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Abstract

Early and accurate diagnosis of hip conditions, such as fractures and degenerative diseases,
is crucial for ensuring that patients receive appropriate treatment on time. Delayed or incorrect
diagnoses can lead to prolonged recovery times, worsened conditions, and higher risks of
complications. In recent years, machine learning and deep learning have emerged as powerful
tools for medical image analysis, offering the potential to assist healthcare professionals by
automating parts of the diagnostic process. This thesis concerns the development of a multi-
stage classification pipeline for the automated diagnosis of hip conditions from x-ray images,
utilizing state-of-the-art deep learning techniques.

The dataset used in this study includes a combination of publicly available hip x-ray images
and additional images provided by a physician, covering fractured, operated, and healthy hips,
as well as hips with osteoarthritis. The classification pipeline consists of five stages, each
addressing a specific diagnostic task. These stages include whether the image shows the left or
right hip, whether the hip is normal or not, if an operation has been performed, the type of
operation (arthroplasty or nailing), and the classification of fracture types and conditions
(intertrochanteric fracture, subcapital fracture, osteoarthritis).

The final classification pipeline incorporates a ResNet50 model for the initial classification
of left or right hip, achieving an accuracy of 89%. For the rest of the stages, VGG16 models
were selected. The highest accuracy was obtained for classifying normal versus abnormal hips
(98% recall) and the type of operation (100%). However, lower accuracy was observed in more
complex tasks, such as differentiating between fracture types, where the model achieved an
accuracy of 73%. Additionally, the classification where the hip is operated or not, the model
achieved a recall of 91%. Transfer learning played a crucial role in boosting the performance of
the pipeline, allowing the models to generalize well despite the limited availability of training
data.

Despite the effectiveness of the proposed pipeline, several limitations were encountered. One
of the main challenges was the limited availability of open-source medical imaging data, which
hindered the training of more robust models. Additionally, hardware limitations restricted the
ability to train larger models or explore more complex architectures. Future research can also
utilize generative models to synthesize additional medical images, expanding the training dataset
and improving model performance.

The findings of this thesis highlight the potential of deep learning techniques in automating
medical diagnosis, particularly for hip-related conditions. Although automated diagnostic
systems are still in the early stages of development, and should be used complementary to human
expertise, they offer numerous benefits. These include faster and more efficient diagnosis,
reduced diagnostic errors, and the ability to assist doctors in identifying additional areas of
concern in medical images. Ultimately, automated systems could become valuable tools in
healthcare, and drastically improve patient outcomes.

Keywords

Deep Learning, Transfer Learning, Automated Diagnosis, Medical Image Classification, Hip
Fracture Detection

Iepiinyn
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H éyxopn kou axkpipnig didyvmon mabncewv Tov 16Y1ov, OTmMG KOTAYLATO KOl EKQUMOTIKEG
acBéveteg, sivon (oTikng onuociog ywo va dtaceoiotel 0t ot acBeveic Aaupdvovv v
KaTaANAN Oepamneia Eykarpa. Kabvotepnuéveg 1 e0QaApéveg O10yvAdGEIS UTOpPEL VoL 001yc0VV
0 TOPOTETAUEVOVS YPOVOVG avAppmoNg, emOeiveon Tov madnoemv Kot vYNAITEPOLG
Kwvdovoug emmAok®v. Ta tedevtaio ypdvia, n unyaviky puddnon kot n Pabid padbnon £yovv
avadeybel g woyupd epyoreion yoo TNV AVAALGN WOIPIKAOV EKOVOV, TPOGPEPOVTIOS TN
dvvatdTTo Vo eE@eANDel 0 Topéag TS VLYEIOG, CLTOUATOTOIMVTOS UEPT TNG OLYVWOGOTIKNG
dwdkaciog. H mapovoa Sumhopatikn epyasio agopd v avantuén pog Gepas oiyopifuwmy
Ta&vOUNoNG TOAAOTAMY OTadlOV Yoo TNV OVTOHOTOTOMUEVT] Oldyvworn mabnoemv Kot
YePoLPYEi®V TOV 1GY10V amd eKOVES akTiveov X, Le TN xpNoT TeEXVIKOV Babidg uddnong.

To oVvoho dedopévov mov ypnoiponombnke oe avty ™ peAétn mepthapPdver Evav
ocuvovacud OBECIU®Y OTO KOWO EIKOVOV  OKTIVOYpOQiog 10Ylov Kol E€KOVOV  TTOV
TopoyopnOnKay amd Evav ophomediko yEipovpyd, TOV KAADTTOVV GTAGLEVA, YELPOVPYNUEVE KOt
vy wylo, kabhg kot wyia pe ooteoapHpitida. H daducasio g tasvounong anoteAeitan and
TEVTE OTAOIN, TO KOOEVO Yo 0L GUYKEKPIUEVN OYVOOTIKY gpyacio. Avtd to otddn
neptlopPavouy dv n eikdva deiyvel To aplotepo M To deéi 1610, edv T 1oYi0 Elvar LGIOAOYIKO
N oy, €av €yel yiver emépPaocm, tov tomo g enéppaong (apbpomiactikny N NAwon) Kot v
Ta&VOUNoT TOV TOTOV TOV KATOYUATOV 1 TaONGE®V (J1UTPOYAVINPLO KATOYO, VITOKEPOAKS
Kdrtaypa, ooteoapOpitidoan).

To tehkd cvomua Tagvopunong evoopatovel €va poviédo ResNet50 yia v apyikn
TaEWVOUN O™ TOL aPLoTEPOD 1} TOL HeE0V 1o lov, emttuyydvovtoag axpifeta 89%. I ta vrOLoUTOL
otdota emA&yOnkav povtéda VGG16. H vynidtepn axkpifeta emredydnke yuo v ta&vounon
TOV QUGIOAOYIKAV £VOVTL TOV U1 PLGOA0YIKAOV yimv (98% recall) kot Tov tHmov emépfoong
(100%). Qotoco, yapniotepn akpifelo mapampndnke ce mo ocvvOeteg epyacieg, OTMS M
dpopomoincn HETOED TOV THTOV KOTAYUATOS 1| 06TE00pOpiTIdns, OTOV TO HOVTEAO TETLYE
axpifera 73%. Emmpdcheta, n ta&vounon 6mov to woyio eite €xel xeypovpynbet eite OxL, 10
povtédo métuye recall 91%. Ta transfer learning povtéha énanéav Kpicio polo otnv evicyvon
MG OamOO00NG TOL GCULGTNUOTOC, EMITPEMOVING OTO MOVIEAN VO YEVIKEDOLV TAPA TNV
TEPLOPIOUEVT] S10BEGILOTNTA OESOUEVMV Y10l EKTTALOEVOT).

[Topd ™V amoTELECUATIKOTNTO TOV TPOTEWVOUEVOL GUGTNUATOS, GLVAVTNONKOV apKeTOl
nepropiopol. Mia amd Tig KOPEC TPOKANGEIS NTAV 1] TEPLOPICUEVT] SLODEGILATNTO 1UTPIKAOV
dedopévmv, N omoia epOdIle TNV EKTAIOEVOT MO GYVPOV Hoviéhwy. EmmAéov, ot meplopiopol
hardware meplopioav  ovvatdtTo ekmaidevong Pabdtepov poviéhwv 1 eEepevvnong To
TEPIMAOK®V  OPYLTEKTOVIKAOV. MEeEAAOVTIKES €pguveg UmopolOV €mMiGNG VO YPNOLULOTOM GOV
pHovtéda ylo T ovvleon mpOGHETOV 1TPIKOV EIKOVOV, ETEKTEIVOVTOS TO GUVOLO OEOOUEVMDV

ekmaidevong Kot BEATIOVOVTOG TNV amdOO0GT) TOL GUGTHHLATOG.

To evpuoTo OVTAG TNG EPYOCIAG EMONUAIVOVY TIC SLVATOTNTEG TOV TEXVIKOV PBabidc
paOnong 6TV aVTOUATOTOINGT TNG LATPIKNG Odyvmong, Wiaitepa Yo Tabfcelg mov oyetiovral
pe v opBomedikn. [Taporlo mov Ta ALTOUATOTOMUEVE JOYVOCTIKE GuoThuato Ppickovtal
Koo o€ apyKd otdole avanTuENG Kot Ba TPEMEL Vo YPNGIULOTOOVVTOL CUUTAPOUATIKA,
TPOGPEPOLY TOALA OQEAT. AVTE TEPIAAUPAVOLY TOYDTEPT] KOl TTO OMOTEAECUOTIKT O1yvVOON,
LEWOUEVA O10YVOOTIKE GOAALOTO Kol TV KovOTN T Vo fonfodv toug yatpoig vo eviomilovv
npdcOeta mpoPAnuaTe OTIG WTPIKEG €KOveG. TELOG, TO. awTOHOTOTOINUEVE GLGTHHATO O
UIopovGay va yivouv moAdTia epyoreio 6TOV TOUEN TG LYELNG Kot VO BEATIOGOVV OPUGTIKA TO.
OTOTEAECUOTO TOV 0GOEVOV.
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INTRODUCTION

In recent years, hip fractures and the need for hip arthroplasty procedures have become
significant public health concerns due to their increasing occurrences and the impact on
individuals' quality of life. Accurate and timely detection of hip fractures and the need for
arthroplasty plays a crucial role in improving patient recovery, locating the source of the
condition, and reducing healthcare costs (Moran et al., n.d.). Manual diagnosis by medical
professionals can be time-consuming, subjective, and prone to human error. Therefore, there is
a need for automated and efficient methods to aid in the detection and classification of hip
fractures and the subsequent requirement for hip arthroplasty.

Advancements in machine learning and artificial intelligence have shown great potential in
various medical fields, improving disease detection and patient care. Leveraging the power of
machine learning algorithms for hip fracture and hip arthroplasty detection offers an innovative
approach to enhance accuracy and speed in clinical decision-making. By analyzing medical
imaging data, such as x-rays, CT scans, or MRI scans, machine learning algorithms can identify
subtle patterns, features, and abnormalities that may not be easily distinguishable by the human
eye.

The subject of this thesis

This thesis scope is to develop a robust and reliable machine learning approach specifically
tailored for the detection of hip abnormalities, or hip operations. The system is designed to
process and analyze x-ray images. Through a comprehensive evaluation of various machine
learning techniques and state-of-the-art algorithms, this work aims to identify the most suitable
approach for accurate detection and classification of different hip abnormalities and hip
operations.

The successful implementation of an automated machine learning algorithm for hip fracture
and hip arthroplasty detection holds immense potential for healthcare providers, radiologists,
and orthopedic surgeons. It can significantly reduce the time and effort required for diagnosis,
enabling healthcare professionals to make informed treatment decisions promptly. Additionally,
it has the potential to minimize the risk of misdiagnosis and unnecessary surgeries, thereby
improving patient outcomes and overall healthcare efficiency.

Aim and objectives

Scope of this thesis is to contribute to the advancement of automated medical diagnosis by
developing a robust system for hip abnormalities and hip operations detection. By leveraging
deep learning techniques, this research strives to support clinical decision-making in orthopedic
practice, ultimately improving patient care. Aim of this thesis is also to test various models’
robustness in each classification task, proposing a pipeline that encompasses the best performing
models. The pipeline architecture is designed to classify various hip fractures and diseases,
covering a wider range of cases instead of focusing exclusively on one condition.
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Methodology

The methodology adopted in this thesis involves an approach to classify hip x-ray images
using a multi-stage deep learning pipeline. First, a dataset of x-ray images was compiled,
including both publicly available images and additional data provided by Dr. Zachariadis,
covering fractured, operated, and healthy hips. The classification task was broken down into
multiple stages, each targeting a specific decision-making process: identifying the side (left or
right hip), determining the state (normal or not normal), and further classifying between various
medical conditions or operations (arthroplasty, nailing, different types of fractures, or
osteoarthritis). For each stage, different deep learning models were trained and evaluated, with
the most efficient models selected for the final pipeline based on their performance metrics. The
final classification pipeline consists of sequentially applied models: ResNet50 for side
classification, and VGG16 for the rest of the stages, which classify the hip's condition. Last but
not least, the pipeline structure is designed to be time efficient. For example, in case a normal
hip is detected, the process comes to an end, while it proceeds through further stages if
abnormalities are present, with conditional logic.

Innovation

This work aims to pave the gap in relevant literature regarding the development of a pipeline
that can combine various models that detect different cases and medical conditions. Thus, the
proposed system will ultimately be capable of offering predictions that provide a more rounded
diagnosis of the patient’s state. Furthermore, the addition of medical image generation using a
conditional Generative Adversarial Network (GAN) is being proposed to tackle the problem
regarding the limitation in available data.

Structure

This thesis is structured into seven chapters, each providing information about different parts
of the research process and background theory. Chapter 1 provides background information on
relevant medical conditions, including various types of hip fractures and surgical procedures,
establishing the clinical context for the work. Chapter 2 introduces the fundamental concepts of
machine learning and deep learning, with an emphasis on common architectures like
Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs). Chapter 3
reviews related work in the field, summarizing recent studies that use machine learning models
for fracture detection. Chapter 4 focuses on the data used in this thesis, detailing the data
collection process. Chapter 5 describes the methodology and experimental setup, including the
training and evaluation of various models for each classification stage. Chapter 6 presents the
final classification pipeline, explaining its construction and how the best-performing models
were utilized. Finally, Chapter 7 includes the conclusions regarding the thesis, also providing
information about existent limitations and future work.

1 Chapter 1: Background

Hip fractures and osteoarthritis are common and debilitating conditions, particularly in elderly
populations, that require precise diagnosis and timely treatment to improve patient outcomes.
These conditions not only result in significant pain and reduced mobility but also present
challenges in terms of long-term recovery and quality of life. Understanding the types and
treatments for these disorders is critical for developing effective diagnostic and therapeutic
strategies. This chapter aims to provide a foundational understanding of hip fractures and
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osteoarthritis, focusing on the importance of early detection and surgical interventions

commonly employed to manage these conditions. By exploring the relevant medical
background, this chapter sets the stage for understanding the role of automated diagnostic

systems in improving clinical decision-making and patient care.

1.1 Importance of early detection of hip fractures

The hip is a ball-and-socket joint where the femur adjoins the ilium, ischium, and pubis of
the pelvis. The femoral head is the ball and the acetabulum is the socket in this synovial joint.
The proximal portion of the femur consists of the head, neck, and the greater and lesser
trochanter (Figure 1). The greater trochanter, a bony prominence on the anterolateral surface
of the proximal shaft of the femur, is the insertion site for the gluteus medius and gluteus
minimus muscles. The lesser trochanter, a bony prominence on the proximal medial aspect of
the femoral shaft, is the insertion site for the iliopsoas muscle (Ramponi et al., 2018).

/ Greater Trochanter

Acetabulum

Femoral Head

Femoral Neck

Lesser Trochanter

Femur

Figure 1. Anatomy of the hip bone (Ramponi et al., 2018).

Hip fracture is the most common major injury in the elderly and an important cause of
mortality and morbidity (Moran et al., n.d.). Several research has been done over the years,
some of them will be analyzed below.

1.1.1 Study conducted by Goldacre et al.

The following study was conducted by Goldacre et al. (Goldacre et al., 2002), and
was published in 2002. This study examined emergency admissions of 8,148
individuals aged 65 and over with fractured neck of femur as the principal diagnosis.
Out of these, 80.2% were women, with a mean age of 82.2 years. In the first month
after fracture, the standardized mortality ratio was 1246 (95% confidence interval 1164
to 1331; general population 100). Adjusted standardized mortality ratios were 451 (397
to 509) in month 3, 238 (197 to 283) in month 6, and 187 (149 to 230) in month 12.
Fractured femur was certified as the underlying cause in 16% of deaths within the first
month and as a cause anywhere on the death certificate in 43%.
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1.1.2

1.2

Study conducted by L. J. Melton, I1I

This research was conducted by L. J Melton (Melton, 111, 1993), which was
published in 1993. According to his study, hip fractures result in increased mortality
and significant disability, often stemming from falls and osteoporosis, particularly
affecting post-menopausal white women. Osteoporosis impacts one in four women in
this demographic but affects fewer men and women of other races. In 1990,
approximately 1.66 million hip fractures occurred globally, with half of them in Europe
and North America. Despite this, there's considerable variation in hip fracture
incidence rates within these regions, suggesting the influence of environmental factors
that could be targeted to reduce hip fractures.

As stated in this research, the economic burden is substantial, especially in the
United States, where a quarter of a million hip fractures annually incur costs exceeding
$8 billion, primarily for acute medical care and nursing home services. Future costs are
expected to rise due to global population aging, combined with the increasing hip
fracture incidence rates in some areas. The elderly population is growing most rapidly
in Asia, Latin America, the Middle East, and Africa, which are projected to contribute
to over 70% of the anticipated 6.26 million hip fractures by 2050. Given the expensive
nature of fracture treatment and the uncertainty of rehabilitation success, effective
prophylaxis stands as the sole solution to mitigate the significant social and economic
burden associated with hip fractures.

Basic hip fracture types

Hip fracture is the most common major injury in the elderly and an important cause of
mortality and morbidity (Moran et al., n.d.). Hip fractures have many types, such as femoral
neck fractures, intertrochanteric fractures, fracture of the greater trochanter, subtrochanteric
fractures and femoral head fractures (Gray & Fischer, 2020). But according to Brunner et al.

(Brunner et al., 2003), there are six basic fracture types:

Subcapital neck fracture
Transcervical neck fracture
Intertrochanteric fracture
Subtrochanteric fracture

Fracture of the greater trochanter

AN e

Fracture of the lesser trochanter

In this thesis, subcapital fractures and intertrochanteric fractures are contained in the
classification system, which will be analyzed in more detail below.

