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ABSTRACT

Coaxial magnetic gears (CMGs) have been of great interest amongst researchers and
the industry since their introduction two decades ago. Magnetic gears possess
significant advantages compared to mechanical gears such as higher performance in
terms of attained speeds, versatility, vibration attenuation, backdrivability and
efficiency. However, some drawbacks limit their wide adoption in the industry. Even
with the use of rare-earth permanent magnets and implementing sophisticated
designs the torque density of magnetic gears is significantly lower compared to
mechanical gears. Increasing the torque density is a major issue in magnetic
drivetrains and has been extensively discussed in the literature. However, the
calculation of the torque is typically performed through FEA and/or numerical
methods, thus increasing the computational cost for optimization processes.
Furthermore, slippage that occurs during transient operation of CMG drives is a
phenomenon that should be thoroughly investigated since it limits their operation
when high acceleration/deceleration is present. The analysis of slippage in the
literature has been conducted by mainly implementing FE transient simulations or
with other iterative methods, without giving additional insights on the complex
dynamical phenomena of CMGs and with high computational cost. Finally, power
losses due to eddy current and core losses are a significant drawbacks in CMG drives
and should be examined since high values of power losses could lead to excess heat
that could increase the temperature of the system leading to degradation of the
permanent magnets and the CMG as a whole. The power losses are usually calculated
implementing FE transient simulations that require high computational cost and
therefore limiting optimization methods aiming towards the reduction of eddy current
and core losses.

The objective of this thesis is to introduce two analytical 2D models for fast and
efficient calculation of the applied torques for every rotation angle, geometry
configuration and constitutive parameters of the magnets using the Maxwell Stress
Tensor. The first model refers to the standard CMG drive, while the second to the
Halbach-array CMG drive, due to its comparative advantages. The results obtained
from the models were compared against those obtained from FEA. The calculated
torques at the inner and outer rotor were in perfect agreement with FEA, however the
analytical models were more than two orders of magnitude faster. In addition, an
analytical calculation of the torque ripple in coaxial magnetic gear drives is made
possible using the proposed models. An investigation of the influence of the
modulator ring on stall torque was performed illustrating that there is an optimum arc
length for the ferromagnetic segment to maximize torque density.

Furthermore, the dynamical equations of the coaxial magnetic gear drive were
formulated and a model was developed to simulate the dynamical response of the
system without the requirement of torque calculation at each time step that
significantly decreases computational cost. The slippage phenomenon was thoroughly
investigated in the present thesis. It was demonstrated that the governing equations
of the dynamical response of the coaxial magnetic gear are the same with the
dynamical equation of the driven pendulum. A non-dimensional criterion was



formulated for the prediction of the dynamical behavior of the CMG drive during
transient operation. Finally, it was demonstrated that the dynamical response of the
CMG drive could exhibit chaotic behavior under certain conditions. With the
developed analysis, besides the significant reduction of the computational cost
important insights regarding the complex dynamical phenomena during the operation
of CMG drives are obtained.

Moreover, a detailed analysis regarding the calculation of power losses during the
operation of CMGs has been conducted. Using the analytical calculation of the
magnetic induction the eddy current losses in the permanent magnets of the CMG and
the core losses on the modulator ring were obtained. An investigation on the effect of
the magnet segmentation to the power losses was conducted, illustrating that eddy
current losses can be significantly reduced by applying this technique.

Finally, a detailed design of a CMG drive is presented showcasing the important
designs aspects for manufacturing a robust and efficient CMG drive. A detailed
analysis regarding the bearing tolerances and their subsequent effect on the natural
frequencies of the CMG drive is conducted illustrating its significance as a design
aspect.



NEPINAHWH

Ta opoaoViKA CUCTAMATA HaYyVNTIKNAG Hetadoong kivnong (coaxial magnetic gears)
€XOUV TIPOKAAEDEL pHeyalo evdladEPov OTOUG EPEVVNTEG Kal TN Blopnxavia and tnv
gloaywyrn toug mpwv and SUo dekaetie¢. Ta OMOAEOVIKA CUCTAHATA HUAYVNTIKAG
petadoong kivnong OSlaBETOUV ONUAVTIKA TIAEOVEKTHUOTO OE OUYKPLON HE TA
HUNXOVLKA Omw¢ uPnAotepn anodoon 6cov adopd TLE TAXUTNTEG TTOU EMITUYXAVOVTAL,
HELWMEVO BopuBo Kkatl PpBopd, UIKPOTEPO KOOTOG ouvtipnong, evw Oev amatteitatl
Atmavon. Qotdoo, opLOUEVO PELOVEKTHUOTA TIEPLOPL{OUV TNV gUpEia ULOBETNOH TOUG
otn Bopnyavia. AKOUN KoL HE TN XPron HOVILWY HOyVNTWV OTaviag yaiag Kal tTnv
vuAomoinon TOAUTAOKWVY OXeSLAOMWY, N TWUKVOTNTA POTAG TWV  HOYVNTIKWV
HETASO0EWV Elval CNUAVTIKA XAUNAOTEPN O CUYKPLON LE TIG UNXOVIKEG LETASOOELC.
H avénon tng mukvotntag pomng anoteAel éva onpavIko NTNHO OTLG HOYVNTLKES
HeTadO0eLC Kal £xel avadepBel ektevwe otnv BiBAloypadia. Qotdoo, 0 UTTOAOYLOUOC
™G pomn¢ ouvnBwg yivetal péow HeBOdwv Temepacpévwy otolxeiwv (FEA) kay/n
oplOUNTIKWY HEBOSWY, aufavovTtag £TOL TO UTTOAOYLOTIKO KOOTOG yla TIG Sladilkaoieg
BeAtwotonoinong. EmumAéov, n oAioBnon mou oupPaivel Katd TNV HETAPATIKA
Aewtoupyia eival éva palvopevo Tou TIPEMEL va epeLVNBel ekTevwE KaBwg eplopilet
TN  AswToupylo. TwWV  HAyVNTIKWV  PETAdO0swv  Ootav  umdpxelt  udnAn
erutayvvon/ermuBpaduvon. H avaluon tng oAiodBnong otn BiBAloypadia €xel yivel
KUPlWG HEOW TNG UAOTOINONG MPOCOUOLWOEWVY FEA peTaBATIKAG KATAOTAONG 1 ME
OAAEC aplOunTIKEG peBOSoug, xwplc va Sivouv mpocBeteg mAnpodopieg ya ta
TMoAUTAOKa Suvapulkd ¢atvopeva kot pe uPnAd UMOAOYLOTIKO KOOTOG. T€AOG, oL
OMWAELEG LOXVOG AOYW SLVOPEUPATWY OMOTEAOUV CNUAVTIKA LELOVEKTAUATO KoL
TPEMEL va £€eTOOTOUV KABWG UPNAEG TIHEC amwAELWV LoXVOG Unopel va odnyrnoouv
o€ uTtepPoAikn apaywyr BeppoTnTag Mou Unopst va auvénoel tn Bepuokpacia Tou
cuoTtnuatog odnywvtag o€ uoBABULON TWV MOVILWY HOyVNTWY KAl TOU CUCTHMOTOC
OUVOALKA. OL anwAeLeg LoxVOG ouvhRBwg utoAoyilovtal UAOTIOLWVTOG TIPOCOUOLWOELG
FEA petafatikig Katdotaong mou amattouv uPnAd UTTOAOYLOTIKO KOOTOG KOl KOTA
ouVEmEeLa teplopilouv Tig peBo6doug BeATioTomoinoNG MOV 0TOXEVOUV OTN HELWON TWV
Swvopeupdtwy.

H napouoa Stdaktopikn dtatplpn mpaypateVeTal TNV LEAETN KAl TNV LovTteAomoinon
OMOQEOVIKWY CUCTNUATWY HayvNTIKAG petadoong kivnong . Ztnv mapovoa diatpiPn
oVamTUXOnKe éva KALVOTOUO OVOAUTIKO LOVTEAO YLO TOV UTTIOAOYLOUO TOU HayVNTIKOU
nedlov kot Twv edpapuolopevwy pomwy yla kaBe ywvia meplotpodns. lMNa tov
UTTOAOYLOUO TOU payvnTikoU Ttediou xpnotuomnotOnkayv ol eélowoelg Maxwell evw yla
ToV UTtoAOYLo WO TNC pomiG o Tavuotng Maxwell. EmutA€ov, anodeixtnke OtLn ponr) o€
omoladnmote oxeTik B€on Twv SUO POTOPWV UMOPEL VA UTIOAOYLOTEL CUVAPTAOEL TNC
ywviog meplotpodng Toug Kot TG HEYLoTng pomng (stall torque). OL umoAoyloBeioeg
POTEC €MOANOEUTNKAV HE UTIOAOYLOTIKA TIOKETA TIEMEPACUEVWY OTOLXEIWV TOU
gumopiou (ANSYS Maxwell). To HOVTEAO QUTO YEVIKEUTNKE ylot TV TIEPUTTWON TWV
OMOQEOVIKWY CUOTNUATWY HAYVNTIKAG HeTadoong Kivnong He tnv xprnon datafewv
Halbach (Halbach-array coaxial magnetic gears). Me tnv xprion tng dtataénc avtngc,
yivetat duvatry n emniteuén vPnAotepng TUKVOTNTAC POTHG OE OXEON HE TNV
TEPIMTWON TOU amAoU HayvnTIKoU CoUOTAMOTOC. TNV SlatpiPfr) €yve 0 AVAAUTIKOGC
UTTOAOYLOUOG TNC poTtiG ou Ba aoknBel yia kabe oxedlaoud tng dataéng Halbach.



ErutAéov, amodeixtnke OTL 0XECN TIOU GUVOEEL TIC POTIEC OTOUG SUO POTOPEC LE TNV
HEYLOTN POTI KOl TI( OXETIKEC YWVIEC elval (8Lo¢ He TNV mepimtwon Tou amAou
HayVNTLKOU CUOTHUOTOG. ME TOV TPOTIO AUTO UIMOPEL EUKOAQ VA TipayATOToLNBEL N
BeAtiotomnoinon NG SLATA&NG TWV OUOOEOVIKWY HAYVNTLKWY CUCTNUATWY HETAS00NG
Klvnong ywa tnv enitevén tng MEYLOTNG SuvaTrC TUKVOTNTAG POTING HUE UEYAAN
akpiBela kot xapnAd UMOAOYLOTIKO KOOTOG AOYW TOU aVAAUTIKOU TPOTOU ETHAUONG
TOoU palvopévou.

ITnV OUVEXEla, onuavtiki PBaputnta 666nke otnv peAéTn NG SUVAMIKNAG
OUUTEPLPOPAC TWV OPOAEOVIKWY CUCTNUATWY HLAYVNTIKAG LETAd00NC Kivnong Kabwg
n oAioBnon (slippage) anoteAel onuavtikd MPOPBANUO O€ AUTEC TIG LETASOOELG. TNV
BBAloypadia o umoAoylopog TG SUVAULKNAC amoKpLlong yivetal ocuvnBwe e TNV
XP1ON UTIOAOYLOTIKWVY TIOKETWY TA OTOL0l £XOUV HEYAAO UTIOAOYLOTIKO KOOTOG. TNV
mapovoa SLatpLr) XpNOLLOTIOLWVTAC TO AVOAUTIKO LOVTEAO UTIOAOYLOUOU TWV POTIWV
TIOU TIEPLYPAY A E TTOPATIAVW EYLVE SUVATH N KATACTPWON TWV SUVAULIKWY EELOWOEWY
TOU CUOTNHATOG KUE AQVOAUTIKN Hopdr). ZTNV ouVEXeLa SnuoupynBnke éva adldotato
KPLTAPLO TO oTolo pnmopel va mpoadlopioel tnv cupneplpopd mou Ba £xeL To cUCTNUA
Xwpl¢ TNV avaykn €emAuong TOU OCUCTNHATOC TwV EELOWOEWV HE TNV XpPnon
oplOuNTIKWYV HeBOSwWV. Emopévwg, HE TO Kpltriplo autd yivetat duvatdg o
UTIOAOYLOUOG TNG HEyLoTNG Suvatng emtayuvong Tmou umopel va edappootel
TIPOKEIUEVOU TO OMOALOVIKO HayvnNTIKO oUoTnpa HeTadoong kivnong va pnv
EeEMEPAOEL TO MEYLOTO ETUTPENMTO O0PAAPA avaloya tnv edappoyry mou auto Ba
xpnotpomnotnBel. Amodeiyxtnke OTL N SUVOULKY) CUUTTEPLPOPA TOU CUCTAATOC KOTA TNV
ETUTAYUVON €lval TIAPOMOLA UE TNV CUUNEPLPOPA TOU EKKPEUOUC (driven pendulum).
TéNog, SeixBnke OTL UTIO OPLOUEVEG CUVONKEG EMITAXUVONG TO CUCTNUA UITOPEL va
TLOPOUCLACEL XOOTIK) cUUTtEPLDOPA.

Emetta, €ywe HEAETN TWV  OVOMTUCOOUEVWVY OSlvopeupdtwy  efattiag twv
EVAAAQCOOUEVWY MayVvNTIKWV TeSlwv Katd tnv meplotpodr) Tou cuotiuatog. Ta
Swopelpata €ouv w¢ amoTéAeca TV avénon tng BepUoKpaciog TOU CUCTANATOC
YEYOVOG TTOU UTtopEL va 06nyAoeL o€ UTIORAOULON TWV HayvnTKwy WlotATwy, tou Ba
€XEL WG ATOTEAECUA TNV UTTORBABULON TOU CUCTANATOG CUVOALKA. lNa To Adyo auto n
HEAETN TWV SLVOPEUPATWY Elval ONUOVTLKA KOL amapaitnTa KATd ToV oXeSLOoU0 TwY
OMOQEOVIKWY CUOTNUATWY HAyVNTIKAG HeTadoong Kivnong. Ztnv napovoa dlatpPn
HE TNV XPNOoN TWV OVOAUTIKWY UOVTEAWV UTIOAOYLoHOU ToUu payvnTtikou mediou yla
KABe ywvia meplotpodng twv Suo PoTOPwWV EYLVE AVOAUTLKOG UTIOAOYLOMOG TWV
OMWAELWYV TOU OUCTAMATOG AOyw Twv Owvopeupdtwy. Ta  omoteAéopoto
eMAANBEVUTNKAV LE UTTOAOYLOTIKA TIOKETA TIEMEPACUEVWY OTOLXELWV TOU €UTIOpiou
(ANSYS Maxwell). TEAog, SeixBnke OTL pe TNV XPrION TEXVIKWVY EAQCUOTOTONGCNG TWV
poyvntwyv (magnet segmentation) ol oMWAELEC TwV SWVOPEUUATWY UMTOPOUV va
HELWOOUV ONUAVTIKA.

T€AoG, €ylve 0 OXeSLAOUOG €VOC OHOOEOVIKOU CUCTHUOTOC UOyVNTIKNC UETAS00NG
KlvnonGg oOTO Omoio TovioTnKOV TA ONUOVTIKA Onuela Katd tnv OLApKELD TOu
oxedloopol/kataokeunc. I18taitepn éudaon 860nke otnv erhoyr Twv KATAGAANAwWY
OVOXWV TwV 0€OVWV KAl TWV POUAEUAV HE OKOTIO TNV amoduyr Twv emikivbuvwy yla
TNV opaAn Asttoupyia LGLOGUXVOTATWV.

10



THESIS OVERVIEW

To facilitate the reading of the present thesis a brief introduction of each chapter is
presented herein:

Introduction: A brief literature review on magnetic gears is presented. In addition, an
introduction on non-linear dynamics and chaos theory is presented focusing on the
complex dynamics of the damped-driven pendulum that would prove to be important
for the understanding of the dynamical phenomena in coaxial magnetic gear drives.

Chapter 1: The analytical modelling of the scalar magnetic potential, the magnetic
induction and the induced torque in the two rotors of the CMG drive is presented. The
analytical solutions are compared with FEA results. An investigation on the effect of
the modulator ring to the stall torque is conducted. The developed model in this
Chapter is the core model of the present thesis.

Chapter 2: The analytical model derived in Chapter 1 is generalized for the case of
Halbach-array CMG drives. It is demonstrated that every Halbach-array CMG could be
analyzed in the same way as the standard CMG. It is illustrated that Halbach-array
CMG achieve superior performance compared to the standard CMG.

Chapter 3: A detailed investigation on the dynamics of the CMG during transient
operation is presented. The similarities between the CMG and the driven-pendulum
are showcased. An analysis and the formulation of a non-dimensional criterion that
predicts the response of the CMG drive during transient operation is derived.
Furthermore, it is demonstrated that under certain conditions, the dynamical
response of the CMG drive could exhibit chaotic behavior showcasing the fascinating
dynamics of the CMG drive.

Chapter 4: A detailed analysis on the power losses due to eddy current and core losses.
An analytical calculation of the power losses during the operation of the CMG is
derived using the analytical calculation of the magnetic induction as obtained in
Chapter 1.

Chapter 5: A detailed design of CMG drive is presented showcasing the important
designs aspects for manufacturing a robust and efficient CMG drive.

11
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Introduction

I.1 Magnetic Gears

Mechanical gears have been extensively used in power transmission application by
the industry since they can achieve high torque densities. However, they are prone to
various problems such as noise, friction, requirement for lubrication, wear, fatigue and
as a consequence poor reliability. Magnetic gears (MGs) on the other hand, have much
lower level of noise, vibration and wear, therefore requiring a significantly lower
maintenance cost compared to mechanical gears. In addition, since there is no contact
between the shafts, MGs are protected against overload, leading to higher reliability
[1.1] while making them ideal for vibration attenuation applications. In addition,
backdrivability is a major advantage of magnetic drives, since there is no reduction in
the efficiency of transmission when it works in reverse. Therefore, MGs could be used
in a variety of applications [I.2] such as in aircraft mechanical transmission [I.3]-[I.5],
wind power generation [I.6]-[I.9], wave energy conversion [l.10], traction [I.11] and
aerospace [l.12].

1.1.1 Magnetic Gear Topologies

The concept of MGs can be traced back to the early 1900s. Armstrong's patent [I.13]
laid the foundation by introducing a power-transmission device using magnetic force,
initially relying on coil-generated magnetism instead of permanent magnets (PMs).
The first MG utilizing solely PMs was developed in 1941 [I.14]. In 1968, Martin
proposed a patent for a coaxial MG [l.15]. During that time, various MG designs
emerged, but their torque density was limited due to suboptimal magnet performance
and use. The advent of high energy product (BHmax) rare-earth magnets reignited
interest in MGs. Particularly since 2001, following Atallah's [I.16] introduction of a
novel coaxial MG with NdFeB magnets, MG research has been increasingly prominent.
MG topologies are categorized into two main groups. The first group comprises what
are known as conventional non-modulated MGs, while the second group comprises of
modulated MGs.

1.1.1.1 Non-modulated magnetic gears

These types of MGs function through non-contact interactions where Permanent
Magnets (PMs) are arranged in various configurations to interact magnetically.
Essentially, the concept of conventional MGs is derived from traditional mechanical
gears. Examples include the spur gear, as illustrated in Fig.l.1(a), the worm gear
depicted in Fig.l.1(b), the perpendicular gear shown in Fig.l.1(c), the magnetic screw
as in Fig.l.1(d), and the skew gear. These conventional MGs, despite their
straightforward design, often exhibit low torque density, due to the poor utilization of
magnets making them unattractive for industrial applications [I.1].

15



Back ion
(e) Planetary MG (f) Cycloid MG (g) Harmonic MG (h) Trans-Rotary MG

Figure 1.1: Different non-modulated topologies of magnetic gear drives that has
been proposed to literature [1.1]

In contrast, some other conventional MG topologies demonstrate significantly high
torque densities, albeit with more complex structures. An example is the magnetic
planetary gearing setup, analogous to mechanical planetary gears, which was
simulated and built as shown in Fig.l.1(e) [I.17]. Simulations revealed that with six
magnetic planet gears, the torque density approached 100 kNm/m3, compared to less
than 50 kNm/m3 with a three-planetary-gear system. Another example, the cycloid
MG depicted in Fig.l.1(f) and based on cycloid gearing principles, was detailed in [I.18].
This design uses cycloid motion to modulate the air gap between two magnetic rings,
enabling effective gear reduction. Experimentally, it achieved a torque density of
approximately 107 kNm/m3. Additionally, a magnetic version of the harmonic gear,
shown in Fig.l.1(g) and analyzed in [I.19], suits applications requiring high gear ratios.
This MG design offers ripple-free torque transmission and can reach torque densities
up to 150 kNm/m? at high gear ratios. While the cycloid and harmonic MGs boast high
torque densities and gear ratios, their mechanical complexity significantly impedes
commercialization prospects. Moreover, a transrotary MG, investigated in [I.20] and
shown in Fig.l.1(h), presents another example of innovative MG design.

1.1.1.2 Modulated magnetic gears

This group appears to be particularly promising due to its combination of high
efficiency and high torque density. A notable advantage of these configurations is that
all the permanent magnets (PMs) are engaged in torque transmission. This
involvement of all PMs is instrumental in achieving the high torque density. Different
modulated MG topologies are presented in Fig.l.2.
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Figure 1.2: Different modulated topologies of magnetic gear drives that has been
proposed to literature [I.1]

The initial proposal for a coaxial Magnetic Gear (MG) using rare-earth magnets was
made in [I.16], as depicted in Fig.l.2(a), with detailed design and performance analysis
provided in [1.16] and [l.21]. This MG consists of three components: Permanent
Magnets (PMs) attached to both the inner and outer rotors (i.e., Surface-Mounted
Permanent Magnet or SPM rotors), and iron pole-pieces (flux modulators) positioned
between the two rotors. The yokes of the rotors and iron pole-pieces are made from
silicon steel lamination or soft magnetic composite. A prototype demonstrated a
transmitted torque density exceeding 70 kNm/m? [1.21]. Furthermore, it was shown
in [1.22] that the coaxial MG can match the performance of its mechanical
counterparts. Over the past 20 years, a variety of rotor structures have emerged in
the literature.

