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Abstract 

Early and accurate diagnosis of hip conditions, such as fractures and degenerative diseases, 

is crucial for ensuring that patients receive appropriate treatment on time. Delayed or incorrect 

diagnoses can lead to prolonged recovery times, worsened conditions, and higher risks of 

complications. In recent years, machine learning and deep learning have emerged as powerful 

tools for medical image analysis, offering the potential to assist healthcare professionals by 

automating parts of the diagnostic process. This thesis concerns the development of a multi-

stage classification pipeline for the automated diagnosis of hip conditions from x-ray images, 

utilizing state-of-the-art deep learning techniques. 

The dataset used in this study includes a combination of publicly available hip x-ray images 

and additional images provided by a physician, covering fractured, operated, and healthy hips, 

as well as hips with osteoarthritis. The classification pipeline consists of five stages, each 

addressing a specific diagnostic task. These stages include whether the image shows the left or 

right hip, whether the hip is normal or not, if an operation has been performed, the type of 

operation (arthroplasty or nailing), and the classification of fracture types and conditions 

(intertrochanteric fracture, subcapital fracture, osteoarthritis). 

The final classification pipeline incorporates a ResNet50 model for the initial classification 

of left or right hip, achieving an accuracy of 89%. For the rest of the stages, VGG16 models 

were selected. The highest accuracy was obtained for classifying normal versus abnormal hips 

(98% recall) and the type of operation (100%). However, lower accuracy was observed in more 

complex tasks, such as differentiating between fracture types, where the model achieved an 

accuracy of 73%. Additionally, the classification where the hip is operated or not, the model 

achieved a recall of 91%. Transfer learning played a crucial role in boosting the performance of 

the pipeline, allowing the models to generalize well despite the limited availability of training 

data. 

Despite the effectiveness of the proposed pipeline, several limitations were encountered. One 

of the main challenges was the limited availability of open-source medical imaging data, which 

hindered the training of more robust models. Additionally, hardware limitations restricted the 

ability to train larger models or explore more complex architectures. Future research can also 

utilize generative models to synthesize additional medical images, expanding the training dataset 

and improving model performance. 

The findings of this thesis highlight the potential of deep learning techniques in automating 

medical diagnosis, particularly for hip-related conditions. Although automated diagnostic 

systems are still in the early stages of development, and should be used complementary to human 

expertise, they offer numerous benefits. These include faster and more efficient diagnosis, 

reduced diagnostic errors, and the ability to assist doctors in identifying additional areas of 

concern in medical images. Ultimately, automated systems could become valuable tools in 

healthcare, and drastically improve patient outcomes. 

Keywords 

Deep Learning, Transfer Learning, Automated Diagnosis, Medical Image Classification, Hip 

Fracture Detection 
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Η έγκαιρη και ακριβής διάγνωση παθήσεων του ισχίου, όπως κατάγματα και εκφυλιστικές 

ασθένειες, είναι ζωτικής σημασίας για να διασφαλιστεί ότι οι ασθενείς λαμβάνουν την 

κατάλληλη θεραπεία έγκαιρα. Καθυστερημένες ή εσφαλμένες διαγνώσεις μπορεί να οδηγήσουν 

σε παρατεταμένους χρόνους ανάρρωσης, επιδείνωση των παθήσεων και υψηλότερους 

κινδύνους επιπλοκών. Τα τελευταία χρόνια, η μηχανική μάθηση και η βαθιά μάθηση έχουν 

αναδειχθεί ως ισχυρά εργαλεία για την ανάλυση ιατρικών εικόνων, προσφέροντας τη 

δυνατότητα να επωφεληθεί ο τομέας της υγείας, αυτοματοποιώντας μέρη της διαγνωστικής 

διαδικασίας. Η παρούσα διπλωματική εργασία αφορά την ανάπτυξη μιας σειράς αλγορίθμων 

ταξινόμησης πολλαπλών σταδίων για την αυτοματοποιημένη διάγνωση παθήσεων και 

χειρουργείων του ισχίου από εικόνες ακτίνων Χ, με τη χρήση τεχνικών βαθιάς μάθησης. 

Το σύνολο δεδομένων που χρησιμοποιήθηκε σε αυτή τη μελέτη περιλαμβάνει έναν 

συνδυασμό διαθέσιμων στο κοινό εικόνων ακτινογραφίας ισχίου και εικόνων που 

παραχωρήθηκαν από έναν ορθοπεδικό χειρουργό, που καλύπτουν σπασμένα, χειρουργημένα και 

υγιή ισχία, καθώς και ισχία με οστεοαρθρίτιδα. Η διαδικασία της ταξινόμησης αποτελείται από 

πέντε στάδια, το καθένα για μια συγκεκριμένη διαγνωστική εργασία. Αυτά τα στάδια 

περιλαμβάνουν εάν η εικόνα δείχνει το αριστερό ή το δεξί ισχίο, εάν το ισχίο είναι φυσιολογικό 

ή όχι, εάν έχει γίνει επέμβαση, τον τύπο της επέμβασης (αρθροπλαστική ή ήλωση) και την 

ταξινόμηση των τύπων των καταγμάτων ή παθήσεων (διατροχαντήριο κάταγμα, υποκεφαλικό 

κάταγμα, οστεοαρθρίτιδα). 

Το τελικό σύστημα ταξινόμησης ενσωματώνει ένα μοντέλο ResNet50 για την αρχική 

ταξινόμηση του αριστερού ή του δεξιού ισχίου, επιτυγχάνοντας ακρίβεια 89%. Για τα υπόλοιπα 

στάδια επιλέχθηκαν μοντέλα VGG16. Η υψηλότερη ακρίβεια επιτεύχθηκε για την ταξινόμηση 

των φυσιολογικών έναντι των μη φυσιολογικών ισχίων (98% recall) και του τύπου επέμβασης 

(100%). Ωστόσο, χαμηλότερη ακρίβεια παρατηρήθηκε σε πιο σύνθετες εργασίες, όπως η 

διαφοροποίηση μεταξύ των τύπων κατάγματος ή οστεοαρθρίτιδας, όπου το μοντέλο πέτυχε 

ακρίβεια 73%. Επιπρόσθετα, η ταξινόμηση όπου το ισχίο είτε έχει χειρουργηθεί είτε όχι, το 

μοντέλο πέτυχε recall 91%. Τα transfer learning μοντέλα έπαιξαν κρίσιμο ρόλο στην ενίσχυση 

της απόδοσης του συστήματος, επιτρέποντας στα μοντέλα να γενικεύουν παρά την 

περιορισμένη διαθεσιμότητα δεδομένων για εκπαίδευση. 

Παρά την αποτελεσματικότητα του προτεινόμενου συστήματος, συναντήθηκαν αρκετοί 

περιορισμοί. Μία από τις κύριες προκλήσεις ήταν η περιορισμένη διαθεσιμότητα ιατρικών 

δεδομένων, η οποία εμπόδιζε την εκπαίδευση πιο ισχυρών μοντέλων. Επιπλέον, οι περιορισμοί 

hardware περιόρισαν τη δυνατότητα εκπαίδευσης βαθύτερων μοντέλων ή εξερεύνησης πιο 

περίπλοκων αρχιτεκτονικών. Μελλοντικές έρευνες μπορούν επίσης να χρησιμοποιήσουν 

μοντέλα για τη σύνθεση πρόσθετων ιατρικών εικόνων, επεκτείνοντας το σύνολο δεδομένων 

εκπαίδευσης και βελτιώνοντας την απόδοση του συστήματος. 

Τα ευρήματα αυτής της εργασίας επισημαίνουν τις δυνατότητες των τεχνικών βαθιάς 

μάθησης στην αυτοματοποίηση της ιατρικής διάγνωσης, ιδιαίτερα για παθήσεις που σχετίζονται 

με την ορθοπεδική. Παρόλο που τα αυτοματοποιημένα διαγνωστικά συστήματα βρίσκονται 

ακόμα σε αρχικά στάδια ανάπτυξης και θα πρέπει να χρησιμοποιούνται συμπληρωματικά, 

προσφέρουν πολλά οφέλη. Αυτά περιλαμβάνουν ταχύτερη και πιο αποτελεσματική διάγνωση, 

μειωμένα διαγνωστικά σφάλματα και την ικανότητα να βοηθούν τους γιατρούς να εντοπίζουν 

πρόσθετα προβλήματα στις ιατρικές εικόνες. Τέλος, τα αυτοματοποιημένα συστήματα θα 

μπορούσαν να γίνουν πολύτιμα εργαλεία στον τομέα της υγείας και να βελτιώσουν δραστικά τα 

αποτελέσματα των ασθενών. 
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INTRODUCTION 

In recent years, hip fractures and the need for hip arthroplasty procedures have become 

significant public health concerns due to their increasing occurrences and the impact on 

individuals' quality of life. Accurate and timely detection of hip fractures and the need for 

arthroplasty plays a crucial role in improving patient recovery, locating the source of the 

condition, and reducing healthcare costs (Moran et al., n.d.). Manual diagnosis by medical 

professionals can be time-consuming, subjective, and prone to human error. Therefore, there is 

a need for automated and efficient methods to aid in the detection and classification of hip 

fractures and the subsequent requirement for hip arthroplasty. 

Advancements in machine learning and artificial intelligence have shown great potential in 

various medical fields, improving disease detection and patient care. Leveraging the power of 

machine learning algorithms for hip fracture and hip arthroplasty detection offers an innovative 

approach to enhance accuracy and speed in clinical decision-making. By analyzing medical 

imaging data, such as x-rays, CT scans, or MRI scans, machine learning algorithms can identify 

subtle patterns, features, and abnormalities that may not be easily distinguishable by the human 

eye. 

The subject of this thesis 

This thesis scope is to develop a robust and reliable machine learning approach specifically 

tailored for the detection of hip abnormalities, or hip operations. The system is designed to 

process and analyze x-ray images. Through a comprehensive evaluation of various machine 

learning techniques and state-of-the-art algorithms, this work aims to identify the most suitable 

approach for accurate detection and classification of different hip abnormalities and hip 

operations. 

The successful implementation of an automated machine learning algorithm for hip fracture 

and hip arthroplasty detection holds immense potential for healthcare providers, radiologists, 

and orthopedic surgeons. It can significantly reduce the time and effort required for diagnosis, 

enabling healthcare professionals to make informed treatment decisions promptly. Additionally, 

it has the potential to minimize the risk of misdiagnosis and unnecessary surgeries, thereby 

improving patient outcomes and overall healthcare efficiency. 

Aim and objectives 

Scope of this thesis is to contribute to the advancement of automated medical diagnosis by 

developing a robust system for hip abnormalities and hip operations detection. By leveraging 

deep learning techniques, this research strives to support clinical decision-making in orthopedic 

practice, ultimately improving patient care. Aim of this thesis is also to test various models’ 

robustness in each classification task, proposing a pipeline that encompasses the best performing 

models. The pipeline architecture is designed to classify various hip fractures and diseases, 

covering a wider range of cases instead of focusing exclusively on one condition. 
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Methodology 

The methodology adopted in this thesis involves an approach to classify hip x-ray images 

using a multi-stage deep learning pipeline. First, a dataset of x-ray images was compiled, 

including both publicly available images and additional data provided by Dr. Zachariadis, 

covering fractured, operated, and healthy hips. The classification task was broken down into 

multiple stages, each targeting a specific decision-making process: identifying the side (left or 

right hip), determining the state (normal or not normal), and further classifying between various 

medical conditions or operations (arthroplasty, nailing, different types of fractures, or 

osteoarthritis). For each stage, different deep learning models were trained and evaluated, with 

the most efficient models selected for the final pipeline based on their performance metrics. The 

final classification pipeline consists of sequentially applied models: ResNet50 for side 

classification, and VGG16 for the rest of the stages, which classify the hip's condition. Last but 

not least, the pipeline structure is designed to be time efficient. For example, in case a normal 

hip is detected, the process comes to an end, while it proceeds through further stages if 

abnormalities are present, with conditional logic. 

Innovation 

This work aims to pave the gap in relevant literature regarding the development of a pipeline 

that can combine various models that detect different cases and medical conditions. Thus, the 

proposed system will ultimately be capable of offering predictions that provide a more rounded 

diagnosis of the patient’s state. Furthermore, the addition of medical image generation using a 

conditional Generative Adversarial Network (GAN) is being proposed to tackle the problem 

regarding the limitation in available data. 

Structure 

This thesis is structured into seven chapters, each providing information about different parts 

of the research process and background theory. Chapter 1 provides background information on 

relevant medical conditions, including various types of hip fractures and surgical procedures, 

establishing the clinical context for the work. Chapter 2 introduces the fundamental concepts of 

machine learning and deep learning, with an emphasis on common architectures like 

Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs). Chapter 3 

reviews related work in the field, summarizing recent studies that use machine learning models 

for fracture detection. Chapter 4 focuses on the data used in this thesis, detailing the data 

collection process. Chapter 5 describes the methodology and experimental setup, including the 

training and evaluation of various models for each classification stage. Chapter 6 presents the 

final classification pipeline, explaining its construction and how the best-performing models 

were utilized. Finally, Chapter 7 includes the conclusions regarding the thesis, also providing 

information about existent limitations and future work. 

1 Chapter 1: Background 

Hip fractures and osteoarthritis are common and debilitating conditions, particularly in elderly 

populations, that require precise diagnosis and timely treatment to improve patient outcomes. 

These conditions not only result in significant pain and reduced mobility but also present 

challenges in terms of long-term recovery and quality of life. Understanding the types and 

treatments for these disorders is critical for developing effective diagnostic and therapeutic 

strategies. This chapter aims to provide a foundational understanding of hip fractures and 
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osteoarthritis, focusing on the importance of early detection and surgical interventions 

commonly employed to manage these conditions. By exploring the relevant medical 

background, this chapter sets the stage for understanding the role of automated diagnostic 

systems in improving clinical decision-making and patient care. 

1.1 Importance of early detection of hip fractures 

The hip is a ball-and-socket joint where the femur adjoins the ilium, ischium, and pubis of 

the pelvis. The femoral head is the ball and the acetabulum is the socket in this synovial joint. 

The proximal portion of the femur consists of the head, neck, and the greater and lesser 

trochanter (Figure 1). The greater trochanter, a bony prominence on the anterolateral surface 

of the proximal shaft of the femur, is the insertion site for the gluteus medius and gluteus 

minimus muscles. The lesser trochanter, a bony prominence on the proximal medial aspect of 

the femoral shaft, is the insertion site for the iliopsoas muscle (Ramponi et al., 2018). 

 

Figure 1. Anatomy of the hip bone (Ramponi et al., 2018). 

Hip fracture is the most common major injury in the elderly and an important cause of 

mortality and morbidity (Moran et al., n.d.). Several research has been done over the years, 

some of them will be analyzed below. 

1.1.1 Study conducted by Goldacre et al. 

The following study was conducted by Goldacre et al. (Goldacre et al., 2002), and 

was published in 2002. This study examined emergency admissions of 8,148 

individuals aged 65 and over with fractured neck of femur as the principal diagnosis. 

Out of these, 80.2% were women, with a mean age of 82.2 years. In the first month 

after fracture, the standardized mortality ratio was 1246 (95% confidence interval 1164 

to 1331; general population 100). Adjusted standardized mortality ratios were 451 (397 

to 509) in month 3, 238 (197 to 283) in month 6, and 187 (149 to 230) in month 12. 

Fractured femur was certified as the underlying cause in 16% of deaths within the first 

month and as a cause anywhere on the death certificate in 43%. 
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1.1.2 Study conducted by L. J. Melton, III 

This research was conducted by L. J Melton (Melton, III, 1993), which was 

published in 1993. According to his study, hip fractures result in increased mortality 

and significant disability, often stemming from falls and osteoporosis, particularly 

affecting post-menopausal white women. Osteoporosis impacts one in four women in 

this demographic but affects fewer men and women of other races. In 1990, 

approximately 1.66 million hip fractures occurred globally, with half of them in Europe 

and North America. Despite this, there's considerable variation in hip fracture 

incidence rates within these regions, suggesting the influence of environmental factors 

that could be targeted to reduce hip fractures. 

As stated in this research, the economic burden is substantial, especially in the 

United States, where a quarter of a million hip fractures annually incur costs exceeding 

$8 billion, primarily for acute medical care and nursing home services. Future costs are 

expected to rise due to global population aging, combined with the increasing hip 

fracture incidence rates in some areas. The elderly population is growing most rapidly 

in Asia, Latin America, the Middle East, and Africa, which are projected to contribute 

to over 70% of the anticipated 6.26 million hip fractures by 2050. Given the expensive 

nature of fracture treatment and the uncertainty of rehabilitation success, effective 

prophylaxis stands as the sole solution to mitigate the significant social and economic 

burden associated with hip fractures. 

1.2 Basic hip fracture types 

Hip fracture is the most common major injury in the elderly and an important cause of 

mortality and morbidity (Moran et al., n.d.). Hip fractures have many types, such as femoral 

neck fractures, intertrochanteric fractures, fracture of the greater trochanter, subtrochanteric 

fractures and femoral head fractures (Gray & Fischer, 2020). But according to Brunner et al. 

(Brunner et al., 2003), there are six basic fracture types: 

1. Subcapital neck fracture 

2. Transcervical neck fracture 

3. Intertrochanteric fracture 

4. Subtrochanteric fracture 

5. Fracture of the greater trochanter 

6. Fracture of the lesser trochanter 

In this thesis, subcapital fractures and intertrochanteric fractures are contained in the 

classification system, which will be analyzed in more detail below. 

According to Brunner et al. (Brunner et al., 2003), hip fractures split into two anatomic 

regions, intracapsular and extracapsular. Subcapital (femoral neck) fractures are included in 

the intracapsular fractures category, while intertrochanteric fractures and subtrochanteric 

fractures are included in the extracapsular fractures. 