According to Brunner et al. (Brunner et al., 2003), hip fractures split into two anatomic
regions, intracapsular and extracapsular. Subcapital (femoral neck) fractures are included in
the intracapsular fractures category, while intertrochanteric fractures and subtrochanteric
fractures are included in the extracapsular fractures.

Anatomic
Region

Fracture Frequency Potential

Complications
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disruption (e.g. ages varying
from 20 to 40 and above 60)

Intracapsular Subcapital (femoral neck) [ 45% in the elderly; Avascular necrosis
fracture Male/Female ratio: 1:3 of the femoral head
Extracapsular | Intertrochanteric fracture | 45% in the elderly; Rarely, malunion
Male/Female ratio: 1:3 Or nonunion;
degenerative
changes
Extracapsular | Subtrochanteric fracture 10%, with bimodal High rates of

nonunion and
implant (e.g. nails
or devices
implanted into the
medullary cavity of
the hip); High
physical stress in
the region may also
cause fatigue

Table 1. Hip fractures classified based on general anatomic locations (Brunner et al., 2003).

Also, in certain cases of hip fractures, the fractured bone fails to heal or heals in a
deformed position. These cases are called nonunion and malunion respectively (Four
Factors for Fracture Healing: Treatment of Nonunion and Malunion, n.d.). Simply put, a
malunion occurs when a fractured bone heals in a position that is not normal, which can
cause reduced bone functionality. A nonunion instead, is the result of a fractured bone
that fails to heal after a long time period (sometimes nine to twelve months) (Malunion
and Nonunion Fractures, n.d.).

Image A. Preoperative anteroposterior
x-ray, showing malunion of the femoral
head (blue arrow).

Image B. Postoperative anteroposterior
x-ray after arthroscopic osteosynthesis.

Figure 2. Preoperative and postoperative radiographs from a case of a femoral head
malunion (Matsuda, 2014).
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Figure 3. Patient with a nonunion of a femur fracture. Image A shows an
anteroposterior radiograph, containing nonunion and hardware failure. Image
B shows an anteroposterior radiograph healing, following nonunion repair
(Egol et al., 2022).

1.2.1 Subcapital/Femoral neck fracture
Subcapital fracture is the most common type of intracapsular neck of femur fracture.
The fracture line extends through the junction of the head and neck of the femur (Shah,
2023). For classifying a subcapital fracture, many classification methods are proposed,
but the Garden classification (Garden, 1961) and the Pauwel classification (Pauwels,
1965) are generally applied. These classification methods are preferred because these
systems take into consideration the stability of a fracture.

1.2.11 Garden Classification method
Garden classification (Garden, 1961) is based on the pre-reduction displacement
of the femoral head. Furthermore, the displacement is graded as per the position of
the principal compressive trabeculae. This system divides an intertrochanteric
fracture into four types:

1) Stage 1 (Figure 2A): Subcapital fractures, which can be incomplete or valgus
impacted (Sheehan et al., 2015) (humeral joint fragments impacted against the
metaphyseal region, with separation of the tuberosities and minimal lateral deviation
of the humeral head (Ribeiro et al., 2016)).

2) Stage 2 (Figure 2B): Fractures that are complete subcapital fractures but nondisplaced
subcapital fractures (Sheehan et al., 2015).

3) Stage 3 (Figure 2C): Fractures that are complete subcapital fractures that are partially
displaced (Sheehan et al., 2015).

4) Stage 4 (Figure 2D): Fractures that are complete subcapital fractures that are fully
displaced (Sheehan et al., 2015).
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B. Stage 3 subcapital neck fracture B. Stage 4 subcapital neck fracture

Figure 4. The Garden classification system for subcapital femoral neck fractures
(Sheehan et al., 2015).

1.2.1.2 Pauwel Classification method
Pauwel classification (Pauwels, 1965) is based on the post-reduction angulation of
the fracture line to the horizontal line, evaluated on an anterior to posterior (AP)
radiograph (Shah, 2023). This system is divided into three types, based on the angle of
the fracture relative to the horizontal plane (Figure 5):

1) Degree I: Angle relative to horizontal pane < 30°.
2) Degree II: 30° < Angle relative to horizontal pane < 50°.
3) Degree III: 50° < Angle relative to horizontal pane.
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Figure 5. Pauwels classification system for postreduction femoral neck fractures,
determined by the angle of the fracture relative to the horizontal plane (white line)
(Sheehan et al., 2015).

1.2.2 Intertrochanteric fracture
Intertrochanteric fractures are present in the region between the greater and lesser
trochanters. Because they occur in the furthest anatomic regions of the hip joint
capsule, they are classified as extracapsular fractures. The cancellous bone
(characterized by its spongy, porous structure) is well vascularized, meaning that rarely
a nonunion or osteonecrosis will arise, which make the healing of the fracture a lot

more complicated (Koval & Zuckerman, 2013).

1.2.2.1 Classification of intertrochanteric fractures

The classification of intertrochanteric fractures is a lot more complicated when
choosing a classification system to follow. Extensive research has been conducted
over the years to scrutinize the reasons behind poor reliability and reproducibility of
fracture classifications. Unfortunately, the challenges associated with the reliability
of classification have led to loss of enthusiasm for the classification process. The
demanding nature of this process has often been overlooked in favor of more
popular and commonly employed classification systems (Marsh et al., 2007).

In the study of Yildirim et al. (Y1ldirim et al., 2022), they aimed to evaluate the
reliability for five classification systems:

Boyd-Griffin classification system

Evans/Jensen classification system

Evans classification system

AO/OTA (Arbeitsgemeinschaft fiir Osteosynthesefragen/Orthopaedic Trauma

Association) (main and subgroups) classification system
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e Tronzo classification system

Radiological images from sixty patients (13 males and 47 females, with ages
ranging from 61 to 96 years) were evaluated and classified by five residents, five
orthopedics and five traumatology surgeons according to the aforementioned
classification systems. Intraobserver and interobserver reliability were calculated using
Cohen’s k-coefficient (Cohen, 1960). Kappa measures the degree of agreement
between a pair of variables, frequently used as a metric of interrater agreement,
particularly in situations involving judgments rather than measurement. Kappa values
range from [-1,1], with 1 indicating complete agreement and 0 no agreement or
independence. According to a study of Yinglin (Yinglin, 2020), the standard for an
acceptable kappa value is arbitrary. According to Fleiss' arbitrary guidelines, which
paper is often referenced, 0.75 is considered as excellent (Fleiss, 1971). However, it's
essential to note that kappa is intrinsically nonlinear, is not adept at handling errors and
retains bias influence. The classification that has the best harmony both among
residents and surgeons, and between residents and surgeons is the OTA main group
classification. The results can be seen in Table 2.

Resident group Surgeon group Resident-Surgeon
intraobserver (95% intraobserver (95%  group
Confidence Confidence interobserver (95%
Interval) Interval) Confidence
Interval)
Boyd-Griffin 0.660 0.658 0.572

(0.550-0.770)

(0.550-0.770)

(0.532-0.616)

Evans-Jensen

0.625
(0.600-0.655)

0.484
(0.434-0.542)

0.498
(0.450-0.553)

Evans 0.557 0.456 0.438
(0.519-0.595) (0.409-0.053) (0.400-0.481)

AO/OTA main 0.744 0.741 0.699

group (0.708-0.785) (0.696-0.797) (0.649-0.750)

AO/OTA subgroup 0.516 0.488 0.444
(0.498-0.540) (0.418-0.558) (0.418-0.470)

Tronzo 0.528 0.529 0.554

(0.501-0.592)

(0.489-0.569)

(0.506-0.614)

Table 2. Intraobserver kappa values of resident group and surgeon group, and
interobserver kappa value of resident-surgeon evaluations (Yildirim et al., 2022).

The AO/OTA classification method can be seen in Figure 6 below.
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Subgroup: Simple oblique Subgroup: Simple transverse Subgroup: Wedge or

fracture fracture multifragmentary fracture

Figure 6. AO/OTA classification method for intertrochanteric (reverse obliquity) fractures (Meinberg et

1.2.3

al., 2018).

Osteoarthritis

The most prevalent joint disorder in the United States is osteoarthritis, which is the
most common cause of disability in the elderly, with approximately 200,000 total hip
replacements performed each year. Radiographs that contain osteoarthritis of the hip
occurs in about 5% of the population over the age of 65 years (Lane, 2007). The
difficult part of classifying an occurrence of osteoarthritis is that not all patients
present symptoms. The inconsistency between changes in radiograph images and
symptoms may account for false negative or false positive findings in well-established
studies of osteoarthritis of the hip.

The term “osteoarthritis™ is used to represent a hypernym group of joint disorders,
presenting joint pain and stiffness. Also, the pathogenesis of osteoarthritis is not
completely understood. In most cases, osteoarthritis most likely starts with degradation
of the articular cartilage in a localized, nonuniform manner. In the following period, a
subsequent thickening of the subchondral bone occurs, new bony outgrowths at joint
margins (osteophytes), and mild-to-moderate synovial inflammation. The events that
initiate osteoarthritis are not clearly defined, but are probably due to abnormal signals
that alter the chondrocyte phenotype so that it synthesizes proteins that degrade the

matrix and causes degeneration of the joint.

There are two main categories of osteoarthritis of the hip, primary (idiopathic) or
secondary (systemic or localized) disease. Risk factors for primary osteoarthritis of the
hip include:

e Oldage

e Genetic predisposition for the disease
High bone mass

Increased body mass index
Participation in weight-bearing sports

Occupations that require prolonged standing, lifting, or moving heavy objects.

Risk factors for the secondary causes (systemic) include:
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Hemochromatosis

Hypothyroidism
Hyperparathyroidism
Hyperlaxity syndromes
Acromegaly

Paget’s disease ® Chondrocalcinosis ® Gout.
Also, localized risk factors include:

Joint injury
Legg—Calvé—Perthes disease
Developmental deformities
Osteonecrosis

Acetabular dysplasia

Rheumatoid or septic arthritis as a result of cartilage damage.

Finally, signaling pathways and polymorphisms in combination with the development
and metabolism of bone and cartilage, are also linked with the risk of developing
osteoarthritis (Lane, 2007).

1.24 Surgical Treatment: arthroplasty, nailing
In this section, information will be provided regarding the different treatments
that need to be offered to patients with subcapital fractures or osteoarthritis,
highlighting the medical decision-making process and how these conditions are
managed through surgical interventions.

1.2.4.1 Treatment of Subcapital Fractures
Treatment of subcapital neck fractures fall into two categories: internal fixation or

arthroplasty (hemiarthroplasty or total hip arthroplasty). Instead of choosing a
treatment option based on a diagnosis-related approach, treatment options now also
take into consideration the patient’s age, functional demands and the individual’s risk
profile. For younger patients, the treatment follows with urgent open reduction and
internal fixation (ORIF) surgery, with the goal of anatomic reduction. Anatomical
reduction is the alignment of the fractured bone fragments, with the aim to reconstruct
the broken bone as closely as possible to its original form, ensuring optimal healing
and restoration of function to the affected bone and surrounding joints (Dogramadzi et
al., 2014). For elderly patients, their cognitive function should be determined. For
cognitive functional patients, the best approach is a total hip arthroplasty. Meanwhile,
for cognitive dysfunctional patients, a bipolar hemiarthroplasty or a total hip
arthroplasty with the use of larger heads and/or constrained sockets are a feasible
option (Callaghan et al., 2012).

1.2.4.2 Treatment of Intertrochanteric Fractures
Intertrochanteric fractures are typically treated surgically, as nonoperative
treatment is generally reserved for non-ambulatory patients or those with a high risk
of perioperative mortality. Non-surgical treatment carries significant risks, including
pneumonia, urinary tract infections, pressure ulcers, and deep vein thrombosis.
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1.2.4.3

Therefore, surgery is the preferred treatment for most patients to restore mobility
and minimize complications. The choice of surgical method depends on the fracture
pattern and stability, as the type of implant used directly affects the success of the
treatment. Fractures involving the lateral femoral wall, or unstable patterns with
comminution or subtrochanteric extension, are often treated with intramedullary

nailing, as this method provides superior stability compared to sliding hip screws.

For stable intertrochanteric fractures, a sliding hip screw may be used, especially
when the lateral femoral wall remains intact. This technique offers comparable
outcomes to intramedullary nailing in such cases, and its advantages include
dynamic interfragmentary compression and lower cost. However, it has drawbacks,
including higher blood loss and the need for an open surgical approach.
Intramedullary nailing, on the other hand, is preferred for unstable fracture patterns,
as it is minimally invasive and reduces blood loss. Arthroplasty is rarely used for
intertrochanteric fractures and is typically reserved for complex cases, such as
severely comminuted fractures or when internal fixation is not feasible due to
osteoporotic bone or pre-existing degenerative conditions (Attum & Pilson, 2024).

Treatment of Osteoarthritis
Treatment of osteoarthritis has two main goals; relieving the patient from pain and
maintaining functionality. As analyzed in the paper published by Lane et. al (Lane,
2007), there are several ways for treating osteoarthritis, such as nonpharmacologic
treatment (balance improvement when walking with a cane, self-help education classes
etc), pharmacologic treatment (mainly drugs to manage pain and/or inflammation) and
a surgical approach.

Regarding surgical approaches, total hip arthroplasty is an effective treatment for
patients suffering from chronic pain and functional impairment. Also, a rehabilitation
program may follow for several months, to regain a reasonable functionality of the
operated hip joint. Maximal pain relief and improvement in functions may take up to
12 months. Other effective approaches are resurfacing arthroplasty (capping the
femoral head and preserving bone of the proximal femur (Mont et al., 2006)) and

osteotomy ( i.e. proximal femoral osteotomy (Tannast & Siebenrock, 2009)).

2 Chapter 2: Machine Learning

2.1

Machine learning is a subset of artificial intelligence that enables computers to learn from
experience and improve their performance over time without being explicitly programmed. It
involves algorithms that can analyze data, recognize patterns, and make decisions with
minimal human intervention.

Machine Learning in general

The concept of machine learning was first introduced by Arthur Samuel in 1959, who
described it as a field of study that gives computers the ability to learn without being explicitly
programmed (Samuel, 1959).

A machine learning algorithm uses input data to achieve a desired task for the purpose of
producing a particular outcome. These algorithms automatically adjust their configuration
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through repetition to improve their performance in a given task. This adaptive process, known

as training, involves providing input data samples and desired outcomes. The algorithm
optimizes its configuration to not only achieve good performance with training data, but also to
generalize and perform well with new, unseen data. This continuous learning process allows a
proficient algorithm to refine its capabilities over time by processing new data and learning
from mistakes (EI Naga et al., 2015).

The field of machine learning is multi-disciplinary, having a wide-range of research fields,
i.e. psychology, neuroscience, information theory, and computational complexity theory. It has
a wide range of applications, including email spam filtering, fraud detection on social
networks, online stock trading, medical diagnosis, and self-driving cars. Machine learning
algorithms are designed to handle complex real-world problems and can be categorized into
different paradigms (Alzubi et al., 2018).

2.1.1 Machine Learning Paradigms

Three main categories of machine learning are supervised learning, unsupervised learning and
reinforcement learning. All of them are being briefly presented in the subsections below.

2.1.11 Supervised Learning

Supervised learning is a type of machine learning where the model is trained on labeled
data. It involves using known input-output pairs to enable the algorithm to learn and make
predictions. The process consists of two main steps: training, where the model learns from the
data, and testing, where the model’s predictions are evaluated, on data different from that of the
training process. The goal is to map input data to known output labels so that when the model
encounters new, unseen data, it can accurately predict the corresponding output. Figure 7
explains this concept.

In essence, supervised learning algorithms build a mathematical model of a set of data that
contains both the inputs and the desired outputs. Each example is a pair consisting of an input
object (typically a vector) and a desired output value. Supervised learning algorithms analyze
the training data and produce an inferred function, which can be used for mapping new
examples. Supervised learning can be further divided into classification tasks, where the output
is a discrete label, and regression tasks, where the output is a continuous value. These
algorithms are widely used for predictive tasks or future event forecasting (Preeti & Dhankar,
2017).
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Figure 7. Supervised Learning (Preeti & Dhankar, 2017)

More specifically, during the training process, the machine generates a vector of scores for
each given image, each score corresponding to a category. Ideally, the correct category should
have the highest score. An objective function is used to measure the error between the
produced scores and the desired scores. The machine then adjusts its internal parameters,
known as weights, to minimize this error. These weights are real numbers that shape the
machine's input-output function. In deep learning systems, there can be hundreds of millions of
weights and training examples. To fine-tune the weights, the learning algorithm calculates a
gradient vector that shows how the error changes with small adjustments to each weight. The
weights are then updated in the opposite direction of this gradient.

In practice, most practitioners use a method called stochastic gradient descent (SGD). This
involves presenting the input vector with a few examples, calculating the outputs and errors,
determining the average gradient for those examples, and then adjusting the weights
accordingly. This process is repeated with many small sets of examples from the training set
until the average objective function stops decreasing. It is called stochastic because each small
set of examples provides a noisy estimate of the average gradient over all examples. This
procedure usually finds a good set of weights quickly compared to more complex optimization
techniques. After training, the system's performance is evaluated on a different set of examples
called a test set, which assesses the machine's generalization ability to produce sensible
answers on new, unseen inputs (LeCun, 2015).

