models, rank 1-5 presented with different color lines 

Out of the 5 models that were produced, rank2 was the one that included a cavity in 
the area of interest (Fig. 51). The cavity has medium druggability and a DrugScore of 
472. The cavity’s surface area is 625.75 Å2, and the volume is 648.88 Å3. The box size 
(Å) is x=17.5, y=14.5, z=17.5 and the center (Å) x=7.25, y=1.75, z=-20.25. 

 

 

Figure 51: Predicted GPR21 model-rank2 with cavity in the area of interest 

 
We performed molecular docking in this cavity and the scores are presented in Figure 
52.  

 

Figure 52: Docking scores for GRA2 (left) and UCSF924 (right) for predicted model-rank 2 

 
In both cases, the ligand was found to be inside of the cavity, forming strong 
hydrophobic interactions with surrounding amino acids (Fig. 53, Fig. 54). 
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Figure 53: Top pose (1) for GRA2 

 

Figure 54: Top pose (1) for UCSF924 
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When visualizing GPR52 structure with c17 in the side pocket, with the predicted 
GPR21 rank2 with the top poses of GRA2 and UCSF924, we observe that the two 
GPR21 ligands take a very similar formation to c17, and they manage to reach a little 
deeper into the receptor (Fig.55).  

 

Figure 55: Superposition of GPR21 (gray) and GPR52 (light pink). GPR52 ligand c17 is shown in magenta, GRA2 is in 
teal and UCSF924 is in yellow. 



 

65 
 
 

5.  Discussion  
This study was designed to explore the interaction mechanisms between the small 
molecules GRA2 and UCSF924 and the orphan GPR21. In vitro experiments have 
shown that these compounds have some effect to the receptors activity, however 
their way of interaction is still not known. A part of the receptor, the ECL2, has been 
linked with its high basal activity. We produced different refined models of this loop, 
to investigate whether there could be a loop conformation that allows GRA2 and 
UCSF924 to interact with GPR21 in the orthosteric pocket area, and consequently 
interrupt the receptor’s self-activation. Additionally, due to the GPR21-GPR52 high 
structural similarity, we explored the possibility of GPR21 having a side pocket, similar 
to the GPR52 one, where the two potential ligands could bind to.  

Starting from the refined ECL2 models, we found that the cavities present in the whole 
loop and immersed region refinement had better druggability compared to the cap 
region. In addition, the whole loop and immersed region refined models gave better 
docking results with GRA2 and UCSF924. In both cases, the amino acid associated with 
receptor activation, H174ECL2, has been displaced from the orthosteric pocket, 
whereas it remains inside in the cap region refined models. Combining these 
observations, we suggest that GRA2 and UCSF924 are more likely to interact with 
GPR21 in formations that resemble the immersed region refined models 1 and 12 or 
the whole loop refined models 19 and 4, respectively.  

Exploration of the ARG283 rotamers of the 8HMV structure of GPR21 (unmodified) led 
to the discovery of a cavity with improved druggability over that present in the original 
structure. The docking scores for both GRA2 and UCSF924 were not better than those 
produced by the refined models.  