Anatomic 

Region 

Fracture Frequency Potential 

Complications 
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Intracapsular 
Subcapital (femoral neck) 

fracture 

45% in the elderly; 

Male/Female ratio: 1:3 

Avascular necrosis 

of the femoral head 

Extracapsular Intertrochanteric fracture 45% in the elderly; 

Male/Female ratio: 1:3 

Rarely, malunion 

or nonunion; 

degenerative 

changes 

Extracapsular Subtrochanteric fracture 10%, with bimodal 

disruption (e.g. ages varying 

from 20 to 40 and above 60) 

High rates of 

nonunion and 

implant (e.g. nails 

or devices 

implanted into the 

medullary cavity of 

the hip); High 

physical stress in 

the region may also 

cause fatigue 

Table 1. Hip fractures classified based on general anatomic locations (Brunner et al., 2003). 

Also, in certain cases of hip fractures, the fractured bone fails to heal or heals in a 

deformed position. These cases are called nonunion and malunion respectively (Four 

Factors for Fracture Healing: Treatment of Nonunion and Malunion, n.d.). Simply put, a 

malunion occurs when a fractured bone heals in a position that is not normal, which can 

cause reduced bone functionality. A nonunion instead, is the result of a fractured bone 

that fails to heal after a long time period (sometimes nine to twelve months) (Malunion 

and Nonunion Fractures, n.d.). 

 

head (blue arrow). 

Figure 2. Preoperative and postoperative radiographs from a case of a femoral head 

malunion (Matsuda, 2014). 

Image A. Preoperative anteroposterior 

x-ray, showing malunion of the femoral 
Image B. Postoperative anteroposterior 

x-ray after arthroscopic osteosynthesis. 
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Figure 3. Patient with a nonunion of a femur fracture. Image A shows an 

anteroposterior radiograph, containing nonunion and hardware failure. Image 

B shows an anteroposterior radiograph healing, following nonunion repair 

(Egol et al., 2022). 

1.2.1 Subcapital/Femoral neck fracture 

Subcapital fracture is the most common type of intracapsular neck of femur fracture. 

The fracture line extends through the junction of the head and neck of the femur (Shah, 

2023). For classifying a subcapital fracture, many classification methods are proposed, 

but the Garden classification (Garden, 1961) and the Pauwel classification (Pauwels, 

1965) are generally applied. These classification methods are preferred because these 

systems take into consideration the stability of a fracture. 

1.2.1.1 Garden Classification method 

Garden classification (Garden, 1961) is based on the pre-reduction displacement 

of the femoral head. Furthermore, the displacement is graded as per the position of 

the principal compressive trabeculae. This system divides an intertrochanteric 

fracture into four types: 

1) Stage 1 (Figure 2A): Subcapital fractures, which can be incomplete or valgus 

impacted (Sheehan et al., 2015) (humeral joint fragments impacted against the 

metaphyseal region, with separation of the tuberosities and minimal lateral deviation 

of the humeral head (Ribeiro et al., 2016)). 

2) Stage 2 (Figure 2B): Fractures that are complete subcapital fractures but nondisplaced 

subcapital fractures (Sheehan et al., 2015). 

3) Stage 3 (Figure 2C): Fractures that are complete subcapital fractures that are partially 

displaced (Sheehan et al., 2015). 

4) Stage 4 (Figure 2D): Fractures that are complete subcapital fractures that are fully 

displaced (Sheehan et al., 2015). 
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B. Stage 2 subcapital neck fracture 

B. Stage 1 subcapital neck fracture 

 

 B. Stage 3 subcapital neck fracture B. Stage 4 subcapital neck fracture 

Figure 4. The Garden classification system for subcapital femoral neck fractures 

(Sheehan et al., 2015). 

1.2.1.2 Pauwel Classification method 

Pauwel classification (Pauwels, 1965) is based on the post-reduction angulation of 

the fracture line to the horizontal line, evaluated on an anterior to posterior (AP) 

radiograph (Shah, 2023). This system is divided into three types, based on the angle of 

the fracture relative to the horizontal plane (Figure 5): 

1) Degree I: Angle relative to horizontal pane < 30°. 

2) Degree II: 30° < Angle relative to horizontal pane < 50°. 

3) Degree III: 50° < Angle relative to horizontal pane. 
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Figure 5. Pauwels classification system for postreduction femoral neck fractures, 

determined by the angle of the fracture relative to the horizontal plane (white line) 

(Sheehan et al., 2015). 

1.2.2 Intertrochanteric fracture 

Intertrochanteric fractures are present in the region between the greater and lesser 

trochanters. Because they occur in the furthest anatomic regions of the hip joint 

capsule, they are classified as extracapsular fractures. The cancellous bone 

(characterized by its spongy, porous structure) is well vascularized, meaning that rarely 

a nonunion or osteonecrosis will arise, which make the healing of the fracture a lot 

more complicated (Koval & Zuckerman, 2013). 

1.2.2.1 Classification of intertrochanteric fractures 

The classification of intertrochanteric fractures is a lot more complicated when 

choosing a classification system to follow. Extensive research has been conducted 

over the years to scrutinize the reasons behind poor reliability and reproducibility of 

fracture classifications. Unfortunately, the challenges associated with the reliability 

of classification have led to loss of enthusiasm for the classification process. The 

demanding nature of this process has often been overlooked in favor of more 

popular and commonly employed classification systems (Marsh et al., 2007). 

In the study of Yıldırım et al. (Yıldırım et al., 2022), they aimed to evaluate the 

reliability for five classification systems: 

● Boyd-Griffin classification system 

● Evans/Jensen classification system 

● Evans classification system 

● AO/OTA (Arbeitsgemeinschaft für Osteosynthesefragen/Orthopaedic Trauma 

Association) (main and subgroups) classification system 
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● Tronzo classification system 

Radiological images from sixty patients (13 males and 47 females, with ages 

ranging from 61 to 96 years) were evaluated and classified by five residents, five 

orthopedics and five traumatology surgeons according to the aforementioned 

classification systems. Intraobserver and interobserver reliability were calculated using 

Cohen’s κ-coefficient (Cohen, 1960). Kappa measures the degree of agreement 

between a pair of variables, frequently used as a metric of interrater agreement, 

particularly in situations involving judgments rather than measurement. Kappa values 

range from [-1,1], with 1 indicating complete agreement and 0 no agreement or 

independence. According to a study of Yinglin (Yinglin, 2020), the standard for an 

acceptable kappa value is arbitrary. According to Fleiss' arbitrary guidelines, which 

paper is often referenced, 0.75 is considered as excellent (Fleiss, 1971). However, it's 

essential to note that kappa is intrinsically nonlinear, is not adept at handling errors and 

retains bias influence. The classification that has the best harmony both among 

residents and surgeons, and between residents and surgeons is the OTA main group 

classification. The results can be seen in Table 2. 

 

The AO/OTA classification method can be seen in Figure 6 below. 

Resident group 

intraobserver (95 % 

Confidence 

Interval) 

Surgeon group 

intraobserver (95 % 

Confidence 

Interval) 

Resident-Surgeon 

group 

interobserver (95 % 

Confidence 

Interval) 

Boyd-Griffin 0.660 

(0.550-0.770) 

0.658 

(0.550-0.770) 

0.572 

(0.532-0.616) 

Evans-Jensen 0.625 

(0.600-0.655) 

0.484 

(0.434-0.542) 

0.498 

(0.450-0.553) 

Evans 0.557 

(0.519-0.595) 

0.456 

(0.409-0.053) 

0.438 

(0.400-0.481) 

AO/OTA main 

group 

0.744 

(0.708-0.785) 

0.741 

(0.696-0.797) 

0.699 

(0.649-0.750) 

AO/OTA subgroup 0.516 

(0.498-0.540) 

0.488 

(0.418-0.558) 

0.444 

(0.418-0.470) 

Tronzo 0.528 

(0.501-0.592) 

0.529 

(0.489-0.569) 

0.554 

(0.506-0.614) 

Table 2. Intraobserver kappa values of resident group and surgeon group, and 

interobserver kappa value of resident-surgeon evaluations ( Yıldırım et al., 2022). 
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 Subgroup: Simple oblique Subgroup: Simple transverse Subgroup: Wedge or 

 fracture fracture multifragmentary fracture 

Figure 6. AO/OTA classification method for intertrochanteric (reverse obliquity) fractures (Meinberg et 

al., 2018). 

1.2.3 Osteoarthritis 

The most prevalent joint disorder in the United States is osteoarthritis, which is the 

most common cause of disability in the elderly, with approximately 200,000 total hip 

replacements performed each year. Radiographs that contain osteoarthritis of the hip 

occurs in about 5% of the population over the age of 65 years (Lane, 2007). The 

difficult part of classifying an occurrence of osteoarthritis is that not all patients 

present symptoms. The inconsistency between changes in radiograph images and 

symptoms may account for false negative or false positive findings in well-established 

studies of osteoarthritis of the hip. 

The term “osteoarthritis” is used to represent a hypernym group of joint disorders, 

presenting joint pain and stiffness. Also, the pathogenesis of osteoarthritis is not 

completely understood. In most cases, osteoarthritis most likely starts with degradation 

of the articular cartilage in a localized, nonuniform manner. In the following period, a 

subsequent thickening of the subchondral bone occurs, new bony outgrowths at joint 

margins (osteophytes), and mild-to-moderate synovial inflammation. The events that 

initiate osteoarthritis are not clearly defined, but are probably due to abnormal signals 

that alter the chondrocyte phenotype so that it synthesizes proteins that degrade the 

matrix and causes degeneration of the joint. 

There are two main categories of osteoarthritis of the hip, primary (idiopathic) or 

secondary (systemic or localized) disease. Risk factors for primary osteoarthritis of the 

hip include: 

● Old age 

● Genetic predisposition for the disease 

● High bone mass 

● Increased body mass index 

● Participation in weight-bearing sports 

● Occupations that require prolonged standing, lifting, or moving heavy objects. 

Risk factors for the secondary causes (systemic) include: 
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● Hemochromatosis 

● Hypothyroidism 

● Hyperparathyroidism 

● Hyperlaxity syndromes 

● Acromegaly 

● Paget’s disease ● Chondrocalcinosis ● Gout. 

Also, localized risk factors include: 

● Joint injury 

● Legg–Calvé–Perthes disease 

● Developmental deformities 

● Osteonecrosis 

● Acetabular dysplasia 

● Rheumatoid or septic arthritis as a result of cartilage damage. 

Finally, signaling pathways and polymorphisms in combination with the development 

and metabolism of bone and cartilage, are also linked with the risk of developing 

osteoarthritis (Lane, 2007). 

1.2.4 Surgical Treatment: arthroplasty, nailing 

In this section, information will be provided regarding the different treatments 

that need to be offered to patients with subcapital fractures or osteoarthritis, 

highlighting the medical decision-making process and how these conditions are 

managed through surgical interventions. 

1.2.4.1 Treatment of Subcapital Fractures 

Treatment of subcapital neck fractures fall into two categories: internal fixation or 

arthroplasty (hemiarthroplasty or total hip arthroplasty). Instead of choosing a 

treatment option based on a diagnosis-related approach, treatment options now also 

take into consideration the patient’s age, functional demands and the individual’s risk 

profile. For younger patients, the treatment follows with urgent open reduction and 

internal fixation (ORIF) surgery, with the goal of anatomic reduction. Anatomical 

reduction is the alignment of the fractured bone fragments, with the aim to reconstruct 

the broken bone as closely as possible to its original form, ensuring optimal healing 

and restoration of function to the affected bone and surrounding joints (Dogramadzi et 

al., 2014). For elderly patients, their cognitive function should be determined. For 

cognitive functional patients, the best approach is a total hip arthroplasty. Meanwhile, 

for cognitive dysfunctional patients, a bipolar hemiarthroplasty or a total hip 

arthroplasty with the use of larger heads and/or constrained sockets are a feasible 

option (Callaghan et al., 2012). 

1.2.4.2 Treatment of Intertrochanteric Fractures 

Intertrochanteric fractures are typically treated surgically, as nonoperative 

treatment is generally reserved for non-ambulatory patients or those with a high risk 

of perioperative mortality. Non-surgical treatment carries significant risks, including 

pneumonia, urinary tract infections, pressure ulcers, and deep vein thrombosis. 
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Therefore, surgery is the preferred treatment for most patients to restore mobility 

and minimize complications. The choice of surgical method depends on the fracture 

pattern and stability, as the type of implant used directly affects the success of the 

treatment. Fractures involving the lateral femoral wall, or unstable patterns with 

comminution or subtrochanteric extension, are often treated with intramedullary 

nailing, as this method provides superior stability compared to sliding hip screws. 

For stable intertrochanteric fractures, a sliding hip screw may be used, especially 

when the lateral femoral wall remains intact. This technique offers comparable 

outcomes to intramedullary nailing in such cases, and its advantages include 

dynamic interfragmentary compression and lower cost. However, it has drawbacks, 

including higher blood loss and the need for an open surgical approach. 

Intramedullary nailing, on the other hand, is preferred for unstable fracture patterns, 

as it is minimally invasive and reduces blood loss. Arthroplasty is rarely used for 

intertrochanteric fractures and is typically reserved for complex cases, such as 

severely comminuted fractures or when internal fixation is not feasible due to 

osteoporotic bone or pre-existing degenerative conditions (Attum & Pilson, 2024). 

1.2.4.3 Treatment of Osteoarthritis 

Treatment of osteoarthritis has two main goals; relieving the patient from pain and 

maintaining functionality. As analyzed in the paper published by Lane et. al (Lane, 

2007), there are several ways for treating osteoarthritis, such as nonpharmacologic 

treatment (balance improvement when walking with a cane, self-help education classes 

etc), pharmacologic treatment (mainly drugs to manage pain and/or inflammation) and 

a surgical approach. 

Regarding surgical approaches, total hip arthroplasty is an effective treatment for 

patients suffering from chronic pain and functional impairment. Also, a rehabilitation 

program may follow for several months, to regain a reasonable functionality of the 

operated hip joint. Maximal pain relief and improvement in functions may take up to 

12 months. Other effective approaches are resurfacing arthroplasty (capping the 

femoral head and preserving bone of the proximal femur (Mont et al., 2006)) and 

osteotomy ( i.e. proximal femoral osteotomy (Tannast & Siebenrock, 2009)). 

2 Chapter 2: Machine Learning 

Machine learning is a subset of artificial intelligence that enables computers to learn from 

experience and improve their performance over time without being explicitly programmed. It 

involves algorithms that can analyze data, recognize patterns, and make decisions with 

minimal human intervention. 

2.1 Machine Learning in general 

The concept of machine learning was first introduced by Arthur Samuel in 1959, who 

described it as a field of study that gives computers the ability to learn without being explicitly 

programmed (Samuel, 1959). 

A machine learning algorithm uses input data to achieve a desired task for the purpose of 

producing a particular outcome. These algorithms automatically adjust their configuration 
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through repetition to improve their performance in a given task. This adaptive process, known 

as training, involves providing input data samples and desired outcomes. The algorithm 

optimizes its configuration to not only achieve good performance with training data, but also to 

generalize and perform well with new, unseen data. This continuous learning process allows a 

proficient algorithm to refine its capabilities over time by processing new data and learning 

from mistakes (El Naqa et al., 2015). 

The field of machine learning is multi-disciplinary, having a wide-range of research fields, 

i.e. psychology, neuroscience, information theory, and computational complexity theory. It has 

a wide range of applications, including email spam filtering, fraud detection on social 

networks, online stock trading, medical diagnosis, and self-driving cars. Machine learning 

algorithms are designed to handle complex real-world problems and can be categorized into 

different paradigms (Alzubi et al., 2018). 

2.1.1 Machine Learning Paradigms 

Three main categories of machine learning are supervised learning, unsupervised learning and 

reinforcement learning. All of them are being briefly presented in the subsections below. 

2.1.1.1 Supervised Learning 

Supervised learning is a type of machine learning where the model is trained on labeled 

data. It involves using known input-output pairs to enable the algorithm to learn and make 

predictions. The process consists of two main steps: training, where the model learns from the 

data, and testing, where the model’s predictions are evaluated, on data different from that of the 

training process. The goal is to map input data to known output labels so that when the model 

encounters new, unseen data, it can accurately predict the corresponding output. Figure 7 

explains this concept. 

In essence, supervised learning algorithms build a mathematical model of a set of data that 

contains both the inputs and the desired outputs. Each example is a pair consisting of an input 

object (typically a vector) and a desired output value. Supervised learning algorithms analyze 

the training data and produce an inferred function, which can be used for mapping new 

examples. Supervised learning can be further divided into classification tasks, where the output 

is a discrete label, and regression tasks, where the output is a continuous value. These 

algorithms are widely used for predictive tasks or future event forecasting (Preeti & Dhankar, 

2017). 
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Figure 7. Supervised Learning (Preeti & Dhankar, 2017) 

More specifically, during the training process, the machine generates a vector of scores for 

each given image, each score corresponding to a category. Ideally, the correct category should 

have the highest score. An objective function is used to measure the error between the 

produced scores and the desired scores. The machine then adjusts its internal parameters, 

known as weights, to minimize this error. These weights are real numbers that shape the 

machine's input-output function. In deep learning systems, there can be hundreds of millions of 

weights and training examples. To fine-tune the weights, the learning algorithm calculates a 

gradient vector that shows how the error changes with small adjustments to each weight. The 

weights are then updated in the opposite direction of this gradient. 

In practice, most practitioners use a method called stochastic gradient descent (SGD). This 

involves presenting the input vector with a few examples, calculating the outputs and errors, 

determining the average gradient for those examples, and then adjusting the weights 

accordingly. This process is repeated with many small sets of examples from the training set 

until the average objective function stops decreasing. It is called stochastic because each small 

set of examples provides a noisy estimate of the average gradient over all examples. This 

procedure usually finds a good set of weights quickly compared to more complex optimization 

techniques. After training, the system's performance is evaluated on a different set of examples 

called a test set, which assesses the machine's generalization ability to produce sensible 

answers on new, unseen inputs (LeCun, 2015). 