2.1.1.2 Unsupervised Learning
Unsupervised learning is a type of machine learning that operates on data without predefined
labels, aiming to identify underlying patterns or structures within the dataset. It’s particularly
useful for exploratory data analysis, such as customer segmentation in marketing campaigns.
Unlike supervised learning, which relies on labeled input-output pairs for training,
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unsupervised learning algorithms infer the natural grouping or structure of the data based on

intrinsic characteristics. Figure 8 explains this concept.

One common application of unsupervised learning is clustering, where the algorithm
organizes data into groups based on similarities. This can be applied to various fields,
including bioinformatics and image compression. Techniques like k-means and hierarchical
clustering are popular methods within this domain. Unsupervised learning is also adept at
dimensionality reduction, helping to simplify datasets by reducing the number of variables
under consideration, which in turn can enhance the performance of other machine learning
algorithms (Preeti & Dhankar, 2017).
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Figure 8. Unsupervised Learning (Preeti & Dhankar, 2017).

2.1.1.3 Reinforcement Learning
Reinforcement learning is a computational approach where an agent learns to make
decisions by trial and error, receiving feedback from its actions in the form of rewards or
penalties. This method combines elements from psychology, engineering, and artificial
intelligence, allowing the agent to develop a strategy that maximizes its long-term gains from a
specific task. The agent’s objective is to accumulate the highest possible amount of reward,
which is defined by a reward function that dictates what is beneficial for the agent within its

environment.

The core concept of reinforcement learning involves the agent’s interactions with its
environment, where it performs actions and observes the outcomes to adjust its behavior. Key
components include the reward function (rt), state (st) and action (at) definitions, and the

policy function, which maps states to actions. Over time, the agent refines its policy based on
the results of its actions, aiming to improve the expected return. Figure 9 explains this concept.
This learning process is dynamic, with the agent continually updating its value function, which
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estimates the long-term benefits of its actions, leading to more informed decisions and better

performance in the task at hand (Sutton & Barto, 1999).
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Figure 9. Reinforcement Learning (Whiteson, 2010).

2.2 Deep Learning

Representation learning is a set of methods that allows a machine to be fed with raw data and to
automatically discover the representations needed for detection or classification. Deep learning methods
are representation learning methods with multiple levels of representation, obtained by composing simple
but non-linear modules that each transform the representation at one level (starting with the raw input)
into a representation at a higher, slightly more abstract level. With the composition of enough such
transformations, very complex functions can be learned (LeCun, 2015, 1).

2.2.1 Neural Networks

Neural network architectures consist of a multilayer stack of modules. Most of the modules undergo
learning, while many of them perform non-linear input-output mappings. Each module transforms its
input, in order to improve representations. This can be achieved by enhancing both the selectivity and
invariance of the representation. Using several non-linear layers, a system can execute highly complex
functions of its inputs, focusing on meaningful changes. This means that the model is capable of being
sensitive to details of interest, while remaining unaffected by significant irrelevant variations such as

the lighting, surrounding objects and general background (LeCun, 2015).

Multilayer architectures are trained using stochastic gradient descent. Provided the modules are
relatively smooth functions of their inputs and internal weights, backpropagation can compute the
gradients. To elaborate, backpropagation calculates the gradient of an objective function relative to the
weights of a multilayer module stack by applying the chain rule for derivatives. The idea is that the
gradient of the objective, with respect to a module's input, can be derived by tracing back from the
gradient concerning the module's output (or the input of the next module). This backpropagation
equation can propagate gradients through all modules, starting from the output (where the network
makes its predictions) down to the bottom (where the external input enters). Once these gradients are
available, computing gradients concerning each module's weights becomes straightforward. Multilayer
neural networks and backpropagation can be seen in more detail in Figure 10.

In many deep learning applications, feedforward neural network architectures are applied, which
map a fixed-size input (like an image) to a fixed-size output (such as probabilities for each
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label/category). Transitioning from one layer to the next involves units computing a weighted sum of

their inputs from the previous layer and applying a non-linear function. The most widely used non-
linear function is the Rectified Linear Unit (ReLU), defined as f(z) = max(z, 0) (Hara et al., 2015).
Previously, neural networks used smoother non-linearities like tanh(z) or 1/(1+exp(—z)), but ReLU
generally facilitates faster learning in neural networks, allowing for deep supervised network training
without unsupervised pre-training. Units not in the input or output layer are known as hidden units.
These hidden layers transform the input non-linearly, making categories linearly separable by the final
layer.
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Figure 10. Multilayer neural networks and backpropagation. (LeCun, 2015) a) A multilayer neural
network can transform input space to make data classes linearly separable. This example uses two
input units, two hidden units and one output unit, but networks for tasks like object recognition or
natural language processing (NLP) can contain tens or hundreds of thousands of units. b) The chain
rule of derivatives explains how two small effects combine. A small change Ax in x is first transformed
into a small change Ay in y by multiplying with 0y/0x (the partial derivative). The change Ay results in
a change Az in z. Substituting one equation into the other provides the chain rule of derivatives: how
AX turns into Az by multiplying by the product of dy/0x and 0z/0x. This also applies when x, y and z
are vectors, and the derivatives are Jacobian matrices. ¢) The equations for the forward pass in a neural
network with two hidden layers and one output layer involve computing the total input z to each unit as
a weighted sum of the outputs from the layer, then applying a non-linear function f(.) is applied to get
well as more traditional sigmoids, like the hyberbolic tangent f(z) = max(0, z) the output. Common
non-linear functions in neural networks include ReLU , as

and the logistic function

. d) The equations for the backward pass compute the error derivative

withf f((zz)) respect== (lexp/(1to( zeach+) — expunit’s
exp(—(output—2z))z))/at(expeach(zhidden) + explayer.(— zIt))is a weighted sum of the error
derivatives
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concerning the total inputs of the units in the layer above. The error derivative with respect to the

output, is then converted into the error derivative with respect to the input, by multiplying by the

gradient of f(z). At the output layer, theyerror: — tderivativel with respect to the output, is
derived byz differentiating the cost function, giving  if the cost function for unit is 0. 5(yt —1t1),
where

tiis the target value. Once the OE/0Ozk is known, the error derivative for the weight wjk on the

connection from unit j in the lower layer right is yj OE/0zk.

2.2.1.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are specialized neural networks designed to process data
that is organized as multiple arrays, such as 2D images (e.g. a colored image composed of 3
2-Dimensional arrays, containing pixel intensities in the three color channels, Red Green and Blue
(RGB)), 1D signals (e.g. language) or 3D videos. They leverage four fundamental principles that
utilize the properties of natural signals: local connections, shared weights, pooling, and deep layering.
The architecture of ConvNets is typically structured in stages, with the starting stages consisting of
convolutional and pooling layers (Figure 11). In each convolutional layer, units are organized in feature
maps, where each unit is connected to local patches in the previous layer’s feature maps through a set
of weights, called a filter bank. Then, the result of this sum, called a local weighted sum, passes
through a non-linearity (e.g. ReLU). This connection allows for the detection of local patterns, with all
units sharing the same filter bank and each feature map using different filter banks, to identify various

patterns across the data. The reason for the CNNs’ architecture is based on two factors:

1. In data that consist of arrays (e.g. images), it is common for local groups of values to
be greatly correlated, thus creating distinctive local motifs that can be detected easily.

2. Local statistical data of images as well as other signals are invariant to location. This
means that if a motif is present in one part of an image, it could appear anywhere else
as well. This is the reason why units at different locations share the same weights and
detect the same patterns in different parts of an array, as mentioned above. The
filtering operation performed by a feature map is a discrete convolution (LeCun,
2015).

To conclude, the convolutional layer's primary function is to identify local combinations of features
from the preceding layer.

Moreover, the pooling layer's role is to combine semantically similar features into one. Since the

relative positions of features within a motif can vary, reliably detecting the motif is achieved by
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generalizing the position of each feature. Typically, a pooling unit determines the maximum value

within a local patch of units in a feature map, or sometimes across several feature maps. Adjacent
pooling units receive input from patches that are offset by more than one row or column, which
reduces the representation's dimensionality and generates invariance to small positional shifts and
distortions. Multiple stages of convolution, pooling and non-linearity are stacked, followed by
additional convolutional and fully-connected layers. Gradient backpropagation through a ConvNet is
straightforward, like in a regular deep network, enabling the training of all weights in the filter banks
across the network.
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Figure 11. Convolutional Network typical architecture. The outputs from each layer of a standard
convolutional network architecture applied to a dog's image. Each image represents a feature map
corresponding to one of the learned features, identified across different positions in the image.
Information moves from the bottom up, with lower-level features serving as oriented edge detectors,
and a score is calculated for each class in the output (LeCun, 2015).

2.2.1.2 Recurrent Neural Networks

For tasks involving sequential inputs, such as language and speech, recurrent neural networks
(RNNs) are most times more effective (Figure 11). RNNs process a sequence one element at a time
while maintaining a "state vector” in their hidden units, which implicitly stores information about the
history of the sequence. RNNs are powerful dynamic systems, but training them has been challenging
due to the tendency of backpropagated gradients to either explode or vanish over time. However,
advancements in architecture and training methods have improved RNN performance, making them
effective for tasks like predicting the next character or word in a sequence, as well as more complex
tasks.

For instance, an English "encoder" network can be trained to convert an English sentence into a
"thought vector" by processing it one word at a time. This vector can then initialize a French "decoder"
network, which generates a probability distribution for the first word of the French translation. The
process continues, with the decoder producing distributions for subsequent words, ultimately
generating a French sentence based on the English input. This approach to machine translation has
quickly become competitive with state-of-the-art methods, challenging the idea that understanding a
sentence requires internal symbolic expressions and suggesting that reasoning may involve many

simultaneous analogies contributing to a conclusion (LeCun, 2015).
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Beyond translating between languages, the same concept can be applied to translating the meaning

of an image into a sentence. In this case, a deep ConvNet acts as the encoder, converting pixel data into
a representation vector, while an RNN functions as the decoder, similar to those used in machine

translation and neural language modeling.

When unfolded in time, RNNs resemble deep feedforward networks with shared weights across all
layers. Despite their design to learn long-term dependencies, it is theoretically and empirically
challenging for them to retain information over extended periods. To address this, Long Short-Term
Memory (LSTM) networks were introduced, featuring special hidden units that naturally remember
inputs for extended durations. These units, known as memory cells, accumulate external signals and
decide when to clear the memory. LSTM networks have proven more effective than traditional RNNs,
particularly when multiple layers are used for each time step. They are capable of powering entire
speech recognition systems, from acoustics to transcription. Additionally, LSTM networks that are
related to them are now commonly used in encoder and decoder networks that demonstrate powerful
performance in machine translation tasks. Memory networks have also shown excellent performance

on standard question-answering benchmarks, where they use memory to retain the story that the
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network will later be questioned about (LeCun, 2015).
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Figure 12. Recurrent Neural Network (RNN) architecture. A Recurrent Neural Network typical
architecture that unfolds over time during its forward computation. The artificial neurons, such as
hidden units grouped under node s with values st at time ¢, receive inputs from other neurons at
previous time steps. This is indicated by the black square on the left, representing a delay of one time
step. This allows a recurrent neural network to map an input sequence, with elements xt, to an output
sequence, with elements ot, where each ot depends on all previous xt'(for t” <t). The same parameters

version whereU, V theW network generates a sequence of outputs (e.g., words), with each output used
as the (matrices ) are reused at each time step. Various other architectures are possible, including
a

input for the next time step. The backpropagation algorithm (Fig.10) can be directly applied to the
computational graph of the unfolded network, shown on the right, to compute the derivative of a total
error (such as the log-probability of generating the correct output sequence) with respect to all the
states st and all the parameters (LeCun, 2015).
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23 Transfer Learning Models

Transfer learning is a rapidly growing topic that has the potential to drive the success of machine
learning both in research and industry. It is particularly useful when there is a lack of data for specific
tasks, as collecting and labeling data can be costly and time-consuming. Also, recent privacy concerns
make it challenging to use real data from users. Transfer learning enables the quick prototyping of new
machine learning models, by leveraging pre-trained models from a source task, avoiding the need to train
on millions of images, which takes a lot of time and requires GPUs that have a very high cost (Ribani &
Marengoni, 2019).

2.3.1 Visual Geometry Group (VGG16)

VGG16 is a convolutional neural network (CNN) architecture that was proposed by
Karen Simonyan and Andrew Zisserman from the University of Oxford in their 2014
paper titled "Very Deep Convolutional Networks for Large-Scale Image Recognition"
(Simonyan & Zisserman, 2014). The name “VGG16” comes from the Visual Geometry
Group (VGG) at Oxford, and the “16” refers to the 16 weight layers in the network.

The VGG16 architecture is known for its simplicity and uniformity, using small 3x3
convolution filters throughout the network. Below is a detailed breakdown of its
architecture:

e Input Layer: The input to the network is a fixed-size 224x224 RGB image. The only
preprocessing done is subtracting the mean RGB value, computed on the training set,
from each pixel.

e Convolutional Layers: The network has 13 convolutional layers. These layers use
very small receptive fields: 3x3 (which is the smallest size to capture the notion of
left/right, up/down, center). The convolution stride is fixed to 1 pixel, and the spatial
padding of the convolution layer input is such that the spatial resolution is preserved
after the convolution.

e Max-Pooling Layers: There are five max-pooling layers, each following some of the
convolutional layers. Max-pooling is performed over a 2x2 pixel window, with stride
2.

e Fully Connected Layers: The stack of convolutional layers is followed by three fully
connected layers. The first two fully connected layers have 4096 channels each. The
third fully connected layer performs 1000-way ImageNet Large-Scale Visual
Recognition Challenge (ILSVRC) (Russakovsky et al., 2015) classification and thus
contains 1000 channels (one for each class).

e Activation Function: All hidden layers are equipped with the ReLU function. The

final layer is a softmax layer.

A representation of the above can be also seen in Figure 13 below.
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Figure 13. VGG16 neural network architecture (Cano, n.d.).

The use of small 3x3 filters throughout the network makes the architecture simple and
uniform. Additionally, the depth of the network allows it to learn complex features and achieve
high accuracy on large-scale image recognition tasks. VGG16 achieved state-of-the-art results
on the ImageNet dataset and has been widely used as a backbone for many other computer vision
tasks. VGG16’s architecture has been influential in the development of deeper and more complex
neural networks, demonstrating the importance of depth in achieving high performance in image
recognition tasks.

2.3.2 Residual Network (ResNet50)
ResNet50 is a deep convolutional neural network that was introduced by He et al. in
2015 (He et al., 2015). ResNet50 is part of the Residual Networks (ResNet) family. It
is designed to ease the training of very deep networks by introducing residual learning.

ResNet50 uses residual blocks, which help in training deeper networks by allowing
gradients to flow through the network more effectively. Each block includes shortcut
connections that skip one or more layers. The network consists of 50 layers, including
convolutional layers, batch normalization layers, and ReLLU activation functions. It
also uses a bottleneck design with three layers in each residual block: 1x1, 3x3, and
1x1 convolutions. ResNet50 is known for its high accuracy and efficiency. It has been
successfully used in various image recognition tasks and competitions, and it won first
place at the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) in 2015.
The main characteristics of the ResNet50 model are:

e Residual Blocks: The core idea is the use of residual blocks, where the output of a few
stacked layers is added to the input of those layers. This helps in addressing the
degradation problem in deep networks.

e Identity Shortcuts: These shortcuts perform identity mapping and are added to the
outputs of the stacked layers. They introduce neither extra parameters nor
computational complexity.
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233

Bottleneck Design: For deeper networks, a bottleneck design is used, which involves
a stack of three layers (1x1, 3x3, 1x1 convolutions) to reduce and then restore
dimensions, making the network more efficient.

Network Depth: The architecture includes very deep networks, such as 50, 101, and
152 layers, which are significantly deeper than previous models like VGG16, yet more
efficient in terms of computational complexity.

More details about the network’s architecture are listed below, while a relevant
diagram is provided in Figure 14.

Input Layer: The input to ResNet50 is an image of size 224x224x3.

Convolutional Layers: The network starts with a 7x7 convolutional layer with 64
filters and a stride of 2, followed by a 3x3 max pooling layer. This is followed by a
series of residual blocks, each containing three layers: 1x1, 3x3, and 1x1 convolutions.
The 50 in “ResNet50” stands for the 50 layers that the model has in total.

Fully Connected Layer: After the convolutional layers, there is a global average
pooling layer that reduces the spatial dimensions to 1x1. This is followed by a fully
connected layer with 1000 neurons.

Output Layer: The final layer is a softmax layer that outputs probabilities for 1000
classes, corresponding to the ImageNet dataset.

This architecture allows ResNet50 to achieve high accuracy while maintaining
manageable computational complexity.

Residual Learning Bleck

3 z32 .
- Max- Pool o o ~ ~ D AvgPet B
s D % 51—z
22T =2 & Y S §

2 22 B s A8

2 TIRTOR

\ \ J

Figure 14. ResNet50 model architecture (Ali et al., 2021).

Densely Connected Convolutional Network (DenseNet121)

DenseNet121 is a type of Dense Convolutional Network (DenseNet) designed to improve

the flow of information and gradients through the network, making it more efficient and easier

to train. Its architecture was introduced by Huang et al. in 2016 (Huang et al., 2016). The key

points of DenseNet121 model are:
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Architecture: It consists of 121 layers, including convolutional layers, dense blocks,
and transition layers. Each dense block connects each layer to every other layer in a
feed-forward fashion. Its architecture is analyzed further below.

Efficiency: DenseNet121 is designed to be highly parameter-efficient, requiring fewer
parameters than traditional convolutional networks while maintaining high
performance.

Performance: It achieves state-of-the-art results on various benchmark datasets like
CIFAR-10, CIFAR-100, SVHN, and ImageNet.