The models predicted by Alphafold were of similar quality and confidence. Our goal 
was to see if we could create a side pocket where GRA2 and UCSF924 could interact 
with the receptor. The side pocket was expected to be located in the same area as the 
GPR52 side pocket, between TM1, TM2 and TM7. This expectation was based on the 
71% sequence homology between the two GPCRs and the high structural similarity. 
The predicted GPR21 models without the N-terminus, which were built using the 
GPR52 structure as a template, performed better in the PAE and lDDT because one 
area of uncertainty, the N-terminus, was removed. The rank 2 predicted model 
appeared to have a pocket with at least moderate druggability in the region of 
interest. The docking poses of both GRA2 and UCSF924 showed great similarity to how 
c17, the GPR52 ligand, is found in the side pocket. Both GRA2 and UCSF924 reach deep 
into the cavity and form strong hydrophobic interactions with the side chains of the 
surrounding amino acids. Therefore, we suggest that the two ligands could bind to the 
receptor in the side pocket formed between TM1, TM2 and TM7.  
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To date, knowledge of how the two ligands interact with GPR21 is limited. USCF924 is 
the only compound linked to GPR21 in ChEMBL as a result of the PRESTO Tango assay 
that quantifies GPCR signaling (by recruiting β-arrestin2). There is evidence that 
UCSF924 interacts with GPR21, but the outcome of this interaction is not clear. With 
respect to GRA2, in vitro experiments have been performed showing that it acts as an 
inverse agonist for GPR21. There is still no information on how GRA2 and UCSF924 
bind to GPR21 and which part of the receptor they interact with. The goal of this work 
is to propose potential interaction scenarios that the ligands may have with the 
receptor. The first hypothesis, which incorporates the refined ECL2 models, suggests 
that the ligands interact with the orthosteric pocket, thereby reducing the high basal 
activity of the receptor. The second hypothesis is based on the observation that GPR21 
has a high degree of structural similarity to GPR52. This similarity suggests the 
presence of a potential side pocket between TM1, TM2 and TM7, which could serve 
as a binding site for the ligands. It is postulated that these interactions may ultimately 
lead to the disruption of the constitutive activity of the receptor. 

The proposed models could be further investigated using molecular dynamics 
simulations to determine the stability of the receptor-ligand complexes. In vitro 
experiments could be performed with UCSF924 to investigate the effect of this 
compound on the constitutive activity of GPR21, whether it causes an increase or a 
decrease. 
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6. Conclusions 
 

This work suggests two possible interaction mechanisms for GRA2 and UCSF924 
with GPR21: the first is by binding within the orthosteric pocket to reduce basal 
activity, and the second involves interaction with a side pocket that could disrupt 
the constitutive activity of the receptor. Key findings are presented below: 

Druggability of the refined models: The refined models that included the entire 
loop and the immersed region showed better druggability than those that focused 
only on the cap region. These models also produced better docking scores for the 
ligands GRA2 and UCSF924. 

Discovery of improved cavity: Exploration of the ARG283 rotamers in the 8HMV 
structure of GPR21 led to the identification of a cavity with better druggability than 
the original structure. However, the docking scores of this cavity were not superior 
to those of the refined models. 

Potential for side pocket interactions: Alphafold predicted models, especially 
those lacking the N-terminus and built using the GPR52 structure as a template, 
showed promise for forming a side pocket similar to that of GPR52. The docking 
results suggest that GRA2 and UCSF924 could bind to a side pocket located 
between TM1, TM2 and TM7 and form strong hydrophobic interactions with the 
surrounding amino acid side chains. 
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Appendix 1: Scripts for refined models 
 

TABLE 9: Script for loop refinement of whole ECL2 of GPR21, while maintaining the disulfide bond. Highlighted (gray) 
parts are modified accordingly to produce the desired refined region. 

from modeller import * 
from modeller.automodel import * 
 
env = environ() 
 
class MyLoop(loopmodel): 
    def select_loop_atoms(self): 
        return selection(self.residue_range('169:A', '186:A')) 
    def special_patches(self, aln): 
        self.patch(residue_type='DISU', 
                   residues=(self.residues['102:A'], 
                             self.residues['181:A'])) 
 
m = MyLoop(env, 
           inimodel='8hmva_disu.pdb', 
           sequence='8hmva_disu_whole') 
m.loop.starting_model = 1 
m.loop.ending_model = 20 
m.loop.md_level = refine.very_fast 
m.make() 

 
from modeller import * 
from modeller.scripts import complete_pdb 

 

TABLE 10: Script for DOPE Score of refined whole ECL2 of GPR21. Highlighted (gray) parts are modified accordingly 
to produce the desired refined region. 