In [1.23], optimization of this SPM MG topology focused on the flux modulator shape,
leading to a prototype with a measured torque density of 111 kNm/m3. Another
design, featuring a spoke-type inner rotor shown in Fig.l.2(b), was introduced in [I.24],
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achieving a torque density of 54 kNm/m3. It was suggested that a surface-mounted
PM rotor might be more effective than a spoke design of the same volume.

In contrast, a lower-cost flux-focusing MG using ferrite magnets was explored in [l.25]
and is illustrated in Fig.l.2(c). Experimental evaluations of ferrite, NdFeB, and hybrid
designs in [1.26] revealed torque densities of 33 kNm/m3, 151 kNm/m3, and 66
kNm/m3, respectively. Notably, a significant measured torque density of over 200
kNm/m? was achieved in [I.27] by scaling up a previous NdFeB spoke MG design,
indicating that spoke-type MGs achieve very high torque densities when built with
NdFeB magnets rather than ferrite.

In [1.28], a coaxial MG incorporating interior PMs was presented, as illustrated in
Fig.l.2(d). This study also explored three different methods for connecting stator pole-
pieces. A novel coaxial MG design featuring an interior-magnet outer-rotor
configuration was introduced in [l.29], shown in Fig.l.2(e). This design employs
homopolar Interior IPMs, where PMs of the same polarity are arranged along the
circumference of the outer rotor, simplifying manufacturing. However, due to the
reduced use of PMs, this prototype achieved a torque density of about 53 kNm/m?3.

A coaxial MG utilizing Halbach PM arrays, depicted in Fig.l.2(f), was proposed and
thoroughly analyzed in [I.30]. This design demonstrated a 13% increase in torque
density, a 67% reduction in cogging torque, and a 28% decrease in total iron losses
compared to a standard coaxial MG. NASA's recent studies on MGs with Halbach
arrays [1.31] suggest the technology's potential for low-torque applications.

In [1.32], a new coaxial MG design was developed, featuring an optimized iron pole-
piece shape and a Halbach magnetic arrangement, as shown in Fig.l.2(g). The
proposed pole-piece design potentially increases torque density by 15% or more
compared to regular designs. An innovative approach was explored in [I.33] with an
air-core coaxial MG using Halbach arrays. This design eliminates the use of back irons
attached to the magnets on both inner and outer rotors. Instead, the magnets are
mounted on a lighter, nonmagnetic material, leading to designs with reduced weight.

In [1.34], a new type of reluctance MG designed for high-speed transmission was
introduced, as seen in Fig.l.2(h). This MG employs salient poles on a high-speed rotor
made solely of iron core, creating a simple and robust structure. It eliminates magnet
eddy current loss, thus enhancing efficiency. However, its simulated torque density
was relatively low at 29.4 kNm/m?.

A bearingless magnetic gear concept was proposed in [I.35], incorporating levitation
windings between the iron pole-pieces, as illustrated in Fig.l.2(i). By precisely
controlling the current, radial forces can be generated for levitation, without
impacting the torque density of the gear. For applications requiring intersecting
shafts, a unique solution was described in [I.36]. This design resembles the
conventional coaxial MG, but with bent flux modulators, as shown in Fig.l.2(j). The
torque density for this topology was limited to 5.4 kNm/m?3, constrained by the size of
the modulators and flux leakage.
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Moving beyond coaxial topologies, various modulated MG structures have been
proposed. An axial-field MG was described in [1.37], shown in Fig.l.2(k), achieving a
simulated torque density of around 70 kNm/m?3. In [1.38], the use of Halbach PM arrays
in an axial-field MG was suggested, offering higher torque density than the standard
axial-field MG. A novel axial-flux MG with L-shaped modulators and a spoke-type
magnet arrangement was presented in [1.39], as seen in Fig.l.2(l). This complex
geometry necessitated the use of 3D printing. It improved both flux leakage reduction
and torque density, reaching a simulated torque density of 74 kNm/m?3 using NdFeB
magnets. An axial-transverse-flux MG with T-shaped flux modulators was introduced
in [1.40], as depicted in Fig.l.2(m). This design reduces saturation in the iron pole-
pieces and limits flux leakage, with a T-shaped modulator creating both axial and
transverse flux paths. 3D simulations indicated a significantly higher torque density,
up to 280 kNm/m?3.

In [1.41], a hybrid transverse-axial MG with additional PMs on the flux modulator side
was proposed, as shown in Fig.l.2(n). 3D FEM simulations indicated a torque density
of 181.2 kNm/m3, about a 20% improvement over the axial-flux MG. A high-
performance linear MG was introduced in [1.42], shown in Fig.l.2(0), with a thrust force
density of 1.7 MN/m?3. Its operating principle is akin to that of the coaxial MG. Finally,
[1.43] proposed a new tubular linear MG utilizing high-temperature superconductor
(HTS) bulks for field modulation, as illustrated in Fig.l.2(p). With HTS assistance, the
thrust force transmission capacity is significantly enhanced compared to conventional
designs.

The torque densities for the different MGs topologies are summarized in Table 1.1 [I.1].

Table I.1: Comparison of different MG topologies in the literature

Gear Type Gear ratio Torque density (kKNm/m?3)
Mechanical Gears 1-1000 47-607

Planetary MG 31 97.3
Cycloid MG 211 142
Harmonic MG 360:1 75
SPM MG 5.75:1 117
Optimized SPM MG 10.5:1 117
Spoke MG 1 5.5:1 92
Spoke MG 2 4.25:1 40
Spoke NdFeB MG 4.25:1 239
IPM MG 5.5:1 64
Homopolar IPM MG 7.33:1 53
Halbach MG 4.25:1 124
Reluctance MG 8:1 29
Axial MG 5.75:1 70
L-shaped axial MG 3.17:1 280
T-shaped axial MG 3.17:1 74
Hybrid-flux MG 5.5:1 181
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1.1.1.3 The Coaxial Magnetic Gear

The coaxial MG (CMG), shown in Fig.l.3 was proposed by Atallah et al. [.20] will be
investigated in depth in the present thesis. The CMG consists of two concentric iron
yokes, the PMs that are mounted on them and a flux-modulator ring that is placed
between them. For the proper operation of the CMG it is essential that the number of
iron pole pieces used in the modulator ring are equal to the sum of the pole pairs of
the PMs in the inner rotor and the pole pairs of the PMs in the outer rotor.
Furthermore, the theoretical equivalent gear ratio of CMG in the case of a stationary
modulator ring is equal to the quotient of the number of pole pairs in the outer rotor
and the number of pole pairs in the inner rotor [I.44]. The optimization of the CMG
has been extensively discussed in the literature in order to increase torque density
[1.45]-[1.49]. Halbach-array CMG is an improved version of the standard CMG topology
due to its higher torque density and its superior dynamical characteristics [1.30].

Low-speed rotor High-speed rotor

Iron plcm‘. \\ /,’ /I’Ms

Figure I.3: The Coaxial Magnetic Gear

The governing equations of the CMG drive are obtained from Maxwell’s equations,
however, the non-linearity of the iron pole pieces results to complex systems of partial
differential equations (PDEs) that cannot be solved analytically [I.50]. In particular, Jian
et al. [1.50] developed a 2D analytical model for the calculation of the scalar magnetic
potential assuming equipotential iron pole pieces and implementing a Fourier series
formulation to overcome the non-linearity in the boundary conditions of the iron pole
pieces. As a consequence, a system of linear equations is formed, from which the
coefficients of the general solutions of the system’s PDEs are calculated analytically
implementing Gauss elimination method. Therefore, for a given design of the CMG
drive, the magnetic induction in the radial and tangential directions can be calculated
for any angle of rotation of the inner and outer rotor. As a consequence, the torque
at the inner and outer rotor of the CMG is determined numerically from the Maxwell
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Stress Tensor, [1.51]-[1.52] for every angle of rotation of the rotors. The slip-effect and
the dynamical response of the CMG drive during a transient operation are determined
by calculating the above torques for the new angle of the rotors’ rotation at each time
step [I.53]. The transient response of the CMG could also result from finite element
analysis (FEA) [1.54]-[1.55].

Due to the complexity and the large number of optimization parameters, i.e. the pole-
pairs number, the dimensions of the iron pole pieces (both in radial and tangential
direction), the airgap between each rotor and the modulator ring, the thickness of the
PMs used it is evident that an analytical model of calculation of the torque would
significantly reduce the computational time required for the optimization algorithm.
In addition, the variety of optimization goals appear in the design process of a CMG
drive regarding each application, i.e. achieve high torque density, attain a desired
dynamical response, vibration attenuation, require a fast calculation of the dynamical
response of the CMG drive, without the requirement of torque calculation at every
time step, since the Gauss elimination algorithm requires a non-negligible
computational cost. In this way, an optimization algorithm with a significantly lower
computational cost could be developed in order to achieve the desired characteristics
of the CMG drive in each design process.

However, specific limitations and inherent problems of MGs have hindered their wide
establishment in industrial applications. The torque density of MGs is substantially
lower compared to mechanical gears and as a consequence they cannot be used in
applications where high torques are required [I.56]. Furthermore, the dynamical
response and specifically the slip effect of MGs during the transient state of
acceleration or deceleration has to be investigated thoroughly in applications where
high accuracy is required [1.2]-[I.4], [I.57]-[I.59]. Finally, eddy current and core losses
especially in high angular velocities [1.60] should be investigated when designing a
CMG.

1.2 Maxwell Equations

Maxwell's equations, are a set of coupled partial differential equations that, together
with the Lorentz force law, form the foundation of classical electromagnetism,
classical optics, electric and magnetic circuits. The equations provide a mathematical
model for electric, optical, and radio technologies, such as power generation, electric
motors, wireless communication, lenses, radar, etc. They describe how electric and
magnetic fields are generated by charges, currents, and changes of the fields. The
Maxwell equations in their differential form are:

V-B=0 (1.1)

V-D= (1.2)
oD

v><H=]J(;Ba—t (1.3)

VXE=—— (1.4)
ot
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where E the electric field intensity, B the magnetic induction, H the magnetic field
intensity, J the electric current density, D the electric displacement and p the electric
charge density.

The Maxwell equations will be used in Chapter 1 and Chapter 2 of the present thesis
in order to model the magnetic induction in coaxial magnetic gears.

1.3 Non-linear dynamics

In mathematics and science, a non-linear system is a system in which the change of
the output is not proportional to the change of the input. Non-linear problems are of
interest to engineers, physicists, mathematicians, and many other scientists since
most systems are inherently nonlinear in nature. Examples of non-linear equations are
the Navier-Stokes equations, the Van der Pol oscillator the swinging of a clock
pendulum and many others [I.61]-[1.62].

1.3.1 The pendulum problem

It will be demonstrated in the present thesis and specifically in Chapter 3 that the
governing equations of the dynamical response in coaxial magnetic gears resemble
the driven pendulum. Therefore, it was deemed necessary to briefly introduce the
pendulum problem since it showcases a fascinating behaviour even though it is
governed, at first glance, by a simple ordinary differential equation.

A pendulum is a body suspended from a fixed support so that it swings freely back and
forth under the influence of gravity. When a pendulum is displaced sideways from its
resting, equilibrium position, it is subject to a restoring force due to gravity that will
accelerate it back towards the equilibrium position. When released, the restoring
force acting on the pendulum's mass causes it to oscillate about the equilibrium
position, swinging it back and forth.

We will begin our journey of understanding the dynamical behaviour of the pendulum
by initially considering the simplest case. Therefore, no damping or external force will
be applied to the pendulum except gravity. In order to obtain the governing equation
of the pendulum we consider Fig.l.4.

The pendulum equation can be obtained from conservation of energy principle.
The change in potential energy is given by:

AU = mgh (1.5)

The change in kinetic energy is given by:

AK = 1mu2 (16)
2

Since no energy is lost (no damping) it yields that:
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1
mgh = Emuz (1.7)

The velocity for a given change in height can be expressed as:

u =,/2gh (1.8)

Figure 1.4: Simple pendulum

From the arc length formula we obtain:

—]— = (1.9)
u—ldt = ,/2gh

where | is the length of the pendulum and g the acceleration of gravity .

From Fig.l.3, if the pendulum starts its swing from some initial angle 8, then y,, the
vertical distance from the screw, is given by:

yo = lcosB, (1.10)

Similarly, for y;, we have:
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y; = lcosO (.11)

As a result, the difference of y, and y; is:

h = 1(cosb — cosb,) (1.12)

From Eq.(1.9) and Eq.(l.12) we obtain:

d®  [2g(cosB — cosBy) (1.13)
dt 1

By differentiating Eq.(l.13) we obtain:

2g .
d?e 1 —Tgsme de
=5 qr .14
dez 2 JZg(cosG — cosf,) dt (114)
1
Combining Eq.(l.3) and Eq.(l.14):
d?e g (1.15)
F = —TSII’IG
that yields the governing equation of the pendulum:
6+5sing=0 (1.16)

1

The differential equation Eq.(l.16) is not easily solved, and there is no solution that can
be written in terms of elementary functions.

When the amplitude of the oscillation of the pendulum the small angle approximation
can be used due to the fact that sin® = 0. Therefore, Eq.(l.16) is reduced to:

é+%e=o (117)

The solution of Eq.(1.17) is:
. g
0(t) = 0, sin <\/}t> (1.18)

where 8 is the amplitude of the oscillations. The period of the oscillation is therefore:
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T, = ZTE\/E (1.19)
g

For amplitude beyond the small angle approximation the period of the oscillation can
be obtained from inverting Eq.(l.13).

ﬁ = 1 (1.20)
do 2g(cosB — cosB,)

Integrating over a complete cycle and since:
T=t(6,>0->—6,—>0—0,) (1.21.A)
T = 4t(6, — 0) (1.21.B)

yields that the period of oscillation is:

(1.22)

1 (% de
T=4 —j
2gJy \[cosB — cosH,

The integral of Eq.(l.22) can be simplified as shown in Appendix Al.1 in:

T= 4£ K(k) (1.23.A)

where K(k) is the complete elliptic integral of the first kind defined as:

/2 1

K(k) = d
(k) 0 1 —KZsin2u u (1.23.B)

.0
and k = sm;0

The complete elliptic integral K(k) cannot be solved analytically however it can be
approximated with the use of Taylor series as shown in Appendix Al.2 as:

(2n — 1)”
Ko =3 Z( Zn)! ) (1.24)

Therefore, the period of the oscillation is obtained from:
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I /@n—1D, 0™\
T=2nm é;(W (sm7) ) (IZS)

which can also be written as:

T = TOZ(% (sin%)n>2 (1.26)

It is interesting to show how the true period of the oscillation is different from the
small angle period approximation with respect to the initial angle 0. In Fig.l.5 the ratio
of the true and small angle approximation period with respect to the initial angle is
presented.

35T

TIT,

257

1.5

0 20 40 60 80 100 120 140 160 180
8, (deg)

Figure 1.5: Ratio of the true and small angle approximation period with respect to
the initial angle

It can be observed that in small angles the approximation is accurate, however as the
initial angle B, is increases the ratio increases and will tend to infinity if the angle
approaches 180°.

In Fig.l.6 the oscillation of the pendulum with respect to time is presented at various
initial angles. The length of the pendulum was considered to be 1m which yields to a
small angle approximation period T, = 2s. Eq.(l.16) was solved using Simulink.
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It can be observed, that in small angles (i.e. 8, = 10°) the oscillation of the pendulum
closely resembles a sine wave similar to the Eq.(l.18), while the period of the

oscillation is approximately 2 seconds cl

ose to Tj.

However, as the initial angle increases the oscillation changes its behaviour and the
period of the oscillation increases. In the extreme case were the initial angle is
0o = 179°, the oscillation no longer resembles a sine wave especially near the angles
+0,. The period of the oscillation is almost 4 times higher than T, at around 8 seconds

which can also be verified from Fig.l.5.
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Figure 1.6: Oscillation of the pendulum with respect to time for various initial

angles

From the brief analysis of the simple pendulum it can be understood that even though
the governing ordinary differential equations is relatively simple a very interesting
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behaviour can be observed especially and large initial angles where the period of the
oscillation and the oscillation itself has a very different behaviour when compared to
small initial angles.

We will now consider a more general case of the simple pendulum the damped-driven
pendulum, since the governing equations in coaxial magnetic gears resemble more
the driven pendulum than the simple pendulum. The governing differential equation
of the damped-driven pendulum is the following (from torque equilibrium in Fig.1.3):

mL?8 + bL?6 + mglsin® = FLcos(Qt) (1.27)

where m is the mass of the bob, b is the damping coefficient due to air resistance, F
is the amplitude of the forcing and (0 is the angular velocity of the forcing oscillations.
Therefore, dividing Eq.(1.27) with mL? the following non-dimensional form is derived:

0 + 2B + w3sin® = ywicos(Qt) (1.28.A)
where:

_ b

2p = m (1.28.B)
w2 = g

o7 (1.28.C)

= d 1.28.D

y = o (1.28.D)

Eqg.(1.28.A) exhibits chaotic behaviour [1.63]-[I.64]. The exact motion of this pendulum
can only be found numerically and is highly dependent on the initial conditions. In
order to understand chaotic behaviour a set of different case studies will be presented
according to the parameters of Table 1.2.

Table I.2: Case study parameters

Wy 1.5

B 0.375

Q 1
0,(t = 0) 0
0, (t = 0) 0

Different values of the non-dimensional force y will be given and the dynamical
response of the pendulum will be calculated with Simulink.

In Fig.l.7 the oscillation of the damped-driven pendulum for various non-dimensional
force y is presented.
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Figure I.7: Oscillation of the damped-driven pendulum with respect to time for
various non-dimensional force y

In most cases, some initial transients are present, however we are will focus our
attention after the transient period. For the case of y = 1, it can be observed that the
pendulum oscillates with a period of approximately 5 seconds. A similar behaviour, is
observed for the case of y = 1.06, although the transient phenomenon is longer.
However, for the case of y = 1.07, after the initial transients we observe a period
doubling. For the case of y = 1.08, we observe that the period is four times larger
than the case of y = 1.06, while for the case of y = 1.08, we observe that the period
is eight times larger than the case of y = 1.06. Finally for the case of y = 1.2, we
observe an aperiodic oscillation and chaotic behaviour.

An important phenomenon that is observed in all chaotic systems is that a small a very
small change to the initial conditions of the system could lead to a very different
dynamical responses of the system as the time progresses. In order to demonstrate
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this phenomenon, the parameters of Table 1.2 were used and a non-dimensional force
y = 1.5 was applied to system. In Fig.l.8 the dynamical response of the pendulum for
different initial conditions is presented. It can be observed that initially the responses
are very similar, however after some time they begin to showcase a small deviation
that will eventually lead to a completely different behaviour.
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Figure 1.8: Oscillation of the damped-driven pendulum with respect to time for
different initial conditions

The different initial conditions are compared with the case when 6,(t = 0) = 0°. For
the case of 6,(t = 0) = 0.1°, the two oscillations begin to deviate at around 45
seconds, for the case of 8,(t = 0) = 0.01°, the two oscillations begin to deviate at
around 70 seconds while for the case of 6,(t = 0) = 0.001° the two oscillations begin
to differ at around 90 seconds.

As expected, when the initial conditions are closer to each other the deviation of the
two oscillations requires more time. The amount of time for which the behaviour of a
chaotic system can be effectively predicted depends on how accurately its current
state can be measured, and a time scale depending on the dynamics of the system,
called the Lyapunov time [l.61].

It is evident from the example of the damped-driven pendulum that chaotic behaviour
in dynamical systems is a phenomenon that is hard to predict and could arise in simple
physical phenomena. Therefore, a brief introduction in chaos theory is necessary in
order to understand some fundamental principles that will be useful in the dynamical
response study in coaxial magnetic gears.
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1.3.2 The essence of chaos

Chaos theory concerns deterministic systems whose behaviour can, in principle, be
predicted. Chaotic systems are predictable for a while and then 'appear' to become
random. Chaos theory states that within the apparent randomness of chaotic complex
systems, there are underlying patterns, interconnection, constant feedback loops,
repetition, self-similarity, fractals, and self-organization.

Small differences in initial conditions, such as those due to errors in measurements or
due to rounding errors in numerical computation, can yield widely diverging outcomes
for such dynamical systems, rendering long-term prediction of their behaviour
impossible in general as seen in the case of the damped-driven pendulum and
specifically in Fig.l.7. This can happen even though these systems are deterministic,
meaning that their future behaviour follows a unique evolution and is fully determined
by their initial conditions, with no random elements involved. In other words, the
deterministic nature of these systems does not make them predictable. This behaviour
is known as deterministic chaos, or simply chaos.

The theory was summarized by Edward Lorenz [I.62] as:

Chaos: When the present determines the future, but the approximate present does
not approximately determine the future.

Chaotic behaviour exists in many natural systems, including fluid flow, heartbeat
irregularities, weather, and climate. This behaviour can be studied through the
analysis of a chaotic mathematical model, or through analytical techniques such as
recurrence plots and Poincare maps.

One of the most well-known chaotic systems is the Lorenz system. In 1963 Edward
Lorenz developed a simplified mathematical model for atmospheric convection [l.62].

dx
-0 —x (1.29.A)
dy
- X2 -y (1.29.B)
dz
it Al (1.29.C)

where x is proportional to the rate of convection, y to the horizontal temperature
variation, and z to the vertical temperature variation. The constants o, p, and 3 are
system parameters proportional to the Prandtl number, Rayleigh number, and certain
physical dimensions of the layer itself.