Advantages: DenseNets alleviate the vanishing-gradient problem, strengthen feature
propagation, encourage feature reuse, and reduce the number of parameters needed.

Below is a brief overview of its architecture.

Input Layer: The input to DenseNet-121 is an image of size 224x224 pixels.
Convolutional Layer: The initial convolution layer has 2k (64 due to the fact that
growth rate k is equal to 32) filters of size 7x7 with a stride of 2, followed by a 3x3
max pooling layer with a stride of 2.

Dense Blocks: There are four dense blocks, each consisting of multiple layers. Each
layer within a dense block receives inputs from all preceding layers and passes its own
feature-maps to all subsequent layers. As stated, the growth rate (k) is 32.

Transition Layers: Between dense blocks, transition layers perform 1x1 convolutions
followed by 2x2 average pooling to reduce the size of feature-maps.

Fully Connected Layer: After the final dense block, a global average pooling layer is
applied, followed by a fully connected layer with 1000 units and a softmax activation

function for classification.

DenseNet121 architecture ensures efficient feature reuse and reduces the number of parameters

compared to traditional convolutional networks (Huang et al., 2016).
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Figure 15. DenseNet architecture. Above figure depicts a 5 layer dense block with growth rate (k) 4.

The second figure depicts a DenseNet with three dense blocks. The layers between two neighboring
blocks are called transition layers and change feature-map sizes via convolution and pooling (Huang et
al., 2016).

234 Inception Network
The Inception model, also known as GoogleNet, is a deep convolutional neural network
architecture designed to improve the utilization of computing resources within the network. It
was introduced by researchers at Google and achieved state-of-the-art performance in the
ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14) (Szegedy et al.,2014).

Below is a brief overview of the model’s architecture:

e Input Layer: The input to the network is an image of size 224x224 with RGB color
channels.

e Convolutional Layers: The network starts with a 7x7 convolutional layer followed by
max-pooling. It includes multiple Inception modules, each consisting of 1x1, 3x3, and
5x5 convolutions, along with max-pooling layers. These modules are designed to
capture features at different scales.

e Fully Connected Layers: Instead of traditional fully connected layers, the network
uses average pooling followed by a linear layer. This reduces the number of parameters
and helps in better generalization.

e Output Layer: The final layer is a softmax classifier that outputs probabilities for
1000 classes.

Filter
concatenabon

- - e . e %3 convakitions ‘ x5 corvokutions 1x1 canvolusons
1x1 Bx5 3x3 max pooling =1 itions i y ) ! ¥ -
~- — ——
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e L = — —| BENEES

Previous layer Previous layer

Figure 16. Inception architecture. Left figure (16a): Inception module, naive version. This version
combines multiple convolutional layers (1x1, 3x3, 5x5) and a 3x3 max pooling layer. The outputs of
these layers are concatenated to form the input for the next stage. This approach can lead to a large
number of outputs, increasing computational complexity. Right figure (16b): Inception module with
dimensionality reduction. This version introduces 1x1 convolutions before the 3x3 and 5x5
convolutions to reduce the number of input channels. This reduces computational cost while
maintaining performance, making the network more efficient. These modules help the network handle
multiple scales of information efficiently and effectively (Szegedy et al., 2014).

The Inception model’s design allows for increasing the depth and width of the network while
keeping the computational budget constant, making it efficient and powerful for image
classification and detection tasks. More specifically, the advantages of using the Inception
model are:
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e Efficient use of resources: The architecture allows for increasing the depth and width
of the network while keeping the computational budget constant, making it suitable for
real-world applications.

e Improved accuracy: By combining deep architectures with classical computer vision
techniques, the Inception model achieves higher accuracy in image classification and
object detection.

e Scalability: The use of dimension reduction techniques, such as 1x1 convolutions,
helps manage computational complexity, allowing the network to scale effectively.

e Versatility: The model’s design supports various scales of visual information
processing, making it adaptable to different tasks and datasets (Szegedy et al., 2014).

Chapter 3: Relative Work

This chapter reviews the existing research in the field of fracture detection using machine learning

and deep learning techniques, with a focus on two specific types of fractures: wrist fractures and femoral

intertrochanteric fractures. By examining previous studies, this chapter highlights the advancements

made in automated diagnostic systems and their application in medical imaging. The first section

discusses wrist fracture detection, showcasing an approach that has been used to accurately identify

fractures from radiographic images. The second section discusses femoral intertrochanteric fracture

detection, emphasizing the challenges and successes in applying artificial intelligence to this more

complex fracture type.

3.1

Wrist Fracture Detection

Robert Lindsey et al. proposed a deep learning model for detecting fractures and localizing
them, based on radiographs (Lindsey et al., 2018). For the purpose of developing a model, a
collection of radiographs was obtained retrospectively from a specialty hospital in the United
States. Orthopedic surgeons provided clinical interpretations for these radiographs using a tool
to draw bounding boxes around fractures. A deep learning model was designed to detect and
localize fractures in radiographs and was trained based on the labels accompanying the dataset.
The model's performance was then clinically tested on two separate datasets. To evaluate
whether the model can assist emergency medicine clinicians in fracture detection, a controlled

experiment was conducted.

The radiographs used in the study were obtained from the Hospital for Special Surgery
(HSS) between September 2000 and March 2016. The dataset included 135,845 radiographs of
various body parts, with 34,990 of them being wrist radiographs. Two test datasets were used
for evaluating the model's performance. The ground truth labels for fracture presence and
location were assigned by orthopedic surgeons. The model development involved a two-stage
training process: a bootstrapping stage using a large dataset of radiographs from various body
parts and a specialization stage using wrist radiographs. In total, 132,345 radiographs were
used for training the model.

The model used a deep convolutional neural network for fracture detection and localization.
It employed a dual output approach, with one output providing a binary classification and the
other output generating a heat map indicating the probability of fractures at specific locations
in the radiographs. The model's performance was evaluated using receiver operating
characteristic (ROC) curves and the area under the curve (AUC) on test datasets.
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3.1.1

Clinicians were also assessed for their diagnostic accuracy with and without the model's
assistance in a controlled experiment. The study reports the model's diagnostic performance,
the sensitivity and specificity of clinicians, and the time it took clinicians to read radiographs

in the experiment.

Results

The results of the study show that the trained model demonstrated excellent performance in
detecting and localizing fractures in wrist radiographs. On Test Set 1, the model achieved an
AUC 0f 0.967, and on Test Set 2, it achieved an AUC of 0.975. In a subset of images in Test
Set 2 where there was no uncertainty about the reference standard, the model achieved an
impressive AUC of 0.994. This indicates a high level of agreement between the model's
assessments and the reference standard provided by senior subspecialized orthopedic hand
surgeons. The model's ability to precisely identify the presence and location of visible fractures
is also noted.

The study further evaluated the impact of the deep learning model on the diagnostic
accuracy of emergency medicine clinicians. Both emergency medicine medical doctors (MDs)
and physician assistants (PAs) showed significant improvements in sensitivity and specificity
when aided by the model. The average sensitivities and specificities for these clinicians were
substantially enhanced when using the model compared to unaided interpretations. The average
reduction in misinterpretation rate across clinicians was 47.0%. Almost every clinician
exhibited improvements in both sensitivity and specificity.

Additionally, the model's performance was compared to that of the clinicians. On the same
images, the model operated at 93.9% sensitivity and 94.5% specificity under its predetermined
decision threshold and achieved an AUC of 0.990. This suggests that the model's performance

was competitive with or better than that of the clinicians.

When assessing the clinicians' diagnostic accuracy, it was found that, without the model's
assistance, the average sensitivity for emergency medicine MDs was 82.7%, and the unaided
specificity was 87.4%. Also, for emergency medicine PAs, the unaided sensitivity was 78.0%,

and the unaided specificity for PAs was 87.5%.

When the clinicians were aided by the deep learning model, their diagnostic sensitivities
significantly improved. For emergency medicine MDs, the model-enhanced sensitivity was
92.5% and specificity 94.1%, representing a notable increase in fracture detection accuracy.
Similarly, for emergency medicine PAs, the model-enhanced sensitivity was 89.9% and
specificity 93.6%, demonstrating a substantial improvement in their diagnostic performance.

The study also investigated the relationship between reading time and diagnostic accuracy. It
was observed that radiographs that were read quickly without assistance were generally
interpreted accurately. However, as the reading time increased, the diagnostic accuracy for both
aided and unaided conditions deteriorated. Notably, the difference in accuracy between the
aided and unaided reading conditions increased with longer unaided reading times, indicating
that emergency medicine workers dealing with challenging and time-consuming cases would
benefit more from the computer-aided detection (CAD) software.
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3.2

3.2.1

These results provide strong evidence for the effectiveness of the deep learning model in
assisting clinicians in fracture detection and localization, ultimately improving diagnostic
accuracy, especially in challenging cases and time-sensitive situations.

Femoral Intertrochanteric Fracture Detection

In the study conducted by Liu et al. (Liu et al., 2022), x-ray data for femoral
intertrochanteric fractures (FIF) were collected from five hospitals. The dataset comprised 700
x-rays from 459 FIF patients, including both fractured (459 images) and normal hips (241
images). To ensure an accurate and unbiased model, the dataset was split using a 9:1 ratio into
a training set of 643 images and a test set of 57 images. Additionally, physicians manually
labeled the images to mark fracture lines.

For the development of the diagnostic algorithm, a Faster-RCNN target detection model was
employed. The model underwent data augmentation processes, including image rollover,
rotation, cropping, and blurring, which expanded the dataset from 643 to 3,215 images. The
dataset was then used to train the algorithm, which focused on learning both the anatomical
structure of normal hips and the features specific to fracture lines in FIF x-rays. The model's
architecture included a convolutional neural network (CNN) for feature extraction and a
Region Proposal Network (RPN) to localize potential fractures. By pooling and refining the
image regions, the algorithm was able to output predictions, classifying x-rays as either
fractured or normal. The performance of the model was evaluated using key metrics such as
accuracy, sensitivity, specificity and misdiagnosis rate, with the results compared against a
panel of five orthopedic attending physicians.

This comparison revealed how the algorithm could potentially assist in diagnostic settings.
Despite the expertise of the physicians involved, the Faster-RCNN algorithm demonstrated
competitive performance in identifying fractures, offering an accurate and efficient tool for
clinical practice. This work highlights the clinical feasibility of implementing artificial
intelligence into diagnostic workflows, indicating that such systems could support medical

professionals by reducing diagnostic time and improving the consistency of fracture detection.

Results

After the algorithm was trained using the expanded dataset, it was tested on the
separate test data to evaluate its performance in detecting FIFs. For images identified
as containing fractures, the algorithm highlighted the suspicious fracture lines with a
red rectangle. Various performance metrics were used to assess the model’s
effectiveness, including the F1 score, recall, precision, average precision (AP), mean
average precision (mAP), intersection over union (IoU), area under the curve (AUC),
and receiver operating characteristic (ROC) curve.

The final results of the algorithm demonstrated a strong performance in classifying
FIF and normal hips. The accuracy of the model was 0.88. The sensitivity, or the
model’s ability to correctly identify actual fracture cases, was 0.89, while the missed
diagnosis rate was 0.11, meaning that the algorithm failed to detect 11% of fracture
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cases. The specificity, which measures the ability to correctly identify normal hips, was
0.87, and the misdiagnosis rate was 0.13. These results suggest that the algorithm is
capable of providing reliable diagnostic support, with a low rate of missed diagnoses
and a reasonably high specificity, although some misdiagnoses were still present.

4  Chapter 4: Data

In this section, the data used for developing the proposed approach are being presented. Due
to the fact that there was a limited number of open-source hip x-ray images that could be used
for the models’ training, it was also necessary to gather a dataset from various sources. The
process of acquiring the dataset is described below.

4.1 Data Gathering

Since the aim of the thesis is to develop an approach that could effectively classify twelve
classes of hip x-rays, a robust dataset consisting of data addressing all twelve classes needed to
be gathered. Among many types of hip fractures, disorders and hip surgeries, after consulting
orthopedic surgeon Zachariadis Christos, the following classes were considered to provide the
most value (see Figure 17):

Left hip normal
Right hip normal
Left hip intertrochanteric fracture
Right hip intertrochanteric fracture
Left hip subcapital fracture
Right hip subcapital fracture
Left hip osteoarthritis
Right hip osteoarthritis
Left hip arthroplasty
. Right hip arthroplasty

A e A e
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. Left hip nailing
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Figure 17. X-ray images from the dataset. Each image corresponds to one class.
Data was gathered from various sources on the web and from x-ray images provided by
doctor Zachariadis along with the respective diagnoses. The images were carefully picked and

annotated with his help and guidance, ensuring that no mistakes were made when annotating
them. The following sources were used for getting the medical data:

e https://www.kaggle.com/datasets/ibombonato/xray-body-images-in-png-unifesp-comp
etion

https://radiopaedia.org/articles/hip-hemiarthroplasty?lang=us

https://radiopaedia.org/articles/total-hip-arthroplasty?lang=us

https://radiopaedia.org/articles/garden-classification-of-hip-fractures?lang=us

https://radiopaedia.org/articles/vancouver-classification-of-periprosthetic-hip-
fractures ?lang=us

https://radiopaedia.org/articles/periprosthetic-fracture?lang=us

https://radiopaedia.org/articles/osteoarthritis-of-the-hip?lang=us

https://radiopaedia.org/cases/normal-hip-x-rays

https://radiopaedia.org/cases/normal-pelvic-radiograph-female

https://boneandspine.com/intertrochanteric-fractures/

https://boneandspine.com/hip-injuries-xrays-and-photographs/

http://www.boneschool.com/hip/hip-fractures/intertrochanteric-fractures
https://www.sciencedirect.com/science/article/pii/S1063458406003281
https://www.nature.com/articles/s41598-020-70660-4

https://www.researchgate.net/publication/51434368 Evaluation_of Bernese periaceta
bular_osteotomy_ Prospective studies examining_projected load-bearing area bone
density cartilage thickness and migration

e https://www.futuremedicine.com/doi/10.2217/fmeb2013.13.198

Data preprocessing

Since all data are medical images, not much preprocessing was required in order for the
model to be trained. The reason is that the data consist of medical images and the features
should not be distorted much. In order to achieve that, images were resized to shape 256x256.
Then, the pixel values of each image were normalized to the range [0,1]. Additionally, the
labels were assigned to each image and the processed images were returned as 3-dimensional
numpy arrays with shape [256,256,3]. After the preprocessing, the total count of the data was
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812 arrays. Finally, the dataset was split into five subsets of data, one for each classification
step, which will be analyzed in the following chapter.

Data compliance with GDPR

The General Data Protection Regulation (GDPR) (General Data Protection Regulation
(GDPR) Compliance Guidelines, n.d.) plays a critical role in ensuring the security and
privacy of medical data. Given the sensitivity of health-related information, strict regulations
are required to protect patient confidentiality and prevent misuse. The GDPR establishes
clear guidelines for handling personal data, mandating that it should be anonymized or
pseudonymized. In the context of medical research, compliance with GDPR fosters trust
between patients and institutions by ensuring that patient data is handled ethically and
securely. This regulation helps prevent unauthorized access to sensitive health information,
thus maintaining the integrity of both clinical and academic research.

In this study, all images that were provided by doctor Zachariadis were anonymized. The
original x-rays were photographed with the use of a mobile phone device, and then the
resulting photographs were provided for the dataset, instead of the original x-rays. Thus, the
final images have a completely different structure than that of the DICOM images, and the
metadata do not correlate with any information about the patients. The final folder that was
provided with the aforementioned data contains images of png, .jpeg and .jpg format.
Therefore, the complete anonymization of the dataset was ensured with no possibility of
tracing the images back to the patients, entirely complying with the GDPR. To conclude, the
data that were incorporated in the final dataset, originated from all sources, are uniform,
in .png, .jpg and .jpeg formats and completely anonymized (What Is Personal Data?, n.d.).
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5  Chapter 5: Methodology & Experiments

The classification process is split into five classification stages (Figure 18). Different models
are being used for each classification stage with different architectures, depending on the
complexity of the images and the difficulty of the model to find meaningful features in order to
classify each subset of data. The classification stages of the pipeline are:

e First classification stage is a binary classification. The first set of data is used during this
phase, which consists of all images. The model classifies if the x-ray image contains a left hip
or a right hip.

e Second classification stage is a binary classification and the second set of data is used. All
data are also contained in this set, normal images are contained in the first class and the rest of
the images in the second class (e.g. arthroplasty, intertrochanteric fracture). This stage
classifies whether the image contains a normal (healthy) hip or a not normal hip (operated or
not operated). If the classification output is “normal”, the process does not move on to the next
stages.

e Third classification stage is a binary classification. The third set of data, which is used for
training the models in this stage, is a subset of the entire dataset. The first class includes x-rays
of operated hips, containing arthroplasty and nailing images, while the second class includes
images of not operated hips. Not operated hips include cases of subcapital fractures,
intertrochanteric fractures and osteoarthritis.

e Fourth classification stage is a binary classification and is initiated only if the output of the
third classification stage is “operated”. The fourth subset of data is used, which encompasses
images of arthroplasty and nailing.

e Fifth classification stage is a multi-class classification and is initiated only if the output of the
third classification stage is “not operated”. For this stage, the fifth subset of data is used for
training, which consist of subcapital fractures, intertrochanteric fractures and osteoarthritis x-

ray images.
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Figure 18. Classification pipeline. Each level corresponds to one classification step, where the

classification is conducted from different models.

5.1 Left / Right Hip Classification Stage

This is the first stage of the classification pipeline. Various models were trained and tested,
with the ResNet50 model demonstrating the best accuracy.