 
# Create a MODELLER environment 
env = Environ() 
 
# Load the topology and parameters 
env.libs.topology.read(file='$(LIB)/top_heav.lib') 
env.libs.parameters.read(file='$(LIB)/par.lib') 
 
# List of PDB filenames 
pdb_filenames = [ 
    "8hmva_disu_whole.BL00010001.pdb", 
    … 
    "8hmva_disu_whole.BL00200001.pdb" 
] 
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# Create a list to store DOPE scores 
dope_scores = [] 
 
# Loop through and score each PDB file 
for pdb_filename in pdb_filenames: 
    # Create a model for scoring 
    mdl = complete_pdb(env, pdb_filename) 
 
    # Select all atoms in the first chain 
    atmsel = selection(mdl.chains[0]) 
 
    # Calculate DOPE score 
    score = atmsel.assess_dope() 
 
    # Append the score to the list 
    dope_scores.append((pdb_filename, score)) 
 
# Output the results to a text file 
#output_filename = "dope_scores.txt" 
#with open(output_filename, "w") as f: 
 #   for filename, score in dope_scores: 
  #      f.write(f"File: {filename}, DOPE Score: {score}\n") 
 
 
# Finalize and clean up 
env.io.atom_files_directory = ['./']  # Set the directory where 
your PDB files are located 
env.io.hetatm = True  # If your PDB files contain HETATM records 
env.io.water = True   # If your PDB files contain water molecules 
env.io.stop_at_pdb = True 
 
env.cleanup() 

 

TABLE 11: Script for loop refinement of cap region of GPR21, while maintaining the disulfide bond. Highlighted 
(gray) parts are modified accordingly to produce the desired refined region. 

from modeller import * 
from modeller.automodel import * 
 
env = environ() 
 
class MyLoop(loopmodel): 
    def select_loop_atoms(self): 
        return selection(self.residue_range('179:A', '186:A')) 
    def special_patches(self, aln): 
        self.patch(residue_type='DISU', 
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                   residues=(self.residues['102:A'], 
                             self.residues['181:A'])) 
 
m = MyLoop(env, 
           inimodel='8hmva_disu.pdb', 
           sequence='8hmva_disu_cap') 
m.loop.starting_model = 1 
m.loop.ending_model = 20 
m.loop.md_level = refine.very_fast 
m.make() 

 
from modeller import * 
from modeller.scripts import complete_pdb 

 

TABLE 12: Script for DOPE score regarding cap region refined models. Highlighted (gray) parts are modified 
according to the refined region. 

 
# Create a MODELLER environment 
env = Environ() 
 
# Load the topology and parameters 
env.libs.topology.read(file='$(LIB)/top_heav.lib') 
env.libs.parameters.read(file='$(LIB)/par.lib') 
 
# List of PDB filenames 
pdb_filenames = [ 
    "8hmva_disu_cap.BL00010001.pdb", 
    … 
    "8hmva_disu_cap.BL00200001.pdb" 
] 
 
# Create a list to store DOPE scores 
dope_scores = [] 
 
# Loop through and score each PDB file 
for pdb_filename in pdb_filenames: 
    # Create a model for scoring 
    mdl = complete_pdb(env, pdb_filename) 
 
    # Select all atoms in the first chain 
    atmsel = selection(mdl.chains[0]) 
 
    # Calculate DOPE score 
    score = atmsel.assess_dope() 
 
    # Append the score to the list 
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    dope_scores.append((pdb_filename, score)) 
 
# Output the results to a text file 
#output_filename = "dope_scores.txt" 
#with open(output_filename, "w") as f: 
 #   for filename, score in dope_scores: 
  #      f.write(f"File: {filename}, DOPE Score: {score}\n") 
 
 
# Finalize and clean up 
env.io.atom_files_directory = ['./']  # Set the directory where 
your PDB files are located 
env.io.hetatm = True  # If your PDB files contain HETATM records 
env.io.water = True   # If your PDB files contain water molecules 
env.io.stop_at_pdb = True 
 
env.cleanup() 
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