2.1.1.2 Unsupervised Learning 

Unsupervised learning is a type of machine learning that operates on data without predefined 

labels, aiming to identify underlying patterns or structures within the dataset. It’s particularly 

useful for exploratory data analysis, such as customer segmentation in marketing campaigns. 

Unlike supervised learning, which relies on labeled input-output pairs for training, 
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unsupervised learning algorithms infer the natural grouping or structure of the data based on 

intrinsic characteristics. Figure 8 explains this concept. 

One common application of unsupervised learning is clustering, where the algorithm 

organizes data into groups based on similarities. This can be applied to various fields, 

including bioinformatics and image compression. Techniques like k-means and hierarchical 

clustering are popular methods within this domain. Unsupervised learning is also adept at 

dimensionality reduction, helping to simplify datasets by reducing the number of variables 

under consideration, which in turn can enhance the performance of other machine learning 

algorithms (Preeti & Dhankar, 2017). 

 

Figure 8. Unsupervised Learning (Preeti & Dhankar, 2017). 

2.1.1.3 Reinforcement Learning 

Reinforcement learning is a computational approach where an agent learns to make 

decisions by trial and error, receiving feedback from its actions in the form of rewards or 

penalties. This method combines elements from psychology, engineering, and artificial 

intelligence, allowing the agent to develop a strategy that maximizes its long-term gains from a 

specific task. The agent’s objective is to accumulate the highest possible amount of reward, 

which is defined by a reward function that dictates what is beneficial for the agent within its 

environment. 

The core concept of reinforcement learning involves the agent’s interactions with its 

environment, where it performs actions and observes the outcomes to adjust its behavior. Key 

components include the reward function (𝑟𝑡), state (𝑠𝑡) and action (𝑎𝑡) definitions, and the 

policy function, which maps states to actions. Over time, the agent refines its policy based on 

the results of its actions, aiming to improve the expected return. Figure 9 explains this concept. 

This learning process is dynamic, with the agent continually updating its value function, which 
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estimates the long-term benefits of its actions, leading to more informed decisions and better 

performance in the task at hand (Sutton & Barto, 1999). 

 

Figure 9. Reinforcement Learning (Whiteson, 2010). 

2.2 Deep Learning 

Representation learning is a set of methods that allows a machine to be fed with raw data and to 

automatically discover the representations needed for detection or classification. Deep learning methods 

are representation learning methods with multiple levels of representation, obtained by composing simple 

but non-linear modules that each transform the representation at one level (starting with the raw input) 

into a representation at a higher, slightly more abstract level. With the composition of enough such 

transformations, very complex functions can be learned (LeCun, 2015, 1). 

2.2.1 Neural Networks 

Neural network architectures consist of a multilayer stack of modules. Most of the modules undergo 

learning, while many of them perform non-linear input-output mappings. Each module transforms its 

input, in order to improve representations. This can be achieved by enhancing both the selectivity and 

invariance of the representation. Using several non-linear layers, a system can execute highly complex 

functions of its inputs, focusing on meaningful changes. This means that the model is capable of being 

sensitive to details of interest, while remaining unaffected by significant irrelevant variations such as 

the lighting, surrounding objects and general background (LeCun, 2015). 

Multilayer architectures are trained using stochastic gradient descent. Provided the modules are 

relatively smooth functions of their inputs and internal weights, backpropagation can compute the 

gradients. To elaborate, backpropagation calculates the gradient of an objective function relative to the 

weights of a multilayer module stack by applying the chain rule for derivatives. The idea is that the 

gradient of the objective, with respect to a module's input, can be derived by tracing back from the 

gradient concerning the module's output (or the input of the next module). This backpropagation 

equation can propagate gradients through all modules, starting from the output (where the network 

makes its predictions) down to the bottom (where the external input enters). Once these gradients are 

available, computing gradients concerning each module's weights becomes straightforward. Multilayer 

neural networks and backpropagation can be seen in more detail in Figure 10. 

In many deep learning applications, feedforward neural network architectures are applied, which 

map a fixed-size input (like an image) to a fixed-size output (such as probabilities for each 
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label/category). Transitioning from one layer to the next involves units computing a weighted sum of 

their inputs from the previous layer and applying a non-linear function. The most widely used non-

linear function is the Rectified Linear Unit (ReLU), defined as f(z) = max(z, 0) (Hara et al., 2015). 

Previously, neural networks used smoother non-linearities like tanh(z) or 1/(1+exp(−z)), but ReLU 

generally facilitates faster learning in neural networks, allowing for deep supervised network training 

without unsupervised pre-training. Units not in the input or output layer are known as hidden units. 

These hidden layers transform the input non-linearly, making categories linearly separable by the final 

layer. 

 

Figure 10. Multilayer neural networks and backpropagation. (LeCun, 2015) a) A multilayer neural 

network can transform input space to make data classes linearly separable. This example uses two 

input units, two hidden units and one output unit, but networks for tasks like object recognition or 

natural language processing (NLP) can contain tens or hundreds of thousands of units. b) The chain 

rule of derivatives explains how two small effects combine. A small change Δx in x is first transformed 

into a small change Δy in y by multiplying with ∂y/∂x (the partial derivative). The change Δy results in 

a change Δz in z. Substituting one equation into the other provides the chain rule of derivatives: how 

Δx turns into Δz by multiplying by the product of ∂y/∂x and ∂z/∂x. This also applies when x, y and z 

are vectors, and the derivatives are Jacobian matrices. c) The equations for the forward pass in a neural 

network with two hidden layers and one output layer involve computing the total input z to each unit as 

a weighted sum of the outputs from the layer, then applying a non-linear function f(.) is applied to get 

well as more traditional sigmoids, like the hyberbolic tangent 𝑓(𝑧) = 𝑚𝑎𝑥(0, 𝑧) the output. Common 

non-linear functions in neural networks include ReLU , as 

and the logistic function 

. d) The equations for the backward pass compute the error derivative 

with𝑓𝑓((𝑧𝑧))  respect== (1𝑒𝑥𝑝/(1to( 𝑧each+) − 𝑒𝑥𝑝unit’s 

𝑒𝑥𝑝(−(output−𝑧))𝑧))/at(𝑒𝑥𝑝each(𝑧hidden) + 𝑒𝑥𝑝layer.(− 𝑧It))is a weighted sum of the error 

derivatives 
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concerning the total inputs of the units in the layer above. The error derivative with respect to the 

output, is then converted into the error derivative with respect to the input, by multiplying by the 

gradient of 𝑓(𝑧). At the output layer, the𝑦error𝑙 − 𝑡derivative𝑙  with respect to the output, is 

derived by2 differentiating the cost function, giving if the cost function for unit 𝑙 is 0. 5(𝑦𝑙 − 𝑡𝑙 ) , 

where 

𝑡𝑙 is the target value. Once the ∂E/∂𝑧𝑘 is known, the error derivative for the weight 𝑤𝑗𝑘 on the 

connection from unit j in the lower layer right is 𝑦𝑗 ∂E/∂𝑧𝑘. 

2.2.1.1 Convolutional Neural Networks 

Convolutional Neural Networks (CNNs) are specialized neural networks designed to process data 

that is organized as multiple arrays, such as 2D images (e.g. a colored image composed of 3 

2-Dimensional arrays, containing pixel intensities in the three color channels, Red Green and Blue 

(RGB)), 1D signals (e.g. language) or 3D videos. They leverage four fundamental principles that 

utilize the properties of natural signals: local connections, shared weights, pooling, and deep layering. 

The architecture of ConvNets is typically structured in stages, with the starting stages consisting of 

convolutional and pooling layers (Figure 11). In each convolutional layer, units are organized in feature 

maps, where each unit is connected to local patches in the previous layer’s feature maps through a set 

of weights, called a filter bank. Then, the result of this sum, called a local weighted sum, passes 

through a non-linearity (e.g. ReLU). This connection allows for the detection of local patterns, with all 

units sharing the same filter bank and each feature map using different filter banks, to identify various 

patterns across the data. The reason for the CNNs’ architecture is based on two factors: 

1. In data that consist of arrays (e.g. images), it is common for local groups of values to 

be greatly correlated, thus creating distinctive local motifs that can be detected easily. 

2. Local statistical data of images as well as other signals are invariant to location. This 

means that if a motif is present in one part of an image, it could appear anywhere else 

as well. This is the reason why units at different locations share the same weights and 

detect the same patterns in different parts of an array, as mentioned above. The 

filtering operation performed by a feature map is a discrete convolution (LeCun, 

2015). 

To conclude, the convolutional layer's primary function is to identify local combinations of features 

from the preceding layer. 

Moreover, the pooling layer's role is to combine semantically similar features into one. Since the 

relative positions of features within a motif can vary, reliably detecting the motif is achieved by 
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generalizing the position of each feature. Typically, a pooling unit determines the maximum value 

within a local patch of units in a feature map, or sometimes across several feature maps. Adjacent 

pooling units receive input from patches that are offset by more than one row or column, which 

reduces the representation's dimensionality and generates invariance to small positional shifts and 

distortions. Multiple stages of convolution, pooling and non-linearity are stacked, followed by 

additional convolutional and fully-connected layers. Gradient backpropagation through a ConvNet is 

straightforward, like in a regular deep network, enabling the training of all weights in the filter banks 

across the network. 

 

Figure 11. Convolutional Network typical architecture. The outputs from each layer of a standard 

convolutional network architecture applied to a dog's image. Each image represents a feature map 

corresponding to one of the learned features, identified across different positions in the image. 

Information moves from the bottom up, with lower-level features serving as oriented edge detectors, 

and a score is calculated for each class in the output (LeCun, 2015). 

2.2.1.2 Recurrent Neural Networks 

For tasks involving sequential inputs, such as language and speech, recurrent neural networks 

(RNNs) are most times more effective (Figure 11). RNNs process a sequence one element at a time 

while maintaining a "state vector" in their hidden units, which implicitly stores information about the 

history of the sequence. RNNs are powerful dynamic systems, but training them has been challenging 

due to the tendency of backpropagated gradients to either explode or vanish over time. However, 

advancements in architecture and training methods have improved RNN performance, making them 

effective for tasks like predicting the next character or word in a sequence, as well as more complex 

tasks. 

For instance, an English "encoder" network can be trained to convert an English sentence into a 

"thought vector" by processing it one word at a time. This vector can then initialize a French "decoder" 

network, which generates a probability distribution for the first word of the French translation. The 

process continues, with the decoder producing distributions for subsequent words, ultimately 

generating a French sentence based on the English input. This approach to machine translation has 

quickly become competitive with state-of-the-art methods, challenging the idea that understanding a 

sentence requires internal symbolic expressions and suggesting that reasoning may involve many 

simultaneous analogies contributing to a conclusion (LeCun, 2015). 



Artificial Intelligence in medical diagnosis (with emphasis on orthopedics) 

MSc in Artificial Intelligence & Deep Learning, MSc Thesis 

 Stamatios-Michail Skaleris mscaidl-0032. 36 

Beyond translating between languages, the same concept can be applied to translating the meaning 

of an image into a sentence. In this case, a deep ConvNet acts as the encoder, converting pixel data into 

a representation vector, while an RNN functions as the decoder, similar to those used in machine 

translation and neural language modeling. 

When unfolded in time, RNNs resemble deep feedforward networks with shared weights across all 

layers. Despite their design to learn long-term dependencies, it is theoretically and empirically 

challenging for them to retain information over extended periods. To address this, Long Short-Term 

Memory (LSTM) networks were introduced, featuring special hidden units that naturally remember 

inputs for extended durations. These units, known as memory cells, accumulate external signals and 

decide when to clear the memory. LSTM networks have proven more effective than traditional RNNs, 

particularly when multiple layers are used for each time step. They are capable of powering entire 

speech recognition systems, from acoustics to transcription. Additionally, LSTM networks that are 

related to them are now commonly used in encoder and decoder networks that demonstrate powerful 

performance in machine translation tasks. Memory networks have also shown excellent performance 

on standard question-answering benchmarks, where they use memory to retain the story that the 

network will later be questioned about (LeCun, 2015). 

 

Figure 12. Recurrent Neural Network (RNN) architecture. A Recurrent Neural Network typical 

architecture that unfolds over time during its forward computation. The artificial neurons, such as 

hidden units grouped under node 𝑠 with values 𝑠𝑡 at time 𝑡, receive inputs from other neurons at 

previous time steps. This is indicated by the black square on the left, representing a delay of one time 

step. This allows a recurrent neural network to map an input sequence, with elements 𝑥𝑡, to an output 

sequence, with elements 𝑜𝑡, where each 𝑜𝑡 depends on all previous 𝑥𝑡'(for tʹ ≤ t). The same parameters 

version where𝑈, 𝑉,the𝑊 network generates a sequence of outputs (e.g., words), with each output used 

as the (matrices ) are reused at each time step. Various other architectures are possible, including 

a 

input for the next time step. The backpropagation algorithm (Fig.10) can be directly applied to the 

computational graph of the unfolded network, shown on the right, to compute the derivative of a total 

error (such as the log-probability of generating the correct output sequence) with respect to all the 

states 𝑠𝑡 and all the parameters (LeCun, 2015). 
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2.3 Transfer Learning Models 

Transfer learning is a rapidly growing topic that has the potential to drive the success of machine 

learning both in research and industry. It is particularly useful when there is a lack of data for specific 

tasks, as collecting and labeling data can be costly and time-consuming. Also, recent privacy concerns 

make it challenging to use real data from users. Transfer learning enables the quick prototyping of new 

machine learning models, by leveraging pre-trained models from a source task, avoiding the need to train 

on millions of images, which takes a lot of time and requires GPUs that have a very high cost (Ribani & 

Marengoni, 2019). 

2.3.1 Visual Geometry Group (VGG16) 

VGG16 is a convolutional neural network (CNN) architecture that was proposed by 

Karen Simonyan and Andrew Zisserman from the University of Oxford in their 2014 

paper titled "Very Deep Convolutional Networks for Large-Scale Image Recognition" 

(Simonyan & Zisserman, 2014). The name “VGG16” comes from the Visual Geometry 

Group (VGG) at Oxford, and the “16” refers to the 16 weight layers in the network. 

The VGG16 architecture is known for its simplicity and uniformity, using small 3x3 

convolution filters throughout the network. Below is a detailed breakdown of its 

architecture: 

● Input Layer: The input to the network is a fixed-size 224x224 RGB image. The only 

preprocessing done is subtracting the mean RGB value, computed on the training set, 

from each pixel. 

● Convolutional Layers: The network has 13 convolutional layers. These layers use 

very small receptive fields: 3x3 (which is the smallest size to capture the notion of 

left/right, up/down, center). The convolution stride is fixed to 1 pixel, and the spatial 

padding of the convolution layer input is such that the spatial resolution is preserved 

after the convolution. 

● Max-Pooling Layers: There are five max-pooling layers, each following some of the 

convolutional layers. Max-pooling is performed over a 2x2 pixel window, with stride 

2. 

● Fully Connected Layers: The stack of convolutional layers is followed by three fully 

connected layers. The first two fully connected layers have 4096 channels each. The 

third fully connected layer performs 1000-way ImageNet Large-Scale Visual 

Recognition Challenge (ILSVRC) (Russakovsky et al., 2015) classification and thus 

contains 1000 channels (one for each class). 

● Activation Function: All hidden layers are equipped with the ReLU function. The 

final layer is a softmax layer. 

A representation of the above can be also seen in Figure 13 below. 
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Figure 13. VGG16 neural network architecture (Cano, n.d.). 

The use of small 3x3 filters throughout the network makes the architecture simple and 

uniform. Additionally, the depth of the network allows it to learn complex features and achieve 

high accuracy on large-scale image recognition tasks. VGG16 achieved state-of-the-art results 

on the ImageNet dataset and has been widely used as a backbone for many other computer vision 

tasks. VGG16’s architecture has been influential in the development of deeper and more complex 

neural networks, demonstrating the importance of depth in achieving high performance in image 

recognition tasks. 

2.3.2 Residual Network (ResNet50) 

ResNet50 is a deep convolutional neural network that was introduced by He et al. in 

2015 (He et al., 2015). ResNet50 is part of the Residual Networks (ResNet) family. It 

is designed to ease the training of very deep networks by introducing residual learning. 

ResNet50 uses residual blocks, which help in training deeper networks by allowing 

gradients to flow through the network more effectively. Each block includes shortcut 

connections that skip one or more layers. The network consists of 50 layers, including 

convolutional layers, batch normalization layers, and ReLU activation functions. It 

also uses a bottleneck design with three layers in each residual block: 1x1, 3x3, and 

1x1 convolutions. ResNet50 is known for its high accuracy and efficiency. It has been 

successfully used in various image recognition tasks and competitions, and it won first 

place at the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) in 2015. 

The main characteristics of the ResNet50 model are: 

● Residual Blocks: The core idea is the use of residual blocks, where the output of a few 

stacked layers is added to the input of those layers. This helps in addressing the 

degradation problem in deep networks. 

● Identity Shortcuts: These shortcuts perform identity mapping and are added to the 

outputs of the stacked layers. They introduce neither extra parameters nor 

computational complexity. 
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● Bottleneck Design: For deeper networks, a bottleneck design is used, which involves 

a stack of three layers (1x1, 3x3, 1x1 convolutions) to reduce and then restore 

dimensions, making the network more efficient. 

● Network Depth: The architecture includes very deep networks, such as 50, 101, and 

152 layers, which are significantly deeper than previous models like VGG16, yet more 

efficient in terms of computational complexity. 

More details about the network’s architecture are listed below, while a relevant 

diagram is provided in Figure 14. 