5.1.1 DenseNet Model

5.1.1.1 Data preparation, Architecture and Training
First, data is split in training, validation and test sets. In the beginning, the

original dataset is split into training and validation sets using the “train_test_split”
method that the scikit-learn library offers. 70% of the 812 images were used as the
training data (568 images). The split is stratified, meaning the distribution of classes
in the train and validation sets is the same as in the original dataset. Then, the rest
30% of the data is further split into validation and test sets. From the remaining 244
images, 65% of the images formed the validation set (158 images) and 35% the test
set (86 images).

In this implementation, the DenseNet121 model is used with its pre-trained
weights from the ImageNet dataset, which allows the model to generalize features
easier. By setting the parameter “include top=False”, the fully connected layers at
the top of the DenseNet121 base model are excluded, leaving only the
convolutional layers. Additionally, the DenseNet121 layers are frozen, meaning that
during training, their weights will not be updated.

Additionally to the DenseNet121 main architecture, the model architecture also
includes several custom layers, which will process the feature maps generated by
DenseNet121. The input layer accepts 256x256 pixel images with three color
channels. The next layer is a Global Average Pooling layer, which reduces each
feature map to a single value by computing the average. This step reduces the
dimensionality of the feature maps, converting them into a 1D vector. Later on, a
Batch Normalization layer is placed to normalize the output from the previous layer.
After that, a Flatten layer follows, preparing the data for the fully connected layers.
The first two Dense layers each have 32 neurons and use the ReLU activation
function. These layers are followed by a Dense layer with 16 neurons and another
with 8 neurons. The output layer is a Dense layer with two neurons, using a sigmoid
activation function, since it is a binary classification task (Figure 19).
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5.1.1.2
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Figure 19. DenseNet model architecture.

A critical component of this training process is the use of early stopping. Early
stopping is a regularization technique that monitors the model's performance on the
validation dataset during training, in this case the validation loss. Purpose of this
technique is to stop the training process when the model stops improving, which
typically prevents overfitting. Additionally, the training will stop if the validation
loss does not improve for five consecutive epochs. Also, the early stopping is
configured to start monitoring only after the first 10 epochs. This allows the model
to stabilize and begin learning meaningful patterns before the early stopping

mechanism begins to monitor its performance.

The Adam optimizer is chosen for training. After trying different learning rates,
the learning rate was set to 0.001. Also, the loss function used is binary cross-
entropy, which is suitable for binary classification tasks. Additionally, the training is
done with a batch size of 16 and the model is being trained for a maximum of 100
epochs. However, due to the early stopping mechanism, the actual number of
epochs is fewer. The validation loss had stopped improving and the training
terminated at epoch 18. The “shuffle” parameter was also set to “True”, which

means that the training data is shuffled before each epoch.

Results

When the model stopped training due to the early stopping mechanism, the
training results shown in Table 3, indicate that the model was prone to overfitting.
This can be also seen in Figure 20. Several changes were made to the model trying
to achieve better results, but did not yield better results.

Data subset Accuracy Loss

Training 0.9818 0.0437
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Validation 0.7215 1.3570
Table 3. DenseNet121 model training results.
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Figure 20. DenseNet training loss and accuracy. DenseNet121 model loss is

depicted on the left image and accuracy on the right. The yellow line represents the
validation set, while the blue line represents the training set.

Finally, the accuracy of the model on the test set was 0.72. The confusion matrix in
Figure 21 and the classification report in Table 4 shows the model's results in more

detail.

Confusion Matrix

True label

Predicted label

10

Figure 21. Classification report and confusion matrix of the DenseNet121 model’s
predictions on the test set.
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5.1.2

5.1.2.1

accuracy 0.72 86

macro avg 0.72 0.72 0.72 86

weighted 072 072 0.72 86
avg

Table 4. DenseNet121 classification report.

Inception Model

Data preparation, Architecture and Training

The dataset is split into training and validation sets using “train_test split”. 70%
of the 812 images were split into training data (568 images). The split is once again
stratified, keeping the distribution of classes in the train and validation, in
accordance to their distribution the original dataset. Out of the 244 images in the
validation set, 65% of the images remained in the validation set (158 images) and
35% were splitted to be used as the test set (86 images).

In this experiment, the Inception model is also used with its pre-trained weights
from the ImageNet dataset. Additionally, the parameter “include top” is set to
“False” and the model’s layers are frozen, leaving the weights not to be updated.

Below the Inception architecture, several custom layers are also included. The
input layer accepts 256x256 pixel images with three color channels. The following
layers include a Global Average Pooling layer. Following, a Batch Normalization
layer is placed to normalize the output from the previous layer and a Flatten layer,
preparing it for the fully connected layers. Later, two Dense layers are added,
having 32 neurons each and using the ReLU activation function. Then, a Dense
layer with 16 neurons and another with 8 neurons are added, both using the ReLU
activation function. Finally, the output layer is a Dense layer with two neurons,

using the sigmoid activation function (Figure 22).
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Output Layer
Dense (Nona, 2)

Figure 22. Inception model architecture.

In this training process, the Early Stopping technique is also utilized. Specifically, it
monitors the model's validation loss during training. The training will stop if the
validation loss does not improve for five consecutive epochs. Once again, the early
stopping is set to start the monitoring after the 10th epoch.

The Adam optimizer is also chosen for training. The learning rate was set to 0.001
and the loss function used is binary cross-entropy. Also, the training is done with a
batch size of 16 and the model is going to train for a maximum of 100 epochs.
However, due to the early stopping mechanism, the actual number of epochs is fewer.
More specifically, the validation loss stopped improving at epoch 16. Finally, the
“shuffle” parameter was also set to “True”, to shuffle the training data before each
epoch.

5.1.2.2 Results
When the model stopped training due to the early stopping mechanism, the
training results shown in Table 5, indicate that the Inception model also overfitted.
This can be also seen in Figure 23. Several changes were made to the model trying
to achieve better results, but these were the best along this experiment.

Data subset Accuracy Loss
Training 0.9298 0.1802
Validation 0.6076 1.2729

Table 5. Inception model training results.
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model loss model accuracy
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Figure 23. Inception training loss and accuracy. Inception model loss is depicted
on the left image and accuracy on the right. The yellow line represents the
validation set, while the blue line represents the training set.

Finally, the accuracy of the model on the test set was 0.66. The confusion matrix in

Figure 24 and the classification report in Table 6 shows the model's results in more
detail.

Confusion Matrix

True label

20.0

17.5

15.0

12.5

Predicted label

Figure 24. Confusion matrix of the Inception model’s predictions on the test set.

precision recall fl-score  support
0 0.68 0.60 0.63 42
1 0.65 0.73 0.69 44
accuracy 0.66 86
macro avg 0.66 0.66 0.66 86
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weighted
avg

0.66 0.66 0.66 86

Table 6. Inception classification report.

5.1.3 ResNet50 Model
The ResNet50 model had the best results amongst all the models that were
implemented for the Left/Right classification task.

5.1.3.1 Data preparation, Architecture and Training
First of all, the dataset is split into training and validation sets. 70% of the 812
images were split into training data (568 images). Then, the validation set is further
split into validation and test sets. From the 244 images in the validation set, 65% of
the images remained in the validation set (158 images) and 35% in the test set (86
images). The split in this experiment is also stratified.

The ResNet50 model is also used with its pre-trained weights from the ImageNet
dataset. The parameter “include top” is set to False and the model’s layers are
frozen.

After the ResNet50 architecture, several custom layers are also added. The input
layer accepts 256x256 pixel images with three color channels. The following layers
include a Global Average Pooling layer. Following, a Batch Normalization layer is
placed to normalize the output from the previous layer and then a Flatten layer.
Later, two Dense layers are added, each one having 32 neurons and using the ReLU
activation function. Then, a Dense layer with 16 neurons and another with 8
neurons are added, both using the ReLU activation function. Finally, the output

layer is a Dense layer with two neurons, using a sigmoid activation function (Figure
25).

input ([(None, 256, 256, 3]])

ResNet50 (None, None,
None, 1024

GlobalAveragePoaling2D
(Nane, 1024)

i

BatchNormalization
(None, 1024)

Flatten (None. 1024) |
Dense (None, 32)

Dense (None, 32)

Dense (None, 18)

Dense (None, B)

Output Layer
Dense (None, 2)
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Figure 25. ResNet50 model architecture.

The Early Stopping technique is also utilized, which also monitors the model's
validation loss during training. The training will stop if the validation loss does not
improve for five consecutive epochs. Additionally, the early stopping is set to start the
monitoring after 10 epochs.

The Adam optimizer is also chosen for training. The learning rate was set to 0.001
and the loss function used is binary cross-entropy. Also, the training is done with a
batch size of 16 and the model is going to train for a maximum of 100 epochs.
However, due to the early stopping mechanism, the validation loss stopped improving
at epoch 20. Finally, the “shuffle” parameter was also set to “True”.

5.1.3.2 Results
When the model stopped training due to the early stopping mechanism, the

training results shown in Table 7, indicate that the ResNet50 model did not overfit,
but had some minor fluctuations. This can be also seen in Figure 26. In general, the
ResNet50 model had reliable results, making it the best model that was trained
among the three models that were trained for this classification task. Finally, the
accuracy of the model on the test set was 0.89. The confusion matrix in Figure 27
and the classification report in Table 8 shows the model's results in more detail.

Data subset Accuracy Loss
Training 0.8896 0.2331
Validation 0.8734 0.4326
Table 7. ResNet50 model training results.
model loss model accuracy

val 0.9 val

o
o
4
®

accuracy
o
<

0.6

0.5

0.0 25 5.0 15 10.0 125 15.0 175 0.0 25 5.0 75 10.0 125 15.0 175
epoch epoch

Figure 26. ResNet50 training loss and accuracy. ReNet50 model loss is depicted
on the left image and accuracy on the right. The yellow line represents the
validation set, while the blue line represents the training set.

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Stamatios-Michail Skaleris mscaidl-0032. 56



Artificial Intelligence in medical diagnosis (with emphasis on orthopedics)
Confusion Matrix

True label

Predicted label

Figure 27. Confusion matrix of the ResNet50 model’s predictions on the test set.

precision recall  fl-score  support
0 0.90 0.88 0.89 42
1 0.89 0.91 0.90 44
accuracy 0.90 86
macro avg 0.90 0.90 0.90 86
weighted 090 090  0.90 86
avg

Table 8. ResNet50 Classification report.
5.2 Normal / Not Normal Hip Classification Stage

This is the second stage of the classification pipeline. During this phase, it should be
determined if the hip is normal or not normal. Various models were trained and tested for this
task, but the VGG16 model achieved the best recall score.

5.2.1 Convolutional Neural Network
For the task of deciding whether a hip is normal or not, a custom made CNN

architecture was trained and evaluated. In this subsection the proposed custom CNN
will be presented.

5.2.1.1 Data preparation, Architecture and Training
First and foremost, the dataset is split into training and validation sets. 568
images (70% of the 812 images in the dataset) were used as the training set. The
split is also stratified. After splitting to train (70%) and validation set (30%), the
second set is further split into validation and test sets. From the 244 images in the
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validation set, 65% of the images remained in the validation set (158 images) and
35% were used as the test set (86 images).

Concerning the CNN's architecture, due to the fact that the classification task is
not very complicated, the model is not very deep and a reasonable number of
neurons are included. To start, the input layer accepts 256x256 pixel images with
three color channels. It is a 2D convolution with 8 neurons, has a kernel size of
(3,3) and stride equal to 1. In addition, the parameter “padding” is equal to “same”
and ReL.U is being used as an activation function. The following layers include a
Batch normalization layer and a 2D Max Pooling layer, with a kernel size of (3,3),
stride equal to 2, and padding equal to “valid”. Following, another 2D Convolution
layer is placed with 8 neurons, kernel size of (3,3), stride equal to 1, padding equal
to “same” and ReLU as an activation function. The following two layers also
include a Batch Normalization layer and a 2D Max Pooling layer, with a kernel size
of (3,3), stride equal to 2 and padding equal to “valid”. Next, a Dropout layer is
added, with the purpose of randomly deactivating a portion of input units during
each training update. This means that certain neurons are dropped out, along with
their associated connections, with a probability of 0.1. Later, another 2D
Convolution is added with 16 neurons, a stride of 1, a kernel size of (3,3), padding
equal to “same” and using ReLU as the activation function. Also here, the two
layers that follow are a Batch Normalization layer and a 2D Max Pooling layer,
with a kernel size of (3,3), stride equal to 2 and padding equal to “valid”. Then, a
Dropout layer follows with a dropout probability of 0.1. Followed by a 2D
Convolution with 8 neurons, kernel size of (3,3), stride equal to 1, padding equal to
“same” and ReLU activation function. The three layers that follow are also a Batch
Normalization layer, a 2D Max Pooling layer, with a kernel size of (3,3), stride
equal to 2 and padding equal to “valid” and a Dropout layer with a dropout
probability of 0.1. Before adding the fully connected layers, a Flatten layer is
incorporated to reshape the data into a 1-dimensional array. With the use of this
layer, the data have a valid shape to enter the fully connected layers. Therefore, four
Dense layers are then added, with 32, 16, 16 and 8 neurons respectively, all using
ReLU as the activation function. Finally, the output layer is a Dense layer with two
neurons, using a sigmoid activation function. A simpler representation of this
architecture can be seen in Table 9.

Layer Output Shape

Conv2D (None, 256, 256, 8)
BatchNormalization (None, 256, 256, 8)
MaxPooling2D (None, 127, 127, 8)
Conv2D (None, 127, 127, 8)

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Stamatios-Michail Skaleris mscaidl-0032. 58



Artificial Intelligence in medical diagnosis (with emphasis on orthopedics)

BatchNormalization (None, 127, 127, 8)
MaxPooling2D (None, 63, 63, 8)
Dropout (None, 63, 63, 8)
Conv2D (None, 63, 63, 16)
BatchNormalization (None, 63, 63, 16)
MaxPooling2D (None, 31, 31, 16)
Dropout (None, 31, 31, 16)
Conv2D (None, 31, 31, 8)
BatchNormalization (None, 31, 31, 8)
MaxPooling2D (None, 15, 15, 8)
Dropout (None, 15, 15, 8)
Flatten (None, 1800)
Dense (None, 32)

Dense (None, 16)

Dense (None, 16)

Dense (None, 8)

Dense (None, 2)

Table 9. Custom CNN architecture.

In the training process, Early Stopping is utilized, as it monitors the model's
validation loss during training. The training will stop if the validation loss does not
improve for five consecutive epochs. Additionally, the early stopping is set to start
monitoring after the 10th epoch has been completed.

The Adam optimizer is chosen for training. The learning rate is set to 0.0001 and the
loss function used is binary cross-entropy. Also, the training is done with a batch size
of 16 and the model is going to train for a maximum of 100 epochs. However, due to

the early stopping mechanism, as the validation loss stopped improving, the model
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stopped training at the 38th epoch. Finally, the “shuffle” parameter was also set to
GKTrue’,‘

5.2.1.2 Results
When the model stopped training, the training results shown in Table 10, indicate
that the CNN did not overfit, and showcased satisfactory performance. The training
loss and accuracy can be seen in Figure 28. Finally, the accuracy of the model on
the test set was 0.95 and recall 0.94. The confusion matrix in Figure 29 and the
classification report in Table 11 shows the model's predictions in more detail.

Data subset Accuracy Loss
Training 0.9935 0.0328
Validation 0.9494 0.1563
Table 10. Custom CNN training results.
model loss model accuracy
12 i tr:lm 7 - j:lm /__/_f/\"_/

et
0.9
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Figure 28. Custom CNN training loss and accuracy. Custom CNN model loss is
depicted on the left image and accuracy on the right. The yellow line represents the
validation set, while the blue line represents the training set.

Confusion Matrix

True label

Predicted label

Figure 29. Confusion matrix of the CNN model’s predictions on the test set.
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precision recall  fl-score  support
0 0.91 0.91 0.91 22
1 0.97 0.97 0.97 64
accuracy 0.95 86
macro avg 0.94 0.94 0.94 86
weighted 095 095 095 86
avg

Table 11. Custom CNN Classification report.

5.2.2 ResNet50 Model

5.2.21 Data preparation, Architecture and Training
The split of the training and test data is the same as established for training the
CNN above (568 images for training, 158 for validation and 86 for testing). The
ResNet50 model is used with its pre-trained weights from the ImageNet dataset.
The parameter “include top” is set to false and the model’s layers are frozen.

After the ResNet50 base architecture, several custom layers are also added. The
input layer accepts 256x256 pixel images with three color channels. The following
layer is a Global Average Pooling layer. Following, a Batch Normalization layer is
placed to normalize the output from the previous layer, and then a Flatten layer. In
continuation, four Dense layers are added with ReLU as the activation function,
with each one having 32, 32, 16 and 8 neurons respectively. Finally, the output layer

is a Dense layer with two neurons, using a sigmoid activation function (Figure 30).
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input ([(None, 256, 256, 3]])

ResNet50 (None, None,
None, 2048

GlobalAveragePoaoling2D
(None, 2048)

BatchMormalization
(None, 2048)

[

Flatten (None, 2048)

Dense (None, 32)

Dense (None, 16)

Dense (None, B)

Output Layer
Dense (None, 2)

Figure 30. ResNet50 model architecture.
The Early Stopping technique is also utilized here, monitoring the model's

validation loss during training. The training will stop if the validation loss does not
improve for five consecutive epochs and the monitoring is set to start after 10 epochs.