In order to investigate the chaotic behaviour of the Lorenz system a case study
according to the parameters of Table 1.3 will be considered
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Table I.3: Case study parameters

o 10
B 8/3
xy,zt=0) (1,1,1)

Different values of p will be given and the response of the system after 100 seconds
will be calculated. In Fig.l.9 the solutions for different values of p are presented.
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Figure 1.9: Lorenz solution for different values of p

For small values of p the system is stable and evolves to one of two fixed point
attractors. However, when p becomes large the fixed points become repulsors and
the system trajectory is repelled by them in a very complex way. For p = 28, the
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behaviour of the system is chaotic and almost all initial points will tend to an invariant
set the Lorentz strange attractor.

One additional system that has chaotic behaviour, yet described by a very simple
equation is the logistic map equation.

Xn+1 = Xp(1 —Xp) (1.30)

where x,, is a number between zero and one, which represents the ratio of existing
population to the maximum possible population. This nonlinear difference equation
is intended to capture two effects:

» reproduction, where the population will increase at a rate proportional to the
current population when the population size is small
» starvation (density-dependent mortality), where the growth rate will
decrease at a rate proportional to the value obtained by taking the
theoretical "carrying capacity" of the environment less the current
population.
The usual values of interest for the parameter r are those in the interval [0, 4], so that
X, remains bounded on [0, 1].

In Fig.l.10 the bifurcation diagram of the logistic map is presented. The horizontal axis
shows the possible values of the parameter r while the vertical axis shows the set of
values of x visited asymptotically from almost all initial conditions by the iterates of
the logistic equation with that r value.
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Figure 1.10: Bifurcation diagram of the logistic map for different values of r

Bifurcation theory is the mathematical study of changes in the qualitative or
topological structure of a given family of curves, such as the integral curves of a family
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of vector fields, and the solutions of a family of differential equations. Most commonly
applied to the mathematical study of dynamical systems, a bifurcation occurs when a
small smooth change made to the parameter values (the bifurcation parameters) of a
system causes a sudden 'qualitative' or topological change in its behaviour.

Bifurcations can be divided into two principal classes:

» Local bifurcations, which can be analysed entirely through changes in the
local stability properties of equilibria, periodic orbits or other invariant sets as
parameters cross through critical thresholds

» Global bifurcations, which often occur when larger invariant sets of the
system 'collide' with each other, or with equilibria of the system. They cannot
be detected purely by a stability analysis of the fixed points.

From Fig.l.10 it can be observed that after a certain value of r the system will
experience consecutive period doublings (at a rate according to the Feigenbaum
constant) until chaotic behaviour emerges.

From the different dynamical systems presented it is evident that chaotic behaviour
could arise even in simple mathematical and physical problems. The dynamical
response of coaxial magnetic gears as will be demonstrated in Chapter 3 will showcase
chaotic behaviour. Therefore, the understanding of chaos theory and its principles is
important in order to investigate the fascinating dynamics that could arise during the
operation of coaxial magnetic gears.
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Appendix Al.1

The integral of Eq.(1.22) can be simplified as follows:

Using the trigonometric identity:

0 =1 — 2sin®—
CoS Sin >

we obtain:

1 9 de
T:4 Z_.f
&Jo \/E\/sinz%—sin29

2

By letting:

0
Sll’lz

sinu =
sin =
2

We obtain that:

0
cos» do
0

2sin 7

. 09 0
251n7cosudu = |1-— sm2 do =

0o
2sin =~ 2 cosu
doe = du

\/1 — sin? %sin2 u

cosudu = =

Therefore, the integral (Al.l.1) takes the following form:

Zsin% cosu

1 (/2 1
T:4 z—f
&0 ﬁ\/sinz%—sinz%sinz

u\/l —sinz%sinzu

/2 sm—cosu
el
1—sin®u \/ — sin? Osmzu

(AL1.1)

(AL 1.2)

(AL 1.3)
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where K(k) is the complete elliptic integral of the first kind defined as:

7 1
K(k) = f du
o V1 —k?sin?u

.0
and k = sm7°

(AL 1.4)

(AL 1.5)
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Appendix Al.2

In order to approximate the complete elliptic integral of the first kind:

K(k) = f 21 du (AL2.1)

1 —k?sin?u

We will evaluate the Taylor series expansion of the following function:

1
f(x) =(1—-x)2 (AL 2.2)
where
x = k? sin?u (AL 2.3)

It relatively easy to show that the nt" derivative of f will have the following form:

f(n)(X) = (Zn — 1)” 1

where n!! denotes the double factorial and

(2n— D!

(0(0) = ~—;

Therefore, the Taylor series expansion will have the following form:

2n — 1N
f()—z( nlzn) (AL 2.4)

Therefore the complete elliptic integral (Al.2.1) take the following form:

/2 2n — DI
Kk) = j Z( n— L k?"sin?"u du =

n! 20

K(k) = Z (2n|—2 r11)” J EsinZn u du (AL 2.5)
0

since the series converges. Therefore, the complete elliptic integral has the following
form:

@n-1
K(k) = —on ke[ (AL 2.6)
n=0 )
where lis:
/2
I = j sin?®u du (AL 2.7)
0
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The integral I can be calculated with the use of betta and gamma function.

)T /2
B(x,y) = Fere) 2[ sin™ 1 tcos? 1t dt (AL 2.8)
['(x+y) 0
which yields that:
2n+ 1y . 1
M(Z)rg)
= (AL 2.9)
2'(n+ 1)
By definition:
1
r (E) - VT (AL 2.10)
'n+1) =n! (AL.2.11)

In order to calculate I' (an—+1) we use the following property of the gamma function
I'(n+ 1) =nl(n)

and since T G) = +/Tt we obtain:

2n+1 m(2n — 1!
r( ; ) _ v " ) (AL 2.12)
and a consequence:
m(2n — 1)
11— —
[=0—=— >
2 n!
m(2n— 1)

Furthermore, since
n! 2" = (2n)!

We obtain that the complete elliptic integral can be approximated by the following
formula:

® 2
K(k) = gZ <wk“) (AL 2.14)
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1 2D Analytical Modelling of Coaxial Magnetic Gears

1.1 Magnetic Potential Calculation

The Coaxial Magnetic Gear (CMG) consists of three parts: the inner rotor, the outer
rotor and the flux modulator ring. The modulator ring consists of N ferromagnetic
segments, where:

N = pin + Pout (1.1)

The CMG could operate with two different alternatives. Without loss of generality it is
considered that the inner rotor is the input of the system (clockwise rotation). In the
first case of operation (Case A), the modulator ring is fixed and outer rotor is free to
rotate (counter-clockwise), while in the second case (Case B) the outer rotor is fixed
and the modulator ring is free to rotate (clockwise). The equivalent gear ratio is:

in =%,CaseA (1.2)
. _ N . (13)
1B—pf—1A+1,CaseB .

outer rotor

inner rotor

modulator ring

Figure 1.1: Coaxial Magnetic Gear
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In the standard CMG, the polarity of the two rotor’s PMs is alternating. As presented
in Fig. 1.1, r{, 1y, T3, Ty, Ts, Tg, Toyue are the radii of the inner iron yoke, the inner PMs,
the inner modulator ring’s side, the outer modulator ring’s side, the outer PMs, the
outer iron yoke and the outer side of the CMG respectively. In addition, «; and f3; are

the right and left border of the jth ferromagnetic segment.

The analytical model that will be developed, neglects edge effect phenomena in the
CMG, and thus is a 2D model that assumes infinite length. The developed model can
only be derived assuming cylindrical sector geometries in all the parts of the CMG.
Furthermore, the magnetic materials are assumed to be linear, while infinite
permeability of the iron yokes and the ferromagnetic segments is considered [1.1].

The total magnetic induction created by the permanent magnets (PMs) can be
calculated as a superposition of the magnetic inductions created by the PMs of each
rotor separately [1.1]. Therefore, two models are constructed: one without the outer
rotor’s magnets and one without the inner rotor’s magnets.

The fundamental equations used to develop the analytical model are the Maxwell’s
equations (Gauss and Ampere Law):

V-B=0 (1.4)
V X H = 0, since no currents are present (1.5)

where B is the magnetic induction vector and H is the magnetic field intensity vector.
As a consequence, H can be written in the following form:

H=-Vo (1.6)

where @ is the scalar magnetic potential

Region 111
— —
T | Slots | = T
/ 1 L 9 \
— P
Y s Pal
N AN
’ \, Region II £ BN
Py p ]
N / \\f-‘/,_
: - B
g Region I e

Figure 1.2: Regions of the analytical model
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In Fig. 1.2, the first model -without the outer rotor’'s PMs- is illustrated. Region |
represents the PMs of the inner rotor, Region Il is the airgap below the modulator ring
and Region lll is the space between the above side of the modulator ring and the outer
rotor’s back iron. The correlation of the magnetic induction vector and the magnetic
field intensity vector, in each region can be expressed as:

B = pouH+ poM, in Region | (1.7)
B = poH in Region II, III and slots (1.8)

where g is the vacuum permeability, |, is the relative permeability of the PMs and
M is the residual magnetization vector of the PMs.

From Eq. (1.4)-(1.8) the partial differential equation (PDE) can be obtained for each
region:

5 divM
Vi (r,0) = ; in Region I (1.9)
VZeM(r,0) =0 in Regions II, 111 (1.10)
VZ2pS(r,0) =0 in the slots (1.11)

The PDE in the Regions II,III can be solved as follows as shown in more detail in
Appendix Al1.1:

¢@''(r,0) = Z[(Enrn + F,r ™) cos(n®) + (G,r™ + H,r ™) sin(n@)] (1.12)
n=1
+ Eylnr + F,
¢"'(r,0) = 2:[(Inrn + J,r™™) cos(n®) + (K,r" + L,r ™) sin(n@)] (1.13)
n=1
+ Iplnr + J,

The solution of the PDE in the slots, although is similar to the PDE in the Regions Il and
IIT that has been solved above, cannot be solved with the method of the separation
of variables, since the boundary conditions are not zero. Therefore, the PDE can be
solved as a sum of two solutions:

@3(r,0) = ¢1(8) + @, (r,6) (1.14)
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Figure 1.3: Boundary conditions in the slot region

Where cijH and (p]-F are the magnetic potential of the two consecutive ferromagnetic
segments, a; is the global angle of (ij and vy is the central angle between the
ferromagnetic segments as shown in Fig. 1.3.

4 derives from linear interpolation between (p]F and cp]-F+1:

01(0) = cp,-‘ily— i (0- )+ of (1.15)
Therefore, the PDE for ¢, (1, 0) is:

V2@,(r,8) =0 (1.16)
and the boundary conditions are as shown in Fig.1.4:

@ =0 (1.17)

@41 =0 (1.18)

%

Figure 1.4: Zero Boundary conditions for ¢, in the slot region

The system of Eq.(1.16)-(1.18) can be solved with the separation of variables method
that yields the following:
r’R”" +rR'"—AR =0 (1.19)
0" +—0=0 (1.20)
Y
From the boundary conditions: @(0) = 0(y) =0

48



Which yields that the general solution of Eq.(1.16) is:

[00]

@2(r,0) = Z (anHTH + an_HTH) sin (r;—“ (6— a]-)> (1.21)

n=1

Therefore, the general solution of the magnetic potential in the slots is:

@>(r,0) =
(1.22)

¢ nm My /nm
+ z (Xjnr Y+ Yjr v ) sin (7 (6 - a]-)>

The scalar magnetic potential ¢ is governed by the Poisson equation in Region I.
According to the superposition principle, the solution of the Poisson equation in
Region I consists of the general solution of the Laplace equation (the same as the
Regions II, III) and a special solution. In order to obtain the special solution, the
magnetization distribution, shown in Fig.1.5, should be expressed in an analytical and
continuous function [1.1].

=
1l
=

M
A
T ﬂ m
= 2 + o E +
g
6 0
By

u + 8y Ho —+

Figure 1.5: Magnetization distribution in Region I
where p is the number of pole pairs, 8, is the angle of rotation of the inner rotor and
B, is the residual magnetism of the PM.
The magnetization vector can be written as follows:
M = M,r + Mq0 (1.23)
with Mg = 0 (since no tangential component of the magnetization is present).

The magnetization can be described in an analytical and continuous form with Fourier
series as shown in Appendix Al1.2 as:

M. (0) = Z M [cos(pkB,) cos(pk0) + sin(pk6,) sin(pko)] (1.24)
k=1
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where :

M, = B (kﬁ) (1.25)
k= nuoksm > .
Therefore:
divM 1710 10 M, (6)
=—|=—(M.) + =— (M ] —__r (1.26)
. . [r or (M) rao (Mo) T
As a result, the PDE of Region I is:
1 1 M,.(6) (1.27)

+—-¢r+—= =
Prr r Pr 2 Poo LT

The special solution of Eq.(1.27) will have the following form:

@s(r,0) = Z Wi (r)[cos(pk6,) cos(pkB) + sin(pkb,) sin(pko)] (1.28)
k=1

Therefore Eq.(1.27) takes the following form:

(pk)? My

) Wk(r) = E (129)

.. 1.
Wi (r) + ;Wk(r) -

The solution of Eq.(1.29) is:

Mir if pk # 1
—_—, 1
ey = L =GR P
KA M, rinr . o1 (1.30)
, 1 = =
2, P

In order to obtain a more compact solution of the general PDE in Region I we let
pk = n. Therefore:

@s(r,0) = Z W, (r)[cos(nB,) cos(nB) + sin(nb,) sin(nob)] (1.31)

n=1

where:
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M,r )
ifn =pk, k=1,3,5,..

_ Ur(l_nz)’
Wa() =" M, rinr . - (1.32)
, ifn=pk=
2y,
L (m) ifn = pk, k=135
Mn(r) — T[lloksm 2p , 1I'n = pKkK, = 1,9,9, ... (1_33)
0, otherwise

Therefore, the general solution in Region I is:
(00}

¢'(r,0) = Z[(Anr“ + B,r ™ + W, (r)cos(nb,)) cos(nb)

n=1 (1.34)
+ (Cor™ + Dpr™™ + W, (1r)sin(nBy))sin(n6)] + Aylnr + B,
The magnetic potential in the N slots can be expressed as:
(¢f 0<B8<aq
S
@y aj < 0 < P41
S j j j
©>(r,0) = ! 1.
|(P]F B,-SGSO(]- ( 35)
@7  Bnr1SO<2m

In order to calculate the unknown coefficients of Eq. (1.12), (1.13), (1.22), (1.34) and
(1.35), the magnetic potential at the modulator ring must be described in an analytical
and continuous form, so the Fourier Series method is implemented as shown in
Appendix Al1.3.

The Fourier Series expansion of ¢ is:

@3(1,0) = 2+ ) (ak cos(kx) + by sin(k)) (1.36)
k=1
where:
nm —nm
1| & v(1 = cos(nm)) (Xjnr Y +Yjr Y ) N
__ F

dg = . - + Z(Y + S)CP] (1'37)

j=1 n=1 j=1
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j=1 n=1
y 1.38
RO ) G () g (Bt o
/ Tyk? 2 2
j=1
N o (okn]- nm -nm
e 515 )
j=1 n=1
. 1.39
Z(CPJ'F + ‘PJF+1) (ky Biv1 + 9 o
+ Z ——————sin (—) cos| k————
Li ok 2 2
j=1
where:
(nn
¥ [cos(nTr) cos(kBj+1) - cos(kaj)] nT
| — k#+—
_ 12 — n*m Y
o = 2 (1.39)
| v _ o
|- Esm(ka]-) k= v
(nT[ . 1
= [cos(nm) sin(k;1) — sin(ka )] nm
— k +#—
o K2 — n°m Y
y v (1.39)
y nm
Ecos(ka]-) k= v

1.2 Boundary Conditions

For the coefficients determination of Eq. (1.12), (1.13), (1.22), (1.34) and (1.36), the
boundary conditions are applied in each case [1.1].

1. Atthe radius of the inner yoke (r = ry):

¢'(r;,0) =0 (1.40)
Therefore:
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Apr? + Bori™ + W, (ry) cos(nfy) =0
Cprf + Dpry™ + W, (rp) sin(nBy) =0

Aolnrl + BO = 0

(1.41)
(1.42)

(1.43)

2. On the surface of the inner rotor PMs (r = r;), from the continuity of the

magnetic potential and its derivative the following equations are derived:

(pI(FZI 9) = (pH(rZ’ e)

a(pll
“‘I’ ar

_ 09!
- “'I' ar

r=r,

_l\/[r

r=rp

Therefore:
Ayrd + Bury™ + W (ry) cos(nBy) = E ry + Fry™
Cpry + Dyr;™ + W, (1) sin(nby) = Gpry + Hyra™
Aplnr, + By = Eylnr, + F
nE,ry —nF,r;"

r
=nA,r; —nB,r;" + r,W,(r;) cos(nf,) — =2 M, cos(n6y)
T

nG,ry; —nH,r;"

r
=nC,ry —nD,r;" + r,W,(r,) sin(nd,) — H_z Mpsin(nB,)
r

3. Atthe radius of the outer iron yoke (r = ry):

@"(rg,8) = 0

Therefore:
[re +J,rs" =0
Knrg + Lyrs® =0

[olnrs +1, =0

(1.43)

(1.44)

(1.45)
(1.46)

(1.47)

(1.48)

(1.49)

(1.50)

(1.51)

(1.52)
(1.53)
(1.53)
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Furthermore, the magnetic potential has already been described as a continuous

Fourier Series in the slots.

The coefficients of Fourier Series are ¢, c,, d,, and ey, e, f,, for the cases of r = r3 and

r = r, respectively. Consequently, the following relations can be obtained:

4. From the continuity of the magnetic potential at the radius r = rj:
@'"(r3,0) = <Pjs (r3 0)

Therefore:

Co
Eolnr3 + FO ES ?

E ry + For3™ =,

Gpry + Hyrs™ =d,

5. From the continuity of the magnetic potential at the radius r = r,:

" (r4,0) = 95 (14,6)

Therefore:

€o
Iolnr, +J, = >

n -n _
[hrg +Jars" =€y

Kyrd + Loy =1,

6. From the continuity of the induction at the radius r = rj:

a(pll

acpjs
or | or

or

r=rs r=rs

Therefore, the following equation must be satisfied for every slot:

Bj+1
nm !l <1’1T[ )
'—9—-d9=f— in(— (6 — ;) ) de
sm<y( a])> [ T on(Fe-w)

r=rs

which yields:

(1.54)

(1.55)

(1.56)

(1.57)

(1.58)

(1.59)

(1.60)
(1.61)

(1.62)

(1.63)
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e mr _mmn
I . Y _v. Y
(ler3 YjmT3 >

2
= > n[Enrd = Pt Tom + Gl = Hpri o] (164
n=1
4 y(1 = cos(mm))E,

mT

wherem =1, ...,n

Following a similar procedure, the following equation can be obtained for r = ry:

mm mTt _mT[
— v Y _v. Y
> <ler4 Yjmr, >

- - 1.
= Z n[(lnrzrll - ]nr4 rl)Trlmj + (Knrzrll - Lnr4n)wnmj] ( 65)
n=1
N y(1 — cos(mm))I,

mTtt

In addition, the continuity of the magnetic flux across the ferromagnetic segments
should also be satisfied, so the flow through the inside and outside surface should be
equal:

a II a I11
jfi rdo = fﬁ ¢ rdo (1.66)
r=rs

r=ry

or

Evaluating both sides of Eq.(1.66), the following relation is derived:

By =1, (1.67)

Finally, the flux flowing into the ferromagnetic segment should be equal to the flux
flowing out, thus:

o r
S

j 4
ok aQ;_
J&i rd6+f q:,;el
r r o=,

j T3 i

Ty

aj
a(pIII a(P]S
dr‘—f—ar I‘d9+jm

]

dr (1.68)
0=q;

After simplifications Eq.(1.69) is derived.
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- . o) _ _ (X] + B]
Z 2 sin (n E) (Epry — For3® —I,rf +J,rz™) cos| n > + (G,r}
n=1

_ o o + B;
—Hpr3® — Kyry + Lyry™) sin n——
- nm - nm
= z [(Xjn — X(j—1)n cos(nm)) <r4y —r. > — (Yin (1.69)
n=1

_hm _nm
— Y(j-1)n cos(n)) (r4 V—r Y )l

F F F
i1 — 297 + @i r
+_(cp,+1 (O Ok 1>ln 4
Y Irs

Therefore, from the boundary conditions, a linear system of (2Nn + N + 12n + 6)
equations is derived, where n is the number of solutions of the general solutions of
the PDE of the system, from which the unknown coefficients:
An! Bnr Cnr Dnr Enl Fnl Gnl Hn' In' ]nl Kn' Ln' AO' BO' EO' FO' IO' ]0' X]'n' an' (P]F can be
calculated.

Therefore, the radial and tangential components of magnetic induction can be
obtained:

(oL0) 1.70
BI‘ = _IJ'OE ( )
__ Ho 0 (1.71)

0 r do

Following the same methodology, the respective coefficients of the second model -
without the inner rotor’s PMs- can be calculated.