● Input Layer: The input to ResNet50 is an image of size 224x224x3. 

● Convolutional Layers: The network starts with a 7x7 convolutional layer with 64 

filters and a stride of 2, followed by a 3x3 max pooling layer. This is followed by a 

series of residual blocks, each containing three layers: 1x1, 3x3, and 1x1 convolutions. 

The 50 in “ResNet50” stands for the 50 layers that the model has in total. 

● Fully Connected Layer: After the convolutional layers, there is a global average 

pooling layer that reduces the spatial dimensions to 1x1. This is followed by a fully 

connected layer with 1000 neurons. 

● Output Layer: The final layer is a softmax layer that outputs probabilities for 1000 

classes, corresponding to the ImageNet dataset. 

This architecture allows ResNet50 to achieve high accuracy while maintaining 

manageable computational complexity. 

 

Figure 14. ResNet50 model architecture (Ali et al., 2021). 

2.3.3 Densely Connected Convolutional Network (DenseNet121) 

DenseNet121 is a type of Dense Convolutional Network (DenseNet) designed to improve 

the flow of information and gradients through the network, making it more efficient and easier 

to train. Its architecture was introduced by Huang et al. in 2016 (Huang et al., 2016). The key 

points of DenseNet121 model are: 
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● Architecture: It consists of 121 layers, including convolutional layers, dense blocks, 

and transition layers. Each dense block connects each layer to every other layer in a 

feed-forward fashion. Its architecture is analyzed further below. 

● Efficiency: DenseNet121 is designed to be highly parameter-efficient, requiring fewer 

parameters than traditional convolutional networks while maintaining high 

performance. 

● Performance: It achieves state-of-the-art results on various benchmark datasets like 

CIFAR-10, CIFAR-100, SVHN, and ImageNet. 

● Advantages: DenseNets alleviate the vanishing-gradient problem, strengthen feature 

propagation, encourage feature reuse, and reduce the number of parameters needed. 

Below is a brief overview of its architecture. 

● Input Layer: The input to DenseNet-121 is an image of size 224x224 pixels. 

● Convolutional Layer: The initial convolution layer has 2k (64 due to the fact that 

growth rate k is equal to 32) filters of size 7x7 with a stride of 2, followed by a 3x3 

max pooling layer with a stride of 2. 

● Dense Blocks: There are four dense blocks, each consisting of multiple layers. Each 

layer within a dense block receives inputs from all preceding layers and passes its own 

feature-maps to all subsequent layers. As stated, the growth rate (k) is 32. 

● Transition Layers: Between dense blocks, transition layers perform 1x1 convolutions 

followed by 2x2 average pooling to reduce the size of feature-maps. 

● Fully Connected Layer: After the final dense block, a global average pooling layer is 

applied, followed by a fully connected layer with 1000 units and a softmax activation 

function for classification. 

DenseNet121 architecture ensures efficient feature reuse and reduces the number of parameters 

compared to traditional convolutional networks (Huang et al., 2016). 
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Figure 15. DenseNet architecture. Above figure depicts a 5 layer dense block with growth rate (k) 4. 

The second figure depicts a DenseNet with three dense blocks. The layers between two neighboring 

blocks are called transition layers and change feature-map sizes via convolution and pooling (Huang et 

al., 2016). 

2.3.4 Inception Network 

The Inception model, also known as GoogLeNet, is a deep convolutional neural network 

architecture designed to improve the utilization of computing resources within the network. It 

was introduced by researchers at Google and achieved state-of-the-art performance in the 

ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14) (Szegedy et al.,2014). 

Below is a brief overview of the model’s architecture: 

● Input Layer: The input to the network is an image of size 224x224 with RGB color 

channels. 

● Convolutional Layers: The network starts with a 7x7 convolutional layer followed by 

max-pooling. It includes multiple Inception modules, each consisting of 1x1, 3x3, and 

5x5 convolutions, along with max-pooling layers. These modules are designed to 

capture features at different scales. 

● Fully Connected Layers: Instead of traditional fully connected layers, the network 

uses average pooling followed by a linear layer. This reduces the number of parameters 

and helps in better generalization. 

● Output Layer: The final layer is a softmax classifier that outputs probabilities for 

1000 classes. 

 

Figure 16. Inception architecture. Left figure (16a): Inception module, naive version. This version 

combines multiple convolutional layers (1x1, 3x3, 5x5) and a 3x3 max pooling layer. The outputs of 

these layers are concatenated to form the input for the next stage. This approach can lead to a large 

number of outputs, increasing computational complexity. Right figure (16b): Inception module with 

dimensionality reduction. This version introduces 1x1 convolutions before the 3x3 and 5x5 

convolutions to reduce the number of input channels. This reduces computational cost while 

maintaining performance, making the network more efficient. These modules help the network handle 

multiple scales of information efficiently and effectively (Szegedy et al., 2014). 

The Inception model’s design allows for increasing the depth and width of the network while 

keeping the computational budget constant, making it efficient and powerful for image 

classification and detection tasks. More specifically, the advantages of using the Inception 

model are: 
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● Efficient use of resources: The architecture allows for increasing the depth and width 

of the network while keeping the computational budget constant, making it suitable for 

real-world applications. 

● Improved accuracy: By combining deep architectures with classical computer vision 

techniques, the Inception model achieves higher accuracy in image classification and 

object detection. 

● Scalability: The use of dimension reduction techniques, such as 1x1 convolutions, 

helps manage computational complexity, allowing the network to scale effectively. 

● Versatility: The model’s design supports various scales of visual information 

processing, making it adaptable to different tasks and datasets (Szegedy et al., 2014). 

3 Chapter 3: Relative Work 

This chapter reviews the existing research in the field of fracture detection using machine learning 

and deep learning techniques, with a focus on two specific types of fractures: wrist fractures and femoral 

intertrochanteric fractures. By examining previous studies, this chapter highlights the advancements 

made in automated diagnostic systems and their application in medical imaging. The first section 

discusses wrist fracture detection, showcasing an approach that has been used to accurately identify 

fractures from radiographic images. The second section discusses femoral intertrochanteric fracture 

detection, emphasizing the challenges and successes in applying artificial intelligence to this more 

complex fracture type. 

3.1 Wrist Fracture Detection 

Robert Lindsey et al. proposed a deep learning model for detecting fractures and localizing 

them, based on radiographs (Lindsey et al., 2018). For the purpose of developing a model, a 

collection of radiographs was obtained retrospectively from a specialty hospital in the United 

States. Orthopedic surgeons provided clinical interpretations for these radiographs using a tool 

to draw bounding boxes around fractures. A deep learning model was designed to detect and 

localize fractures in radiographs and was trained based on the labels accompanying the dataset. 

The model's performance was then clinically tested on two separate datasets. To evaluate 

whether the model can assist emergency medicine clinicians in fracture detection, a controlled 

experiment was conducted. 

The radiographs used in the study were obtained from the Hospital for Special Surgery 

(HSS) between September 2000 and March 2016. The dataset included 135,845 radiographs of 

various body parts, with 34,990 of them being wrist radiographs. Two test datasets were used 

for evaluating the model's performance. The ground truth labels for fracture presence and 

location were assigned by orthopedic surgeons. The model development involved a two-stage 

training process: a bootstrapping stage using a large dataset of radiographs from various body 

parts and a specialization stage using wrist radiographs. In total, 132,345 radiographs were 

used for training the model. 

The model used a deep convolutional neural network for fracture detection and localization. 

It employed a dual output approach, with one output providing a binary classification and the 

other output generating a heat map indicating the probability of fractures at specific locations 

in the radiographs. The model's performance was evaluated using receiver operating 

characteristic (ROC) curves and the area under the curve (AUC) on test datasets. 
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Clinicians were also assessed for their diagnostic accuracy with and without the model's 

assistance in a controlled experiment. The study reports the model's diagnostic performance, 

the sensitivity and specificity of clinicians, and the time it took clinicians to read radiographs 

in the experiment. 

3.1.1 Results 

The results of the study show that the trained model demonstrated excellent performance in 

detecting and localizing fractures in wrist radiographs. On Test Set 1, the model achieved an 

AUC of 0.967, and on Test Set 2, it achieved an AUC of 0.975. In a subset of images in Test 

Set 2 where there was no uncertainty about the reference standard, the model achieved an 

impressive AUC of 0.994. This indicates a high level of agreement between the model's 

assessments and the reference standard provided by senior subspecialized orthopedic hand 

surgeons. The model's ability to precisely identify the presence and location of visible fractures 

is also noted. 

The study further evaluated the impact of the deep learning model on the diagnostic 

accuracy of emergency medicine clinicians. Both emergency medicine medical doctors (MDs) 

and physician assistants (PAs) showed significant improvements in sensitivity and specificity 

when aided by the model. The average sensitivities and specificities for these clinicians were 

substantially enhanced when using the model compared to unaided interpretations. The average 

reduction in misinterpretation rate across clinicians was 47.0%. Almost every clinician 

exhibited improvements in both sensitivity and specificity. 

Additionally, the model's performance was compared to that of the clinicians. On the same 

images, the model operated at 93.9% sensitivity and 94.5% specificity under its predetermined 

decision threshold and achieved an AUC of 0.990. This suggests that the model's performance 

was competitive with or better than that of the clinicians. 

When assessing the clinicians' diagnostic accuracy, it was found that, without the model's 

assistance, the average sensitivity for emergency medicine MDs was 82.7%, and the unaided 

specificity was 87.4%. Also, for emergency medicine PAs, the unaided sensitivity was 78.0%, 

and the unaided specificity for PAs was 87.5%. 

When the clinicians were aided by the deep learning model, their diagnostic sensitivities 

significantly improved. For emergency medicine MDs, the model-enhanced sensitivity was 

92.5% and specificity 94.1%, representing a notable increase in fracture detection accuracy. 

Similarly, for emergency medicine PAs, the model-enhanced sensitivity was 89.9% and 

specificity 93.6%, demonstrating a substantial improvement in their diagnostic performance. 

The study also investigated the relationship between reading time and diagnostic accuracy. It 

was observed that radiographs that were read quickly without assistance were generally 

interpreted accurately. However, as the reading time increased, the diagnostic accuracy for both 

aided and unaided conditions deteriorated. Notably, the difference in accuracy between the 

aided and unaided reading conditions increased with longer unaided reading times, indicating 

that emergency medicine workers dealing with challenging and time-consuming cases would 

benefit more from the computer-aided detection (CAD) software. 
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These results provide strong evidence for the effectiveness of the deep learning model in 

assisting clinicians in fracture detection and localization, ultimately improving diagnostic 

accuracy, especially in challenging cases and time-sensitive situations. 

3.2 Femoral Intertrochanteric Fracture Detection 

In the study conducted by Liu et al. (Liu et al., 2022), x-ray data for femoral 

intertrochanteric fractures (FIF) were collected from five hospitals. The dataset comprised 700 

x-rays from 459 FIF patients, including both fractured (459 images) and normal hips (241 

images). To ensure an accurate and unbiased model, the dataset was split using a 9:1 ratio into 

a training set of 643 images and a test set of 57 images. Additionally, physicians manually 

labeled the images to mark fracture lines. 

For the development of the diagnostic algorithm, a Faster-RCNN target detection model was 

employed. The model underwent data augmentation processes, including image rollover, 

rotation, cropping, and blurring, which expanded the dataset from 643 to 3,215 images. The 

dataset was then used to train the algorithm, which focused on learning both the anatomical 

structure of normal hips and the features specific to fracture lines in FIF x-rays. The model's 

architecture included a convolutional neural network (CNN) for feature extraction and a 

Region Proposal Network (RPN) to localize potential fractures. By pooling and refining the 

image regions, the algorithm was able to output predictions, classifying x-rays as either 

fractured or normal. The performance of the model was evaluated using key metrics such as 

accuracy, sensitivity, specificity and misdiagnosis rate, with the results compared against a 

panel of five orthopedic attending physicians. 

This comparison revealed how the algorithm could potentially assist in diagnostic settings. 

Despite the expertise of the physicians involved, the Faster-RCNN algorithm demonstrated 

competitive performance in identifying fractures, offering an accurate and efficient tool for 

clinical practice. This work highlights the clinical feasibility of implementing artificial 

intelligence into diagnostic workflows, indicating that such systems could support medical 

professionals by reducing diagnostic time and improving the consistency of fracture detection. 

3.2.1 Results 

After the algorithm was trained using the expanded dataset, it was tested on the 

separate test data to evaluate its performance in detecting FIFs. For images identified 

as containing fractures, the algorithm highlighted the suspicious fracture lines with a 

red rectangle. Various performance metrics were used to assess the model’s 

effectiveness, including the F1 score, recall, precision, average precision (AP), mean 

average precision (mAP), intersection over union (IoU), area under the curve (AUC), 

and receiver operating characteristic (ROC) curve. 

The final results of the algorithm demonstrated a strong performance in classifying 

FIF and normal hips. The accuracy of the model was 0.88. The sensitivity, or the 

model’s ability to correctly identify actual fracture cases, was 0.89, while the missed 

diagnosis rate was 0.11, meaning that the algorithm failed to detect 11% of fracture 
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cases. The specificity, which measures the ability to correctly identify normal hips, was 

0.87, and the misdiagnosis rate was 0.13. These results suggest that the algorithm is 

capable of providing reliable diagnostic support, with a low rate of missed diagnoses 

and a reasonably high specificity, although some misdiagnoses were still present. 

4 Chapter 4: Data 

In this section, the data used for developing the proposed approach are being presented. Due 

to the fact that there was a limited number of open-source hip x-ray images that could be used 

for the models’ training, it was also necessary to gather a dataset from various sources. The 

process of acquiring the dataset is described below. 

4.1 Data Gathering 

Since the aim of the thesis is to develop an approach that could effectively classify twelve 

classes of hip x-rays, a robust dataset consisting of data addressing all twelve classes needed to 

be gathered. Among many types of hip fractures, disorders and hip surgeries, after consulting 

orthopedic surgeon Zachariadis Christos, the following classes were considered to provide the 

most value (see Figure 17): 

1. Left hip normal 

2. Right hip normal 

3. Left hip intertrochanteric fracture 

4. Right hip intertrochanteric fracture 

5. Left hip subcapital fracture 

6. Right hip subcapital fracture 

7. Left hip osteoarthritis 

8. Right hip osteoarthritis 

9. Left hip arthroplasty 

10. Right hip arthroplasty 

11. Left hip nailing 

12. Right hip nailing 

 
Intertrochanteric right 

 left Subcapital left Subcapital 

right 

Normal left Normal right 
Intertrochanteric 
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 left Osteoarthritis 

Nailing right 

right 

Figure 17. X-ray images from the dataset. Each image corresponds to one class. 

Data was gathered from various sources on the web and from x-ray images provided by 

doctor Zachariadis along with the respective diagnoses. The images were carefully picked and 

annotated with his help and guidance, ensuring that no mistakes were made when annotating 

them. The following sources were used for getting the medical data: 

● https://www.kaggle.com/datasets/ibombonato/xray-body-images-in-png-unifesp-comp 

etion 

● https://radiopaedia.org/articles/hip-hemiarthroplasty?lang=us 

● https://radiopaedia.org/articles/total-hip-arthroplasty?lang=us 

● https://radiopaedia.org/articles/garden-classification-of-hip-fractures?lang=us 

● https://radiopaedia.org/articles/vancouver-classification-of-periprosthetic-hip-

fractures ?lang=us 

● https://radiopaedia.org/articles/periprosthetic-fracture?lang=us 

● https://radiopaedia.org/articles/osteoarthritis-of-the-hip?lang=us 

● https://radiopaedia.org/cases/normal-hip-x-rays 

● https://radiopaedia.org/cases/normal-pelvic-radiograph-female 

● https://boneandspine.com/intertrochanteric-fractures/ 

● https://boneandspine.com/hip-injuries-xrays-and-photographs/ 

● http://www.boneschool.com/hip/hip-fractures/intertrochanteric-fractures 

● https://www.sciencedirect.com/science/article/pii/S1063458406003281 

● https://www.nature.com/articles/s41598-020-70660-4 

● https://www.researchgate.net/publication/51434368_Evaluation_of_Bernese_periaceta 

bular_osteotomy_Prospective_studies_examining_projected_load-bearing_area_bone_ 

density_cartilage_thickness_and_migration 

● https://www.futuremedicine.com/doi/10.2217/fmeb2013.13.198 

4.2 Data preprocessing 

Since all data are medical images, not much preprocessing was required in order for the 

model to be trained. The reason is that the data consist of medical images and the features 

should not be distorted much. In order to achieve that, images were resized to shape 256x256. 

Then, the pixel values of each image were normalized to the range [0,1]. Additionally, the 

labels were assigned to each image and the processed images were returned as 3-dimensional 

numpy arrays with shape [256,256,3]. After the preprocessing, the total count of the data was 

Arthroplasty 

left 
Arthroplasty 

right 
Nailing left Osteoarthritis 

https://www.kaggle.com/datasets/ibombonato/xray-body-images-in-png-unifesp-competion
https://www.kaggle.com/datasets/ibombonato/xray-body-images-in-png-unifesp-competion
https://www.kaggle.com/datasets/ibombonato/xray-body-images-in-png-unifesp-competion
https://radiopaedia.org/articles/hip-hemiarthroplasty?lang=us
https://radiopaedia.org/articles/total-hip-arthroplasty?lang=us
https://radiopaedia.org/articles/garden-classification-of-hip-fractures?lang=us
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812 arrays. Finally, the dataset was split into five subsets of data, one for each classification 

step, which will be analyzed in the following chapter. 