The Adam optimizer is chosen for training. The learning rate was set to 0.001 and
the loss function used is binary cross-entropy. Additionally, the training is done with a
batch size of 16 and the model is going to train for a maximum of 100 epochs. Due to
the early stopping, the training process halted when the loss stopped improving at

epoch 26. Finally, the “shuffle” parameter was set to “True”.

5.2.2.2 Results
The results after the training process (shown in Table 12), indicate that the
ResNet50 model had adequate results. This can be also seen in Figure 31, showing
the model’s loss and accuracy across the training process. Although the model
showed signs of overfitting during the last epochs, the accuracy of the model on the
test set was better than the CNN’s, with an accuracy of 0.90 and recall 0.84. The
confusion matrix in Figure 32 and the classification report in Table 13 shows the

model's results in more detail.

Data subset Accuracy Loss
Training 0.9812 0.0566
Validation 0.9304 0.3086

Table 12. ResNet50 model training results.
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Figure 31. ResNet50 training loss and accuracy. ResNet50 model loss is depicted

on the left image and accuracy on the right. The yellow line represents the
validation set, while the blue line represents the training set.
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Figure 32. Confusion matrix of the ResNet50 model’s predictions on the test set.

precision recall  fl-score  support
0 0.84 0.73 0.78 22
1 0.91 0.95 0.93 64
accuracy 0.90 86
macro avg 0.88 0.84 0.86 86
;Vve;ghted 089 090  0.89 86

Table 13. ResNet50 Classification report.

5.2.3 VGG16 Model
Among the three models that were trained for this classification stage, VGG16 had
the best results.
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5.2.3.1

Data preparation, Architecture and Training

The split of the training and test data is the same as the other two experiments for
this classification stage, with 568 images for training, 158 for validation and 86 for
testing, as mentioned above. The VGG16 model is also used with its pre-trained
weights from the ImageNet dataset. The parameter “include top” is set to false and

the model’s layers are frozen.

After the VGG16 base model’s architecture, several custom layers are added. The
input layer receives inputs of 256x256 pixel images with three color channels. The
following layers include a Global Average Pooling layer and a Batch Normalization
layer. These layers are placed in order to reduce the dimensionality of the features
and normalize the output from the previous layer, respectively. Then a Flatten layer
follows. Later, four Dense layers are added with ReL U as the activation function,
each one having 32, 32, 16 and 8 neurons in that exact order. Finally, the output
layer is a Dense layer with two neurons, using a sigmoid activation function (Figure
33).

input ([(None, 256, 256, 3]])

VG616 (None, 8, 8, 512)

GlobalAveragePoaling2D
(None. 512)

BatchNormalization
(None, 512)
Flatten (None, 512)

J

Dense (None, 32)

Dense (None, 32)

Dense (None, 16)

Dense (None, B)

Output Layer
Dense (None, 2)

Figure 33. VGG16 model architecture.

Early Stopping is also utilized in this model, monitoring its validation loss during

training. The training will also stop if the validation loss does not improve for five

consecutive epochs and is set to start monitoring loss after 10 epochs.

The Adam optimizer is also chosen here for training. The learning rate is set to
0.001 and the loss function used is binary cross-entropy. During the training, the
“shuffle” parameter is set to “True”. Additionally, the training is conducted with a
batch size of 16 and the model is going to train for a maximum of 100 epochs. Due to
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the fact that the validation loss of this model stopped improving, Early Stopping

stopped the training process at epoch 22.

5.2.3.2 Results

The training results after the training process ended (shown in Table 14), indicate
that the model’s training was stable, with minor fluctuations. This can also be seen
in Figure 34, showing the model’s loss and accuracy throughout the training
process. The accuracy of the model on the test set was better than the other models
that were implemented in this classification stage, with an accuracy of 0.99 and
recall 0.98. The confusion matrix in Figure 35 and the classification report in Table
15 shows the model's results in more detail.

Data subset Accuracy Loss
Training 0.9928 0.0177
Validation 0.9747 0.0787
Table 14. VGG16 model training results.
model loss model accuracy
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Figure 34. VGG16 training loss and accuracy. VGG16 model loss is depicted on
the left image and accuracy on the right. The yellow line represents the validation

set, while the blue line represents the training set.
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Confusion Matrix

True label

Predicted label

Figure 35. Confusion matrix of the VGG16 model’s predictions on the test set.

precision recall fl-score  support
0 1.00 0.95 0.98 22
1 0.98 1.00 0.99 64
accuracy 0.99 86
macro avg 0.99 0.98 0.98 86
weighted 099 099 099 86
avg

Table 15. VGG16 Classification report.

5.3 Operated / Not Operated Hip Classification Stage

This is the third stage of the classification pipeline. The objective of this stage is to decide
whether an x-ray of a not normal hip depicts an operated or a not operated hip. Various
models were trained and tested for this specific task, but the VGG16 model had the best
recall score.

5.3.1 Convolutional Neural Network

5.3.1.1 Data preparation, Architecture and Training
First, the dataset is split into training and validation sets. 80% of the 812 images
were split into training data (649 images). The split is also stratified. After that split,
the validation set is further split into validation and test sets. From the 163 images
in the validation set, 70% remained in the validation set (114 images) and 30% in
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the test set (49 images). The reason for this split was to provide the training process

with more images, as this classification stage is more complex than previous tasks
of the pipeline. This way, the model will be able to find meaningful features to
predict each class successfully.

The input layer accepts images with 256x256 pixel resolution, with three color
channels. It is a 2D convolution with 8 neurons, has a kernel size of (4,4) and stride
equal to 1. The parameter “padding” is equal to “same” and it uses ReLU as an
activation function. The following layers include a Batch normalization layer and a
2D Max Pooling layer, with a kernel size of (4,4), stride equal to 2 and padding
equal to “valid”. Following, another 2D Convolution layer is placed with 16
neurons, kernel size of (4,4), stride equal to 1, padding equal to “same” and ReLU
activation function. The following two layers also include a Batch Normalization
layer and a 2D Max Pooling layer, with a kernel size of (4,4), stride equal to 2 and
padding equal to “valid”. Later on, another 2D Convolution is added with 32
neurons, a stride of 1, a kernel size of (4,4), padding equal to “same” and ReLU
activation function. Also here, the two layers that follow are a Batch Normalization
layer and a 2D Max Pooling layer, with a kernel size of (4,4), stride equal to 2 and
padding equal to “valid”. A Dropout layer is then added, in order to randomly
deactivate a portion of the units during each training update, with a probability of
0.1. Then, a 2D Convolution with 16 neurons, kernel size of (4,4), stride equal to 1,
padding equal to “same” and ReLU activation function is added. The two layers
that follow are also a Batch Normalization layer, a 2D Max Pooling layer, with a
kernel size of (4,4), stride equal to 2 and padding equal to “valid”. Right before the
fully connected layers, a Flatten layer is added to reshape the data into a 1-
dimensional array, making the data to have a valid shape for entering the fully
connected layers. Moreover, four Dense layers are added, with 32, 16, 16 and 8
neurons respectively, with all using ReLU as the activation function. Finally, the
output layer is also a Dense layer with two neurons, using a sigmoid activation

function. More information about this architecture can be seen in Table 16.

Layer Output Shape
Conv2D (None, 256, 256, 8)
BatchNormalization (None, 256, 256, 8)
MaxPooling2D (None, 127, 127, 8)
Conv2D (None, 127, 127, 16)
BatchNormalization (None, 127, 127, 16)
MaxPooling2D (None, 62, 62, 16)
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Conv2D (None, 62, 62, 32)
BatchNormalization (None, 62, 62, 32)
MaxPooling2D (None, 30, 30, 32)
Dropout (None, 30, 30, 32)
Conv2D (None, 30, 30, 16)
BatchNormalization (None, 30, 30, 16)
MaxPooling2D (None, 14, 14, 16)
Flatten (None, 3136)
Dense (None, 32)

Dense (None, 16)

Dense (None, 16)

Dense (None, 8)

Dense (None, 2)

Table 16. Custom CNN model architecture.

During the training process, Early Stopping is also utilized, taking into account the
model's validation loss. The training will stop if the validation loss does not improve

for five consecutive epochs and the Early Stopping is set to start after epoch 10.

The Adam optimizer is chosen for training. The learning rate is set to 0.0001 and the
loss function used is binary cross-entropy. Also, the training is done with a batch size
of 32 and the model is going to train for a maximum of 100 epochs. However, due to
the Early Stopping, as the validation loss stopped improving, the model stopped
training at epoch 42. Finally, the “shuffle” parameter was also set to “True”.

5.3.1.2 Results
The results after the training process ended (shown in Table 17), indicate that the
model could not converge. This can be also seen in Figure 36, showing the model’s
loss and accuracy across the training process. Finally, the accuracy of the model on
the test set was 0.82 and recall 0.70. The confusion matrix in Figure 37 and the
classification report in Table 18 shows the model's results in more detail.
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Data subset Accuracy Loss
Training 0.9881 0.0662
Validation 0.7456 0.5686

Table 17. Custom CNN model training results.

model loss model accuracy
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Figure 36. CNN training loss and accuracy. CNN model loss is depicted on the
left image and accuracy on the right. The yellow line represents the validation set,
while the blue line represents the training set.
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Figure 37. Confusion matrix of the CNN model’s predictions on the test set.

precision recall fl-score  support
0 0.75 0.46 0.57 13
1 0.83 0.94 0.88 36
accuracy 0.82 49
macro avg 0.79 0.70 0.73 49
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weighted
avg

0.81 0.82 0.80 49

Table 18. CNN Classification report.

5.3.2 Convolutional Neural Network with Image Augmentation

5.3.2.1 Data preparation, Architecture and Training
In this experiment, the dataset is split in the same way as in the experiment with
the custom CNN above. Therefore, out of the 812 images in total, 649 were used for
training, while 114 images formed the validation set and 49 the test set.

An image augmentation module is used to generate more images for the training
process (Tensorflow’s ImageDataGenerator). The model is built to be deeper than
the previously described CNN, as the distinction between the classes is challenging.
To begin with, the input layer accepts 256x256 pixel images with three color
channels. It is a 2D convolution with 32 neurons, has a kernel size of (4,4) and
stride equal to 1. Additionally, the parameter “padding” is equal to “same” and
ReLU activation function. The following layers include a Batch normalization layer
and a 2D Max Pooling layer, with a kernel size of (4,4), stride equal to 2 and
padding equal to “valid”. Following, another 2D Convolution layer is placed with
64 neurons, kernel size of (4,4), stride equal to 1, padding equal to “same” and
ReLU activation function. The following two layers also include a Batch
Normalization layer and a 2D Max Pooling layer, with a kernel size of (4,4), stride
equal to 2 and padding equal to “valid”. Sequentially, another 2D Convolution is
added with 64 neurons, a stride of 1, a kernel size of (4,4), padding equal to “same”
and ReLU activation function. The two layers that follow are a Batch
Normalization layer and a 2D Max Pooling layer, with a kernel size of (4,4), stride
equal to 2 and padding equal to “valid”. A 2D Convolution with 64 neurons, kernel
size of (4,4), stride equal to 1, padding equal to “same” and ReLU activation
function is added. The two layers that follow are also a Batch Normalization layer,
a 2D Max Pooling layer, with a kernel size of (4,4), stride equal to 2 and padding
equal to “valid”. Another 2D Convolution is added with 32 neurons, a stride of 1, a
kernel size of (4,4), padding equal to “same” and ReLU activation function. Also
here, the two layers that follow are a Batch Normalization layer and a 2D Max
Pooling layer, with a kernel size of (4,4), stride equal to 2 and padding equal to
“valid”. Right before the fully connected layers, a Flatten layer is added to flatten
the data. Then, four Dense layers are added, with 128, 64, 32 and 16 neurons
respectively, with all using ReLU as the activation function. In these four dense
layers, a layer weight regularizer is added. Regularizers allow the application of
penalties on each layer parameters, or layer activity during optimization, applied on
a per-layer basis. These penalties are summed into the loss function that the
network optimizes. More specifically, the L2 regularizer (L2 = A * £(wi?)) is
chosen, with A set to 0.01. The L2 regularization, also known as Ridge
regularization, adds the sum of the squared values of the model’s coefficients to the
loss function. This regularization technique does not force the coefficients to be
exactly zero but instead encourages them to be small. Also, it can prevent
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overfitting by spreading the influence of a single feature across multiple features

(Van Otten, 2023). Finally, the output layer is a Dense layer with two neurons,

using the sigmoid activation function. A representation of this architecture can be

seen in Table 19.

Layer Output Shape
Conv2D (None, 256, 256, 32)
BatchNormalization (None, 256, 256, 32)
MaxPooling2D (None, 127, 127, 32)
Conv2D (None, 127, 127, 64)
BatchNormalization (None, 127, 127, 64)
MaxPooling2D (None, 62, 62, 64)
Conv2D (None, 62, 62, 64)
BatchNormalization (None, 62, 62, 64)
MaxPooling2D (None, 30, 30, 64)
Conv2D (None, 30, 30, 32)
BatchNormalization (None, 30, 30, 32)
MaxPooling2D (None, 14, 14, 32)
Flatten (None, 6272)

Dense (None, 128)

Dense (None, 64)

Dense (None, 32)

Dense (None, 16)

Dense (None, 2)

Table 19. Custom CNN model architecture utilizing Image Augmentation data.
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In the training process, Early Stopping is utilized, monitoring the model's validation

loss. The training will stop if the validation loss does not improve for five consecutive
epochs and is set to start the monitoring after epoch 10.

The images that were generated by the image augmentation library have undergone the
following processing:

Random rotation between -20 and +20 degrees
Randomly shift the width by a fraction of 0.1
Randomly shift the height by a fraction of 0.1
Shear transformations with a maximum shear of 0.1

Randomly zooming inside images by a fraction of 0.1

Randomly flip images vertically

The Adam optimizer is chosen for training. The learning rate was set to 0.001 and
the loss function used is binary cross-entropy. Also, the training is done with a batch
size of 32 and the model is going to train for a maximum of 500 epochs. However, due
to the Early Stopping, as the validation loss stopped improving, the model stopped
training at epoch 257. Finally, the “shuffle” parameter was set to “True”.

5.3.2.2 Results
The results after the training process was complete (shown in Table 20), indicate
that the model overfitted and the model’s accuracy remained flat during the whole
training process leading to bad results. This can be also seen in Figure 38, showing
the model’s loss and accuracy across the training process. The accuracy of the
model on the test set was 0.73 and recall 0.50. The confusion matrix in Figure 39
and the classification report in Table 21 shows the model's results in more detail.

Data subset Accuracy Loss
Training 1.0000 0.1266
Validation 0.7281 0.7637

Table 20. Custom CNN model utilizing Image Augmentation training results.

model loss model accuracy

—— train 109 — train
val val

loss
IS
accuracy
o o o o o
w o ~ ] o
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o
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epoch epoch
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Figure 38. CNN with Image Augmentation training loss and accuracy. Custom
CNN model utilizing Image Augmentation results. Loss is depicted on the left

image and accuracy on the right. The yellow line represents the validation set, while
the blue line represents the training set.

Confusion Matrix
35

True label

Predicted label

Figure 39. Confusion matrix of the model’s predictions on the test set.

precision recall  fl-score  support
0 0.00 0.00 0.00 13
1 0.73 1.00 0.85 36
accuracy 0.73 49
macro avg 0.37 0.50 0.42 49
weighted 054 073 0.62 49
avg

Table 21. CNN utilizing Image Augmentation Classification report.

5.3.3 VGG16 Model

This experiment yielded the best results amongst the four models that were
implemented for this classification stage.

5.3.3.1 Data preparation, Architecture and Training
In this experiment, the dataset is split the same way as the other models in this
stage (649 training images, 114 validation images and 49 test images). The VGG16
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model is used with its pre-trained weights from the ImageNet dataset. The

parameter “include top” is set to false and the model’s layers are frozen.

After the VGG16 base model’s architecture, several custom layers are added. The
input layer accepts images with a shape of 256x256 pixels with three color
channels. The following layers include a Global Average Pooling layer and a Batch
Normalization layer, followed by a Flatten layer. Later, five Dense layers are added
with ReLU as the activation function, with each one having 128, 64, 32, 16 and 8
neurons respectively. Finally, the output layer is a Dense layer with two neurons,
using the sigmoid activation function (Figure 40).

input ([(None, 256, 256, 3]])

VG616 (None, 8, 8, 512)

GlobalAveragePooling2D
(None, 512)

BatchMormalization
(None, 512)

[

Flatten (None, 512)

Dense (None, 128)

Dense (None, 64)

[

Dense (None, 32)

Dense (None, 8)

Output Layer
Dense (None, 2)

Figure 40. VGG16 model architecture.

Early Stopping is also utilized in this model, monitoring its validation loss during
training. The training thus stops in case the validation loss does not improve for five
consecutive epochs. It is also set to start monitoring after 10 epochs.

The Adam optimizer is used for training. The learning rate was set to 0.0001 and the
loss function used is binary cross-entropy. Additionally, the training is done with a
batch size of 32 and the model is going to train for a maximum of 100 epochs. As the
validation loss of this model stopped improving, the training halted at epoch 41. Last
but not least, the “shuffle” parameter was set to “True”.

5.3.3.2 Results
The results of the training process (shown in Table 22), indicate that the model’s
training was stable, but the loss diagram indicates that the model could be prone to
overfitting, thus deeper model architectures were avoided. This can be also seen in
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Figure 41, showing the model’s loss and accuracy across the training process. Also,
the accuracy of the model on the test set was 0.94 and recall 0.91. The confusion
matrix in Figure 42 and the classification report in Table 23 shows the model's
results in more detail.