1.3 Torque Calculation

In order to evaluate the tangential force and therefore the resulting torque at the two
rotors of the CMG, the Maxwell Stress Tensor will be constructed. The Maxwell Stress
Tensor is derived through the Lorentz force [1.2], [1.3]:

F=q(E+vXxB) (1.72)
where F is the force, q is the charge, v is the velocity of the charge, E is the applied
electric intensity field and B is the applied magnetic induction. The Lorentz force in

differential form is:

f = p(E + v X B) (1.73)
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where f is the force density and p is the charge density per unit volume.
Furthermore, since J = pv:

f=pE+]JXxB (1.74)
From Maxwell laws the following relation is obtained as shown in Appendix Al1.4:

1 1 1
f=E, [V E)E+ (E-V)E——VEZ] +—[(V-B)B+ (B-V)B—-VBZ]
2 Ho

2
P (1.75)
—E,—(ExB
057 (E X B)
Hence, the Maxwell Stress Tensor can be introduced as:
o 0S
V-T=f+E — 1.76
oMo ot ( )
Where T is the Maxwell Stress Tensor and S is the Poynting vector:
S = 1 EXB
o (1.77)
T can be written as:
1 1 5 1 5
Where §;; is the Kronecker delta:
5. = 1, i=j
ij — 0, i#:j (1.79)
And i,j are ther, 0,z coordinates.
Furthermore:
(a0 Ty)y = ) army (1.80)
i=r,0,z

Following the simplifications shown in Appendix A1.5 the Maxwell Stress Tensor is
obtained from:

BZ — B§

R BrBG
T=— B2 — B2 (1.81)
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Therefore, the force can be calculated from:

2Tt

F= Lf Tdads (1.82)
0

where L is the effective length of the coaxial magnetic gear in the z-direction. At a

radius r it can be written as:

BZ — B
Eare

F(r)=L | — r do 1.83
l 0Pr 2
that yields:
2n [BF — Bj
Lr —_—
F(r) =— 2 do (1.84)
Mo
0 BGBr

Therefore, the tangential force at the radius r is:

2T
Lr
Fe(r) = u—f BGBr do (185)
0
0

As a result, the torque is:
2T
Lr?
M(r) = —f BgB, d6 (1.86)
Ho
0
The torque at the inner rotor can be obtained, after the superposition of the magnetic
induction of inner and outer rotor, as follows [1.4]:
2 2T

Lrj
Mjn(rp) = E (Be,in(l‘z) + Be,out(rz))(Br,in(rZ) + Br,out(rz))de (1.87)
0

The integrals fom Bg in(r2)Brin(r2)d6 and fom Bg out(12) Brout(r2)d0 are zero.

The integral of Eq.(1.87) can be solved analytically as shown in Appendix A1.6 which
yields that:

o]

Min (rz) = T[|10LI‘% Z [ (Pn,outsn,in + Qn,outRn,in) + (Pn,insn,out (1'88_A)
n=1

+ Qn,ian,out)]

where:
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l)n,in = n(En,inré1 t— nlnrzn 1) (1.88.B)

Qnin = N(Gpint3 ™" — Hyin2™ ™) (1.88.C)
Rnin = ~N(Eninr3 ™" + Fomrz™ ) (1.88.D)
Snin = N(Gninr2~" + Hynrz" ™) (1.88.E)
Paout = N(Enoutt3 " = Fpout2"™ 1) (1.88.F)
Qnout = N(Gn,outt2~ ! — Hpoutt2™ Y (1.88.G)
Rnout = —N(Enout? ' + Froutz™ ™) (1.88.H)
Snout = n(Gn,outrg_l + Hnoutt2™ H (1.88.1)

1.4 Torque as a function of rotation

The contributing terms to the calculation of M;,, are the harmonics of the inner rotor’s
pole pairs [1.5] which can be written in the form of m = (2k — 1)p;, where k a
positive integer. If the contributing terms have been calculated for a given angle of
the inner rotor, an analytical equation correlating M;,, at every position of the inner
rotor can be derived, using these terms [1.4].

If the inner rotor’s angle of rotation is 0;, and the outer rotor is at a given position

0out implementing a similar process as this described for the Eq. (1.87), M;,, is obtained
as follows:

2T
f Be,in(rz)Br,out(rZ)de = z le[Ul,m Sin(mein) + Vl,m Cos(mein)] (1.89_A)
0

m
where:
Uim = SminQm,out = Rm,inPm,out (1.89.B)
Vim = PmoutSmin * Rm,inQmout (1.89.C)
In addition,

2T
f B, 1n (1) Bo out (r2)d6
0

. (1.90.A)
= Z n[UZ,m sin(m6y,) + Vo i cos(mein)]
m
where:
Uz,m = lDm,ian,out - Qm,insm,out (1.90.B)
VZ,m = Pm,insm,out + Qm,ian,out (1.90.C)
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As a consequence, from Eq.(1.89.A) and Eqg. (1.90.A) the induced torque at the inner
rotor is:

Min(r2) = TitoLt3 Y [(Uym + Upm) Sin(mbin) + (Vim

(1.91)
m
+Vom) cos(mein)]
Eqg. (1.91) can be further simplified to:
M;, (r =Z — Do inSin[ 2k — 1)p;, 0;
in 2) k=1E(Zk 1)Pin,in [ PinYin (1.92)

+ (Zk - 1)pouteout]

where §x_1)p, in iS the amplitude of each contributing term that can be determined
as follows:

2 2 (1.93)
§(2k-1)pipin = EHOLF%\/(Ul,(Zk—l)pin + U2,(2k—1)pin) + (Vl,(Zk—l)pin + VZ,(Zk—l)pin)

It should be noted that U, 1, V; 1y, U 1y and V;, ) are dependent on the position of the
outer rotor and independent of the position of the inner rotor due to its harmonics.
However, the amplitude of each contributing term §;x_1)p, in is constant and
independent of the angle of rotation of the rotors [1.4].

A similar form for the torque at the outer rotor can be obtained following the same
process. Therefore, analytical expressions for the induced torque at the two rotors for
every angle of rotation are derived, hence there is no requirement to solve the system
of (2Nn + N + 12n + 6) linear equations at every position.

From Eq. (1.92) it can be observed that the induced torque is a sum of infinite
sinusoidal terms of decreasing amplitude that generate torque ripples that are also
observed in the literature [1.5]. The torque ripples are significant especially in low
pole-pairs number configurations of CMGs, due to its low contributing harmonics.

The torque ripples approach zero in high pole-pairs numbers and the induced torque
can be simplified to:

Min = Mstall,in Sin(pinein + pouteout) (1-95.A)
Mout = _Mstall,out sin(pinBin + PoutOout) (1.95.B)

where Mg, is the stall torque.

1.5 Validation of the analytical model with FEA

For the calculation of the coefficients an algorithm was developed in MATLAB. The
resulting magnetic induction and the induced torques in the two rotors were
calculated. The results obtained from the analytical model was compared with those
obtained from a 2D FE model.
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Ansys Maxwell was used to perform the validation of the analytical model due to its
high degree of parametrization of the geometry inputs and its consistency at every
angle of rotation and configuration of the CMG drive. A convergence rate of 0.01%
was set, while the automatic generated mesh was refined in every pass by 30%.

A case study was performed for the developed model with the following parameters
presented in Table 1.1.

Table 1.1: Parameters of the CMG

Pin 4
Pout 10
r; [mm] 80
r, [mm] 100
r; [mm] 105
ry [mm] 125
rs [mm] 130
I'¢ [mm] 150
Iout [MM] 170
L [mm] 100
§ [deg] 15
B [T] 1.44

The analytical solutions were derived taking into account the first 100 solutions of the
PDEs.

In Figs.1.6-1.8 the scalar magnetic potential produced from the inner rotor PMS at
some critical radii is presented when 0;,, = 0 and 8, = 0.
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Figure 1.6: Scalar magnetic potential generated from the inner rotor PMs at r,
when 0;, =0and 0,,, =0

From Fig.1.6 it can be observed that the scalar magnetic potential at r, has four
periods (as expected since the inner rotor has four pole-pairs) and alternates between
a positive and negative value. The small difference in the value of the scalar magnetic
potential at some peaks is attributed to the presence of the modulator ring.
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Figure 1.7: Scalar magnetic potential generated from the inner rotor PMs at r3
when 0;, =0and 0,,, =0

From Fig.1.7 it can be observed that the scalar magnetic potential at r5 in the fourteen
ferromagnetic segments are clearly shown to be equipotential as expected from
Eq.(1.35). Furthermore, it is demonstrated that the first 100 solutions of PDE yield an
accurate result.
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Figure 1.8: Scalar magnetic potential generated from the inner rotor PMs at r,
when 0;, =0and 0,,, =0

From Fig.1.8 it can be observed that the scalar magnetic potential at r, in the fourteen
ferromagnetic segments are clearly shown to be equipotential as expected from
Eqg.(1.35). Furthermore, it is demonstrated that the first 100 solutions of PDE yield an
accurate result.

In Figs.1.9-1.11 the scalar magnetic potential produced from the outer rotor PMS at
some critical radii is presented when 0;, = 0 and 6, = 0.
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Figure 1.9: Scalar magnetic potential generated from the outer rotor PMs at 15
when 0;, =0and 0,, = 0

From Fig.1.9 it can be observed that the scalar magnetic potential at r5 has ten periods
(as expected since the outer rotor has ten pole-pairs) and alternates between a
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positive and negative value. The small difference in the value of the scalar magnetic
potential at some peaks is attributed to the presence of the modulator ring.
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Figure 1.10: Scalar magnetic potential generated from the outer rotor PMs at r,
when 0;, =0and 0,,, =0

From Fig.1.10 it can be observed that the scalar magnetic potential at r, in the
fourteen ferromagnetic segments are clearly shown to be equipotential as expected
from Eq.(1.35). Furthermore, it is demonstrated that the first 100 solutions of PDE
yield an accurate result.
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Figure 1.11: Scalar magnetic potential generated from the outer rotor PMs at r3
when 0;, =0and 0,,, = 0
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From Fig.1.11 it can be observed that the scalar magnetic potential at r3 in the
fourteen ferromagnetic segments are clearly shown to be equipotential as expected
from Eq.(1.35). Furthermore, it is demonstrated that the first 100 solutions of PDE

yield an accurate result.

In Fig.1.12 the radial and tangential magnetic induction at the radius r3 is presented.
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Figure 1.12: Radial (a) and tangential (b) magnetic induction at r; when 6;, = 0

and 0,,, =0

It is observed that both the radial and tangential magnetic induction at r3 have a 180°
symmetry. Furthermore, it can be observed that the tangential magnetic induction in
the modulator ring is zero (the fluctuations exist due to the finite solutions considered)
which is expected since the ferromagnetic segments are equipotential and Eq.(1.71).

In Fig.1.13 the radial and tangential magnetic induction at the radius r, is presented.
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Figure 1.13: Radial (a) and tangential (b) magnetic induction at r, when 0;, = 0

and 0,,, =0

It is observed that both the radial and tangential magnetic induction at r, have a 180°
symmetry. Furthermore, it can be observed that the tangential magnetic induction in
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the modulator ring is zero (the fluctuations exist due to the finite solutions considered)
which is expected since the ferromagnetic segments are equipotential and Eq.(1.71).

The induced toques in the inner and outer rotor for the case of 8;;, = 0 and 6,,; = 0
are zero. Therefore, for 8;,, = 0 and 8,, = 0 no torques are induced to the CMG.

In Figs.1.14-1.16 the scalar magnetic potential produced from the inner rotor PMS at
some critical radii is presented when 6;, = 22.5° and 0, = 0.
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Figure 1.14: Scalar magnetic potential generated from the inner rotor PMs at r,
when 0;, = 22.5°and 0,,; = 0

From Fig.1.14 it can be observed that the scalar magnetic potential at r, has four
periods (as expected since the inner rotor has four pole-pairs) and alternates between
a positive and negative value. The small difference in the value of the scalar magnetic
potential at some peaks is attributed to the presence of the modulator ring.

66



%10

0 50 100 150 200 250 300 350 400
0 (deg)

Figure 1.15: Scalar magnetic potential generated from the inner rotor PMs at r3
when 0;, = 22.5°and 0,,; = 0

From Fig.1.15 it can be observed that the scalar magnetic potential at r3 in the
fourteen ferromagnetic segments are clearly shown to be equipotential as expected
from Eq.(1.35). Furthermore, it is demonstrated that the first 100 solutions of PDE
yield an accurate result.
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Figure 1.16: Scalar magnetic potential generated from the inner rotor PMs at r,
when 0;, = 22.5°and 0,,, = 0

From Fig.1.16 it can be observed that the scalar magnetic potential at r, in the
fourteen ferromagnetic segments are clearly shown to be equipotential as expected
from Eq.(1.35). Furthermore, it is demonstrated that the first 100 solutions of PDE
yield an accurate result.
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In Figs.1.17-1.19 the scalar magnetic potential produced from the outer rotor PMS at
some critical radii is presented when 6;, = 22.5° and 8, = 0.
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Figure 1.17: Scalar magnetic potential generated from the outer rotor PMs at r5
when 0;, = 22.5° and 0,, = 0
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From Fig.1.17 it can be observed that the scalar magnetic potential at rs has ten
periods (as expected since the outer rotor has ten pole-pairs) and alternates between
a positive and negative value. The small difference in the value of the scalar magnetic
potential at some peaks is attributed to the presence of the modulator ring.
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Figure 1.18: Scalar magnetic potential generated from the outer rotor PMs at r,
when 0;, = 22.5°and 0,,, = 0
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From Fig.1.18 it can be observed that the scalar magnetic potential at r, in the
fourteen ferromagnetic segments are clearly shown to be equipotential as expected
from Eq.(1.35). Furthermore, it is demonstrated that the first 100 solutions of PDE

yield an accurate result.
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Figure 1.19: Scalar magnetic potential generated from the outer rotor PMs at r3
when 0;, = 22.5°and 0,,;, = 0

400

From Fig.1.19 it can be observed that the scalar magnetic potential at r3 in the
fourteen ferromagnetic segments are clearly shown to be equipotential as expected
from Eq.(1.35). Furthermore, it is demonstrated that the first 100 solutions of PDE

yield an accurate result.

In Fig.1.20 the radial and tangential magnetic induction at the radius r5 is presented.
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Figure 1.20: Radial (a) and tangential (b) magnetic induction at r; when 6;, =

22.5°and 0, =0
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It is observed that both the radial and tangential magnetic induction at r3 have a 180°
symmetry. Furthermore, it can be observed that the tangential magnetic induction in
the modulator ring is zero (the fluctuations exist due to the finite solutions considered)
which is expected since the ferromagnetic segments are equipotential and Eq.(1.71).

In Fig.1.21 the radial and tangential magnetic induction at the radius r, is presented.
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Figure 1.21: Radial (a) and tangential (b) magnetic induction at r, when 6;, =
22.5°and 0,,; =0

It is observed that both the radial and tangential magnetic induction at r, have a 180°
symmetry. Furthermore, it can be observed that the tangential magnetic induction in
the modulator ring is zero (the fluctuations exist due to the finite solutions considered)
which is expected since the ferromagnetic segments are equipotential and Eq.(1.71).

The induced toques in the inner and outer rotor for the case of 6;, = 22.5° and
Bout = 0 are 333.81 Nm and 832.98 Nm. Therefore, for 8;, = 22.5° and 6, = 0
the maximum induced torque in the rotors can be applied. This is expected from
Eq.(1.95.A) and Eq.(1.95.B).

In order to demonstrate the accuracy of the developed model two cases were
considered. In the first case, the outer rotor was held stationary and the inner rotor
made a full rotation, while in the second case the inner rotor was held stationary and
the outer rotor made a full rotation respectively. In Fig.1.22 the results of the
described case studies are presented.
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Figure 1.22: Torque at the rotors with (a) the inner rotor rotating and the outer
rotor stationary, (b) the outer rotor rotating and the inner rotor stationary

The results were confirmed with ANSYS Maxwell, since the values obtained are within
1% of the analytical torque values.

In terms of computational time, there is a significant difference between FEA and the
analytical model. FEA requires 23 minutes for the convergence of the torque values.
On the other hand, for the analytical model the exact solution is obtained in 11
seconds which is 125 times faster compared to the FE model. Both models ran on a
laptop with Intel i5 7th Gen processor, 8 GB of RAM and 2.5 GHz max clocking speed.
In Table 1.2 the amplitude of each conributing harmonic is presented for the inner and
outer rotor.

Table 1.2: Amplitude of contributing harmonics

Amplitude of inner rotor harmonics Amplitude of outer rotor harmonics

(Nm) (Nm)
I 333.81 €10 832.98
130 1.25 €30 3.26
€20 0.02 €0 0.05

The stall torque of the inner and outer rotor is calculated from the amplitude of the
first contributing harmonic. Therefore the stall torques are:
Table 1.3: Stall torques as calculated from analytical model and FEA

FEA
Mstall,in = 337.15 Nm

Mstall,out = 841.31 Nm

Analytical model
lv[stall,in = 333.81 Nm

MStall,Out = 832.98 Nm
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It can be observed that in both rotors the second contributing harmonic introduces a
torque ripple of about 0.37% to the CMG drive. In both rotors the amplitude of the
third and higher harmonics is small and could be neglected.

It can be observed that in both rotors the second contributing harmonic introduces a
torque ripple of about 0.5% to the CMG drive. In both rotors the amplitude of the
third and higher harmonics is small and could be neglected.

Furthermore, the equivalent gear ratio, that can be determined as the quotient of the
torque in the outer rotor and the torque in the inner rotor, is 2.4953 with a deviation
of 0.01% for every angle of rotors’ rotation, which is within 0.19% of the nominal
gear ratio.

1.6 Influence of modulator ring in torque density

For a defined application of the CMG drive, the modulator ring affects significantly the
torque density of the CMG drive. To demonstrate this effect, the stall torque was
calculated for different configurations of the modulator ring. The parameters
described in Table 1.1 remain the same except for the dimensions of the
ferromagnetic segments of the modulator ring. These are given as the fill percentages
of the air space in the radial and tangential direction respectively:

N Iy — I3
Radial fill percentage = (1.96.A)

I's — I

o N&
Tangential fill percentage = o (1.96.B)

A case study was performed where the above percentages ranged from 40% to 90%
and 25% to 75% in the radial and tangential direction respectively. The stall torque
calculated in each configuration is presented in the contour map of Fig.1.23.
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Figure 1.23: Contour map of stall torque at each configuration of the modulator
ring

The stall torque increases proportionaly with the radial percentage, as expected due
to lower magnetic resistance, while in the tangential direction a saturation can be
observed above 60%. Therefore, the central angle (8) of each ferromagnetic segment
requires a thorough investigation in every design process of a CMG drive.
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Chapter 1-Conclusions

In the present chapter a novel analytical 2D model was developed for the calculation
of the torque in the inner and outer rotor in the CMG drive for every angle of their
rotation using the Maxwell Stress Tensor. In addition, the torque ripple of CMGs
caused by the contributing terms of higher harmonics is calculated analytically with
the proposed model. The developed system requires only one calculation of the inner
and outer torque at a given angle of their rotation and therefore the computational
time of the dynamical response is significantly reduced since it is not essential to
calculate the torque at each time step implementing the Gauss elimination algorithm
that requires a non-negligible computational cost. A case study was performed where
4 and 10 pole pairs were mounted in the inner and outer rotor respectively. The
torque at the inner and outer rotor was calculated for different angle of rotation of
the two rotors. The obtained results were compared to a FE simulation that was
developed in order to validate the proposed model, which showed a convergence of
1.1%. In addition, a torque ripple of 0.37% was calculated for the CMG drive. However,
the analytical model obtained the torque results 125 times faster compared to FEA.
In addition, the equivalent gear ratio was within 0.19% of the theoretical gear ratio for
every combination of the angle of their respective rotation. The above difference
between the two models could be attributed to the assumption of equipotential
ferromagnetic segments and linearity of the PMs in that are necessary in order to
obtain an analytical solution. However, the above deviation is very small and will not
affect the optimization process of a CMG drive and will have a little effect on the
accuracy of the dynamical response during transient operation.
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Appendix Al1.1

The solution of the Laplace PDE in polar coordinates can be calculated as follows:

1 1
Vch(r, 6) =0= Qrr + ;(pr + r—z(pee =0 (A111)

There are values po and p such as, for pp < r < p:

©(po,6) =g(6) and  ¢(p,6) =1(6)

So, we implement the separation of variables method:

@(r,0) = R(r)0(0) (A1.1.2)

The above PDE can be written as:

@ 143
R”@+R’—+R—2= 0=

r r
r’R"O@+rR'O@+RO"=0=>
(r’R” +rR’)® = —RO" =

rzR”+rR’_ @”—A AL13
R = o = (A1.1.3)

Therefore:

2p!! r__ —
{r R :II-rR AR=0 (A1.1.4)
0" +20 =0
and also: O(m) = 0(—m), 0" () = O'(—m)
ForA = 0:
@6,:O:>®6:C1:>®0:C16+C2
From the boundary conditions:
an+c=¢(-mM+c;=2¢,=0
Therefore:
00(8) = c;
Therefore A, = 0 is an eigenvalue of the equation and the eigenfunction is:
0,=1 (A1.1.5)

Also, for A; = 0 we obtain:
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r’Rg +rRp =0 =
R! 1

R,
In(Ry) = —Inr+¢; =
In(Ry) = In(et) —In(r) =

et
In(R}) = In (T) =

Ry = ==

Ro(r) =clIn(r) + ¢, (A1.1.6)
Forn=1,2,3,.. : A\, = n?, so:

0" +n?’0 =0 (A1.1.7)
The solution of this equation is:

0(0) = a, cos(nbd) + b, sin(nb) (A1.1.8)
Furthermore:

r’Ry + rRj, — n?R, = 0 (A1.1.9)
The solution of the above equation implementing the Frobenius method is:

R, =15, so R, =sr’1, and R} =s(s— 1rs2

Therefore:

r’s(s— Dr5 2 +rsr¥5 1 —n?rS=0>

s(s—1)+s—n?>=0=

s =+n

As a consequence:

Ro(r) =™ + cgr ™ (A1.1.10)

As a result, the general solution of the PDE is:

@(r,0) = RO, + z R,0, (A1.1.11)
n=1
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Appendix A1.2

For the formation of the magnetization vector in a Fourier Series form the following
methodology is implemented:

The period of magnetization is:
Ty =— (A1.2.1)

Therefore the magnetization vector can be expressed as:

400

M,(8) = Z a e~ 12Tfod (A12.2)

— 00

where:

1 s p i
A= f M, e~ 12mkfo® 4 = f M, e~ Pk8 4@ (A1.2.3)
To TO

ag = % ereo de = a, = (A1.2.4)

Fork = +1,+2,43, ... : sin(km) = 0, so:

2B,
B T[l.lok

ay (A1.2.5)

It can be observed that ay = a_y, therefore:

oo o

Mr(e) = Z akeikpe = Z ak(eipke + e—ipkﬁ) =

—oo k=1

= 4B, . /km
M.(0) = Z - . sin (7) cos(pko) (A1.2.6)
=] Ho
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M.(0) = Z M cos(pko) (A1.2.7)
k=1

where:

4B, . /km
My = nuoksm (7> (A1.2.8)

In case of an initial phase angle 6, of the inner rotor, the Fourier Series can be
written as:

M.(0) = Z My cos(pk(8 — 8;)) =
k=1

M. (6) = Z My [cos(pk6,) cos(pk6) + sin(pk6,) sin(pko)] (A1.2.9)
k=1
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Appendix A1.3

The Fourier series expansion in the slots has the following form:

@5(r,0) = a, + Z(ak cos(kx) + by sin(kx)) (A1.3.1)
k=1

which can take the following form:

f(x) = a, + z crelk (A13.2)
k=1
where:
( ao k=0
|
dg — lbk
6 = { —, k=123, (A1.33)
ar +ib
l kK K k=-1-2-3,
2
Therefore:
ax = 2Re(cy) (A1.3.4)
by = —2Im(cy) (A1.3.5)

The coefficients ay and by will be evaluated for each domain separately.