4.3 Data compliance with GDPR 

The General Data Protection Regulation (GDPR) (General Data Protection Regulation 

(GDPR) Compliance Guidelines, n.d.) plays a critical role in ensuring the security and 

privacy of medical data. Given the sensitivity of health-related information, strict regulations 

are required to protect patient confidentiality and prevent misuse. The GDPR establishes 

clear guidelines for handling personal data, mandating that it should be anonymized or 

pseudonymized. In the context of medical research, compliance with GDPR fosters trust 

between patients and institutions by ensuring that patient data is handled ethically and 

securely. This regulation helps prevent unauthorized access to sensitive health information, 

thus maintaining the integrity of both clinical and academic research. 

In this study, all images that were provided by doctor Zachariadis were anonymized. The 

original x-rays were photographed with the use of a mobile phone device, and then the 

resulting photographs were provided for the dataset, instead of the original x-rays. Thus, the 

final images have a completely different structure than that of the DICOM images, and the 

metadata do not correlate with any information about the patients. The final folder that was 

provided with the aforementioned data contains images of png, .jpeg and .jpg format. 

Therefore, the complete anonymization of the dataset was ensured with no possibility of 

tracing the images back to the patients, entirely complying with the GDPR. To conclude, the 

data that were incorporated in the final dataset, originated from all sources, are uniform, 

in .png, .jpg and .jpeg formats and completely anonymized (What Is Personal Data?, n.d.).  
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5 Chapter 5: Methodology & Experiments 

The classification process is split into five classification stages (Figure 18). Different models 

are being used for each classification stage with different architectures, depending on the 

complexity of the images and the difficulty of the model to find meaningful features in order to 

classify each subset of data. The classification stages of the pipeline are: 

● First classification stage is a binary classification. The first set of data is used during this 

phase, which consists of all images. The model classifies if the x-ray image contains a left hip 

or a right hip. 

● Second classification stage is a binary classification and the second set of data is used. All 

data are also contained in this set, normal images are contained in the first class and the rest of 

the images in the second class (e.g. arthroplasty, intertrochanteric fracture). This stage 

classifies whether the image contains a normal (healthy) hip or a not normal hip (operated or 

not operated). If the classification output is “normal”, the process does not move on to the next 

stages. 

● Third classification stage is a binary classification. The third set of data, which is used for 

training the models in this stage, is a subset of the entire dataset. The first class includes x-rays 

of operated hips, containing arthroplasty and nailing images, while the second class includes 

images of not operated hips. Not operated hips include cases of subcapital fractures, 

intertrochanteric fractures and osteoarthritis. 

● Fourth classification stage is a binary classification and is initiated only if the output of the 

third classification stage is “operated”. The fourth subset of data is used, which encompasses 

images of arthroplasty and nailing. 

● Fifth classification stage is a multi-class classification and is initiated only if the output of the 

third classification stage is “not operated”. For this stage, the fifth subset of data is used for 

training, which consist of subcapital fractures, intertrochanteric fractures and osteoarthritis x-

ray images. 
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Figure 18. Classification pipeline. Each level corresponds to one classification step, where the 

classification is conducted from different models. 

5.1 Left / Right Hip Classification Stage 

This is the first stage of the classification pipeline. Various models were trained and tested, 

with the ResNet50 model demonstrating the best accuracy. 

5.1.1 DenseNet Model 

5.1.1.1 Data preparation, Architecture and Training 

First, data is split in training, validation and test sets. In the beginning, the 

original dataset is split into training and validation sets using the “train_test_split” 

method that the scikit-learn library offers. 70% of the 812 images were used as the 

training data (568 images). The split is stratified, meaning the distribution of classes 

in the train and validation sets is the same as in the original dataset. Then, the rest 

30% of the data is further split into validation and test sets. From the remaining 244 

images, 65% of the images formed the validation set (158 images) and 35% the test 

set (86 images). 

In this implementation, the DenseNet121 model is used with its pre-trained 

weights from the ImageNet dataset, which allows the model to generalize features 

easier. By setting the parameter “include_top=False”, the fully connected layers at 

the top of the DenseNet121 base model are excluded, leaving only the 

convolutional layers. Additionally, the DenseNet121 layers are frozen, meaning that 

during training, their weights will not be updated. 

Additionally to the DenseNet121 main architecture, the model architecture also 

includes several custom layers, which will process the feature maps generated by 

DenseNet121. The input layer accepts 256x256 pixel images with three color 

channels. The next layer is a Global Average Pooling layer, which reduces each 

feature map to a single value by computing the average. This step reduces the 

dimensionality of the feature maps, converting them into a 1D vector. Later on, a 

Batch Normalization layer is placed to normalize the output from the previous layer. 

After that, a Flatten layer follows, preparing the data for the fully connected layers. 

The first two Dense layers each have 32 neurons and use the ReLU activation 

function. These layers are followed by a Dense layer with 16 neurons and another 

with 8 neurons. The output layer is a Dense layer with two neurons, using a sigmoid 

activation function, since it is a binary classification task (Figure 19). 
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Figure 19. DenseNet model architecture. 

A critical component of this training process is the use of early stopping. Early 

stopping is a regularization technique that monitors the model's performance on the 

validation dataset during training, in this case the validation loss. Purpose of this 

technique is to stop the training process when the model stops improving, which 

typically prevents overfitting. Additionally, the training will stop if the validation 

loss does not improve for five consecutive epochs. Also, the early stopping is 

configured to start monitoring only after the first 10 epochs. This allows the model 

to stabilize and begin learning meaningful patterns before the early stopping 

mechanism begins to monitor its performance. 

The Adam optimizer is chosen for training. After trying different learning rates, 

the learning rate was set to 0.001. Also, the loss function used is binary cross-

entropy, which is suitable for binary classification tasks. Additionally, the training is 

done with a batch size of 16 and the model is being trained for a maximum of 100 

epochs. However, due to the early stopping mechanism, the actual number of 

epochs is fewer. The validation loss had stopped improving and the training 

terminated at epoch 18. The “shuffle” parameter was also set to “True”, which 

means that the training data is shuffled before each epoch. 

5.1.1.2 Results 

When the model stopped training due to the early stopping mechanism, the 

training results shown in Table 3, indicate that the model was prone to overfitting. 

This can be also seen in Figure 20. Several changes were made to the model trying 

to achieve better results, but did not yield better results. 

Data subset Accuracy Loss 

Training 0.9818 0.0437 
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Validation 0.7215 1.3570 

Table 3. DenseNet121 model training results. 

 

Figure 20. DenseNet training loss and accuracy. DenseNet121 model loss is 

depicted on the left image and accuracy on the right. The yellow line represents the 

validation set, while the blue line represents the training set. 

Finally, the accuracy of the model on the test set was 0.72. The confusion matrix in 

Figure 21 and the classification report in Table 4 shows the model's results in more 

detail. 

 

Figure 21. Classification report and confusion matrix of the DenseNet121 model’s 

predictions on the test set. 

 
precision recall f1-score support 

0 0.74 0.67 0.70 42 

1 0.71 0.77 0.74 44 
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accuracy   0.72 86 

macro avg 0.72 0.72 0.72 86 

weighted 

avg 
0.72 0.72 0.72 86 

Table 4. DenseNet121 classification report. 

5.1.2 Inception Model 

5.1.2.1 Data preparation, Architecture and Training 

The dataset is split into training and validation sets using “train_test_split”. 70% 

of the 812 images were split into training data (568 images). The split is once again 

stratified, keeping the distribution of classes in the train and validation, in 

accordance to their distribution the original dataset. Out of the 244 images in the 

validation set, 65% of the images remained in the validation set (158 images) and 

35% were splitted to be used as the test set (86 images). 

In this experiment, the Inception model is also used with its pre-trained weights 

from the ImageNet dataset. Additionally, the parameter “include_top” is set to 

“False” and the model’s layers are frozen, leaving the weights not to be updated. 

Below the Inception architecture, several custom layers are also included. The 

input layer accepts 256x256 pixel images with three color channels. The following 

layers include a Global Average Pooling layer. Following, a Batch Normalization 

layer is placed to normalize the output from the previous layer and a Flatten layer, 

preparing it for the fully connected layers. Later, two Dense layers are added, 

having 32 neurons each and using the ReLU activation function. Then, a Dense 

layer with 16 neurons and another with 8 neurons are added, both using the ReLU 

activation function. Finally, the output layer is a Dense layer with two neurons, 

using the sigmoid activation function (Figure 22). 
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Figure 22. Inception model architecture. 

In this training process, the Early Stopping technique is also utilized. Specifically, it 

monitors the model's validation loss during training. The training will stop if the 

validation loss does not improve for five consecutive epochs. Once again, the early 

stopping is set to start the monitoring after the 10th epoch. 

The Adam optimizer is also chosen for training. The learning rate was set to 0.001 

and the loss function used is binary cross-entropy. Also, the training is done with a 

batch size of 16 and the model is going to train for a maximum of 100 epochs. 

However, due to the early stopping mechanism, the actual number of epochs is fewer. 

More specifically, the validation loss stopped improving at epoch 16. Finally, the 

“shuffle” parameter was also set to “True”, to shuffle the training data before each 

epoch. 

5.1.2.2 Results 

When the model stopped training due to the early stopping mechanism, the 

training results shown in Table 5, indicate that the Inception model also overfitted. 

This can be also seen in Figure 23. Several changes were made to the model trying 

to achieve better results, but these were the best along this experiment. 

Data subset Accuracy Loss 

Training 0.9298 0.1802 

Validation 0.6076 1.2729 

Table 5. Inception model training results. 
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Figure 23. Inception training loss and accuracy. Inception model loss is depicted 

on the left image and accuracy on the right. The yellow line represents the 

validation set, while the blue line represents the training set. 

Finally, the accuracy of the model on the test set was 0.66. The confusion matrix in 

Figure 24 and the classification report in Table 6 shows the model's results in more 

detail. 

 

Figure 24. Confusion matrix of the Inception model’s predictions on the test set. 

 precision recall f1-score support 

0 0.68 0.60 0.63 42 

1 0.65 0.73 0.69 44 

accuracy   0.66 86 

macro avg 0.66 0.66 0.66 86 
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weighted 

avg 
0.66 0.66 0.66 86 

Table 6. Inception classification report. 

5.1.3 ResNet50 Model 

The ResNet50 model had the best results amongst all the models that were 

implemented for the Left/Right classification task. 

5.1.3.1 Data preparation, Architecture and Training 

First of all, the dataset is split into training and validation sets. 70% of the 812 

images were split into training data (568 images). Then, the validation set is further 

split into validation and test sets. From the 244 images in the validation set, 65% of 

the images remained in the validation set (158 images) and 35% in the test set (86 

images). The split in this experiment is also stratified. 

The ResNet50 model is also used with its pre-trained weights from the ImageNet 

dataset. The parameter “include_top” is set to False and the model’s layers are 

frozen. 

After the ResNet50 architecture, several custom layers are also added. The input 

layer accepts 256x256 pixel images with three color channels. The following layers 

include a Global Average Pooling layer. Following, a Batch Normalization layer is 

placed to normalize the output from the previous layer and then a Flatten layer. 

Later, two Dense layers are added, each one having 32 neurons and using the ReLU 

activation function. Then, a Dense layer with 16 neurons and another with 8 

neurons are added, both using the ReLU activation function. Finally, the output 

layer is a Dense layer with two neurons, using a sigmoid activation function (Figure 

25). 
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Figure 25. ResNet50 model architecture. 

The Early Stopping technique is also utilized, which also monitors the model's 

validation loss during training. The training will stop if the validation loss does not 

improve for five consecutive epochs. Additionally, the early stopping is set to start the 

monitoring after 10 epochs. 

The Adam optimizer is also chosen for training. The learning rate was set to 0.001 

and the loss function used is binary cross-entropy. Also, the training is done with a 

batch size of 16 and the model is going to train for a maximum of 100 epochs. 

However, due to the early stopping mechanism, the validation loss stopped improving 

at epoch 20. Finally, the “shuffle” parameter was also set to “True”. 

5.1.3.2 Results 

When the model stopped training due to the early stopping mechanism, the 

training results shown in Table 7, indicate that the ResNet50 model did not overfit, 

but had some minor fluctuations. This can be also seen in Figure 26. In general, the 

ResNet50 model had reliable results, making it the best model that was trained 

among the three models that were trained for this classification task. Finally, the 

accuracy of the model on the test set was 0.89. The confusion matrix in Figure 27 

and the classification report in Table 8 shows the model's results in more detail. 

Data subset Accuracy Loss 

Training 0.8896 0.2331 

Validation 0.8734 0.4326 

Table 7. ResNet50 model training results. 

 

Figure 26. ResNet50 training loss and accuracy. ReNet50 model loss is depicted 

on the left image and accuracy on the right. The yellow line represents the 

validation set, while the blue line represents the training set. 
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Figure 27. Confusion matrix of the ResNet50 model’s predictions on the test set. 

 precision recall f1-score support 

0 0.90 0.88 0.89 42 

1 0.89 0.91 0.90 44 

accuracy   0.90 86 

macro avg 0.90 0.90 0.90 86 

weighted 

avg 
0.90 0.90 0.90 86 

Table 8. ResNet50 Classification report. 

5.2 Normal / Not Normal Hip Classification Stage 

This is the second stage of the classification pipeline. During this phase, it should be 

determined if the hip is normal or not normal. Various models were trained and tested for this 

task, but the VGG16 model achieved the best recall score. 

5.2.1 Convolutional Neural Network 

For the task of deciding whether a hip is normal or not, a custom made CNN 

architecture was trained and evaluated. In this subsection the proposed custom CNN 

will be presented. 

5.2.1.1 Data preparation, Architecture and Training 

First and foremost, the dataset is split into training and validation sets. 568 

images (70% of the 812 images in the dataset) were used as the training set. The 

split is also stratified. After splitting to train (70%) and validation set (30%), the 

second set is further split into validation and test sets. From the 244 images in the 
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validation set, 65% of the images remained in the validation set (158 images) and 

35% were used as the test set (86 images). 

Concerning the CNN's architecture, due to the fact that the classification task is 

not very complicated, the model is not very deep and a reasonable number of 

neurons are included. To start, the input layer accepts 256x256 pixel images with 

three color channels. It is a 2D convolution with 8 neurons, has a kernel size of 

(3,3) and stride equal to 1. In addition, the parameter “padding” is equal to “same” 

and ReLU is being used as an activation function. The following layers include a 

Batch normalization layer and a 2D Max Pooling layer, with a kernel size of (3,3), 

stride equal to 2, and padding equal to “valid”. Following, another 2D Convolution 

layer is placed with 8 neurons, kernel size of (3,3), stride equal to 1, padding equal 

to “same” and ReLU as an activation function. The following two layers also 

include a Batch Normalization layer and a 2D Max Pooling layer, with a kernel size 

of (3,3), stride equal to 2 and padding equal to “valid”. Next, a Dropout layer is 

added, with the purpose of randomly deactivating a portion of input units during 

each training update. This means that certain neurons are dropped out, along with 

their associated connections, with a probability of 0.1. Later, another 2D 

Convolution is added with 16 neurons, a stride of 1, a kernel size of (3,3), padding 

equal to “same” and using ReLU as the activation function. Also here, the two 

layers that follow are a Batch Normalization layer and a 2D Max Pooling layer, 

with a kernel size of (3,3), stride equal to 2 and padding equal to “valid”. Then, a 

Dropout layer follows with a dropout probability of 0.1. Followed by a 2D 

Convolution with 8 neurons, kernel size of (3,3), stride equal to 1, padding equal to 

“same” and ReLU activation function. The three layers that follow are also a Batch 

Normalization layer, a 2D Max Pooling layer, with a kernel size of (3,3), stride 

equal to 2 and padding equal to “valid” and a Dropout layer with a dropout 

probability of 0.1. Before adding the fully connected layers, a Flatten layer is 

incorporated to reshape the data into a 1-dimensional array. With the use of this 

layer, the data have a valid shape to enter the fully connected layers. Therefore, four 

Dense layers are then added, with 32, 16, 16 and 8 neurons respectively, all using 

ReLU as the activation function. Finally, the output layer is a Dense layer with two 

neurons, using a sigmoid activation function. A simpler representation of this 

architecture can be seen in Table 9. 

Layer Output Shape 

Conv2D (None, 256, 256, 8) 

BatchNormalization (None, 256, 256, 8) 

MaxPooling2D (None, 127, 127, 8) 

Conv2D (None, 127, 127, 8) 
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BatchNormalization (None, 127, 127, 8) 

MaxPooling2D (None, 63, 63, 8) 

Dropout (None, 63, 63, 8) 

Conv2D (None, 63, 63, 16) 

BatchNormalization (None, 63, 63, 16) 

MaxPooling2D (None, 31, 31, 16) 

Dropout (None, 31, 31, 16) 

Conv2D (None, 31, 31, 8) 

BatchNormalization (None, 31, 31, 8) 

MaxPooling2D (None, 15, 15, 8) 

Dropout (None, 15, 15, 8) 

Flatten (None, 1800) 

Dense (None, 32) 

Dense (None, 16) 

Dense (None, 16) 

Dense (None, 8) 

Dense (None, 2) 

Table 9. Custom CNN architecture. 

In the training process, Early Stopping is utilized, as it monitors the model's 

validation loss during training. The training will stop if the validation loss does not 

improve for five consecutive epochs. Additionally, the early stopping is set to start 

monitoring after the 10th epoch has been completed. 

The Adam optimizer is chosen for training. The learning rate is set to 0.0001 and the 

loss function used is binary cross-entropy. Also, the training is done with a batch size 

of 16 and the model is going to train for a maximum of 100 epochs. However, due to 

the early stopping mechanism, as the validation loss stopped improving, the model 
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stopped training at the 38th epoch. Finally, the “shuffle” parameter was also set to 

“True”. 

5.2.1.2 Results 

When the model stopped training, the training results shown in Table 10, indicate 

that the CNN did not overfit, and showcased satisfactory performance. The training 

loss and accuracy can be seen in Figure 28. Finally, the accuracy of the model on 

the test set was 0.95 and recall 0.94. The confusion matrix in Figure 29 and the 

classification report in Table 11 shows the model's predictions in more detail. 