Data subset Accuracy Loss
Training 0.9832 0.0548
Validation 0.8947 0.2484
Table 22. VGG16 model training results.
model loss model accuracy

— train
— val

0.6 0.95 4
0.51

0.4

loss
accuracy

0.3

0.2 1

0.1

6 é 1‘0 1‘5 2‘0 2‘5 3‘0 3‘5 46 0 é 1’0 1‘5 2‘0 2‘5 3‘0 3‘5 4‘0
epoch epoch
Figure 41. VGG16 training loss and accuracy. VGG16 model loss is depicted on
the left image and accuracy on the right. The yellow line represents the validation

set, while the blue line represents the training set.

Confusion Matrix
35

True label

w

Predicted label

Figure 42. Confusion matrix of the VGG16 model’s predictions on the test set.

precision recall fl-score  support

0 0.92 0.85 0.88 13

1 0.95 0.97 0.96 36
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accuracy 0.94 49

macro avg 0.93 0.91 0.92 49

weighted 094 094 094 49
avg

Table 23. VGG16 Classification report.

5.34 ResNet50 Model

5.3.4.1 Data preparation, Architecture and Training
In this experiment, the dataset is split as described before, using 649 images for
training, 114 images for validation and 49 images for testing. The model is used
with its pre-trained weights from the ImageNet dataset. The parameter
“include top” is set to false and the model’s layers are frozen.

After the ResNet50 base model’s architecture, several custom layers are
introduced. The input layer accepts 256x256 images with three color channels. The
layers that follow include a Global Average Pooling layer and a Batch
Normalization layer, as well as a Flatten layer. Later, four Dense layers are present
with ReLU activation function, each having 32, 32, 16 and 8 neurons respectively.
Finally, the output layer is a Dense layer with two neurons, using sigmoid activation
function (Figure 43).

input ([(None, 256, 256, 3]])

ResNet50 (None, 8, B,
2048

GlobalAveragePoaoling2D
(None, 2048)

BatchMormalization
(None, 2048)

[

Flatten (None, 2048)

Dense (None, 32)

Dense (None, 32)

Dense (None, 16)

Dense (None, B)

Output Layer
Dense (None, 2)

i

Figure 43. ResNet50 model architecture.
The Early Stopping technique is used in this model, monitoring the training process

progress, based on the validation loss. The training will stop if the validation loss does
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not improve for five consecutive epochs, while Early Stopping is set to begin
monitoring after 10 epochs.

Adam optimizer is utilized for training. The learning rate is set to be equal to 0.001,
and the loss function used is binary cross-entropy. Additionally, the training is
conducted using a batch size of 16, with the “shuffle” parameter set to “True”.

The model is expected to train for a maximum of 100 epochs. However, due to the
early stopping mechanism, and the fact that the validation loss of this model stopped
improving, the process halted at epoch 18.

5.3.4.2 Results
The final results after the training process (shown in Table 24), indicate that this
model also started to overfit. This can be seen in Figure 44, showing the model’s
loss and accuracy during the training process. The accuracy of the model on the test
set was 0.86 and recall 0.83. The confusion matrix in Figure 45 and the
classification report in Table 25 shows the model's results in more detail.

Data subset Accuracy Loss
Training 0.9264 0.2087
Validation 0.7719 0.5609

Table 24. ResNet50 model training results.

model accuracy

model loss
0.7

0.9 { — train
— train val
val
0.6

0.5

loss
o
Y
accuracy
=) o =) o
w o ~ o«

1
FS

0.3

o
w

0.2

0.0 25 5.0 75 10.0 125 15.0 17.5 0.0 2.5 5.0 75 10.0 125 15.0 175
epoch epoch

Figure 44. ResNet50 training loss and accuracy. ResNet50 model loss is depicted
on the left image and accuracy on the right. The yellow line represents the
validation set, while the blue line represents the training set.
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Confusion Matrix

30

25

20

True label

15

10

Predicted label

Figure 45. Confusion matrix of the ResNet50 model’s predictions on the test set.

precision recall fl-score  support
0 0.71 0.77 0.74 13
1 0.91 0.89 0.90 36
accuracy 0.86 49
macro avg 0.81 0.83 0.82 49
Z‘fgighted 086 086  0.86 49

Table 25. ResNet50 Classification report.

5.4 Arthroplasty / Nailing Classification Stage

This is the fourth stage of the classification pipeline. Aim of this phase is to classify x-rays
of operations, to arthroplasty or nailing. For this purpose, various models were trained and
evaluated, with the VGG16 model achieving the best accuracy.

54.1 Convolutional Neural Network

5.4.1.1 Data preparation, Architecture and Training
In this classification stage, certain data were chosen to be used for the training

process. More specifically, the classes that were encompassed in the dataset of this

stage are:
e Left arthroplasty
e Right arthroplasty
e [Leftnailing
e Right nailing

Left and right arthroplasty x-rays are merged in one class (arthroplasty), and left
and right nailing x-rays in another class (nailing). This resulted in 221 images in

total. Then 60% of these images were split into training data (132 images). The split
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is stratified. After that split, the validation set is further split into validation and test

sets. From the 89 images in the validation set, 65% of the images remained in the
validation set (57 images) and 35% in the test set (32 images).

Different architectures were tried for this custom CNN, but the deeper the model
was, the easier it was for the model to overfit. This led the adopted architecture to
be relatively shallow. To begin with, the input layer receives 256x256 pixel images
with three color channels. It is a 2D convolution with 8 neurons, kernel size of (4,4)
and stride equal to 1. The parameter “padding” is equal to “same” and it uses ReLU
activation function. The following layers include a Batch normalization layer and a
2D Max Pooling layer, with a kernel size of (4,4), stride equal to 2 and padding
equal to “valid”. Following, another 2D Convolution layer is placed with 16
neurons, kernel size of (4,4), stride equal to 1, padding equal to “same” and ReLU
activation function. The following two layers also include a Batch Normalization
layer and a 2D Max Pooling layer, with a kernel size of (4,4), stride equal to 2 and
padding equal to “valid”. Later, another 2D Convolution is added with 8 neurons, a
stride of 1, a kernel size of (4,4), padding equal to “same” and using ReLU
activation function. Also here, the two layers that follow are a Batch Normalization
layer and a 2D Max Pooling layer, with a kernel size of (4,4), stride equal to 2 and
padding equal to “valid”. Next, a Flatten layer is added to reshape the data, so that
the data are flattened to enter the fully connected layers. Four Dense layers are then
added, with 64, 32, 16 and 8 neurons respectively, all using the ReLU activation
function. Finally, the output layer is a Dense layer with two neurons, using a
sigmoid activation function. A representation of this architecture can be seen in

Table 26.
Layer Output Shape
Conv2D (None, 256, 256, 8)
BatchNormalization (None, 256, 256, 8)
MaxPooling2D (None, 127, 127, 8)
Conv2D (None, 127, 127, 16)
BatchNormalization (None, 127, 127, 16)
MaxPooling2D (None, 62, 62, 16)
Conv2D (None, 62, 62, 8)
BatchNormalization (None, 62, 62, 8)
MaxPooling2D (None, 30, 30, 8)
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Flatten (None, 7200)
Dense (None, 64)
Dense (None, 32)
Dense (None, 16)
Dense (None, 8)
Dense (None, 2)

Table 26. Custom CNN model architecture.

Early Stopping is utilized during the training of the model, to monitor the validation
loss. The training will stop automatically in case the validation loss does not improve
for five consecutive epochs. The Early Stopping is set to start monitoring after the 10th
epoch.

The Adam optimizer is being used for training. The learning rate is 0.0001 and the
loss function used is binary cross-entropy. The training is done with a batch size of 32
and the model is going to train for a maximum of 100 epochs. However, as the
validation loss stopped improving, the model stopped training at epoch 56. Finally, the
“shuffle” parameter was also set to “True” to shuffle the data.

54.1.2 Results

The training results shown in Table 27, indicate that the CNN model overfitted.
This can be seen in Figure 46, depicted on the model’s loss (left image). Finally, the
accuracy of the model on the test set was 0.72. The confusion matrix in Figure 47
and the classification report in Table 28 shows the model's predictions in more
detail. These results indicate that the model was not able to learn how to
discriminate between the two classes, and one reason may be the limited number of
available data for this task.

Data subset Accuracy Loss
Training 1.0000 0.0098
Validation 0.7193 0.6242

Table 27. Custom CNN model training results.
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model accuracy
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Figure 46. Custom CNN training loss and accuracy. Custom CNN model loss is
depicted on the left image and accuracy on the right. The yellow line represents the
validation set, while the blue line represents the training set.
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Figure 47. Confusion matrix of the CNN model’s predictions on the test set.

precision recall fl-score  support
0 0.00 0.00 0.00 9
1 0.72 1.00 0.84 23
accuracy 0.72 32
macro avg 0.36 0.50 0.42 32
:’Vegighted 052 072 0.60 32

Table 28. Custom CNN Classification report.
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5.4.2
5.4.2.1

ResNet50 Model

Data preparation, Architecture and Training

In this experiment, the dataset is split like above, with 132 training images, 57
validation images and 32 test images. The ResNet50 model is used with its pre-
trained weights from the ImageNet dataset. The parameter “include top” is set to
false and the model’s layers are frozen.

After the ResNet50 base model’s architecture, several custom layers are added.
The input layer takes 256x256 pixel images with three color channels. The
following layers include a Global Average Pooling layer and a Batch Normalization
layer, followed by a Flatten layer. Then, four Dense layers are added with ReLU
activation function, with 32, 32, 16 and 8 neurons each, in this exact order. Finally,
the output layer is a Dense layer with two neurons, using a sigmoid activation
function (Figure 48).

input ([(None, 256, 256, 3]])

[

ResNet50 (None, 8. 8,
2048

GlobalAveragePooling2D
(None, 2048)

BatchNormalization
(None, 2048)

Flatten (None, 2048)

Dense (None, 32)

Dense (None, 32)

[

Dense (None, 16)

Dense (None, B)

Output Layer
Dense (None, 2)

Figure 48. ResNet50 model architecture.

Early Stopping is applied to the process of training the model, monitoring the

validation loss. The training is set to stop in case the validation loss does not improve
for five consecutive epochs. Additionally, the Early Stopping is activated after 10
epochs.

The Adam optimizer is selected for training. The learning rate was set to 0.001 and

the loss function used is binary cross-entropy. To elaborate, during the training a batch
size of 16 is being used, and the model is going to train for a maximum of 100 epochs.
Due to the fact that the validation loss stopped improving, the training came to a halt at
epoch 16. Finally, the “shuftle” parameter was set to “True”.
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5.4.2.2 Results
The results, as shown in Table 29, indicate that this model also overfitted. This
can be also seen in Figure 49, showing the model’s loss and accuracy across the
training process. The accuracy of the model on the test is 0.72. The confusion

matrix in Figure 50 and the classification report in Table 30 shows the model's
predictions in more detail.

Data subset Accuracy Loss
Training 0.9478 0.1390
Validation 0.7193 1.2450

Table 29. ResNet50 model training results.

model loss model accuracy

— train — train
val 0.95 val

accuracy

Figure 49. ResNet50 training loss and accuracy. ResNet50 model loss is depicted
on the left image and accuracy on the right. The yellow line represents the
validation set, while the blue line represents the training set.
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Figure 50. Confusion matrix of the ResNet50 model’s predictions on the test set.

precision recall  fl-score

support

0 0.00 0.00 0.00 9

MSc in Artificial Intelligence & Deep Learning, MSc Thesis

Stamatios-Michail Skaleris mscaidl-0032. 83




Artificial Intelligence in medical diagnosis (with emphasis on orthopedics)

1 0.72 1.00 0.84 23

accuracy 0.72 32

macro avg 0.36 0.50 0.42 32

weighted 052 072 0.0 32
avg

Table 30. ResNet50 Classification report.

5.4.3 VGG16 Model

This experiment had the best results amongst the three models that were
implemented for this classification stage.
54.3.1 Data preparation, Architecture and Training
In this experiment, the dataset is split as described above, with 132 images for

training, 57 images for validation and 32 images for testing. The VGG16 model is
used with its pre-trained weights from the ImageNet dataset. The parameter
“include top” is set to false and the model’s layers are frozen.

After the VGG16 base model’s architecture, several custom layers are added. The
input layer takes 256x256 pixel images with three color channels as an input. The
following layers include a Global Average Pooling layer and a Batch Normalization
layer, followed by a Flatten layer. Later, five Dense layers are added with the ReLU
activation function, with each one having 128, 64, 32, 16 and 8 neurons
respectively. Finally, the output layer is a Dense layer with two neurons, using a
sigmoid activation function (Figure 51).
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input ([(None, 256, 256, 3]])

VGG16 (None, 8, 8, 512)
GlobalAveragePoaling2D
(None, 512)

BatchNormalization
(None, 512)
Flatten (None, 512)

Dense (None, 128)

Dense (None, 32)

Dense (None, B)

Output Layer
Dense (Nona, 2)

Figure 51. VGG16 model architecture.

Early Stopping is utilized during the training of the model, monitoring its validation
loss. The patience parameter is set to five epochs and the mechanism is set to start
monitoring after 10 epochs.

The Adam optimizer is chosen for training. The learning rate was set to 0.0001 and
the loss function used is binary cross-entropy. Additionally, the training is done with a
batch size of 32 and the model is going to train for a maximum of 500 epochs.
Nonetheless, the validation loss of this model stopped improving and the training
stopped at epoch 123. Finally, the “shuffle” parameter was set to “True”.

5.4.3.2 Results
Based on the training results shown in Table 31, it can be concluded that the
model’s training was stable. This can also be seen in Figure 52, showing the
model’s loss, as well as the accuracy throughout the training process. Finally, the
accuracy of the model on the test set is 1.0. The confusion matrix in Figure 53 and
the classification report in Table 32 shows the model's results in more detail.

Data subset Accuracy Loss
Training 1.0000 0.0070
Validation 0.9649 0.0681

Table 31. VGG16 model training results.
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Figure 52. VGG16 training loss and accuracy. VGG16 model loss is depicted on
the left image and accuracy on the right. The yellow line represents the validation
set, while the blue line represents the training set.
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Figure 53. Confusion matrix of the VGG16 model’s predictions on the test set.

precision recall fl-score  support
0 1.00 1.00 1.00 9
1 1.00 1.00 1.00 23
accuracy 1.00 32
macro avg 1.00 1.00 1.00 32
weighted 100 100  1.00 32
avg

Table 32. VGG16 Classification report.
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5.5 Subcapital Fracture / Intertrochanteric Fracture / Osteoarthritis
Classification Stage

This is the fifth and final stage of the classification pipeline. In this step, the aim is to
classify x-rays to three classes: subcapital fracture, intertrochanteric fracture and
osteoarthritis. Various models were trained and their performance was measured, with the
VGG16 model having the best results.

5.5.1 Convolutional Neural Network

5.5.1.1 Data preparation, Architecture and Training
In this classification stage, certain data were chosen for the training process.
More specifically, the classes that were used for this task are:

Left intertrochanteric
Right intertrochanteric
Left subcapital

Right subcapital

Left osteoarthritis
Right osteoarthritis

The data are grouped into three classes: intertrochanteric fracture, subcapital
fracture and osteoarthritis. This resulted in forming a dataset specifically tailored
for this task, consisting of 385 images in total. After the first split, 65% of these
images were used as the training data (250 images), and the split is stratified. After
that split, the validation set is further split into validation and test sets. From the 135
images in the validation set, 70% of the images remained in the validation set (94
images) and 30% in the test set (41 images).

The input layer is tailored for 256x256 pixel images with three color channels. It
is a 2D convolution with 32 neurons, has a kernel size of (4,4) and stride equal to 1.
The parameter “padding” is equal to “same” and it uses ReL U activation function.
The following layers include a Batch normalization layer and a 2D Max Pooling
layer, with a kernel size of (4,4), stride equal to 2 and padding equal to “valid”.
Following, another 2D Convolution layer is placed with 64 neurons, kernel size of
(4,4), stride equal to 1, padding equal to “same” and ReL U activation function. The
following two layers also include a Batch Normalization layer and a 2D Max
Pooling layer, with a kernel size of (4,4), stride equal to 2 and padding equal to

“valid”. Right after, another 2D Convolution is added with 128 neurons, a stride of
1, a kernel size of (4,4), padding equal to “same” and using ReL.U activation

function. The two layers that follow are a Batch Normalization layer and a 2D Max
Pooling layer, with a kernel size of (4,4), stride equal to 2 and padding equal to
“valid”. Another 2D Convolution layer is then added with 64 neurons, a stride of 1,
a kernel size of (4,4), padding equal to “same” and using ReLU activation function.
The two layers that follow are also a Batch Normalization layer and a 2D Max
Pooling layer, with a kernel size of (4,4), stride equal to 2 and padding equal to
“valid”. Before the Dense layers, a final 2D Convolution is added with 32 neurons,

a stride of 1, a kernel size of (4,4), padding equal to “same” and using ReLU
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activation function. The two layers after that are a Batch Normalization layer and a

2D Max Pooling layer, with a kernel size of (4,4), stride equal to 2 and padding
equal to “valid”. Furthermore, a Flatten layer is added to transform the datato a 1-
dimensional array, so that the data can enter the fully connected layers. These layers
are six Dense layers, with 128, 64, 32, 32, 16 and 8 neurons respectively, all using
the ReL U activation function. Finally, the output layer is a Dense layer of three
neurons, using a softmax activation function. A representation of this architecture
can be seen in Table 33.