For [ocj, Bj+1] the magnetic potential is obtained from the solutions ¢, (r,0) and

@, (1, 0) that was previously calculated. The Fourier Series for ¢, (1, 0) can be derived
as follows:

Fork = 0:
Bj+1

1 nt .
- : . . —i00
Co =5 ] sm( - (o a])> e™100dg =

%

Co = [1 — cos(nm)], n€Z (A1.3.6)

Y
2nm?
nt nt

since y = Bj+1 — @. The term X,rv 4+ Y,r v has been neglected because it is
constant and will be added in the end.

Fork # —:
Y
Bj+1
1 nm .
= in[— (0 —a;) |e"k0do =
Ok =5 sm( y ( a])) e

b
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\% [cos(nﬂ) cos(kBj+1) — cos(ka]-) — i(cos(mr) sin(kBj+1) — sin(kaj))]

= — (A1.3.7)
2m (1 - “2—“2)
v?k
Therefore:
HTH [cos(nn) cos(kBj+1) — cos(kocj)]
ax = 2Re(cy) = > (A1.3.8)
n2m
n(kz —— )
Y
HTH [cos(nn) sin(kBj+1) - sin(ka]-)]
Bk = —ZIm(ck) = P (A139)
n2m
n(kz —— )
Y
Fork=+-—:
Y
Bj+1
1 nm .
Cx = ﬁ f sin (7 (9 - (X])) e_‘kede =
%
Cx = ——(sin(Ka; ) + 1 cos( ka; 3.
= (sin(kay) + i cos(iky (A13.10)
Therefore:
ai = 2Re(cy) = —lein(kaj) (A1.3.11)
bx = —2Im(cy) = cos(ka,) (A1.3.12)

So, ,(1,0) can be expanded in Fourier Series in all domains, so as a continuous
function to be derived:

do N .
@,(1,0) = > + Z(ak cos(k6) + by sin(k0)) (A1.3.13)

ag, Ak, bk can be evaluated from the following equations:

nm —nm

N » y(1 - cos(nm)) ( inT Y +Yjr v )

- z z (A13.14)
2
j=1 n=1 nm
nT[ —NnTt

N =® ‘tkn]< nrY + Yjur ¥ >

- z 2 (A13.15)

—
1]

[

=

n=
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nTt —nT

Wknj (X]nrY + Yjor ¥ )

by = zN: i - (A1.3.16)

j=1 n=1
where
nm
v [cos(nTr) COS(kBj+1) - cos(kot,-)] nt
— k +#—
A |2 _ 2T Y A1.3.17
. > (A1.3.17)
- nm
—Esm(kaj) k= v
nm : -
I( = [cos(nm) sin(kB;1) — sin(ke )] nm
k #+#—
~ 12 _ n?m? Y
o = g (A1.3.18)
|y nm
12 cos(koy) k= v

Additionally, ¢4 (1,0) and (ij can be expanded into Fourier Series as follows:

Fork = 0:
1 j+1 Q
0 = _ﬂf [‘p’“ o (6—a;) + ¢ l do +f ' do (A13.19)
Bj
F F
E 4 ol
Co,j =%y +@F's (A1.3.20)

The sum for N slots yields:

N
1
— F
Co = EZ ¢ (y +9) (A1.3.21)
]:

For k # 0, @, (1, 8) can be expanded in Fourier Series as follows:

Bj+1

1 @1 — @ -
o[ (2T g ) 4 oF ) eikodp
ki = 5 ( Y (6—c) +of e

@
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F F
@j+1r. . b5 . .
Ckj = ﬁ licos(kBj+1) + sin(kBj+1)] — ﬁ]k [sin(key) + icos(kay)]

F F
P9, (ﬁ) : Bj+1 +
—ykz lZ sin > sin k—2

+ 2isin (g) cos <k@)l (A1.3.22)

Following the same process, the Fourier Series coefficients for the ferromagnetic
segments ((p]-F) can be calculated:

%

1 _
Cj = 5 (p]Fe_‘kedE) =
Bj
oF
Cij = ﬁ(sin(ka,—) + icos(ko;) — sin(kB;) — icos(kB;) (A1.3.23)

From the sum of the coefficients of ¢, (r, 0) and cp]F in the ferromagnetic segments we
obtain:

N
k 2myk? 2 2

j=1

+ 2isin (g) cos <k%)l (A1.3.24)
Therefore:
N
2(of — @11) ky Bj+1 + o
= 2R = ——— sin|— ) sin| k———— Al1.3.2
ay e(cy) ; p—r sm( >51n< 5 > (A1.3.25)
N
2(¢) — @) (ky B+ + 9
by = —2Im(cy) = ZTsm (7) cos kT (A1.3.26)
J:

Overall, the coefficients a,, ax and by for the expansion of the magnetic potential the
slots, in Fourier Series can be calculated as the sum of the coefficients for

(p2(rj e); (pl(r; e) and (p]F

nm -nm
y(1 — cos(nm)) (Xjnr Y +Yjr ¥ )

N o N
1
== E E E F
o = — o + ._1(y + 8)@; (A1.3.27)

j:]_ n=1 ]
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N

myk?

N oo
Wknj nn —nm
bk = z Z T[n] (Xjnr Y + Y].nr Y )

j=1 n=1
iz(@H@,ﬂl) . (ky> <
+ ) ——————=sin|(—]cos
: myk? 2
=1
where:
(nT[
| ¥ [cos(nTr) cos(kBj+1) — cos(kay)]
n2m?
Tnkj = {l k= — Y?
k—%sin(kaj)
(5 [eos(nm) sin(kB;s.) — sin(kay)]
2T
(*)nkj = k?z — YZ
Y
Ecos(kaj)

- zMsin (g) sin <k—Bj+1 * a]->

2

Bij+1 t q
k 2

(A1.3.28)

(A1.3.29)

(A1.3.30)

(A1.3.31)
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Appendix Al1.4

From the Lorenz force equation:
f=pE+]xB
and from the Maxwell laws:

V-E=L o p=E,(V E)
Eo

and:
0E
V-B= Ho]"‘uoanz>

_UxB _ GE
T o ° ot

J

From Eq.(A1.4.1)-(A1.4.3) the following relation is obtained:

1 JE
f=Ey(V-E)E+—(VXB)XxB—E;,—XxB
Ho at

Furthermore:

a(ExB)—aE><B+E><aB:’
ot T ot

a(E><B)—6E><B E X (VXE)
at ot

Therefore from Eq.(A1.4.4) and Eq.(A1.4.5):

1 )
f=EO(V-E)E+H—(V><B)xB—EOa—t(ExB)—EOE(VxE)=>
0

(A1.4.1)

(A1.4.2)

(A1.4.3)

(A1.4.4)

(A1.4.5)

— 1 2 1 1 2
£ = E,|(V-E)E+ (E- V)E - SVE ]+u—0[(V-B)B+(B-V)B—§VB]

)
~Eo> (EXB)

(A1.4.6)
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Appendix Al1.5

The divergence of the Maxwell Stress Tensor on the i component is:

o 1. .\, 1 1,
. 0

i=r,0,z i=r,0,z
o 1
1 1
+ u—[(v -B)B; + (B V)B; — EVJ'BZ] (A1.5.1)
0
And as a consequence:

(V-T) = E, [(V-E)E +(E-V)E —%VEZ]

1 1
+ ll_ [(V ‘B)B+ (B-V)B — EVBZ] (A1.5.2)
0
Therefore:
o aSs
f=V-T-— Eouoa (A1.5.3)

The force can be calculated as:

as
S dv (A1.5.4)

szfdvzfv-?dV—Eouof
\% \% \% t

Using the Gauss theorem of divergence:

o as
Since the model isin 2D and E = 0. As a consequence, the Maxwell Stress Tensor is:
T = ! B;B ! B28 Al.5.6
ij—uoij 21, ij (AL.5.6)
where:
B2 = B2 + B} (A1.5.7)
Hence, the Maxwell Stress Tensor can be written as:
2
[B? — Bg 1
s_ 11772 B:Bo |
T=— 5 5 (A1.5.8)
Ho Be - Br
BgB, >
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Appendix Al1.6

The calculation of the torque in the inner and outer rotor respectively consists of two
sums of integrals in the following form:

21_[ (o) E [ee)
I = p3 f {Z P, cos(nB) + Q,, sin(nb) + ﬁ} {Z R, sin(n®)
0 =1 n=1

+ S, cos(ne)} de (Al1.6.1)
Since:
N | Eo
B, = —lp {Z P, cos(nB) + Q, sin(nb) + 1—} (A1.6.2)
] nr,
Bg = — 1 {z R, sin(nB) + S, cos(ne)} (A1.6.3)
n=1
The above integral can be simplified to:
[ = moLr? Z(Pnsn +Q.Ry,) (A1.6.4)
n=1
since:
2T
f cos(nB)sin(m6)d6 =0 Vn,m (A1.6.5)
0
2m 0, n#m
f cos(nB) cos(mb) d6 = { ’ (A1.6.6)
0 T, n=m
2T
0,
] sin(n6) sin(m0) do = { n#m (A1.6.7)
0 M, n=m
2T
f [cos(nB) +sin(nB)]d6 =0 Vn (A1.6.8)
0

Therefore the analytical form of M;,(r,) is:

o]

Min (rz) = T[|10LI‘% Z [ (Pn,outsn,in + Qn,outRn,in) + (Pn,insn,out

n=1
+ Qn,ian,out)] (A1-6-9)
where:
Phin = n(En,inrg_1 - Fn,inrz_n_l) (A1.6.10)
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— -1 -n-1
Qn,in - n(Gn,inrg1 - I_In,inrzn )

Rn,in = _n(En,inrg_1 + Fn,inrz_n_l)
Sn,in = n(Gn,inrg_1 + Hn,inrz_n_l)
l)n,out = n(En,outrg_1 - Fn,outrz_n_l)
Qn,out = n(Gn,outrg_1 - Hn,outrz_n_l)
Rn,out = _n(En,outrg_1 + l:"n,outrz_n_l)

— n—-1 -n-1
Sn,out - n(Gn,outrz + Hn,outrz )

(A1.6.11)
(A1.6.12)
(A1.6.13)
(A1.6.14)
(A1.6.15)
(A1.6.16)
(A1.6.17)
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2 Halbach-Array Coaxial Magnetic Gears

CMG performance can be further improved if the permanent magnets (PMs) are
placed in a specific arrangement called Halbach-array [2.1]-[2.4]. Halbach-arrays can
create a strong magnetic field [2.5] due to their inherent capability to generate one-
sided magnetic field [2.6]. The Halbach-array CMG (HAL-CMG) drive has higher torque
density, superior dynamical response under load and good self-shielding
magnetization [2.7]-[2.10]. However these drives, insert further parameters in the
optimization process, making the problem of increasing the torque density
computationally intensive. Therefore, an analytical calculation of the torque would
significantly reduce the computational cost required to achieve optimal torque
density for a given configuration of the HAL-CMG drive and in general would facilitate
the design of application-specific HAL-CMG drives.

In the present chapter a novel analytical 2D model for the calculation of the
magnetic potential for every rotation angle, geometry configuration and constitutive
parameters of the magnets of the HAL-CMG drive has been derived. The applied
torque on the two rotors and the torque ripple were calculated analytically from the
Maxwell Stress Tensor. A case study was performed for a 4 pole pair inner rotor and a
10 pole pair outer rotor in a standard CMG and an optimised HAL-CMG with the same
geometrical and parameters of the PMs. The stall torque and the amplitude of the
harmonics contributing to the torque ripple were calculated and compared for the
two drives. In addition, the obtained torques were verified with Finite Element
Analysis (FEA). The stall torque of the HAL-CMG was 14.3% higher than the standard
CMG’s while the amplitudes of the torque contributing harmonics which generate
torque ripple were slightly reduced.

2.1 Analytical model of Halbach-array CMG drives

outer rotor

Figure 2.1: Halbach-array Coaxial Magnetic Gear
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The three components of the HAL-CMG are: the inner rotor, the outer rotor and the
flux modulator ring. As shown in Fig.2.1, rq,T,,T3,T4,Ts, g, oy are the radii of the
inner iron yoke, the inner PMs, the inner and the outer side of the modulator ring, the
outer PMs, the outer iron yoke and the external side of the HAL-CMG respectively. In
addition, o; and B are the right and left border of the jth ferromagnetic segment. The
basic geometric parameters of the HAL-CMG are therefore similar to the standard
CMG. The different colors of the PMs represent the different orientations of the
magnets.

In Fig.2.2, a linear analogue of the HAL-CMG shown in Fig.2.1 with PMs only on the
inner rotor is presented.

Region IIT
B N e e
Region II

Figure 2.2: Linear analogue of a section of HAL-CMG (one pole-pair)

The magneticinduction of the HAL-CMG is obtained as a superposition of the magnetic
inductions generated by the PMs of the inner and outer rotor separately. In order to
obtain an analytical solution, infinite permeability of the iron yokes and the
ferromagnetic segments is assumed, similar to the standard CMG.

The only difference in terms of modelling between the standard and Halbach-array
CMG is at the magnetization vector of the PMs and as a result at the general solution
of the Region I for the magnetic potential. The magnetization vector in this case can
be written as:

M = M,r + My0 (2.1)

In order to obtain the special solution, the magnetization distribution should be
expressed in an analytical and continuous function. M, (radial) and Mg (tangential)
magnetization distributions are presented in Fig.2.3 and Fig. 2.4.
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B, cosy
Ho
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Ho

B, cosy
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B, cosy
Ho

Figure 2.3: Radial magnetization distribution in Region I

2m

«—ah%ﬁ’h }/h ’Gh ah—)»-— ﬂ — h% h—h‘ 9

Figure 2.4: Tangential magnetization distribution in Region I

where p is the number of pole pairs, B, is the residual magnetism of the PM and
ay, Br, Yn, W are the PMs’ angles of Fig. 2.2.

The magnetization can be described in an analytical and continuous form with Fourier
series as shown in Appendix A2.1. Therefore, the magnetization can be obtained from:

M.(0) = z ay cos(pk(e - 90)) + by sin(pk(G - 60)) (2.2)
k=1

Mg(0) = z dy cos(pk(G — 90)) + ey sin(pk(e — 90)) (2.3)
k=1
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where 0 is an initial phase angle and

ay = %{ [— sin(kpay,) — simb(sin(kp(ah + Bh)) — sin(kpah))
+ siny(sin(kp(an + 2By + vn)) — sin(kp(op, + Bn + 1))
+ sin(kp(Zoq1 + 2B, + Yh)) - sin(kp(ah + 2B + Yh))
+ siny(sin(kp(2ay, + 3By + vn)) (2.4)
— sin(kp2ay, + 2B + vn)))
— siny(sin(kp(2ay, + 4By, + 2y1))
— sin(kp(2ay, + 3By, + 2yn)))]

Bm
by = — [— cos(kpay,) — cos(0)

Tk
— sinyi(cos(kp(ay, + Bp)) — cos(kpay))
+ sintp(cos(kp(och + 2B + Yh))
— cos(kp(an + Br +vn))) + cos(kp(2ay, + 2By + Yn))
— cos(kp(oy, + 2By + vn))
+ siny(cos(kp(2an + 3Bn + VYn))
— cos(kp(2ay, + 2Bp +vn)))
— siny(cos(kp(2ay, + 4By + 2yn))
— cos(kp(Zah + 3B, + 2yh)))]

[cosw(sin(kp(an + Br)) — sin(kpay))

(2.5)

Bm
Tk

dk=

+ sin(kp(ay, + B + vn)) — sin(kp(ay, + Bp))

+ cosy(sin(kp(ay + 2By + vn)) — sin(kp(oy, + Br + Y1)
— cosy(sin(kp(2ay, + 3Bn + Y1)

— sin(kp(2ay, + 28y, +v1))) — sin(kp(2ay, + 38y + 2yn))
— sin(kp(2ay, + 3By + Yh))

— cosy(sin(kp(2ay, + 4By + 2y1))

— sin(kp(2ay, + 3Bn + 2yn)))]

(2.6)
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T[ur:k [COSLL'(COS(kp(ah + Bh)) - Cos(kpah))

+ cos(kp(ap, + Bh + yn)) — cos(kp(ap, + Bp))

+ cosy(cos(kp(an + 2Bk + vn))

— cos(kp(ay, + Bn + vn)))

— cosy((cos(kp(2ay + 3By + vn)) (2.7)
— cos(kp(2ay + 2By + vn))) — cos(kp(2ay, + 3By + 2yn))

— cos(kp(2ay, + 3B, + vn))

- cost(cos(kp(Zoch + 48y, + 2yh))

— cos(kp(2ay, + 3By + 2yp)))]

ek = —

Therefore the divergence of the magnetization vector in a Halbach-array is:

divM 190
o [;a( r) + %(Me)] (2.8)
Which yields:

divM - _
T <; (ag cos(pkB,) — by sin(pk6,)) cos(pko)
+ (ak sin(pk6,) + by cos(pk0,)) sin(pko)]
+ Z{dk [—pk sin(pk6) cos(pkO,) (2.9)
+ pk cos(pke) sin(pkoy)]

+ ex[pk cos(pkb) cos(pk6,) + pksin(pko) sin(pkeo)]})

Therefore, the PDE in Region I is:

1 1 divM (2.10)
Qrr +;(Pr +r_2(P66 = ™

The special solution will have the following form:
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@s(r,0) = > {Wi(r)[(ax cos(pkb,) — by sin(pk8,) + dypk sin(pk6,)
k=1
+ expk cos(pk8,)) cos(pko) (2.11)
+ (ay sin(pk6,) + by cos(pkb,)
— dy pkcos(pk8,) + ex pksin(pk6,)) sin(pk6)]}
Therefore, the PDE takes the following form:
Wi (1) + =Wy (r) = —5— Wi (r) = — (2.12)
r r My
which yields that:
(— T if pk # 1
—_—, 1
Jwa=py 7P
Wi(r) = | Anr L (2.13)
, 1 = =
\ 2, P
Therefore, the general solution in Region I is:
¢@'(r,0) = Z[(Anrn + Byr™
n=1
+ W, (r)(a, cos(nb,) — b, sin(nb,) + d, nsin(nbd,)
+ e, ncos(nfy))) cos(nd) (2.14)
+ (Cnrrl +D,r "
+ W, (r)(a, sin(nb,) + b, cos(nb,)
—d, ncos(nb,) + e, n sin(neo))) sin(ne)] + Aolnr + B,
where:
r
_ ifn =pk, k=1,3,5,...
W _ ur(l - nZ) P
n(r) = rlnr . - (2.15)
, ifn = =
2p, P

The remaining of the methodology is identical to the one followed for the standard
CMG. A linear system of equations is formed and the coefficients are calculated.
Therefore, an analytical method for magnetic induction calculation in Halbach-array
CMG drives have been developed. Then, following a similar process as in Chapter 1
the torque can be calculated in every angle of rotation of the two rotors.
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2.2 Optimization of HAL-CMG and comparison with standard CMG

To illustrate the improvement in the torque density that is achieved with the use of
HAL-CMG drives, a case study was performed for a standard CMG and a HAL-CMG
drive with the same geometrical and constitutive parameters of the PMs as it is
presented in Table 2.1.

Table 2.1: Geometrical Parameters

Pin 4
Pout 10
r; [mm] 80
r, [mm] 100
r; [mm] 105
ry [mm] 125
rs [mm] 130
r¢ [mm] 150
Iout [MM] 170
L [mm] 100
6 [deg] 15
B, [T] 1.44

The parameters of the Halbach-array for the inner and outer rotor (described in
Fig.2.2) resulted from optimization of the stall torque and are presented in Table 2.2.
The optimization process did not require an advanced technique since with the
proposed model, the stall torque can be obtained analytically for any Halbach-array
arrangement in the two rotors with a low computational cost. It should be noted that
the optimal arrangement of the outer rotor, in the performed case study, is the
standard CMG since the angles 3;, and y,of the outer rotor are equal to zero.

Table 2.2: Parameters of the HAL-CMG drive

Inner Rotor
ay, [deg] 20
Br [deg] 12.5
Yn [deg] 12.5
Y [deg] 60
Outer Rotor
ay, [deg] 18
Bn [deg] -
Yh [deg] -
Y [deg] -
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In Fig.2.5 the applied torque in the two rotors is presented for the two drives for the
case of fixed inner rotor and rotating outer rotor.