Data subset Accuracy Loss 

Training 0.9935 0.0328 

Validation 0.9494 0.1563 

Table 10. Custom CNN training results. 

 

Figure 28. Custom CNN training loss and accuracy. Custom CNN model loss is 

depicted on the left image and accuracy on the right. The yellow line represents the 

validation set, while the blue line represents the training set. 

 

Figure 29. Confusion matrix of the CNN model’s predictions on the test set. 
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 precision recall f1-score support 

0 0.91 0.91 0.91 22 

1 0.97 0.97 0.97 64 

accuracy   0.95 86 

macro avg 0.94 0.94 0.94 86 

weighted 

avg 
0.95 0.95 0.95 86 

Table 11. Custom CNN Classification report. 

5.2.2 ResNet50 Model 

5.2.2.1 Data preparation, Architecture and Training 

The split of the training and test data is the same as established for training the 

CNN above (568 images for training, 158 for validation and 86 for testing). The 

ResNet50 model is used with its pre-trained weights from the ImageNet dataset. 

The parameter “include_top” is set to false and the model’s layers are frozen. 

After the ResNet50 base architecture, several custom layers are also added. The 

input layer accepts 256x256 pixel images with three color channels. The following 

layer is a Global Average Pooling layer. Following, a Batch Normalization layer is 

placed to normalize the output from the previous layer, and then a Flatten layer. In 

continuation, four Dense layers are added with ReLU as the activation function, 

with each one having 32, 32, 16 and 8 neurons respectively. Finally, the output layer 

is a Dense layer with two neurons, using a sigmoid activation function (Figure 30). 
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Figure 30. ResNet50 model architecture. 

The Early Stopping technique is also utilized here, monitoring the model's 

validation loss during training. The training will stop if the validation loss does not 

improve for five consecutive epochs and the monitoring is set to start after 10 epochs. 

The Adam optimizer is chosen for training. The learning rate was set to 0.001 and 

the loss function used is binary cross-entropy. Additionally, the training is done with a 

batch size of 16 and the model is going to train for a maximum of 100 epochs. Due to 

the early stopping, the training process halted when the loss stopped improving at 

epoch 26. Finally, the “shuffle” parameter was set to “True”. 

5.2.2.2 Results 

The results after the training process (shown in Table 12), indicate that the 

ResNet50 model had adequate results. This can be also seen in Figure 31, showing 

the model’s loss and accuracy across the training process. Although the model 

showed signs of overfitting during the last epochs, the accuracy of the model on the 

test set was better than the CNN’s, with an accuracy of 0.90 and recall 0.84. The 

confusion matrix in Figure 32 and the classification report in Table 13 shows the 

model's results in more detail. 

Data subset Accuracy Loss 

Training 0.9812 0.0566 

Validation 0.9304 0.3086 

Table 12. ResNet50 model training results. 
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Figure 31. ResNet50 training loss and accuracy. ResNet50 model loss is depicted 

on the left image and accuracy on the right. The yellow line represents the 

validation set, while the blue line represents the training set. 

 

Figure 32. Confusion matrix of the ResNet50 model’s predictions on the test set. 

 
precision recall f1-score support 

0 0.84 0.73 0.78 22 

1 0.91 0.95 0.93 64 

accuracy 
  

0.90 86 

macro avg 0.88 0.84 0.86 86 

weighted 

avg 
0.89 0.90 0.89 86 

Table 13. ResNet50 Classification report. 

5.2.3 VGG16 Model 

Among the three models that were trained for this classification stage, VGG16 had 

the best results. 
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5.2.3.1 Data preparation, Architecture and Training 

The split of the training and test data is the same as the other two experiments for 

this classification stage, with 568 images for training, 158 for validation and 86 for 

testing, as mentioned above. The VGG16 model is also used with its pre-trained 

weights from the ImageNet dataset. The parameter “include_top” is set to false and 

the model’s layers are frozen. 

After the VGG16 base model’s architecture, several custom layers are added. The 

input layer receives inputs of 256x256 pixel images with three color channels. The 

following layers include a Global Average Pooling layer and a Batch Normalization 

layer. These layers are placed in order to reduce the dimensionality of the features 

and normalize the output from the previous layer, respectively. Then a Flatten layer 

follows. Later, four Dense layers are added with ReLU as the activation function, 

each one having 32, 32, 16 and 8 neurons in that exact order. Finally, the output 

layer is a Dense layer with two neurons, using a sigmoid activation function (Figure 

33). 

 

Figure 33. VGG16 model architecture. 

Early Stopping is also utilized in this model, monitoring its validation loss during 

training. The training will also stop if the validation loss does not improve for five 

consecutive epochs and is set to start monitoring loss after 10 epochs. 

The Adam optimizer is also chosen here for training. The learning rate is set to 

0.001 and the loss function used is binary cross-entropy. During the training, the 

“shuffle” parameter is set to “True”. Additionally, the training is conducted with a 

batch size of 16 and the model is going to train for a maximum of 100 epochs. Due to 
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the fact that the validation loss of this model stopped improving, Early Stopping 

stopped the training process at epoch 22. 

5.2.3.2 Results 

The training results after the training process ended (shown in Table 14), indicate 

that the model’s training was stable, with minor fluctuations. This can also be seen 

in Figure 34, showing the model’s loss and accuracy throughout the training 

process. The accuracy of the model on the test set was better than the other models 

that were implemented in this classification stage, with an accuracy of 0.99 and 

recall 0.98. The confusion matrix in Figure 35 and the classification report in Table 

15 shows the model's results in more detail. 

Data subset Accuracy Loss 

Training 0.9928 0.0177 

Validation 0.9747 0.0787 

Table 14. VGG16 model training results. 

 

Figure 34. VGG16 training loss and accuracy. VGG16 model loss is depicted on 

the left image and accuracy on the right. The yellow line represents the validation 

set, while the blue line represents the training set. 
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Figure 35. Confusion matrix of the VGG16 model’s predictions on the test set. 

 precision recall f1-score support 

0 1.00 0.95 0.98 22 

1 0.98 1.00 0.99 64 

accuracy   0.99 86 

macro avg 0.99 0.98 0.98 86 

weighted 

avg 
0.99 0.99 0.99 86 

Table 15. VGG16 Classification report. 

5.3 Operated / Not Operated Hip Classification Stage 

This is the third stage of the classification pipeline. The objective of this stage is to decide 

whether an x-ray of a not normal hip depicts an operated or a not operated hip. Various 

models were trained and tested for this specific task, but the VGG16 model had the best 

recall score. 

5.3.1 Convolutional Neural Network 

5.3.1.1 Data preparation, Architecture and Training 

First, the dataset is split into training and validation sets. 80% of the 812 images 

were split into training data (649 images). The split is also stratified. After that split, 

the validation set is further split into validation and test sets. From the 163 images 

in the validation set, 70% remained in the validation set (114 images) and 30% in 
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the test set (49 images). The reason for this split was to provide the training process 

with more images, as this classification stage is more complex than previous tasks 

of the pipeline. This way, the model will be able to find meaningful features to 

predict each class successfully. 

The input layer accepts images with 256x256 pixel resolution, with three color 

channels. It is a 2D convolution with 8 neurons, has a kernel size of (4,4) and stride 

equal to 1. The parameter “padding” is equal to “same” and it uses ReLU as an 

activation function. The following layers include a Batch normalization layer and a 

2D Max Pooling layer, with a kernel size of (4,4), stride equal to 2 and padding 

equal to “valid”. Following, another 2D Convolution layer is placed with 16 

neurons, kernel size of (4,4), stride equal to 1, padding equal to “same” and ReLU 

activation function. The following two layers also include a Batch Normalization 

layer and a 2D Max Pooling layer, with a kernel size of (4,4), stride equal to 2 and 

padding equal to “valid”. Later on, another 2D Convolution is added with 32 

neurons, a stride of 1, a kernel size of (4,4), padding equal to “same” and ReLU 

activation function. Also here, the two layers that follow are a Batch Normalization 

layer and a 2D Max Pooling layer, with a kernel size of (4,4), stride equal to 2 and 

padding equal to “valid”. A Dropout layer is then added, in order to randomly 

deactivate a portion of the units during each training update, with a probability of 

0.1. Then, a 2D Convolution with 16 neurons, kernel size of (4,4), stride equal to 1, 

padding equal to “same” and ReLU activation function is added. The two layers 

that follow are also a Batch Normalization layer, a 2D Max Pooling layer, with a 

kernel size of (4,4), stride equal to 2 and padding equal to “valid”. Right before the 

fully connected layers, a Flatten layer is added to reshape the data into a 1-

dimensional array, making the data to have a valid shape for entering the fully 

connected layers. Moreover, four Dense layers are added, with 32, 16, 16 and 8 

neurons respectively, with all using ReLU as the activation function. Finally, the 

output layer is also a Dense layer with two neurons, using a sigmoid activation 

function. More information about this architecture can be seen in Table 16. 

Layer Output Shape 

Conv2D (None, 256, 256, 8) 

BatchNormalization (None, 256, 256, 8) 

MaxPooling2D (None, 127, 127, 8) 

Conv2D (None, 127, 127, 16) 

BatchNormalization (None, 127, 127, 16) 

MaxPooling2D (None, 62, 62, 16) 
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Conv2D (None, 62, 62, 32) 

BatchNormalization (None, 62, 62, 32) 

MaxPooling2D (None, 30, 30, 32) 

Dropout (None, 30, 30, 32) 

Conv2D (None, 30, 30, 16) 

BatchNormalization (None, 30, 30, 16) 

MaxPooling2D (None, 14, 14, 16) 

Flatten (None, 3136) 

Dense (None, 32) 

Dense (None, 16) 

Dense (None, 16) 

Dense (None, 8) 

Dense (None, 2) 

Table 16. Custom CNN model architecture. 

During the training process, Early Stopping is also utilized, taking into account the 

model's validation loss. The training will stop if the validation loss does not improve 

for five consecutive epochs and the Early Stopping is set to start after epoch 10. 

The Adam optimizer is chosen for training. The learning rate is set to 0.0001 and the 

loss function used is binary cross-entropy. Also, the training is done with a batch size 

of 32 and the model is going to train for a maximum of 100 epochs. However, due to 

the Early Stopping, as the validation loss stopped improving, the model stopped 

training at epoch 42. Finally, the “shuffle” parameter was also set to “True”. 

5.3.1.2 Results 

The results after the training process ended (shown in Table 17), indicate that the 

model could not converge. This can be also seen in Figure 36, showing the model’s 

loss and accuracy across the training process. Finally, the accuracy of the model on 

the test set was 0.82 and recall 0.70. The confusion matrix in Figure 37 and the 

classification report in Table 18 shows the model's results in more detail. 
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Data subset Accuracy Loss 

Training 0.9881 0.0662 

Validation 0.7456 0.5686 

Table 17. Custom CNN model training results. 

 

Figure 36. CNN training loss and accuracy. CNN model loss is depicted on the 

left image and accuracy on the right. The yellow line represents the validation set, 

while the blue line represents the training set. 

 

Figure 37. Confusion matrix of the CNN model’s predictions on the test set. 

 precision recall f1-score support 

0 0.75 0.46 0.57 13 

1 0.83 0.94 0.88 36 

accuracy   0.82 49 

macro avg 0.79 0.70 0.73 49 
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weighted 

avg 
0.81 0.82 0.80 49 

Table 18. CNN Classification report. 

5.3.2 Convolutional Neural Network with Image Augmentation 

5.3.2.1 Data preparation, Architecture and Training 

In this experiment, the dataset is split in the same way as in the experiment with 

the custom CNN above. Therefore, out of the 812 images in total, 649 were used for 

training, while 114 images formed the validation set and 49 the test set. 

An image augmentation module is used to generate more images for the training 

process (Tensorflow’s ImageDataGenerator). The model is built to be deeper than 

the previously described CNN, as the distinction between the classes is challenging. 

To begin with, the input layer accepts 256x256 pixel images with three color 

channels. It is a 2D convolution with 32 neurons, has a kernel size of (4,4) and 

stride equal to 1. Additionally, the parameter “padding” is equal to “same” and 

ReLU activation function. The following layers include a Batch normalization layer 

and a 2D Max Pooling layer, with a kernel size of (4,4), stride equal to 2 and 

padding equal to “valid”. Following, another 2D Convolution layer is placed with 

64 neurons, kernel size of (4,4), stride equal to 1, padding equal to “same” and 

ReLU activation function. The following two layers also include a Batch 

Normalization layer and a 2D Max Pooling layer, with a kernel size of (4,4), stride 

equal to 2 and padding equal to “valid”. Sequentially, another 2D Convolution is 

added with 64 neurons, a stride of 1, a kernel size of (4,4), padding equal to “same” 

and ReLU activation function. The two layers that follow are a Batch 

Normalization layer and a 2D Max Pooling layer, with a kernel size of (4,4), stride 

equal to 2 and padding equal to “valid”. A 2D Convolution with 64 neurons, kernel 

size of (4,4), stride equal to 1, padding equal to “same” and ReLU activation 

function is added. The two layers that follow are also a Batch Normalization layer, 

a 2D Max Pooling layer, with a kernel size of (4,4), stride equal to 2 and padding 

equal to “valid”. Another 2D Convolution is added with 32 neurons, a stride of 1, a 

kernel size of (4,4), padding equal to “same” and ReLU activation function. Also 

here, the two layers that follow are a Batch Normalization layer and a 2D Max 

Pooling layer, with a kernel size of (4,4), stride equal to 2 and padding equal to 

“valid”. Right before the fully connected layers, a Flatten layer is added to flatten 

the data. Then, four Dense layers are added, with 128, 64, 32 and 16 neurons 

respectively, with all using ReLU as the activation function. In these four dense 

layers, a layer weight regularizer is added. Regularizers allow the application of 

penalties on each layer parameters, or layer activity during optimization, applied on 

a per-layer basis. These penalties are summed into the loss function that the 

network optimizes. More specifically, the L2 regularizer (L2 = λ * Σ(𝑤𝑖2)) is 

chosen, with λ set to 0.01. The L2 regularization, also known as Ridge 

regularization, adds the sum of the squared values of the model’s coefficients to the 

loss function. This regularization technique does not force the coefficients to be 

exactly zero but instead encourages them to be small. Also, it can prevent 
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overfitting by spreading the influence of a single feature across multiple features 

(Van Otten, 2023). Finally, the output layer is a Dense layer with two neurons, 

using the sigmoid activation function. A representation of this architecture can be 

seen in Table 19. 

Layer Output Shape 

Conv2D (None, 256, 256, 32) 

BatchNormalization (None, 256, 256, 32) 

MaxPooling2D (None, 127, 127, 32) 

Conv2D (None, 127, 127, 64) 

BatchNormalization (None, 127, 127, 64) 

MaxPooling2D (None, 62, 62, 64) 

Conv2D (None, 62, 62, 64) 

BatchNormalization (None, 62, 62, 64) 

MaxPooling2D (None, 30, 30, 64) 

Conv2D (None, 30, 30, 32) 

BatchNormalization (None, 30, 30, 32) 

MaxPooling2D (None, 14, 14, 32) 

Flatten (None, 6272) 

Dense (None, 128) 

Dense (None, 64) 

Dense (None, 32) 

Dense (None, 16) 

Dense (None, 2) 

Table 19. Custom CNN model architecture utilizing Image Augmentation data. 



Artificial Intelligence in medical diagnosis (with emphasis on orthopedics) 

MSc in Artificial Intelligence & Deep Learning, MSc Thesis 

 Stamatios-Michail Skaleris mscaidl-0032. 72 

In the training process, Early Stopping is utilized, monitoring the model's validation 

loss. The training will stop if the validation loss does not improve for five consecutive 

epochs and is set to start the monitoring after epoch 10. 

The images that were generated by the image augmentation library have undergone the 

following processing: 

● Random rotation between -20 and +20 degrees 

● Randomly shift the width by a fraction of 0.1 

● Randomly shift the height by a fraction of 0.1 

● Shear transformations with a maximum shear of 0.1 

● Randomly zooming inside images by a fraction of 0.1 

● Randomly flip images vertically 

The Adam optimizer is chosen for training. The learning rate was set to 0.001 and 

the loss function used is binary cross-entropy. Also, the training is done with a batch 

size of 32 and the model is going to train for a maximum of 500 epochs. However, due 

to the Early Stopping, as the validation loss stopped improving, the model stopped 

training at epoch 257. Finally, the “shuffle” parameter was set to “True”. 

5.3.2.2 Results 

The results after the training process was complete (shown in Table 20), indicate 

that the model overfitted and the model’s accuracy remained flat during the whole 

training process leading to bad results. This can be also seen in Figure 38, showing 

the model’s loss and accuracy across the training process. The accuracy of the 

model on the test set was 0.73 and recall 0.50. The confusion matrix in Figure 39 

and the classification report in Table 21 shows the model's results in more detail. 

Data subset Accuracy Loss 

Training 1.0000 0.1266 

Validation 0.7281 0.7637 

Table 20. Custom CNN model utilizing Image Augmentation training results. 
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Figure 38. CNN with Image Augmentation training loss and accuracy. Custom 

CNN model utilizing Image Augmentation results. Loss is depicted on the left 

image and accuracy on the right. The yellow line represents the validation set, while 

the blue line represents the training set. 

 

Figure 39. Confusion matrix of the model’s predictions on the test set. 

 precision recall f1-score support 

0 0.00 0.00 0.00 13 

1 0.73 1.00 0.85 36 

accuracy   0.73 49 

macro avg 0.37 0.50 0.42 49 

weighted 

avg 
0.54 0.73 0.62 49 

Table 21. CNN utilizing Image Augmentation Classification report. 

5.3.3 VGG16 Model 

This experiment yielded the best results amongst the four models that were 

implemented for this classification stage. 