Layer Output Shape
Conv2D (None, 256, 256, 32)
BatchNormalization (None, 256, 256, 32)
MaxPooling2D (None, 127, 127, 32)
Conv2D (None, 127, 127, 64)
BatchNormalization (None, 127, 127, 64)
MaxPooling2D (None, 62, 62, 64)
Conv2D (None, 62, 62, 128)
BatchNormalization (None, 62, 62, 128)
MaxPooling2D (None, 30, 30, 128)
Conv2D (None, 30, 30, 64)
BatchNormalization (None, 30, 30, 64)
MaxPooling2D (None, 14, 14, 64)
Conv2D (None, 14, 14, 32)
BatchNormalization (None, 14, 14, 32)
MaxPooling2D (None, 6, 6, 32)
Flatten (None, 1152)

Dense (None, 128)
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Dense (None, 64)
Dense (None, 32)
Dense (None, 32)
Dense (None, 16)
Dense (None, 8)
Dense (None, 3)

Table 33. Custom CNN model architecture.

Early Stopping is utilized in the training process, monitoring the model's validation

loss after the 10th epoch. The training will therefore stop in case the validation loss

does not decrease for five consecutive epochs.

The Adam optimizer is utilized during training. The learning rate is set to 0.001 and

the loss function used is “categorical cross-entropy”. Also, the training is executed

using a batch size of 16 and the model is designed to train for 100 epochs. However,

due to the Early Stopping mechanism functionality, the model stopped training at

epoch 24. Finally, the “shuffle” parameter was set to “True”.

5.5.1.2 Results

After the completion of the training process, the results as shown in Table 34,

indicate that the CNN model had fluctuations and could not converge. This can be

seen in Figure 54, depicted on the model’s loss and accuracy. Finally, the model’s

accuracy on the test set was 0.66. The confusion matrix in Figure 55 and the

classification report in Table 35 shows the model's predictions in more detail.

Data subset Accuracy Loss
Training 0.8600 0.3314
Validation 0.6596 1.4093

Table 34. Custom CNN model training results.
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model loss model accuracy
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Figure 54. Custom CNN training loss and accuracy. Custom CNN model loss is
depicted on the left image and accuracy on the right. The yellow line represents the
validation set, while the blue line represents the training set.

Confusion Matrix

True label

0 1 2
Predicted label

Figure 55. Confusion matrix of the CNN model’s predictions on the test set.

precision recall  fl-score  support
0 0.33 0.14 0.20 7
1 0.00 0.00 0.00 8
2 0.68 1.00 0.81 26
accuracy 0.66 41
macro avg 0.34 0.38 0.34 41
;Vve;ghted 049 066 055 a1

Table 35. Custom CNN Classification report.
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5.5.2 ResNet50 Model

5.5.21 Data preparation, Architecture and Training
In this experiment, the dataset is split as mentioned above (250 training images,
94 validation images and 41 test images). The ResNet50 model is used with its pre-
trained weights from the ImageNet dataset. The parameter “include top” is set to
false, while the model’s layers are frozen.

After the ResNet50 base model’s architecture, several custom layers are added.
The input layer receives 256x256 pixel images with three color channels. The next
layers include a Global Average Pooling layer and a Batch Normalization layer,
followed by a Flatten layer. Later, four Dense layers are added with ReLLU
activation function, having 32, 32, 16 and 8 neurons each. Finally, the output layer
is a Dense layer with three neurons, using a softmax activation function (Figure 56).

input ([(None, 256, 256, 3]])

]

ResNet50 (None, 8. 8,
2048,

GlobalAveragePooling2D
(None, 2048)

BatchNormalization
(None, 2048)

Flatten (None, 2048)

Dense (None, 32)

Dense (None, 32)

[

Dense (None, 16)

Output Layer
Dense (None, 3)

Figure 56. ResNet50 model architecture.

Early Stopping technique is also adopted in training this model, for monitoring its
validation loss during training. The training is designated to stop if the validation loss
does not improve for five consecutive epochs. Also, the early stopping is set to start
monitoring after the completion of the first 10 epochs.

The Adam optimizer is used for training, while the learning rate is equal to 0.001
and the loss function is “categorical cross-entropy”. The training is conducted with a
batch size of 16 and the model is set to train for a maximum of 100 epochs. Due to the
progress of the validation loss throughout the training, Early Stopping terminated the
training at epoch 16. At last, the “shuffle” parameter is set to “True”.
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5.5.2.2 Results
The results, shown in Table 36, indicate that the model overfitted. This can also
be concluded from Figure 57, showing the model’s loss and accuracy during the
training process. The model scored an accuracy of 0.66 on the test set. The

confusion matrix in Figure 58 and the classification report in Table 37 shows the
model's results in more detail.

Data subset Accuracy Loss
Training 0.8939 0.3073
Validation 0.6277 1.1889
Table 36. ResNet50 model training results.
model loss model accuracy
— train — tain
141 - val 0ssd et
124 6
1.0 4 z
2 £ors
= F
0.8 1
0.70
0.6
0.65
0.4 —
0.60 ;
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14
epoch epoch

Figure 57. ResNet50 training loss and accuracy. ResNet50 model loss is depicted
on the left image and accuracy on the right. The yellow line represents the

validation set, while the blue line represents the training set.

Confusion Matrix

True label

0 1 2
Predicted label

Figure 58. Confusion matrix of the ResNet50 model’s predictions on the test set.
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5.5.3

5.5.3.1

precision recall  fl-score  support

0 0.00 0.00 0.00 7
1 1.00 0.12 0.22 8
2 0.65 1.00 0.79 26
accuracy 0.66 41
macro avg 0.55 0.38 0.34 41
weighted 0.61 0.66 0.54 41

avg

Table 37. ResNet50 Classification report.
VGG16 Model

This experiment yielded the best results amongst the three models that were
implemented for this classification stage.

Data preparation, Architecture and Training

In this experiment, the dataset split is implemented as described above (250
training images, 94 validation images and 41 test images). The VGG16 model is
used with its pre-trained weights from the ImageNet dataset. The parameter

“include top” is set to false and the model’s layers are frozen.

Following the VGG16 base model’s architecture, several custom layers are
added. The input layer is designed to accept 256x256 pixel images with three color
channels. The next layers include a Global Average Pooling layer and a Batch
Normalization layer, as well as a Flatten layer. Continuing, two Dense layers are
added with ReLU activation function, with each one having 256 and 128 neurons
respectively. Finally, the output layer is a Dense layer with three neurons, using
softmax as the activation function (Figure 58).
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5.5.3.2

input ([(None. 256, 256, 3)])

VGG16 (None, 8, B, 512)

GlobalAveragePooling2D
(None, 512)

[

BatchNormalization
(None, 512)

[

Flatten (None, 512)

Dense (None, 258)

Dense (None, 128)
Output Layer
Dense (None, 3)

Figure 58. VGG16 model architecture.

Early Stopping is utilized in this experiment, monitoring the validation loss during
training. The training will be terminated in case the validation loss does not improve

for five consecutive epochs and the monitoring is set to start after the first 10 epochs.

The Adam optimizer is utilized during training. The learning rate is set to 0.001 and
the loss function used is “categorical cross-entropy”. Additionally, the training is done
with a batch size of 16 and the model is going to train for a maximum of 500 epochs.
Due to the early stopping mechanism, the training stopped at epoch 28. Last but not
least, the “shuffle” parameter is set to “True”.

Results

The results after the training process ended (shown in Table 38), indicate that the
model could not converge properly. Several changes were made to the model’s
architecture to overcome this issue, with this architecture achieving the best results.
This can be also seen in Figure 59, showing the model’s loss and accuracy across
the training process. Also, the accuracy of the model on the test set has an accuracy
of 0.73. The confusion matrix in Figure 60 and the classification report in Table 39

shows the model's predictions in more detail.

Data subset Accuracy Loss
Training 1.0000 0.0020
Validation 0.7766 0.7211

Table 38. VGG16 model training results.
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model loss
1.0 model accuracy
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0.24
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Figure 59. VGG16 training loss and accuracy. VGG16 model loss is depicted on
the left image and accuracy on the right. The yellow line represents the validation
set, while the blue line represents the training set.

Confusion Matrix

True label

0 1 2
Predicted label

Figure 60. Confusion matrix of the VGG16 model’s predictions on the test set.

precision recall  fl-score  support
0 0.67 0.29 0.40 7
1 0.50 0.50 0.50 8
2 0.80 0.92 0.86 26
accuracy 0.73 41
macro avg 0.66 0.57 0.59 41
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5.6

5.6.1

5.6.2

weighted
avg

0.72 0.73 0.71 41

Table 39. VGG16 Classification report.

Conditional Generative Adversarial Network

With the purpose of improving each models’ accuracy and making the dataset more
balanced, a conditional Generative Adversarial Network (GAN) was implemented to generate
more images for each class and ultimately add more images to the dataset.

Data Preprocessing

Firstly, the dataset is preprocessed before it is fed into the GAN architecture. The
data preprocessing steps include resizing them to a fixed size and normalizing pixel
values to be within the range [0, 1], by dividing by 255. More specifically the images
are resized to 128x128 pixels for consistency across the dataset. This size of images
was the biggest that could be chosen, due to limitations of the available RAM in
Google Colab.

Discriminator Network

Role of the discriminator network is to distinguish between real and fake images
while considering the class labels. The discriminator model incorporates both image
inputs and label inputs via an embedding layer. In the discriminator, class labels are
passed through an embedding layer that maps each label to a 50-dimensional vector.
This embedded label is reshaped and concatenated with the input image along a new
channel dimension. The combined data is processed through several convolutional
layers, followed by Leaky ReL.U activation and dropout for regularization. The final
output is a single node with a sigmoid activation function, classifying the input as

either real or fake. The network’s architecture is depicted in more detail in Table 40.

Layer Output Shape
Input [(None,1)]
Embedding (None, 1, 50)
Dense (None, 1, 16384)
Input (None, 128, 128, 3)
Reshape (None, 128, 128, 1)
Concatenate (None, 128, 128, 4)
Conv2D (None, 64, 64, 256)
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Leaky ReLU (None, 64, 64, 256)
Conv2D (None, 32, 32, 128)
Leaky ReLU (None, 32, 32, 128)
Flatten (None, 131072)
Dropout(0.4) (None, 131072)
Dense (None, 1)

Table 40. Discriminator network architecture.

5.6.3 Generator Network

The generator model is responsible for creating synthetic images from random noise
and conditioned on a class label. The generator thus takes two inputs: random noise
(latent space) and a class label. The label is embedded and reshaped, similar to the
discriminator, and then concatenated with the latent vector, which is passed through
multiple transposed convolutional layers (Conv2DTranspose) to progressively
upsample the image. The final output layer generates a 128x128 color image with pixel
values in the range [-1, 1], using the tanh activation function. Its architecture can be
seen in more detail in Table 41.

Layer Output Shape
Input [(None,120)]
Input [(None,1)]
Dense (None,8192)
Embedding (None, 1, 50)
Leaky ReLU (None, 8192)
Dense (None, 1, 64)
Reshape (None, 8, 8, 128)
Reshape (None, 8,8, 1)
Concatenate (None, 8, 8, 129)
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5.6.4

5.6.5

Conv2D_Transpose

(None, 16, 16, 512)

Leaky ReLU

(None, 16, 16, 512)

Conv2d Transpose

(None, 32, 32, 1024)

Leaky ReLU

(None, 32, 32, 1024)

Conv2D_Transpose

(None, 64, 64, 512)

Leaky ReLU

(None, 64, 64, 512)

Conv2D Transpose (None, 128, 128, 128)

Leaky ReLU (None, 128, 128, 128)

Conv2D (None, 128, 128, 3)

Table 41. Generator network architecture.

GAN Model

The GAN model combines both the generator and discriminator models. The
generator outputs synthetic images that are passed directly into the discriminator for
classification. Since the discriminator is pre-trained separately, it is frozen during GAN

training, and only the generator's weights are updated based on the discriminator's
feedback.

Additionally, the training procedure alternates between training the discriminator
and the generator. The training loop is structured to update the discriminator using real
and fake samples and update the generator using the feedback from the discriminator.
The generator's goal is to reduce the GAN loss, thus generating images that the
discriminator cannot distinguish from real ones. Finally, the training process runs for
500 epochs.

In order to generate fake samples, random noise vectors and corresponding labels
are created. These are passed into the generator to produce synthetic images. This
ensures that the GAN is capable of generating class-conditioned images by providing
both noise and labels as inputs to the generator.

Results

When the models finished training, the discriminator's loss on distinguishing real
images from the dataset is 0.580. A lower value indicates that the discriminator is
performing well in classifying real images correctly. However, if it gets too low, the
discriminator could be overfitting to the real images, reducing the overall effectiveness
of GAN training. Also, the discriminator’s loss when classifying fake images is 0.559.
A lower loss means the discriminator is effectively detecting that the fake images are
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not real, while a higher loss could suggest the generator is improving and producing
more realistic images. Finally, the generator’s goal is to minimize its loss by fooling
the discriminator into classifying fake images as real. A loss of 1.020 indicates that the
generator is moderately successful in producing convincing fake images, though there
is still room for improvement. To summarize, the discriminator has moderately
balanced losses for both real and fake images (d1 = 0.580 and d2 = 0.559), which
suggests that it is functioning as expected and can distinguish between real and
generated images with some confidence. The generator's loss (g = 1.020) indicates that
it is producing images that are somewhat realistic, but it still faces challenges in fully
deceiving the discriminator. The network’s losses are also shown in Figure 61.

When the model stopped training, the losses show that both the generator and
discriminator are improving, and the GAN is moving towards producing more realistic
images while maintaining a competitive balance between the two models. However,
further epochs might still be needed for optimal results or using higher quality images

for the training process.
GAN Training Losses

—— Train Loss Discriminator Real
Train Loss Discriminator Fake
— Train Loss Generator
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Figure 61. Conditional GAN’s training losses.

The conditional GAN’s generated images are shown in Figure 63. Due to noise in the
training data (e.g. “flares” from light reflecting on the x-ray images, see Figure 62), the
GAN generated some orange spots. This problem could be tackled by acquiring more
data, or higher quality data. Although this method for generating medical images is
state-of-the-art, the generated data do not conform with real data.
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Right subcapital

Figure 62. Light reflecting on the images on the two images above. Below are two
images generated by the GAN.
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Figure 63. Images generated by the conditional GAN for each class.
6  Chapter 6: Final Pipeline

Amongst the experiments of the classification stages, the following models were chosen for
the classification pipeline based on their performance on the test set:

e First classification stage (left or right hip): ResNet50 model, 0.89 accuracy
e Second classification stage (normal or not normal hip): VGG16 model, 0.98 recall
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e Third classification stage (operated or not operated hip): VGG16 model, 0.91 recall ® Fourth

classification stage (arthroplasty or nailing operation): VGG16 model, 1.00 accuracy e Fifth
classification stage (intertrochanteric fracture, subcapital fracture or osteoarthritis):
VGG16 model, 0.73 accuracy

The classification pipeline was built based on conditional statements with the aforementioned
models being used sequentially (for reference, see Figure 18). Starting from the first stage,
where the left or right side needs to be determined, ResNet50 is being used to obtain the
prediction without making a difference regarding the next stages. Saying that, regardless of the
first classification output, the data will be then given to the next classification stage, where the
state of hip will be determined. If the hip depicted in the image is classified as normal, the
pipeline stops and it outputs the predictions of the first and second stage (e.g. left hip). If it is
not normal, the pipeline leads to the third classification stage. This stage outputs if the image
contains an operated or a non operated hip. If the hip is operated, the fourth classification stage
is activated, in order to output if the image contains arthroplasty or nailing. If the hip is not
operated, the fifth classification stage is activated. This stage outputs if the image contains an
intertrochanteric fracture, a subcapital fracture or osteoarthritis. An output example of the
whole pipeline is “Right Not Normal Operated Nailing”. Each step of the process ensures that
each classification task is handled by the model best suited to that particular decision,
optimizing overall performance.

7  CONCLUSIONS

Early and accurate diagnosis is critical for ensuring that patients receive timely and appropriate
treatment, which can significantly accelerate their recovery and improve outcomes. Automated
diagnostic systems, while still in the early stages of development, hold great potential to enhance the
diagnostic process. Although such systems should assist, not replace, the expertise of medical
professionals, they can help streamline workflows, reduce diagnostic delays, and even minimize the risk

of human error in clinical settings.

The work presented in this thesis demonstrates the effectiveness of deep learning techniques,
particularly through the application of transfer learning, in automating the diagnosis of hip-related
conditions. The proposed multi-stage classification pipeline showcases the capability of these methods
to make highly accurate predictions across a range of medical conditions, validating their role as powerful
tools in the field of medical image analysis. Transfer learning, in particular, proved crucial in improving
model performance, enabling the models to generalize effectively despite the limitations posed by the
available data.

However, certain challenges remain, including the limited availability of open-source medical
imaging data and the constraints of computational resources for training robust models. Addressing these
issues will require concerted efforts, such as leveraging generative models to create synthetic medical
images. By expanding the dataset through generative techniques, it becomes possible to further enhance

model performance and generalization.

Looking ahead, there is substantial room for growth in this field. With sufficient resources, many of
the current limitations can be overcome, allowing the development of highly advanced diagnostic models.
Future work can focus on refining the integration of multiple models into unified diagnostic pipelines, as
demonstrated in this thesis, not only improving accuracy and efficiency but also offering more holistic
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insights into a patient’s condition. Such systems have the potential to indicate other areas of concern that

may have been overlooked, providing a more thorough analysis of the medical image.

In conclusion, the future of automated diagnosis shows great potential, and with continued
advancements, these systems can become significantly beneficial tools in medical practice, helping to
ensure timely, precise, and comprehensive patient care.
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