HAL inner| |
HAL outer

— — —standard inner
— — —standard outer

1500

1000

500

Torgue [Nm)]

-500 rf

-1000

0 50 100 150 200 250 300 350 400
8

out
Figure 2.5: Comparison of the torques applied on the inner and outer rotor in the
standard and the HAL-CMG

It can be observed that there is a significant improvement in the torque density with
the use of HAL-CMG. More specifically, the stall torque of the HAL-CMG was 14.3%
higher than the standard CMG'’s.

In Fig.2.6 the induced torques in the two rotors of the HAL-CMG where verified with
FEA (ANSYS Maxwell). The adopted mesh type used in the FEA model is triangles with
automatic meshing method that refines the mesh until convergence. A difference of
1-1.5% was observed between the analytical and FEA model, however, the analytical
model was two orders of magnitude faster.

innerrotor * FEAinner| |
outerrotor + FEA outer

1500

1000 |

Torque [Nm]
o
8

o
.

-500 -

-1000 [

0 50 100 150 200 250 300 350 400
out

Figure 2.6: Torque in the two rotors of the HAL-CMG as calculated from the
analytical model and FEA

Therefore, with the developed analytical model an accurate and fast calculation of
torque in the two rotors of the HAL-CMG is achieved. Furthermore, with the
developed model the torque ripple generated from the torque contributing harmonics
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can be determined, a result that cannot immediately be obtained from FEA since only
the resulting torque is calculated (sum of the contributing harmonics). In order to
calculate the torque ripple from FEA it is necessary to perform a Fourier transform.
The process would require additional computational time and several FEA simulations
at different angles of rotation, while with the analytical model a single calculation is
sufficient to determine the torque ripple.

The amplitudes of the torque-contributing harmonic terms of the two rotors for the
standard and Halbach-array CMG are presented in Table 2.3.

Table 2.3: Amplitude of contributing harmonics

Amplitude of inner rotor harmonic (Nm) Amplitude of outer rotor harmonic (Nm)
Standard CMG HAL-CMG Standard CMG HAL-CMG

£, 333.81 381.89 €10 832.98 952.95

£y 1.25 1.09 €30 3.26 2.88

€20 0.02 0.001 €50 0.05 0.002

Due to the higher harmonics torque ripple is observed in both drives. The torque ripple
of the HAL-CMG is 0.3% which is slightly lower than the torque ripple observed in the
standard CMG drive. Therefore, with the use of HAL-CMG the stall torque is increased
compared to the standard CMG drive without comprising the other operational
characteristics.
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Chapter 2-Conclusions

In the present chapter a novel analytical 2D model was developed for the calculation
of the magnetic potential of HAL-CMGs for every angle of rotation, geometry
configuration and magnet parameters. The applied torque in the two rotors was
calculated analytically from the Maxwell Stress Tensor. The induced torques in the two
rotors of the HAL-CMG were verified with FEA. A case study was performed for a 4
pole pair inner rotor and a 10 pole pair outer rotor for a standard CMG and an
optimised HAL-CMG with the same geometrical and constitutive parameters of the
PMs. The stall torque of the HAL-CMG was improved by 14.3%. In addition, the torque
ripple with the use of Halbach-arrays was slightly reduced compared to the standard
CMG. Therefore, from the performed case study it can be observed that the HAL-CMG
offers significant increase in torque density which is in accordance with other results
in the literature. The developed model could be a valuable design tool for the
optimization of HAL-CMGs since the applied torque in the two rotors can be calculated
analytically thus reducing significantly the computational cost. Furthermore, the
torque ripple of the HAL-CMG due to the torque contributing harmonics can be
calculated analytically a result that cannot immediately be obtained from FEA since a
Fourier transform is required that would increase the computational cost and FEA
simulations.
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Appendix A2.1

The period of magnetization is:

T, = = (A2.1.1)
Therefore the magnetization vector of the HAL-CMG can be expressed as:
+o00
M, () = Z CemiZmkhod —
Mg (0) = Z dy cos(pkO) + ey sin(pk6) (A2.1.2)
k=1
where:
dk = 2Re(ck) (A213)
ex = —2Im(cy) (A2.1.4)
If k=0:
p 0 _
Co = o Mge"d6 = ¢, =0 (A2.1.5)
To
If k+# 0:
ap+Bn
& = ﬁ[ f BmCOSW _ipke 4q
2m Ho
Oh
ap+Bh+Yh ap+2Bh+Yh
+ J B—m e Pkbqg + J —Bmcosw e Pkbqg
Ho Ho
ap+PBh aph+Bh+Yn
20h+3Bh+Yh 20h+3Br+2Yh
_ f Bmcosy o-iPk8 49 f Bm e—iPKO 4p
Ho Ho
20h+2Bh+Yn 20h+3Bh+Yn
20h+4Br+2Yh
B, cos .
— m—q’e-lpkede (A2.1.6)
20h+3Bh+2Yh Ho

From Euler identity:
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Bm

Ck = 2ok [COSL|J (sin(kp(ah + By)) — sin(kpay,)

+i(cos(kp(oy, + Br)) — cos(kpcxh))) + sin(kp(o, + Bh + vn))
— sin(kp(ay, + Br))

+ i(cos(kp(ap + B +vn)) — cos(kp(a, + Br)))

+ cosys (sin(kp(ah + 2By + vn)) — sin(kp(an + B + v1))

+ i(cos(kp(oy, + 2By + vn)) — cos(kp(ay, + By + yh))))

— cosys (sin(kp(2ay + 3By +yn)) — sin(kp(2ay + 2By +yn))
+ i(cos(kp(2ay, + 3B + yn)) — cos(kp(2ay, + 2By, + yh))))

— sin(kp(2oy, + 3By + 2yn)) — sin(kp(2ay, + 3Bk + vn))
+i(cos(kp(2ay, + 3Bk + 2yn)) — cos(kp(2oy, + 3By +vn)))

— cosys (sin(kp(Zah + 4By, + 2yp)) — sin(kp(2ay, + 3Bn + 2yn))
+ i(cos(kp(2ay, + 4By + 2yn))

— cos(kp(2ay, + 3By + 2yh))))] (A2.1.7)

Therefore, di and ey are:

Bm : :
dx = 2Re(cy) = ok [cosw(sm(kp(ah + Bh)) — sm(kpah))

+ sin(kp(ay, + Bn + yn)) — sin(kp(ay, + Bp))

+ cosy(sin(kp(ay, + 2B + yn)) — sin(kp(oy, + Br + Yn)))

— cosy(sin(kp(2ay, + 3By + vn)) — sin(kp(2ay, + 2B, + yn)))

— sin(kp(2oy, + 3By + 2yn)) — sin(kp(2ay, + 3Bk + Y1)

— cosy(sin(kp(2ay, + 4By + 2yn))

— sin(kp(2ay, + 3B + 2vn)))] (A2.1.8)
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ex = —2Im(cy)

Bm

i [cosw(cos(kp(ay, + Br)) — cos(kpay,))

+ cos(kp(ay, + Br + Yn)) — cos(kp(ay, + Br))

+ cosy(cos(kp(ay, + 2By + yn)) — cos(kp(oy, + Bn + v1)))

— cosy(cos(kp(2ay, + 3By + vn)) — cos(kp(2ay, + 2By + Yn)))
— cos(kp(2ay, + 3By + 2yn)) — cos(kpRay, + 3B + Y1)

— cosy((cos(kp (20, + 4By + 2yn))

— cos(kp(2ay, + 3B + 2yn)))] (A2.1.9)

Similarly, M, can be written as:

(o]

M.(0) = Z ay cos(pk0) + by sin(pko) (A2.1.10)
k=1

Where oy and by can be calculated similarly:

Bm

ok [— sin(kpay,) — siny(sin(kp(ay, + Bp)) — sin(kpay,))

+ siny(sin(kp(oy, + 2By + yn)) — sin(kp(oy, + Br + Yn)))

+ sin(kp(2ay, + 2By, + vn)) — sin(kp(ay, + 2B, + vn))

+ siny(sin(kp(2ay, + 3By + vn)) — sin(kp(2ay, + 28, + vn)))

— sinLIJ(sin(kp(Zah + 4B, + 2yh))

— sin(kp(2ay, + 3B + 2vn)))] (A2.1.11)
by = —2Im(cy)

a = 2Re(cy) =

=— nur:k [— cos(kpay,) — cos(0)

— sinkp(cos(kp(ah + Bh)) - cos(kpah))

+ sinLIJ(cos(kp(ah + 2B, + yh)) — cos(kp(och + By + yh)))

+ cos(kp(2ay, + 2By + vn)) — cos(kp(ay, + 2By + vn))

+ sinLIJ(cos(kp(Zah + 3B, + yh)) — cos(kp(Zoch + 2B, + yh)))

— sinLIJ(cos(kp(Zah + 4B, + 2yh))

— cos(kp2ay, + 3B + 2yn)))] (A2.1.12)

In case of an initial phase angle 0, of the inner rotor, the Fourier Series can be

written as:
[ee]

M,(6) = Z ai cos(pk(8 — 89)) + by sin(pk(8 — 8,)) (A2.1.13)
k=1

M, (6) = Z di cos(pk(8 — 85)) + ey sin(pk(® — 8,)) (A2.1.14)
k=1
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3 Dynamical response in coaxial magnetic gears

During acceleration, slippage phenomena could occur due to absence of contact
between the two rotors of the magnetic gears. The dynamical phenomena during
transient operation should be investigated in order to determine the transmission
error [3.1]-[3.3]. The dynamical equations in coaxial magnetic gears consist of a
system of two non-linear differential equations [3.4] that cannot be solved
analytically. As a consequence, iterative methods are used in order to determine the
dynamical response of the system that could increase the computational cost in an
optimization processes. When acceleration and applied torque are small the system
will converge to a solution depending on the equivalent gear ratio. However, when
the values of acceleration and applied torque are high the system will diverge and the
dynamical behaviour will not be depending on the gear ratio of the magnetic gear. A
process that could determine the maximum operational characteristics (acceleration
and torque) without the requirement for a numerical solution of the system of
equations would be beneficial to researchers and the industry.

In the present work, an analytical non-dimensional condition will be derived that
can determine the convergence/divergence of the system under constant
acceleration and applied torque. A set of case studies will be performed with arbitrary
inputs of inner rotor acceleration and applied torque in the outer rotor. A prediction
on convergence/divergence of the system will be made from the developed non-
dimensional condition. The dynamical equation of the outer rotor will be solved
numerically in order to verify the prediction of the model. Finally, since in most
applications it would be useful to restrict the transmission error to a certain value the
derived non-dimensional condition could be modified in order to calculate the
maximum operational characteristics that yield the allowed transmission error. A case
study was performed where for a given acceleration of the inner rotor the maximum
applied torque on the outer rotor was calculated so that the transmission error of the
system did not exceed a certain value.

Furthermore, the case of acceleration with ripple has been investigated. It was
demonstrated that during acceleration with ripple under constant applied outer load,
the system showcases a chaotic behaviour similar to the driven pendulum [3.5]-[3.6].
A case study for the dynamical operation of coaxial magnetic gears under constant
applied outer load and acceleration with ripple was performed. Specifically, a
thorough analysis on the frequency of the ripple has been conducted. It was observed
that when the ripple frequency was slightly lower than the frequency of the oscillation
under steady acceleration, the system could potentially diverge even if the
acceleration of the system was lower than the critical value. Furthermore, it was
shown that a smaller acceleration with a given ripple frequency could lead to
divergence while a higher acceleration with the same ripple frequency could not, a
phenomenon that emphasizes the significance of the frequency ratio. Finally, it was
observed that the system could appear to have a periodic-like behaviour for a
considerable time of operation before it diverges which showcases the chaotic
behaviour of the system.

With the present work, a detailed non-dimensional model has been derived that
could be a useful tool for determining the stability of coaxial magnetic gears without
the requirement of numerical solution of the governing equations. In addition, some
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interesting observations are made regarding the chaotic behaviour of the dynamical
response of coaxial magnetic gears during acceleration with ripple.

3.1 Non-dimensionalization of the governing ODEs

In coaxial magnetic gears the system of the dynamical equations of the inner and outer
rotor has the following form [3.2]-[3.4]:

Iinéin + Z E(Zk—l)pin,inSin[ (2k — DpinBin + (2k — D)poutBout] = Tin (3.1)
k=1
Ioutéout + Z E(Zk—l)pout,outSin[ (Zk - 1)pinein + (Zk - 1)pouteout] = Tout (3_2)
k=1

where  (§zk—1)p;,in) aNd  (§k-1)poyrout) are the amplitudes of the torque-
contributing harmonics that can be calculated analytically for a given configuration of
a coaxial magnetic gear [3.4], while (Tj,) and (T,y) are the applied torques in the
inner and outer rotor respectively. Neglecting the higher order harmonics (torque
ripple) that have considerably lower amplitude (lower than 1%) [10], Eq.(3.1)-(3.2)
take the following form:

[inOin + = Sin(PinOin + PoutBout) = Tin (3.3)
out
Ioutéout + Msin(pinOin + PoutBout) = Tout (3.4)

where (M) is the stall torque (first contributing harmonic) of the outer rotor [3.4],
[3.7].

In general, magnetic gears are prone to slippage during acceleration. Therefore,
without loss of generality, we will investigate the response of the outer rotor under
acceleration a of the inner rotor. As a result, Eq.(3.4) could be written in the following
form:

) o1 (3.5)
loutOour + MSln[Epinat2 + pouteout] = Tout

Eqg.(3.5) is a non-linear differential equation that describes the dynamical response of
the outer rotor of the magnetic gear, under constant applied torque and acceleration
in the inner rotor. Eq.(3.5) cannot be solved analytically and its solution can only be
determined numerically. However, it would be useful to know whether the solution
will converge or if it will diverge without the requirement for numerical calculation of
the solution of the system.

The transmission error of the system (x) is defined by equation (3.6.A).

1 (3.6.A)
X = Epinatz + PoutBout
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As a consequence, it yields that:

X pind (3.6.B)
Oout =——
pout pout

and therefore Eq.(3.7) is derived:

| inloutd
out % + Msinx = Tout + Pinlout (3.7)
pout pout

As a consequence, Eqg.(3.7) could be written in the following form:
% + wgsinx = wi(t +y) (3.8)

where (1) and (y) are non-dimensional constants defined as:

— pinlouta 3.9.A
poutM ( . )
Tout
y=—"2 (3.9.B)
and
2 _ Mpout
wo =7 — (3.9.C)
out

By multiplying Eq.(3.8) with (X) and differentiating with respect to time we obtain:

d /1 d
— [ —%2 — (2 = — 2
e (2 X wocosx) T (wg(t+y)x+0) (3.10)

In general, the initial condition of the system for t=0 could be the case where the outer

load (T,,:) is applied and the coaxial magnetic gear operates under constant

conditions without any kind of oscillations or ripple. As a result, the initial conditions
o . 1 (T . .

for the transmission error (x) are: x(0) = sin™?! (OTM) = sin"tyand x(0) = 0.

Therefore, applying the initial conditions to Eq.(3.10) we obtain:

1
EXZ — w3cosx = wi (T +y) x — wi cos(sin"1y) — wi(t+y)sin~ly (3.11)

It would be useful to investigate the stability of Eq.(3.11) when the acceleration (a)
(and consequently the non-dimensional constant (1)) is applied. For every different
initial condition x(0) a different maximum acceleration can be applied to the system.
If the acceleration exceeds the critical value, the system will diverge and the
transmission error (x) will tend to infinity.

The fixed points of the system can be obtained from the solution of Eq.(3.5) for X = 0:
x' =sin"(t+vy) (3.12.A)

x* =m—sin"}(t+7Y) (3.12.B)
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The fixed point (x*), is the critical point for the stability of the system. If the
transmission error exceeds (x*) then the system will diverge. Therefore, a criterion
could be formed [3.8] for the stability of the system as follows, since x? > 0:

cosx* + (t+y) x* — cos(sin"ly) — (t+vy)sin"ty >0 (3.13)

By applying different initial conditions, the maximum acceleration (a) and as a
consequence the maximum non-dimensional constant (t) can be calculated
numerically from Eq.(3.13). In Fig.3.1 the maximum non-dimensional constant (t) and
the maximum sum of (y + 1) is presented with respect to (y).
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Figure 3.1: Maximum non-dimensional acceleration (t) as a function of the initial

non-dimensional applied load (y).

It can be observed, that as expected when the outer applied load (T,,) is increased
the maximum acceleration that can be induced to the system is reduced. In addition,
in the limit case where the applied load (T,,) is equal to the stall torque (M) and thus
Yy = 1, no acceleration can be applied to system. However, the maximum sum of
(y + 1) is increases as the outer applied load (T,,.) is increased. Therefore, from
Eqg.(3.11) and Fig.2 the stability of the system can be determined for any given non-
dimensional constant (y) and (7).

In general, however the sum of (y + T) will be lower than the critical case derived
from Eq.(3.11). In that case, the system will oscillate between the initial condition x(0)
and maximum transmission error value (x,ax) that can be calculated from Eq.(3.11)
by applying the values of (y) and (t) and letting x = 0. The equation could then be
solved numerically in order to calculate the (x,,) value.

When the system oscillates between the x(0) and (X,.x) the period of the system
could be determined from Eq.(3.11) as follows:

d
d_)t( = \/E(Do\/COSX + (T + Y) X — COS(Sin_l Y) _ (T T Y) sin-1 y (3.14.A)

Eqg.(3.14.A) could be written to the following form:
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dx (3.14.B)

dt =
\/Eooo\/cosx + (t+vy)x—cos(sin"ly) — (t+y)sin~ly

Integrating Eq.(3.14.B) from x(0) and (x,4x) Which is equal to half of the period (T,),
we can obtain the period of the oscillation from Eq.(3.15)

_ \/E Xmax dx
Wo Jx(0) \/COSX + (t+vy)x—cos(sin"ly) — (t+y)sin~ly (3.15)

To

The integral of Eq.(3.15) can only be solved numerically. The frequency of the
oscillation can be obtained from f, = 1/To'

When the amplitude of the oscillation is increased (xy,ax — X(0)) the period of the
system is increased and as a consequence the frequency (f,) is decreased.

The minimum period of the oscillation is obtained when no external load is applied
(y = 0) and a very small acceleration is applied to the system (t — 0). The period
calculation for this case is shown in Appendix A3.1.

3.2 Modelling for acceleration with ripple and chaotic behaviour

It is common for power transmission systems to exhibit ripple during acceleration. We
will investigate the case where the acceleration is of the following form:

a(t) = a(l + esin(Zﬂft)) (3.16)

where (a) is the nominal acceleration, (€) is the ripple of the acceleration (as a
percentage) and (f) is the frequency of the ripple. A similar to Eq.(3.8) non-
dimensional form can be obtained:

% + wisinx = wi(t +v) + wietsin(2mft) (3.17)

Eg.(3.17) has a similar form to the driven pendulum that exhibits chaotic behaviour
[3.5], [3.6] and could be written in the following form as a system of a three-
dimensional first order ordinary differential equations:

vV = —wisinx+w3 (T + y) + wietsing (3.18.A)
x=v (3.18.B)
o = 2mf (3.18.C)

The system of Eq.(3.18.A)-(3.18.C) could exhibit chaotic behaviour. It is interesting to
investigate the behaviour of the system for various frequencies of the acceleration
ripple (f), especially for the case when the frequency of the ripple is near the
frequency of the oscillation of the system (f,) under steady acceleration as calculated
from Eq.(3.15).
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3.3.1 Verification of the stability criterion and discussion

In order to validate the developed model a case study was performed with the
parameters presented in Table 3.1, while the permanent magnets used are Nd-Fe. The
stall torque can be obtained following the methodology described in [3.4]. In addition,
the torque ripple was also calculated and equal to 0.49 Nm which is lower than 0.2%
of the stall torque and therefore the assumption of neglecting the torque ripple is
justified.

Table 3.1: Geometrical parameters

Pin 8
Pout 32
r, [mm] 80
r, [mm] 100
r; [mm] 105
ry [mm] 125
rs [mm] 130
I'e [mm] 150
Iout [MM] 170
6 [deg] 5
L[mm] 100
M [Nm] 270
Iout [kgm?] 0.64748

The following two cases presented in Table 3.2 were considered in order to
demonstrate the validity of the developed criterion. The critical value for convergence
ist+y <0.724611

Table 3.2: Performed case studies-results

rad Theoretical  Simulation
a[S_Z] Tout[Nm] Ty prediction result
Casel 1208.64 0 0.724610 Converges  Converges
Case 2 1208.66 0 0.724612 Diverges Diverges

The transmission error for the two is presented in Fig.3.2 by solving numerically Eq.(8)
in Simulink. For the numerical solution of the Eq.(3.8) a time step of At = 1077s is
used.
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Figure 3.2: Transmission error in cases 1-2 of Table 3.2.
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In Fig.3.2a and Fig.3.2b the transmission error for Case 1 and Case 2 is presented. The
two cases represent a system of an accelerating inner rotor without an applied torque
in the outer rotor. In Case 1 the acceleration is lower than the critical value and
therefore the system will converge depending on the gear ratio. A transmission error
with an oscillatory behaviour of a constant amplitude will be present in the response
of the outer rotor. However, when the acceleration is higher than the critical value the
system will diverge as shown in Case 2.

Finally, the maximum operational characteristics that yield a transmission error within
a certain limit can be calculated. The maximum operational characteristics could be
easily obtained from Eq.(3.11) where (x) will take the value of the transmission error
limit. For the parameters of the case study if the transmission error should be confided

at x = 10° then the stability equation yields: Tt +y < 0.08704.

If no outer load is applied then the maximum acceleration that can be induced in the
inner rotor without the transmission error exceeding 10° is: a = 145.18 rad/s?.