5.3.3.1 Data preparation, Architecture and Training 

In this experiment, the dataset is split the same way as the other models in this 

stage (649 training images, 114 validation images and 49 test images). The VGG16 
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model is used with its pre-trained weights from the ImageNet dataset. The 

parameter “include_top” is set to false and the model’s layers are frozen. 

After the VGG16 base model’s architecture, several custom layers are added. The 

input layer accepts images with a shape of 256x256 pixels with three color 

channels. The following layers include a Global Average Pooling layer and a Batch 

Normalization layer, followed by a Flatten layer. Later, five Dense layers are added 

with ReLU as the activation function, with each one having 128, 64, 32, 16 and 8 

neurons respectively. Finally, the output layer is a Dense layer with two neurons, 

using the sigmoid activation function (Figure 40). 

 

Figure 40. VGG16 model architecture. 

Early Stopping is also utilized in this model, monitoring its validation loss during 

training. The training thus stops in case the validation loss does not improve for five 

consecutive epochs. It is also set to start monitoring after 10 epochs. 

The Adam optimizer is used for training. The learning rate was set to 0.0001 and the 

loss function used is binary cross-entropy. Additionally, the training is done with a 

batch size of 32 and the model is going to train for a maximum of 100 epochs. As the 

validation loss of this model stopped improving, the training halted at epoch 41. Last 

but not least, the “shuffle” parameter was set to “True”. 

5.3.3.2 Results 

The results of the training process (shown in Table 22), indicate that the model’s 

training was stable, but the loss diagram indicates that the model could be prone to 

overfitting, thus deeper model architectures were avoided. This can be also seen in 
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Figure 41, showing the model’s loss and accuracy across the training process. Also, 

the accuracy of the model on the test set was 0.94 and recall 0.91. The confusion 

matrix in Figure 42 and the classification report in Table 23 shows the model's 

results in more detail. 

Data subset Accuracy Loss 

Training 0.9832 0.0548 

Validation 0.8947 0.2484 

Table 22. VGG16 model training results. 

 

Figure 41. VGG16 training loss and accuracy. VGG16 model loss is depicted on 

the left image and accuracy on the right. The yellow line represents the validation 

set, while the blue line represents the training set. 

 

Figure 42. Confusion matrix of the VGG16 model’s predictions on the test set. 

 precision recall f1-score support 

0 0.92 0.85 0.88 13 

1 0.95 0.97 0.96 36 
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accuracy   0.94 49 

macro avg 0.93 0.91 0.92 49 

weighted 

avg 
0.94 0.94 0.94 49 

Table 23. VGG16 Classification report. 

5.3.4 ResNet50 Model 

5.3.4.1 Data preparation, Architecture and Training 

In this experiment, the dataset is split as described before, using 649 images for 

training, 114 images for validation and 49 images for testing. The model is used 

with its pre-trained weights from the ImageNet dataset. The parameter 

“include_top” is set to false and the model’s layers are frozen. 

After the ResNet50 base model’s architecture, several custom layers are 

introduced. The input layer accepts 256x256 images with three color channels. The 

layers that follow include a Global Average Pooling layer and a Batch 

Normalization layer, as well as a Flatten layer. Later, four Dense layers are present 

with ReLU activation function, each having 32, 32, 16 and 8 neurons respectively. 

Finally, the output layer is a Dense layer with two neurons, using sigmoid activation 

function (Figure 43). 

 

Figure 43. ResNet50 model architecture. 

The Early Stopping technique is used in this model, monitoring the training process 

progress, based on the validation loss. The training will stop if the validation loss does 
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not improve for five consecutive epochs, while Early Stopping is set to begin 

monitoring after 10 epochs. 

Adam optimizer is utilized for training. The learning rate is set to be equal to 0.001, 

and the loss function used is binary cross-entropy. Additionally, the training is 

conducted using a batch size of 16, with the “shuffle” parameter set to “True”. 

The model is expected to train for a maximum of 100 epochs. However, due to the 

early stopping mechanism, and the fact that the validation loss of this model stopped 

improving, the process halted at epoch 18. 

5.3.4.2 Results 

The final results after the training process (shown in Table 24), indicate that this 

model also started to overfit. This can be seen in Figure 44, showing the model’s 

loss and accuracy during the training process. The accuracy of the model on the test 

set was 0.86 and recall 0.83. The confusion matrix in Figure 45 and the 

classification report in Table 25 shows the model's results in more detail. 

Data subset Accuracy Loss 

Training 0.9264 0.2087 

Validation 0.7719 0.5609 

Table 24. ResNet50 model training results. 

 

Figure 44. ResNet50 training loss and accuracy. ResNet50 model loss is depicted 

on the left image and accuracy on the right. The yellow line represents the 

validation set, while the blue line represents the training set. 
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Figure 45. Confusion matrix of the ResNet50 model’s predictions on the test set. 

 
precision recall f1-score support 

0 0.71 0.77 0.74 13 

1 0.91 0.89 0.90 36 

accuracy 
  

0.86 49 

macro avg 0.81 0.83 0.82 49 

weighted 

avg 
0.86 0.86 0.86 49 

Table 25. ResNet50 Classification report. 

5.4 Arthroplasty / Nailing Classification Stage 

This is the fourth stage of the classification pipeline. Aim of this phase is to classify x-rays 

of operations, to arthroplasty or nailing. For this purpose, various models were trained and 

evaluated, with the VGG16 model achieving the best accuracy. 

5.4.1 Convolutional Neural Network 

5.4.1.1 Data preparation, Architecture and Training 

In this classification stage, certain data were chosen to be used for the training 

process. More specifically, the classes that were encompassed in the dataset of this 

stage are: 

● Left arthroplasty 

● Right arthroplasty 

● Left nailing 

● Right nailing 

Left and right arthroplasty x-rays are merged in one class (arthroplasty), and left 

and right nailing x-rays in another class (nailing). This resulted in 221 images in 

total. Then 60% of these images were split into training data (132 images). The split 
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is stratified. After that split, the validation set is further split into validation and test 

sets. From the 89 images in the validation set, 65% of the images remained in the 

validation set (57 images) and 35% in the test set (32 images). 

Different architectures were tried for this custom CNN, but the deeper the model 

was, the easier it was for the model to overfit. This led the adopted architecture to 

be relatively shallow. To begin with, the input layer receives 256x256 pixel images 

with three color channels. It is a 2D convolution with 8 neurons, kernel size of (4,4) 

and stride equal to 1. The parameter “padding” is equal to “same” and it uses ReLU 

activation function. The following layers include a Batch normalization layer and a 

2D Max Pooling layer, with a kernel size of (4,4), stride equal to 2 and padding 

equal to “valid”. Following, another 2D Convolution layer is placed with 16 

neurons, kernel size of (4,4), stride equal to 1, padding equal to “same” and ReLU 

activation function. The following two layers also include a Batch Normalization 

layer and a 2D Max Pooling layer, with a kernel size of (4,4), stride equal to 2 and 

padding equal to “valid”. Later, another 2D Convolution is added with 8 neurons, a 

stride of 1, a kernel size of (4,4), padding equal to “same” and using ReLU 

activation function. Also here, the two layers that follow are a Batch Normalization 

layer and a 2D Max Pooling layer, with a kernel size of (4,4), stride equal to 2 and 

padding equal to “valid”. Next, a Flatten layer is added to reshape the data, so that 

the data are flattened to enter the fully connected layers. Four Dense layers are then 

added, with 64, 32, 16 and 8 neurons respectively, all using the ReLU activation 

function. Finally, the output layer is a Dense layer with two neurons, using a 

sigmoid activation function. A representation of this architecture can be seen in 

Table 26. 

Layer Output Shape 

Conv2D (None, 256, 256, 8) 

BatchNormalization (None, 256, 256, 8) 

MaxPooling2D (None, 127, 127, 8) 

Conv2D (None, 127, 127, 16) 

BatchNormalization (None, 127, 127, 16) 

MaxPooling2D (None, 62, 62, 16) 

Conv2D (None, 62, 62, 8) 

BatchNormalization (None, 62, 62, 8) 

MaxPooling2D (None, 30, 30, 8) 
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Flatten (None, 7200) 

Dense (None, 64) 

Dense (None, 32) 

Dense (None, 16) 

Dense (None, 8) 

Dense (None, 2) 

Table 26. Custom CNN model architecture. 

Early Stopping is utilized during the training of the model, to monitor the validation 

loss. The training will stop automatically in case the validation loss does not improve 

for five consecutive epochs. The Early Stopping is set to start monitoring after the 10th 

epoch. 

The Adam optimizer is being used for training. The learning rate is 0.0001 and the 

loss function used is binary cross-entropy. The training is done with a batch size of 32 

and the model is going to train for a maximum of 100 epochs. However, as the 

validation loss stopped improving, the model stopped training at epoch 56. Finally, the 

“shuffle” parameter was also set to “True” to shuffle the data. 

5.4.1.2 Results 

The training results shown in Table 27, indicate that the CNN model overfitted. 

This can be seen in Figure 46, depicted on the model’s loss (left image). Finally, the 

accuracy of the model on the test set was 0.72. The confusion matrix in Figure 47 

and the classification report in Table 28 shows the model's predictions in more 

detail. These results indicate that the model was not able to learn how to 

discriminate between the two classes, and one reason may be the limited number of 

available data for this task. 

Data subset Accuracy Loss 

Training 1.0000 0.0098 

Validation 0.7193 0.6242 

Table 27. Custom CNN model training results. 
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Figure 46. Custom CNN training loss and accuracy. Custom CNN model loss is 

depicted on the left image and accuracy on the right. The yellow line represents the 

validation set, while the blue line represents the training set. 

 

Figure 47. Confusion matrix of the CNN model’s predictions on the test set. 

 
precision recall f1-score support 

0 0.00 0.00 0.00 9 

1 0.72 1.00 0.84 23 

accuracy 
  

0.72 32 

macro avg 0.36 0.50 0.42 32 

weighted 

avg 
0.52 0.72 0.60 32 

Table 28. Custom CNN Classification report. 
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5.4.2 ResNet50 Model 

5.4.2.1 Data preparation, Architecture and Training 

In this experiment, the dataset is split like above, with 132 training images, 57 

validation images and 32 test images. The ResNet50 model is used with its pre-

trained weights from the ImageNet dataset. The parameter “include_top” is set to 

false and the model’s layers are frozen. 

After the ResNet50 base model’s architecture, several custom layers are added. 

The input layer takes 256x256 pixel images with three color channels. The 

following layers include a Global Average Pooling layer and a Batch Normalization 

layer, followed by a Flatten layer. Then, four Dense layers are added with ReLU 

activation function, with 32, 32, 16 and 8 neurons each, in this exact order. Finally, 

the output layer is a Dense layer with two neurons, using a sigmoid activation 

function (Figure 48). 

 

Figure 48. ResNet50 model architecture. 

Early Stopping is applied to the process of training the model, monitoring the 

validation loss. The training is set to stop in case the validation loss does not improve 

for five consecutive epochs. Additionally, the Early Stopping is activated after 10 

epochs. 

The Adam optimizer is selected for training. The learning rate was set to 0.001 and 

the loss function used is binary cross-entropy. To elaborate, during the training a batch 

size of 16 is being used, and the model is going to train for a maximum of 100 epochs. 

Due to the fact that the validation loss stopped improving, the training came to a halt at 

epoch 16. Finally, the “shuffle” parameter was set to “True”. 
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5.4.2.2 Results 

The results, as shown in Table 29, indicate that this model also overfitted. This 

can be also seen in Figure 49, showing the model’s loss and accuracy across the 

training process. The accuracy of the model on the test is 0.72. The confusion 

matrix in Figure 50 and the classification report in Table 30 shows the model's 

predictions in more detail. 

Data subset Accuracy Loss 

Training 0.9478 0.1390 

Validation 0.7193 1.2450 

Table 29. ResNet50 model training results. 

 

Figure 49. ResNet50 training loss and accuracy. ResNet50 model loss is depicted 

on the left image and accuracy on the right. The yellow line represents the 

validation set, while the blue line represents the training set. 

 

Figure 50. Confusion matrix of the ResNet50 model’s predictions on the test set. 

 precision recall f1-score support 

0 0.00 0.00 0.00 9 
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1 0.72 1.00 0.84 23 

accuracy   0.72 32 

macro avg 0.36 0.50 0.42 32 

weighted 

avg 
0.52 0.72 0.60 32 

Table 30. ResNet50 Classification report. 

5.4.3 VGG16 Model 

This experiment had the best results amongst the three models that were 

implemented for this classification stage. 

5.4.3.1 Data preparation, Architecture and Training 

In this experiment, the dataset is split as described above, with 132 images for 

training, 57 images for validation and 32 images for testing. The VGG16 model is 

used with its pre-trained weights from the ImageNet dataset. The parameter 

“include_top” is set to false and the model’s layers are frozen. 

After the VGG16 base model’s architecture, several custom layers are added. The 

input layer takes 256x256 pixel images with three color channels as an input. The 

following layers include a Global Average Pooling layer and a Batch Normalization 

layer, followed by a Flatten layer. Later, five Dense layers are added with the ReLU 

activation function, with each one having 128, 64, 32, 16 and 8 neurons 

respectively. Finally, the output layer is a Dense layer with two neurons, using a 

sigmoid activation function (Figure 51). 
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Figure 51. VGG16 model architecture. 

Early Stopping is utilized during the training of the model, monitoring its validation 

loss. The patience parameter is set to five epochs and the mechanism is set to start 

monitoring after 10 epochs. 

The Adam optimizer is chosen for training. The learning rate was set to 0.0001 and 

the loss function used is binary cross-entropy. Additionally, the training is done with a 

batch size of 32 and the model is going to train for a maximum of 500 epochs. 

Nonetheless, the validation loss of this model stopped improving and the training 

stopped at epoch 123. Finally, the “shuffle” parameter was set to “True”. 

5.4.3.2 Results 

Based on the training results shown in Table 31, it can be concluded that the 

model’s training was stable. This can also be seen in Figure 52, showing the 

model’s loss, as well as the accuracy throughout the training process. Finally, the 

accuracy of the model on the test set is 1.0. The confusion matrix in Figure 53 and 

the classification report in Table 32 shows the model's results in more detail. 

Data subset Accuracy Loss 

Training 1.0000 0.0070 

Validation 0.9649 0.0681 

Table 31. VGG16 model training results. 
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Figure 52. VGG16 training loss and accuracy. VGG16 model loss is depicted on 

the left image and accuracy on the right. The yellow line represents the validation 

set, while the blue line represents the training set. 

 

Figure 53. Confusion matrix of the VGG16 model’s predictions on the test set. 

 precision recall f1-score support 

0 1.00 1.00 1.00 9 

1 1.00 1.00 1.00 23 

accuracy   1.00 32 

macro avg 1.00 1.00 1.00 32 

weighted 

avg 
1.00 1.00 1.00 32 

Table 32. VGG16 Classification report. 
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5.5 Subcapital Fracture / Intertrochanteric Fracture / Osteoarthritis 

Classification Stage 

This is the fifth and final stage of the classification pipeline. In this step, the aim is to 

classify x-rays to three classes: subcapital fracture, intertrochanteric fracture and 

osteoarthritis. Various models were trained and their performance was measured, with the 

VGG16 model having the best results. 

5.5.1 Convolutional Neural Network 

5.5.1.1 Data preparation, Architecture and Training 

In this classification stage, certain data were chosen for the training process. 

More specifically, the classes that were used for this task are: 

● Left intertrochanteric 

● Right intertrochanteric 

● Left subcapital 

● Right subcapital 

● Left osteoarthritis 

● Right osteoarthritis 

The data are grouped into three classes: intertrochanteric fracture, subcapital 

fracture and osteoarthritis. This resulted in forming a dataset specifically tailored 

for this task, consisting of 385 images in total. After the first split, 65% of these 

images were used as the training data (250 images), and the split is stratified. After 

that split, the validation set is further split into validation and test sets. From the 135 

images in the validation set, 70% of the images remained in the validation set (94 

images) and 30% in the test set (41 images). 

The input layer is tailored for 256x256 pixel images with three color channels. It 

is a 2D convolution with 32 neurons, has a kernel size of (4,4) and stride equal to 1. 

The parameter “padding” is equal to “same” and it uses ReLU activation function. 

The following layers include a Batch normalization layer and a 2D Max Pooling 

layer, with a kernel size of (4,4), stride equal to 2 and padding equal to “valid”. 

Following, another 2D Convolution layer is placed with 64 neurons, kernel size of 

(4,4), stride equal to 1, padding equal to “same” and ReLU activation function. The 

following two layers also include a Batch Normalization layer and a 2D Max 

Pooling layer, with a kernel size of (4,4), stride equal to 2 and padding equal to 

“valid”. Right after, another 2D Convolution is added with 128 neurons, a stride of 

1, a kernel size of (4,4), padding equal to “same” and using ReLU activation 

function. The two layers that follow are a Batch Normalization layer and a 2D Max 

Pooling layer, with a kernel size of (4,4), stride equal to 2 and padding equal to 

“valid”. Another 2D Convolution layer is then added with 64 neurons, a stride of 1, 

a kernel size of (4,4), padding equal to “same” and using ReLU activation function. 

The two layers that follow are also a Batch Normalization layer and a 2D Max 

Pooling layer, with a kernel size of (4,4), stride equal to 2 and padding equal to 

“valid”. Before the Dense layers, a final 2D Convolution is added with 32 neurons, 

a stride of 1, a kernel size of (4,4), padding equal to “same” and using ReLU 



Artificial Intelligence in medical diagnosis (with emphasis on orthopedics) 

MSc in Artificial Intelligence & Deep Learning, MSc Thesis 

 Stamatios-Michail Skaleris mscaidl-0032. 88 

activation function. The two layers after that are a Batch Normalization layer and a 

2D Max Pooling layer, with a kernel size of (4,4), stride equal to 2 and padding 

equal to “valid”. Furthermore, a Flatten layer is added to transform the data to a 1-

dimensional array, so that the data can enter the fully connected layers. These layers 

are six Dense layers, with 128, 64, 32, 32, 16 and 8 neurons respectively, all using 

the ReLU activation function. Finally, the output layer is a Dense layer of three 

neurons, using a softmax activation function. A representation of this architecture 

can be seen in Table 33. 

Layer Output Shape 

Conv2D (None, 256, 256, 32) 

BatchNormalization (None, 256, 256, 32) 

MaxPooling2D (None, 127, 127, 32) 

Conv2D (None, 127, 127, 64) 

BatchNormalization (None, 127, 127, 64) 

MaxPooling2D (None, 62, 62, 64) 

Conv2D (None, 62, 62, 128) 

BatchNormalization (None, 62, 62, 128) 

MaxPooling2D (None, 30, 30, 128) 

Conv2D (None, 30, 30, 64) 

BatchNormalization (None, 30, 30, 64) 

MaxPooling2D (None, 14, 14, 64) 

Conv2D (None, 14, 14, 32) 

BatchNormalization (None, 14, 14, 32) 

MaxPooling2D (None, 6, 6, 32) 

Flatten (None, 1152) 

Dense (None, 128) 
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Dense (None, 64) 

Dense (None, 32) 

Dense (None, 32) 

Dense (None, 16) 

Dense (None, 8) 

Dense (None, 3) 

Table 33. Custom CNN model architecture. 

Early Stopping is utilized in the training process, monitoring the model's validation 

loss after the 10th epoch. The training will therefore stop in case the validation loss 

does not decrease for five consecutive epochs. 

The Adam optimizer is utilized during training. The learning rate is set to 0.001 and 

the loss function used is “categorical cross-entropy”. Also, the training is executed 

using a batch size of 16 and the model is designed to train for 100 epochs. However, 

due to the Early Stopping mechanism functionality, the model stopped training at 

epoch 24. Finally, the “shuffle” parameter was set to “True”. 

5.5.1.2 Results 

After the completion of the training process, the results as shown in Table 34, 

indicate that the CNN model had fluctuations and could not converge. This can be 

seen in Figure 54, depicted on the model’s loss and accuracy. Finally, the model’s 

accuracy on the test set was 0.66. The confusion matrix in Figure 55 and the 

classification report in Table 35 shows the model's predictions in more detail. 

Data subset Accuracy Loss 

Training 0.8600 0.3314 

Validation 0.6596 1.4093 

Table 34. Custom CNN model training results. 
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Figure 54. Custom CNN training loss and accuracy. Custom CNN model loss is 

depicted on the left image and accuracy on the right. The yellow line represents the 

validation set, while the blue line represents the training set. 

 

Figure 55. Confusion matrix of the CNN model’s predictions on the test set. 

 
precision recall f1-score support 

0 0.33 0.14 0.20 7 

1 0.00 0.00 0.00 8 

2 0.68 1.00 0.81 26 

accuracy 
  

0.66 41 

macro avg 0.34 0.38 0.34 41 

weighted 

avg 
0.49 0.66 0.55 41 

Table 35. Custom CNN Classification report. 
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5.5.2 ResNet50 Model 

5.5.2.1 Data preparation, Architecture and Training 

In this experiment, the dataset is split as mentioned above (250 training images, 

94 validation images and 41 test images). The ResNet50 model is used with its pre-

trained weights from the ImageNet dataset. The parameter “include_top” is set to 

false, while the model’s layers are frozen. 

After the ResNet50 base model’s architecture, several custom layers are added. 

The input layer receives 256x256 pixel images with three color channels. The next 

layers include a Global Average Pooling layer and a Batch Normalization layer, 

followed by a Flatten layer. Later, four Dense layers are added with ReLU 

activation function, having 32, 32, 16 and 8 neurons each. Finally, the output layer 

is a Dense layer with three neurons, using a softmax activation function (Figure 56). 

 

Figure 56. ResNet50 model architecture. 

Early Stopping technique is also adopted in training this model, for monitoring its 

validation loss during training. The training is designated to stop if the validation loss 

does not improve for five consecutive epochs. Also, the early stopping is set to start 

monitoring after the completion of the first 10 epochs. 

The Adam optimizer is used for training, while the learning rate is equal to 0.001 

and the loss function is “categorical cross-entropy”. The training is conducted with a 

batch size of 16 and the model is set to train for a maximum of 100 epochs. Due to the 

progress of the validation loss throughout the training, Early Stopping terminated the 

training at epoch 16. At last, the “shuffle” parameter is set to “True”. 
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5.5.2.2 Results 

The results, shown in Table 36, indicate that the model overfitted. This can also 

be concluded from Figure 57, showing the model’s loss and accuracy during the 

training process. The model scored an accuracy of 0.66 on the test set. The 

confusion matrix in Figure 58 and the classification report in Table 37 shows the 

model's results in more detail. 

Data subset Accuracy Loss 

Training 0.8939 0.3073 

Validation 0.6277 1.1889 

Table 36. ResNet50 model training results. 

 

Figure 57. ResNet50 training loss and accuracy. ResNet50 model loss is depicted 

on the left image and accuracy on the right. The yellow line represents the 

validation set, while the blue line represents the training set. 

 

Figure 58. Confusion matrix of the ResNet50 model’s predictions on the test set. 
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precision recall f1-score support 

0 0.00 0.00 0.00 7 

1 1.00 0.12 0.22 8 

2 0.65 1.00 0.79 26 

accuracy 
  

0.66 41 

macro avg 0.55 0.38 0.34 41 

weighted 

avg 

0.61 0.66 0.54 41 

Table 37. ResNet50 Classification report. 

5.5.3 VGG16 Model 

This experiment yielded the best results amongst the three models that were 

implemented for this classification stage. 

5.5.3.1 Data preparation, Architecture and Training 

In this experiment, the dataset split is implemented as described above (250 

training images, 94 validation images and 41 test images). The VGG16 model is 

used with its pre-trained weights from the ImageNet dataset. The parameter 

“include_top” is set to false and the model’s layers are frozen. 

Following the VGG16 base model’s architecture, several custom layers are 

added. The input layer is designed to accept 256x256 pixel images with three color 

channels. The next layers include a Global Average Pooling layer and a Batch 

Normalization layer, as well as a Flatten layer. Continuing, two Dense layers are 

added with ReLU activation function, with each one having 256 and 128 neurons 

respectively. Finally, the output layer is a Dense layer with three neurons, using 

softmax as the activation function (Figure 58). 
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Figure 58. VGG16 model architecture. 

Early Stopping is utilized in this experiment, monitoring the validation loss during 

training. The training will be terminated in case the validation loss does not improve 

for five consecutive epochs and the monitoring is set to start after the first 10 epochs. 

The Adam optimizer is utilized during training. The learning rate is set to 0.001 and 

the loss function used is “categorical cross-entropy”. Additionally, the training is done 

with a batch size of 16 and the model is going to train for a maximum of 500 epochs. 

Due to the early stopping mechanism, the training stopped at epoch 28. Last but not 

least, the “shuffle” parameter is set to “True”. 

5.5.3.2 Results 

The results after the training process ended (shown in Table 38), indicate that the 

model could not converge properly. Several changes were made to the model’s 

architecture to overcome this issue, with this architecture achieving the best results. 

This can be also seen in Figure 59, showing the model’s loss and accuracy across 

the training process. Also, the accuracy of the model on the test set has an accuracy 

of 0.73. The confusion matrix in Figure 60 and the classification report in Table 39 

shows the model's predictions in more detail. 

Data subset Accuracy Loss 

Training 1.0000 0.0020 

Validation 0.7766 0.7211 

Table 38. VGG16 model training results. 
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Figure 59. VGG16 training loss and accuracy. VGG16 model loss is depicted on 

the left image and accuracy on the right. The yellow line represents the validation 

set, while the blue line represents the training set. 

 

Figure 60. Confusion matrix of the VGG16 model’s predictions on the test set. 

 precision recall f1-score support 

0 0.67 0.29 0.40 7 

1 0.50 0.50 0.50 8 

2 0.80 0.92 0.86 26 

accuracy   0.73 41 

macro avg 0.66 0.57 0.59 41 
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weighted 

avg 
0.72 0.73 0.71 41 

Table 39. VGG16 Classification report. 

5.6 Conditional Generative Adversarial Network 

With the purpose of improving each models’ accuracy and making the dataset more 

balanced, a conditional Generative Adversarial Network (GAN) was implemented to generate 

more images for each class and ultimately add more images to the dataset. 

5.6.1 Data Preprocessing 

Firstly, the dataset is preprocessed before it is fed into the GAN architecture. The 

data preprocessing steps include resizing them to a fixed size and normalizing pixel 

values to be within the range [0, 1], by dividing by 255. More specifically the images 

are resized to 128x128 pixels for consistency across the dataset. This size of images 

was the biggest that could be chosen, due to limitations of the available RAM in 

Google Colab. 

5.6.2 Discriminator Network 

Role of the discriminator network is to distinguish between real and fake images 

while considering the class labels. The discriminator model incorporates both image 

inputs and label inputs via an embedding layer. In the discriminator, class labels are 

passed through an embedding layer that maps each label to a 50-dimensional vector. 

This embedded label is reshaped and concatenated with the input image along a new 

channel dimension. The combined data is processed through several convolutional 

layers, followed by Leaky ReLU activation and dropout for regularization. The final 

output is a single node with a sigmoid activation function, classifying the input as 

either real or fake. The network’s architecture is depicted in more detail in Table 40. 

Layer Output Shape 

Input [(None,1)] 

Embedding (None, 1, 50) 

Dense (None, 1, 16384) 

Input (None, 128, 128, 3) 

Reshape (None, 128, 128, 1) 

Concatenate (None, 128, 128, 4) 

Conv2D (None, 64, 64, 256) 
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Leaky_ReLU (None, 64, 64, 256) 

Conv2D (None, 32, 32, 128) 

Leaky_ReLU (None, 32, 32, 128) 

Flatten (None, 131072) 

Dropout(0.4) (None, 131072) 

Dense (None, 1) 

Table 40. Discriminator network architecture. 

5.6.3 Generator Network 

The generator model is responsible for creating synthetic images from random noise 

and conditioned on a class label. The generator thus takes two inputs: random noise 

(latent space) and a class label. The label is embedded and reshaped, similar to the 

discriminator, and then concatenated with the latent vector, which is passed through 

multiple transposed convolutional layers (Conv2DTranspose) to progressively 

upsample the image. The final output layer generates a 128x128 color image with pixel 

values in the range [-1, 1], using the tanh activation function. Its architecture can be 

seen in more detail in Table 41. 

Layer Output Shape 

Input [(None,120)] 

Input [(None,1)] 

Dense (None,8192) 

Embedding (None, 1, 50) 

Leaky_ReLU (None, 8192) 

Dense (None, 1, 64) 

Reshape (None, 8, 8, 128) 

Reshape (None, 8, 8, 1) 

Concatenate (None, 8, 8, 129) 
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Conv2D_Transpose (None, 16, 16, 512) 

Leaky_ReLU (None, 16, 16, 512) 

Conv2d_Transpose (None, 32, 32, 1024) 

Leaky_ReLU (None, 32, 32, 1024) 

Conv2D_Transpose (None, 64, 64, 512) 

Leaky_ReLU (None, 64, 64, 512) 

Conv2D_Transpose (None, 128, 128, 128) 

Leaky_ReLU (None, 128, 128, 128) 

Conv2D (None, 128, 128, 3) 

Table 41. Generator network architecture. 

5.6.4 GAN Model 

The GAN model combines both the generator and discriminator models. The 

generator outputs synthetic images that are passed directly into the discriminator for 

classification. Since the discriminator is pre-trained separately, it is frozen during GAN 

training, and only the generator's weights are updated based on the discriminator's 

feedback. 

Additionally, the training procedure alternates between training the discriminator 

and the generator. The training loop is structured to update the discriminator using real 

and fake samples and update the generator using the feedback from the discriminator. 

The generator's goal is to reduce the GAN loss, thus generating images that the 

discriminator cannot distinguish from real ones. Finally, the training process runs for 

500 epochs. 

In order to generate fake samples, random noise vectors and corresponding labels 

are created. These are passed into the generator to produce synthetic images. This 

ensures that the GAN is capable of generating class-conditioned images by providing 

both noise and labels as inputs to the generator. 

5.6.5 Results 

When the models finished training, the discriminator's loss on distinguishing real 

images from the dataset is 0.580. A lower value indicates that the discriminator is 

performing well in classifying real images correctly. However, if it gets too low, the 

discriminator could be overfitting to the real images, reducing the overall effectiveness 

of GAN training. Also, the discriminator’s loss when classifying fake images is 0.559. 

A lower loss means the discriminator is effectively detecting that the fake images are 
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not real, while a higher loss could suggest the generator is improving and producing 

more realistic images. Finally, the generator’s goal is to minimize its loss by fooling 

the discriminator into classifying fake images as real. A loss of 1.020 indicates that the 

generator is moderately successful in producing convincing fake images, though there 

is still room for improvement. To summarize, the discriminator has moderately 

balanced losses for both real and fake images (d1 = 0.580 and d2 = 0.559), which 

suggests that it is functioning as expected and can distinguish between real and 

generated images with some confidence. The generator's loss (g = 1.020) indicates that 

it is producing images that are somewhat realistic, but it still faces challenges in fully 

deceiving the discriminator. The network’s losses are also shown in Figure 61. 

When the model stopped training, the losses show that both the generator and 

discriminator are improving, and the GAN is moving towards producing more realistic 

images while maintaining a competitive balance between the two models. However, 

further epochs might still be needed for optimal results or using higher quality images 

for the training process. 

 

Figure 61. Conditional GAN’s training losses. 

The conditional GAN’s generated images are shown in Figure 63. Due to noise in the 

training data (e.g. “flares” from light reflecting on the x-ray images, see Figure 62), the 

GAN generated some orange spots. This problem could be tackled by acquiring more 

data, or higher quality data. Although this method for generating medical images is 

state-of-the-art, the generated data do not conform with real data. 
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Figure 62. Light reflecting on the images on the two images above. Below are two 

images generated by the GAN. 

 

Figure 63. Images generated by the conditional GAN for each class. 

6 Chapter 6: Final Pipeline 

Amongst the experiments of the classification stages, the following models were chosen for 

the classification pipeline based on their performance on the test set: 

● First classification stage (left or right hip): ResNet50 model, 0.89 accuracy 

● Second classification stage (normal or not normal hip): VGG16 model, 0.98 recall 
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● Third classification stage (operated or not operated hip): VGG16 model, 0.91 recall ● Fourth 

classification stage (arthroplasty or nailing operation): VGG16 model, 1.00 accuracy ● Fifth 

classification stage (intertrochanteric fracture, subcapital fracture or osteoarthritis): 

VGG16 model, 0.73 accuracy 

The classification pipeline was built based on conditional statements with the aforementioned 

models being used sequentially (for reference, see Figure 18). Starting from the first stage, 

where the left or right side needs to be determined, ResNet50 is being used to obtain the 

prediction without making a difference regarding the next stages. Saying that, regardless of the 

first classification output, the data will be then given to the next classification stage, where the 

state of hip will be determined. If the hip depicted in the image is classified as normal, the 

pipeline stops and it outputs the predictions of the first and second stage (e.g. left hip). If it is 

not normal, the pipeline leads to the third classification stage. This stage outputs if the image 

contains an operated or a non operated hip. If the hip is operated, the fourth classification stage 

is activated, in order to output if the image contains arthroplasty or nailing. If the hip is not 

operated, the fifth classification stage is activated. This stage outputs if the image contains an 

intertrochanteric fracture, a subcapital fracture or osteoarthritis. An output example of the 

whole pipeline is “Right Not Normal Operated Nailing”. Each step of the process ensures that 

each classification task is handled by the model best suited to that particular decision, 

optimizing overall performance. 

7 CONCLUSIONS 

Early and accurate diagnosis is critical for ensuring that patients receive timely and appropriate 

treatment, which can significantly accelerate their recovery and improve outcomes. Automated 

diagnostic systems, while still in the early stages of development, hold great potential to enhance the 

diagnostic process. Although such systems should assist, not replace, the expertise of medical 

professionals, they can help streamline workflows, reduce diagnostic delays, and even minimize the risk 

of human error in clinical settings. 

The work presented in this thesis demonstrates the effectiveness of deep learning techniques, 

particularly through the application of transfer learning, in automating the diagnosis of hip-related 

conditions. The proposed multi-stage classification pipeline showcases the capability of these methods 

to make highly accurate predictions across a range of medical conditions, validating their role as powerful 

tools in the field of medical image analysis. Transfer learning, in particular, proved crucial in improving 

model performance, enabling the models to generalize effectively despite the limitations posed by the 

available data. 

However, certain challenges remain, including the limited availability of open-source medical 

imaging data and the constraints of computational resources for training robust models. Addressing these 

issues will require concerted efforts, such as leveraging generative models to create synthetic medical 

images. By expanding the dataset through generative techniques, it becomes possible to further enhance 

model performance and generalization. 

Looking ahead, there is substantial room for growth in this field. With sufficient resources, many of 

the current limitations can be overcome, allowing the development of highly advanced diagnostic models. 

Future work can focus on refining the integration of multiple models into unified diagnostic pipelines, as 

demonstrated in this thesis, not only improving accuracy and efficiency but also offering more holistic 
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insights into a patient’s condition. Such systems have the potential to indicate other areas of concern that 

may have been overlooked, providing a more thorough analysis of the medical image. 

In conclusion, the future of automated diagnosis shows great potential, and with continued 

advancements, these systems can become significantly beneficial tools in medical practice, helping to 

ensure timely, precise, and comprehensive patient care. 
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