11 T T T T T T

AN

transmission error (deg)

IAREARRARE

0 0.05 0.1 015 02 025 03 035 04 045 05
Time (s)

Figure 3.3: Transmission error for T,,; = 0 Nm and a = 145.18 rad/s?.

In Fig.3.3 the transmission error for Ty, = 0 Nmanda = 145.18 rad/s? is presented.
It can be observed that the transmission error does not exceed 10 degrees.

3.3.2 Chaotic behaviour and discussion

A different case study presented in Table 3.3 is considered to showcase the chaotic
behaviour during acceleration with ripple.
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Table 3.3: Geometrical parameters

Pin 4
Pout 10
r, [mm] 28
r, [mm] 33
r; [mm] 375
ry [mm] 47.5
rs [mm] 51
I'e [mm] 56
Iout [Mm] 70
6 [deg] 15
L[mm] 100
M [Nm] 40
lour [kgm?] 0.020316

Furthermore, the following non-dimensional parameters presented in Table 3.4 are
considered. The maximum non-dimensional acceleration that can be applied to the
system is equal to T = 0.3696 (when £=0) as calculated from Eq.(10). For the
numerical solution of the Eq.(3.8) and Eq. (3.17) a time step of At = 107 s is used.

Table 3.4: Case study parameters

Y 0.5
T 0.34
£ 0.01

In Fig.3.4 the transmission error (x) with respect to time is presented for the case of
steady acceleration (g=0).
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Figure 3.4: Transmission error for steady acceleration (g=0).

In Fig. 3.5 the phase diagram of the oscillation is presented.
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Figure 3.5: Phase diagram for steady acceleration (g=0).
The frequency of the oscillation can be obtained from Eq.(3.15) and is equal to

f, = 14.48 Hz.

The acceleration ripple is applied and the maximum transmission error is determined
for different frequencies of the acceleration ripple. In Fig.3.6 for reasons of clarity,
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when the system diverges the transmission error value is bounded to 200 degrees in
order to showcase the trend of the phenomenon.
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Figure 3.6: Maximum transmission error for different acceleration ripple

frequencies.
It can be observed that the system will diverge when the ratio is between
approximately 0.915 and 0.930 despite the fact that the sum of (y + T + €) is lower
than the critical value as calculated from Eq. (3.11). In addition, it can be observed that
when the frequency of the ripple is equal to (f;) the system does not tend to increase
the maximum value of the transmission error (x) significantly. This phenomenon can
be explained due to the fact that when the system increases its maximum value of (x)
then the period of the system will change according to Eqg. (3.15). Specifically, the
period of the system will increase as we approach higher values of (x) and as a result
the frequency of the oscillation of (x) will decrease. Therefore, even though the ratio
is initially equal to 1, the frequency of (x) (fy) will soon be decreased and the system
will stop being in phase and therefore the oscillation of (x) will be limited to certain
maximum.

However, when the acceleration ripple frequency (f) is slightly lower than the initial
frequency (fy) the system will gradually increase the maximum value of (x) thus
leading to larger period of oscillations and consequently lower (f;,). Therefore, as the
time progresses the frequency (f,) will tend towards the frequency of the
acceleration ripple (f) and could potentially lead to the divergence of the system due
to resonance.

In general the sum of (y + T) should be close to the critical value so that the system
will diverge under acceleration ripple (f). This is attributed to the fact that the
frequency of the oscillation of (x), (fy), changes as the amplitude of the oscillation
increases. Thus, it is difficult to have a resonant frequency for the entire oscillation of
(x) phenomenon when the initial sum of (y + 1) is not close to the critical value.
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In Fig. 3.7 the Poincare sections for different f/f, cases are presented. The sections
are obtained after a simulation time of 30s. Each point at the Poincare sections is
obtained depending on the frequency of the acceleration ripple. Therefore, each point
is obtained every 1/f seconds. It is interesting to notice the behaviour of the section
when the value f/f, is lower than 1 and near the divergence bandwidth.

From Fig. 3.7 the different behaviour of the system with respect to the ratio f/f is
presented. When the value of the ratio f/f; is not close to the divergence bandwidth
(i.e. f/f; =1.07 and f/f, =0.90 case) the Poincare sections appear to be similar to the
phase diagram of steady acceleration case presented in Fig.3.5 which implies that the
ripple of the acceleration does not affect significantly the dynamical response of the
system. However, when the ratio f/f, approaches the divergence bandwidth the
Poincare sections showcase a significant alteration from the phase diagram presented
in Fig.3.5.
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Figure 3.7: Poincare sections for different acceleration ripple frequencies

In Fig.3.8 the transmission error with respect to time is presented for two cases where
the system will diverge. It is interesting to notice that the divergence could occur after
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a significant number of oscillations as shown in the f/f,=0.93 case. The system initially
appears to have a periodical behaviour when suddenly diverges. Even, though an
acceleration that exceeds 20 seconds is not expected during the operation of the
coaxial magnetic gear it is interesting to showcase such phenomenon in order to
further understand the chaotic behaviour of Eq.(3.17).
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Figure 3.8: System divergence for different acceleration ripple frequencies

In Fig.3.9 the maximum transmission error for different non-dimensional acceleration
with respect to the ratio f/f, is presented.
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Figure 3.9: Maximum transmission error for different acceleration ripple
frequencies

From Fig.3.9 it can be observed that for the case of T = 0.35 the system will diverge
for a given bandwidth of the ratio f/f;. The bandwidth is increased when compared to
the case of T = 0.34 presented in Fig.3.6. This phenomenon, is expected since the sum
of (y + 1) is closer to the critical value. However, for the case of T = 0.33 the system
does not diverge for any frequency of the ripple which validates the fact that the sum
of (y + t) should be close to the critical value in order for the system to diverge under
any frequency of the acceleration ripple (f).

For the case of Tt = 0.35and € = 0 Eq. (3.15) yields f, = 13.697 Hz while for the case
of t = 0.33and € = 0 Eq.(3.15) yields f, = 15.079 Hz.

115



It is interesting to notice that the same frequency of acceleration ripple could cause
the divergence of the system at lower acceleration rates. For instance, an acceleration
ripple frequency of f = 13.3 Hz could result in divergence of system when t = 0.34
while the system has a periodical behaviour when T = 0.35.

Initially this phenomenon, could be regarded as counter intuitive, however it can be
explained from Fig.3.6 and Fig.3.9.

For T = 0.34 the ratio f/f;, is approximately equal to 0.919 while for t = 0.35 the ratio
f/f, is equal to 0.971. As a result, for the case of T = 0.34 the oscillation is well within
the critical bandwidth while for the case of Tt = 0.35 it is outside the critical
bandwidth. The transmission error (x) with respect to time is presented in Fig.3.10
for the two cases.
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Figure 3.10: Transmission error for different acceleration and same ripple
frequency

Finally, it is interesting to investigate the effect of the ripple of the acceleration (g) to
the stability of the system. For the case study presented according to the parameters
of Table 3.3 and y = 0.5 the maximum non-dimensional acceleration (t,,.x) of the
inner rotor was calculated for different values of the ripple of the acceleration. The
results are presented in Table 3.5. The maximum percentagewise non-dimensional
acceleration (tg,) is calculated as the ratio of the maximum non-dimensional
acceleration under ripple conditions to the maximum non-dimensional acceleration
when no ripple is present.

Table 3.5: Maximum non-dimensional acceleration for different acceleration ripple

values
£ (%) Tmax Ty, (%)
0 0.3696 100
0.5 0.3498 94.64
1 0.3343 90.45
2 0.3049 82.49
5 0.2426 65.64
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In Fig.3.11 the maximum percentagewise acceleration (to,) with respect to the ripple
of acceleration (€) and the fitted curve are presented.
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Figure 3.11: Maximum (to,) for different acceleration ripple values (€) and fitted

curve

As expected the maximum (t,) is decreased as the acceleration ripple (€) is increased.

Furthermore, the effect of the non-dimensional value (y) on the maximum
percentagewise non-dimensional acceleration (tq,) for different values of the ripple

of the acceleration (g) was investigated. The results are presented in Table 3.6.

Table 3.6: Maximum (1, ) for different acceleration ripple (€) and non-dimensional

(y) values
Y E(%) Tmax T96(96)
0 0.5138 100
0.5 0.4858 94.55
0.3 1 0.4655 90.60
2 0.4248 82.68
5 0.3372 65.63
0 0.3696 100
0.5 0.3498 94.64
0.5 1 0.3343 90.45
2 0.3049 82.49
5 0.2426 65.64
0 0.2232 100
0.5 0.2116 94.80
0.7 1 0.2008 89.96
2 0.1848 82.80
5 0.1469 65.82
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0 0.0748 100
0.5 0.0709 94.79
0.9 1 0.0676 90.37
2 0.0620 82.89
5 0.0496 66.31

From the results presented in Table 3.6 it is evident that the non-dimensional value
(y) has a negligible effect on the maximum percentagewise non-dimensional
acceleration of the inner rotor regardless of the acceleration ripple.

From the analysis demonstrated in the present work some engineering insights can be
obtained regarding the operation of coaxial magnetic gears. First and foremost it is
important to protect the coaxial magnetic gear drive from resonance phenomena due
to the oscillations that occur during acceleration. The frequency of the oscillation can
be obtained from Eq.(3.15) for every applied outer load and inner rotor acceleration.
The highest frequency that can be observed when no external load is applied (y = 0)
and a very small acceleration is applied to the inner rotor (t — 0). The frequency of
the oscillation calculation for this case is shown in Appendix A3.1. Therefore, to avoid
resonant phenomena during acceleration the coaxial magnetic gear should be
constructed in a way that the torsional frequencies of the system are significantly
higher than the maximum frequency of the oscillations during acceleration. If this
consideration is not taken into account then the coaxial magnetic gear could
potentially experience high energy vibrations during acceleration that could endanger
its operation.

Furthermore, the acceleration of the inner rotor is typically not steady in most
engineering applications. For example, an inverter can provide a steady acceleration,
however ripple is usually present. From the analysis of the present work it was
demonstrated that the ripple of the acceleration could lead to the divergence of the
system even if the non-dimensional value of the acceleration is lower than the critical
value as obtained from the stability criterion of Eq.(3.13). For that reason, it is critical
to examine the frequency of the ripple of the acceleration. It was shown that the
system is particularly prone to this phenomenon if the ratio of the frequency of the
ripple to the frequency of the oscillation, as obtained from Eq.(3.15), is in the range of
0.92-0.93. If the frequency of the ripple is within that bandwidth, for a given set of
non-dimensional constants (y) and (t), then it is vital that the non-dimensional
acceleration of the inner rotor is lower than the (ty) value depending on the
amplitude of the acceleration ripple (€) as shown in Fig.3.11.

The above considerations should be taken into account when designing a coaxial
magnetic gear in order to ensure a stable and robust operation during acceleration
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Chapter 3-Conclusions

In the present chapter a non-dimensional stability criterion for the dynamical
response of coaxial magnetic gears under steady acceleration and constant applied
outer load has been developed. A non-dimensional criterion was derived analytically
in order to assess the dynamical convergence of the drive without the requirement of
a numerical solution of the dynamical equation of the system. In addition, a closed-
form of the period of the oscillations has been derived when a steady acceleration is
induced to the system. Furthermore, the case of acceleration with ripple has been
investigated since it is common for power transmission drives to operate under ripple.
It was demonstrated that for the case of constant applied outer load and acceleration
with ripple the non-dimensional governing differential equation is similar to the driven
pendulum equation that can have chaotic behaviour. A thorough investigation on the
effect of ratio between the frequency of the ripple and the frequency of the oscillation
obtained for steady acceleration was conducted. A case study was performed where
the effect of the ripple frequency was investigated. It was observed, that when the
ratio was between 0.9-0.95 the system could exhibit divergence even if the applied
acceleration was lower than the critical value. Furthermore, it was shown that a
smaller acceleration with a given ripple frequency could lead to divergence while a
higher acceleration with the same ripple frequency could not, a phenomenon that
emphasizes the significance of the frequency ratio. In addition, it was observed that
the system could appear to have a periodic-like behaviour for a considerable time of
operation before it diverges which showcases the chaotic behaviour of the system.
Finally, the effect of the ripple of acceleration was investigated. It was shown, that
when the acceleration ripple (€) is increased then the maximum percentagewise
acceleration (to,) is decreased. Therefore, the developed non-dimensional model
could be a valuable tool for the understanding of the dynamical response in coaxial
magnetic gears both during steady acceleration and acceleration with ripple that
could lead to efficient and robust operation.
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Appendix A3.1

The integral of Eq.(3.15) cannot be solved analytically in its general form. However,
when no external load is applied (y = 0) and a very small acceleration is applied to
the system (t — 0) both the calculation of (x,,,x) and the integral can be solved
analytically implementing the Taylor expansion as follows:

The maximum transmission error value (X;.x) can be calculated after simplifying
Eq.(3.11) from:

cosx+1tx—1=0 (A3.1.1)
and since:

x? x4
COSX = 1_§+E_...+... (A3.1.2)

From Eqg.(A3.1.1) and Eqg.(A3.1.2) and neglecting the higher order terms we obtain:
Xmax = 2T (A3.1.3)

Therefore, Eq.(3.15) takes the following form:

\/E 2T dx
Ty = — f — (A3.1.4)
(1)0 0 2

X
—5 TTX

which could be written as:

\/E 2T \/de
Ty =— (A3.1.5)
WoJy /12— (x—1)2
By substitutingu = x —tandw = %yields that:
T, = = j L dw (A3.1.6)
* 7w -1Vl —w? o
Therefore:
7 = 2" A3.1.7
=2 (A3.1.7)
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4 Power losses in coaxial magnetic gears

Power losses should be investigated during the design of coaxial magnetic gear
drives in order to achieve optimal efficiency and avoid phenomena that could lead to
the degradation of the system as a whole. In particular, eddy current losses have been
a significant issue in CMGs especially in higher rotational speeds [4.1]. Therefore, it is
essential during the design of CMGs drives to investigate this phenomenon, since
excess eddy current losses could lead to increase of the temperature and
deterioration of the PMs in the rotors that could gradually lead to degradation of the
system as a whole.

In general, the calculation eddy current and core losses is a strenuous process that
requires complex transient electromagnetic phenomena. Desvaux et al. [4.2] and
Wang et al. [4.3] computed the eddy current losses of the PMs, by firstly calculating
the square of the current density throughout the PMs and multiplying by the
resistivity, then performing a volume integration and finally integrating with respect
to time and dividing by the period of the system, to get the average value of the eddy
current losses. They also performed tangential magnet segmentation to decrease the
eddy current losses, by performing the volume integration on each segment
separately. Filippini [4.4] performed both tangential and axial magnet segmentation
and correlated the eddy current losses and the number of segments to a rational
function. Regarding core losses, Filippini [4.4] starts with the computation of the
induction throughout the ferromagnetic segments, with a simple finite-difference
model that utilizes the boundary scalar magnetic potential conditions and the Laplace
equation in cylindrical coordinates. Core losses, according to Deng [4.5], require using
the rate of change of the induction to calculate hysteresis, eddy current and excess
losses. Deng introduced a formula to calculate these losses while including the
harmonic effect. Desvaux et al. [4.2] used this formula to perform core losses
calculations. Hein et al. [4.6] reviews different approaches of the Steinmetz equation,
which calculates hysteresis losses. Lee et al. [4.7] and Li et al. [4.8] propose that for
the same magnitude of induction, rotational core losses are almost double the
alternating core losses.

The calculation of the power losses, is a computationally high process as it requires
the calculation of the magnetic induction in different angles of rotation of the rotors
of the CMG. FE models, despite having high accuracy require significant computational
time. As a consequence, an optimization process in order to minimize the power losses
could potentially be a time consuming procedure. Therefore, a model that would
utilize analytical solutions of the magnetic induction in the CMG could significantly
reduce the computational cost and facilitate optimization processes and could
become a valuable design tool.

This chapter focuses on the computation of PMs and ferromagnetic segments’
losses. The analytical solutions of the scalar magnetic potential derived from
Maxwell’s equations are used to calculate the current density and thus the eddy
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current losses of the PMs. Tangential segmentation is also performed to investigate
its impact regarding loss reduction. Core losses are determined using a hybrid
analytical-finite element model that utilizes the boundary scalar magnetic potential
conditions. The resulting PMs and core losses were in excellent coherence with FEA
results, while tangential segmentation greatly improved PMs efficiency. In addition,
an investigation on the effect of different applied external loads, on the PMs efficiency
is conducted. Finally, a study on the average power losses throughout one full period
is conducted, along with a mesh sensitivity analysis in order to reduce the
computational time without losing accuracy in the obtained results. From the
conducted analysis it was demonstrated that the computational time can be reduced
up to 80%. The mesh sensitivity analysis showed that mesh resolution is crucial for
accurate core losses calculation, as meshes that are too coarse result in inaccurately
high core losses while meshes that are too fine result in high computational costs.
These two analyses are of great importance, as they ensure high accuracy and
relatively low computational costs simultaneously, facilitating optimization efforts.

4.1 Mathematical Modelling of Power Losses

The power losses in coaxial magnetic gears are attributed to eddy current losses in the
PMs of the inner and outer rotor and to core losses in the ferromagnetic segments.

4.1.1 Eddy current losses in the PMs

For the calculation of the PM losses the vector magnetic potential A throughout the
PMs is required. The vector magnetic potential can be easily determined after the
scalar magnetic potential ¢ calculation as calculated in Chapter 1.

The vector magnetic potential A can be determined, using the following equations:

0k  10AK

Br(r,0) = —o5 - = 75 @.1)
X dAK

Ble((r’ 6) = _HO% = T (4.2)

where B}‘ and Blg are the radial and tangential induction of a point of the inner and
outer rotor (k:in or out), r and 0 refer to the polar coordinates and y, is the vacuum
permeability.

The eddy current losses for each PM are computed using the following formula [4.2]:

P = j %1 J (0")°rdrde) dol (4.3)
eddy — 915 s O S}§M 0 .
k k kaAk krnk
J%(r,8,0§) = ow a_eo+ ckey) (4.4)
1 dAK
ck(eg) =—— cwk—krdrde (4.5)
Spm SKm ST
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where J¥ is the eddy current density, CK is a term used to guarantee that the net
current flowing in each PM arc segment is zero at any moment, S}§M is the area of a
PM and o is the conductivity of the PMs. 915 and wX refer to the angle of rotation and
the rotational speed of each rotor, while @lg is the angle that each rotor rotates in a
complete period of the system.

For the calculation of G)lg, one must find the greatest common divisor of p;, and pout,
and divide them with it. The result of this simple operation is the amount of
revolutions the outer and inner rotor, respectively, complete in a period. For example,
if pin = 4 and pyyut = 10, means that the inner rotor completes 5 revolutions, while
the outer rotor completes 2 revolution in a period, resulting in G)ipn = 10m rad and
O9" = 4mrad.

4.1.2 Tangential segmentation of PMs

Eddy currents losses in PMs can be reduced with their axial or tangential
segmentation. The present work focuses on tangential segmentation. Incorporating
tangential segmentation into the analytical model requires partitioning the angle, with
respect to which the integration is performed, by the number of total segments
(Kin, Kout), as shown in Eq. (4.6) [4.3] for each rotor.

L ] (4.6)

m 1
0 €|0,0 +——],9€[9,9 + —
00 Pin Kin 00 Pout Kout

An example of tangential segmentation is presented in Fig. 4.1.

\

Figure 4.1: lllustration of magnet segmentation (K;,; = 2 and K,,; = 3).
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4.1.3 Computation of core losses of the ferromagnetic segments using
a hybrid model

In a special case of sinusoidal variation of the magnetic fields, core losses are
calculated from [4.2]:

l)core, sinusoidal — n(khystfaBEl + keddyszrzn + kexcfl'SBrlriS) (4-7)

where f and B, are the frequency and peak value of the induction, respectively, and
o, B, Knys, Keady and Kexc are constants that depend on the material and are provided
by the manufacturer. Rotational fields results in core losses that are double those
produced from alternating fields [4.7], [4.8]. This is denoted in Eq.(4.7) with the
variable n, which has a value of 1 when referring to alternating fields and 2 when
referring to rotating fields, as in this case.

In general, fields in CMGs do not appear with a strict sinusoidal variation, so a
generalized equation is used to calculate the core losses [4.2], [4.5], [4.6]:

F — —
l:)eddy - l:)core,generalised -

o
k{WSt T \/ dBmaj 2 dBmin z 2 2
Lfsfern( T fO ( dt ) +( dt ) Bmai+Bmin
’ 4.8)
Keady T ( (4Bmaj 2 dBmin 2 (
o () + () ) aer
@fT (—dBmaj)2+(—dBmi“>2 " dt ) rdrd®
T Jo dt dt
(1. _ khyst
hvst =
vt 2B-a(2m)a-1 foznlcos 8|dt
11,7 _keddy (49)
eddy — 212
kl — kexc
\exc T (2m2)075

Bmaj and B,in represent the major and minor axes of the ellipse fitted to the induction
locus. S¢er refers to the area of a segment, while T is a complete period of the system.

Bmaj (D) and By, (t) are calculated using the following equations:

Bmaj(r,0,t) = [|B(r, 6, )| cos(a(t)) (4.10)
Bmin(1,0,t) = [IB(r, 6, t)|| sin(a(t)) (4.11)
B. (1,6, tmaan(r,e.t)u))

,0) = t 4,12
o, 0) = arctan <Be(1‘, 6, tmaxiBr0.01) (412
a(r,0,t) = arctan M —&(1,0) (4.13)

T Be(r, 9, t) ’ '
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where € and a(t) are defined in Fig. 4.2.
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Figure 4.2: A sketch of the fitted ellipse, along with the parameters required for
core loss calculations.

In order to calculate the core losses, the values of B, and Bg on the ferromagnetic
segment’s surface should be calculated. However, the analytical model developed in
Chapter 1 doesn’t calculate the scalar magnetic potential of the segments, but it does
calculate the magnetic potential on their boundaries. Those analytically calculated
values can be used as boundary conditions for a finite element model. This model
makes use of the Laplace’s equation of the scalar magnetic potential ¢ in a cylindrical
coordinate system [4.4].

2 2
%9 109 107°¢ _ 0 (4.14)
or? rodr r2002

A grid is created, using the reference system shown in Fig. 4.3. The average radius r;
and angle 6; of each module are calculated as in Eq. (4.15-4.16), where
Ar = (ry —r3)/Nand AB = §/N, where N is the number of rows and columns of the
finite element grid.
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Figure 4.3: The reference system of the finite element grid.

i =TIy — (i - %) Ar (4.15)
0, =8 (j - %) A8 (4.16)

Using central finite differences, Laplace’s equation leads to a system of N? equations,
presented in the following equations:

DNZXNZ q)Nle = RN2X1 (417)

For all (i,j) pairs wherei=1ori=Norj=1orj =N, the corresponding modules
of D,® and R are assigned values according to Eq. (4.18), where (p(ri, 6]-) is the
boundary condition. For the rest of the (i,j) pairs, Eq. (4.19) is followed.

{ D(i—1)N+j,(i—1)N+j =1 (4.18)
Ri-nn+ja = (11, 6;) |
(D =-Z_2
(-DN+,(i-D)N+j = ~ 732 ~ 12p92
1
Di-0N+,G-DON+j+1 = 502
1
< Di-0N+,G-ON+j-1 = 7592 (4.19)
1 1 .
D(i—1)N+j,(i—1)N+]'+N T Ar? + 2rAr
_ 1 1
DGi-1)N+j,G-DN+j-N = 37 ~ 57ar
\ Ri—1)n+j1 =0

Solving for ®yz2,, returns the scalar magnetic potential cp(ri, 9]-) on every module of

the grid. B, and Bg on the ferromagnetic segment can now be calculated using Eq.
(4.1, 4.2) and the core losses can be calculated.
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4.2 Results and discussion

4.2.1 Eddy current and core losses calculation and comparison with FEA

A case study is performed with the parameters described in Table 4.1. The rotational
speed of the inner rotor is assumed to be 2500 rpm. The time step used is equal to the
time it takes for the inner rotor to rotate by 2° and, equivalently, for the outer rotor
to rotate by 0.8°. This time step allows for high accuracy computations and
simultaneously limits the amount of time steps in one period. The computations are
performed for the case of full load. An algorithm based on the developed model is
constructed in MATLAB. The results were compared to those obtained from the FE
transient analysis performed in the Ansys Maxwell software.

Table 4.1: Parameters of the CMG example used for the calculations

Pin Number of inner ring pole pairs 4
Pout Number of outer ring pole pairs 10
Q Number of ferromagnetic segments 14
ry Inner radius of inner ring 53mm
Iy Outer radius of inner ring 66mm
I3 Inner radius of flux-modulator ring 69mm
Iy Outer radius of flux-modulator ring 84mm
I's Inner radius of outer ring 87mm
I'e Outer radius of outer ring 87mm
L Length 100mm
0 Ferromagnetic segment angle 15°
B; Residual induction of magnets 1.47T
Ho Vacuum magnetic permeability 4m-10"7 Hm™?!
pl = plit Relative permeability of the magnets 1.05
o Conductivity of the magnets 0.9MS/m

Fig. 4.4.a shows that the eddy current losses of the PMs are proportional to the square
of the rotational speed of the rotors, while Fig. 4.4.b shows that the percentage of
eddy current losses to total transmitted power is proportional to the rotational speed
of the rotors, as expected from Eq.(4.3-4.5).
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Figure 4.4: Comparison of results obtained from the analytical model and the 2D
finite element analysis model regarding: a) eddy current losses and b) percentage
of eddy current losses to total transmitted power.

It is observed that the eddy current losses on the outer rotor are higher compared to
the inner rotor, a result that is in coherence with similar studies in the literature [4.2],
[4.4]. In addition the total eddy current losses in the PMs exceed 5% of the total
transmitted power after 2000 rpm, illustrating the drawback of CMGs in high
rotational speeds which has also been reported in the literature [4.1]. The analytical
results of the developed model were verified with FEA. The discrepancies between the
analytical model and the FEA simulations are small and of the same nature for both
rotors. For slower rotational speeds, the analytical model results in slightly less eddy
current losses, 0.01% for the inner rotor and 0.9% for the outer rotor PMs less that
FEA simulations for an inner rotational speed of 750rpm. As rotational speeds
increase, the analytical model results in larger eddy current losses, reaching deviances
of 7.8% and 3.1% for the inner and outer rotor PMs, respectively, for an inner
rotational speed of 3500rpm.

Fig. 4.5 shows the effect of magnet segmentation on the eddy current losses.

B Inner PMs losses - analytical model
B Outer PMs losses - analytical model

Eddy current losses [%]
w IS

[S]

1 2 3 4 5 6 7 8 9 10
Number of circumferential segments

Figure 4.5. Tangential segmentation effects on the eddy currents losses of the PMs.

The losses decrease rapidly in the outer rotor and more slowly in the inner rotor, as
tangential segments increase. According to Fillipini [4.4], the eddy current losses
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should follow the function Pegqy (Ky) = where Ky is the number of tangential

_°c
a2+b2K{’
segments of every PM of a rotor and a, b, c are constants.

Fitting this function results in a coefficient of determination of R? = 0.9842 and
R? = 0.9963, for the inner and outer PMs losses, while the values of a, b and c are

equal to 0.115, 0.039 and 0.016 for the inner PMs and 0.031, 0.215 and 0.280 for the
outer PMs, respectively.

For the calculation of the core losses some additional parameters are required and are
presented in Table 4.2.

Table 4.2: Parameters used in this case study for the calculation of core losses

ky, Hysteresis loss coefficient 152.2WsTPm~3
Keg Eddy current loss coefficient 0.403Ws2T 2m3
Key Excess loss coefficient 0.1Ws15T~1-5m 3
a Steinmetz coefficient 1
B Steinmetz coefficient 2

The induction locus of a single finite element of a ferromagnetic segment and its fitted
ellipse is presented in Fig. 4.6.
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Figure 4.6: The induction locus of a finite element of a ferromagnetic segment, the

fitted ellipse and its axes.

The resulting induction of the proposed hybrid model on a ferromagnetic segment at
a random point in time is shown in Fig. 4.7. For the ferromagnetic segments, a 60x60
mesh grid is used.
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Figure 4.7: Induction distribution on a ferromagnetic segment.

Induction is generally close to zero and smooth, except for some small areas around
the edges, and especially the corners, where it can reach values as high as 5T.

Fig. 4.8.a) and 4.8.b) compare the computed results to those obtained using FEA, for
various rotational speeds.
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Figure 4.8: Comparison of results obtained from the hybrid model and the 2D finite
element analysis model regarding: a) core losses and b) percentage of core losses
to total transmitted power.

Core losses were found to be one order of magnitude less that inner PMs losses and
two orders of magnitude less that outer PMs losses. Specifically, the core losses do
not exceed 0.2% of the total transmitted power, even at high rotational speeds. The
results of the analytical model were compared to those obtained from FEA. Higher
discrepancies in core losses between the results from the hybrid model and the FEA
software for lower rotational speeds, that are further highlighted in Fig. 4.8.b), can be
attributed to the overall lower losses, that make slight deviations stand out. However,
the discrepancies don’t surpass 10% for an inner rotational speed greater than
500rpm, and they decrease, percentage-wise, as the rotational speeds increase.
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4.2.2 Power losses for different external loads

Different external loads result in different relative positions of the two rotors. It would
be interesting to investigate how and if the transmitted load has any effect of the
power losses of the CMG. To simplify the calculations, 0, is initialized as zero, and
0;,, is assigned different values that correspond to certain percentages of stall torque.
In addition, only PMs losses were taken into account, as core losses are two orders of
magnitude less that total PMs losses, while having a greater computational cost. Fig.
4.9 illustrates how, in this case study, the efficiency peaks at about 88% load. Total
losses for the case of 88% of the stall torque are 5.5% lower than for the case of full
load.
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outer rotor - analytical model
total - analytical model

B inner rotor - FEA
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m

Eddy current losses [%)]
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Figure 4.9: PMs power losses as a percentage of total power transmitted versus

load.

The analytical results were verified and found to be in excellent coherence with FEA.
Overall, deviances between the two methods do not exceed 1.5%.

4.2.3 Algorithm computational cost vs accuracy

For the calculation of the eddy current losses a full period as defined from G)lf, is
required. However, the developed model requires time steps throughout one
complete period of the system. In addition, the hybrid model for the calculation of
core losses requires a meshing technique that could significantly increase the
computational cost. Therefore, it is important to investigate how the computational
cost could be reduced without losing accuracy in the obtained results.

4.2.3.1 Reduction of time steps

To reduce computational time, it is investigated whether a period is needed to
compute the power losses with adequate accuracy or if the losses converge sooner
than that. Therefore, the time of the integration t; will be investigated. The value tg
can range between 0 and T. It is noted that the time step used remains the same in all
cases and it is equal to the time it takes for the inner rotor to rotate by 2° and,
equivalently, for the outer rotor to rotate by 0.8°.
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The average PMs and core losses are calculated for various tg values. Fig. 4.10
illustrates that the power losses converge rapidly. The computational time cost can be
reduced by a factor of 5, with a deviation of less than 2% from the results obtained
for a complete period.
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Figure 4.10: Average power losses versus the percentage of a complete period used
to calculate them a) inner PMs, b) outer PMs, c) ferromagnetic segments.

4.2.3.2 Mesh sensitivity analysis

A mesh sensitivity analysis on the adopted mesh on the ferromagnetic segments is
conducted in order to find the optimal mesh resolution that provides accurate core
losses results in minimal computational time. Starting from a 10x10 grid and gradually
reaching a 120x120 grid, it is found that for a very coarse mesh the computed value
of the core losses is significantly larger than their true value, and for finer meshes, the
computed losses decrease and converge, as shown in Fig. 4.11.
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Figure 4.11: Convergence of core losses using mesh sensitivity analysis.

Grids ranging from 10x10 to 40x40 don’t significantly increase the computational time,
as solving the system of N? equations requires less of time than calculating the
induction values on the boundary of the ferromagnetic segments, as obtained in the
methodology followed in Chapter 1. However, the finer the meshes get, the
computations get more time consuming, as it is known that solving a system of linear
equations can have a complexity of up to O(N?3).

134



Coarse meshes lead to greater computed core losses because, as shown in Fig. 4.7,
the largest values of induction and the corresponding time derivatives, which define
the losses, are concentrated in small areas near the edges and corners of each

ferromagnetic segment. This means that a coarse mesh attributes a large value of

dBpai dBpi
mayj and min
dt dt

losses. Thus, it is imperative that areas near the edges of the ferromagnetic segments
have a mesh that is fine enough to accurately determine the induction distribution.
Future research could conduct mesh sensitivity analysis with a focus on utilizing finer
mesh near the boundaries and gradually transitioning to coarser mesh towards the
center, where induction is generally smoother, to reduce a significant percentage of
computational time.

to a relatively large element, resulting in greater computed core
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Chapter 4-Conclusions

In the chapter an analytical 2D model is used to calculate eddy currents losses in the
PMs of a coaxial magnetic gear, as well as their minimization using magnet
segmentation. A hybrid model is used to calculate the core losses in the ferromagnetic
segments of the flux-modulator ring. The model utilizes the analytically computed
values of the scalar magnetic potential on the boundaries of the segments and uses
Laplace’s equation in order to compute the magnetic induction throughout the
segments for the calculation of the core losses. Both models are validated using a
transient FEA simulation which shows a convergence of 1.51% and 3.18% for the eddy
current and core losses respectively, for an indicative inner rotor speed of 2500rpm.
It was demonstrated that as expected the total power losses increase as the rotational
speed increase. The segmentation of the PMs was shown to play a crucial role in
reducing the eddy current losses. The method showed that by performing just 2
segmentations on the outer rotor PMs, the overall losses decrease by over one order
of magnitude. In addition, an investigation of the effect of the initial positioning of the
rotors shows that peak efficiency is achieved at about 88% load in the performed case
study. Finally, an attempt to reduce computational time while keeping the accuracy
high is made, by proving that only a small fraction of the period of the system is
needed in order to accurately calculate total losses and by performing a mesh
sensitivity analysis on the adopted grid the ferromagnetic segments. The results of
average power losses throughout one full period illustrate the rapid convergence of
power losses in a period, which can reduce the computational time by 80% with
negligible errors. The mesh sensitivity analysis shows that mesh resolution is crucial
for accurate core losses calculation, as meshes that are too coarse result in
inaccurately high core losses and meshes that are too fine results in very high
computational costs. These two analyses are of great importance, as they ensure high
accuracy and relatively low computational costs simultaneously, facilitating
optimization efforts. The developed model could be a valuable optimization tool for
the reduction of power losses since it combines high accuracy and low computational
cost.
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5 Design of an experimental coaxial magnetic gear

The purpose of this chapter is the analysis of the design of a Coaxial Magnetic Gear
(CMGQG) illustrating its key aspects during its design. For the overall system design, a
detailed calculation of machine elements was carried out. Following the basic design,
special attention was given to the selection of ball bearing clearances with shafts and
housings. The study of the system's natural frequencies revealed that the preload of
the bearings and, consequently, the operating internal clearance is a crucial factor
affecting the natural frequency and the risk of resonance. Furthermore, a simulation
was conducted using appropriate software to analyse the thermal losses due to eddy
currents, ensuring that the temperature remains within an allowable range to prevent
magnet demagnetization. Finally, the effect of the radial forces applied in the
modulator ring to the induced torques in the rotors was investigated.

5.1 Basic Geometrical Parameters
The main geometrical parameters of the designed CMG are presented in Table 5.1.

Table 5.1: Parameters of the designed CMG

Pin Number of inner ring pole pairs 4
Pout Number of outer ring pole pairs 10
Q Number of ferromagnetic segments 14
rqy Inner radius of inner ring 28mm
Iy Outer radius of inner ring 33mm
I3 Inner radius of flux-modulator ring 37.5mm
Iy Outer radius of flux-modulator ring 47.5mm
I's Inner radius of outer ring 51mm
I Outer radius of outer ring 56mm
Tout Outer radius of outer rotor 70mm
L Length 100mm
0 Ferromagnetic segment angle 15°

From the analytical model developed in Chapter 1, the stall torque of the inner rotor
is 20 Nm while the stall torque of the outer rotor is 50 Nm based on Table 5.1
parameters.
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5.2 Alternative ways of operation

During the analysis of the present thesis, it was assumed that inner rotor is the input
of the system, the outer rotor the output of the system, while the modulator ring is
fixed. However, the modulator ring could also be the output of the system. Therefore,
it was deemed necessary in the design of an experimental setup to include both ways
of operation. In Fig 5.1, the alternative where the output is the outer rotor is
presented:

Figure 5.1: Output from the outer rotor

In Fig 5.2, the alternative where the output of the CMG is the modulator ring is
presented:

Figure 5.2: Output from the modulator ring

140



5.3 Stress on the rotors and modulator ring

The induced stress on the two rotors and the modulator ring based on the expected
torques were calculated with SolidWorks. In Fig. 5.3 the resulting safety factor of the
inner rotor is presented:

Model name: inner rotor223 e
Study name: Static 2(-Default-)

Plot type: Factor of Safety Factor of Safetyl

Criterion : Max Shear Stress

Factor of safety distribution: Min FOS = 3.6

6.000e +00

5.756e +00

- 5.513e+00

- 5.269+00

- 5.025e+00

L 4.781e+00
3.563;&00 @

- 4538e+00
- 4.2%e+00

- 4.050e+00

l 3.806e +00
3.563e+00

Figure 5.3: Safety factor of the inner rotor

It is observed that the applied stresses are well below the critical values since the
safety factor is over 3.5 in the entire inner rotor.

In Fig. 5.4 the resulting safety factor of the outer rotor is presented:

Model name: outer ratorasserbly
Study name; Static 1({-Default-)
Plot type: Factor of Safety Factor of Safety1
Criterion : Max Shear Stress
Factor of safety distribution: MinFOS = 2.2
FOS
1,000 +01

I 9 21Te+00

| B43e+00

| TER2e+00

- 6560 +00

- 6,085 +00

| 5.304e+00

- 452e+00

_ 3.738e +00

l 2,966 +00
21Fe+00

Figure 5.4: Safety factor of the outer rotor

It is observed that the applied stresses are well below the critical values since the
safety factor is over 2.1 in the entire outer rotor.
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For the reduction of the manufacturing cost, the modulator ring is designed as shown
in Fig.5.5. The modulator ring is comprised from 14 bars that are connected with bolts.

Figure 5.5: Modulator ring design

The safety factor of the modulator ring is shown in Fig.5.6. It is observed that stress
concentration occurs in the connection of the modulator ring bars with the bolts.
However, the safety factor is higher than 1.3 in the entire modulator ring.

Model name: modulator rinng simplified
Study name: Static 2 from [Static 1)(-Defaul
Plattype: Factor of Safety Factor of Safety?
Criterion : Max Shear Stress

Factor of safety distribution: Min FOS = 1.3

FOS
5.000e +01
l 4.513e+01
. 4.026e+01
- 3.538e+01
3.051e+01
2,564 +01
- 2.077e+01
- 1.590e+01
- 1.103e+01
6.153e+00

1.281e+00

Figure 5.6: Safety factor of the modulator ring

142



5.4 Magnet attachment to the rotors

The placement of the permanent magnets is a crucial aspect for the smooth operation
of the CMG. During the operation of the CMG centrifugal forces and radial forces
between the magnets are applied that could lead to detachment of the PMs, especially
for the case of the inner rotor where the centrifugal force is in the outward direction.
To secure the position of the PMs a combination of attachment rings and epoxy glue
is employed. In Fig.5.7 the applied stresses on a single PM due to the centrifugal force
is presented.

5.811e+01
/ Model name: last inner rotor assembly

Study name: Static 1(-Default-)
Plot type: Static nodal stress Stress1
Deformation scale: 158.677

wvon Mises (N/mm”2 (MPa})
5.811e+01
., 5.230e+01
- 4.64%+01
- 4.067e+01
- 3.486e+01
L 2.905e+01
L 2.324e+01

- 1.743e+01

1.162e+01
5.811e+00
6.0342-09

Figure 5.7: Stress on PM and attachment rings

For additional security, epoxy glue is placed between the rotors and the PMs using
the design shown in Fig.5.8 and Fig.5.9 for the inner rotor.

Figure 5.8: Positioning of the PMs in the inner rotor
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Figure 5.9: Detail of the configuration of epoxy glue placement in the inner rotor

Similarly, for the outer rotor the design for epoxy glue placement is presented in
Fig.5.10 and Fig.5.11.

Figure 5.10: Positioning of the PMs in the outer rotor

Figure 5.11: Detail of the configuration of epoxy glue placement in the outer rotor
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5.5 Bearing selection and natural frequencies of the CMG

An important design parameter of the CMG is the selection of the ball bearings in the
rotors. The selection of the ball bearings and their clearances with the shafts and
housings, plays a crucial role on the natural frequencies of the system and expected
life of operation of the bearing. In general, the optimal effective clearance is negative
implying that preload is required as shown in Fig.5.12 [5.1].

1.0

0.8 AN

0.6 \

Life ratio (Ls/L)

0.2 /

—-60 —-40 -20 0 20 40 60 80
Effective clearance (), pm

Figure 5.12: Effective clearance and life ratio of a ball bearing

From Fig.5.12 it is observed that the optimal clearance is in vicinity of -10 um. For that,
reason the ball bearings along with the shafts and housings and their tolerances are
selected in a way that a total effective clearance of -10 um is achieved in order to
combine both rigidity and longevity [5.2].

During the analysis of the transient response of the CMG in Chapter 3, the period of
possible oscillations is obtained. Since these oscillations have a significant energy as
observed from Fig.3.4, the design of the CMG should avoid the vicinity of the
frequencies as obtained from Eq.(3.15).
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The highest frequency that can be observed (small oscillation amplitude case as
illustrated in Appendix 3.1) can be determined from the following equation:
p

w? = MstallT (5.1)

where Mg, is the stall torque of, p the number of pole pairs and I is the moment
of inertia of each respective rotor.

In Fig.5.13 the natural frequency of the inner rotor is obtained in ANSYS. The effective
clearance is -11 um. The torsional frequency is approximately 412 Hz which is almost
one order of magnitude higher than the oscillation frequency as obtained from
Eq.(5.1).

G: clearance -11um - +-velocity
Total Defarmation 9

Type: Total Defarmation
Frequency: 418,84 Hz

Sweeping Phase: @, °

Unit: rn

3772024 308 &M

0.93378 Max
0.83003
072627
062252
051877
041501
031128
020751
010375
0 Min

Figure 5.13: Natural frequency of the inner rotor for an effective clearance of
-11um

As a consequence, the inner rotor of the CMG is protected from resonant phenomena
that could be caused during transient operation.

In Fig.5.14 the natural frequency of the outer rotor is obtained in ANSYS. The effective
clearance is -11 um. The torsional frequency is approximately 451 Hz which is almost
one order of magnitude higher than the oscillation frequency as obtained from
Eq.(5.1).
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Figure 5.14: Natural frequency of the outer rotor for an effective clearance of
-11um

As a consequence, the outer rotor of the CMG is protected from resonant phenomena
that could be caused during transient operation.

5.6 Temperature calculation of the CMG due to power losses

From the analytical model developed in Chapter 4, the eddy current and power losses
can be calculated. It is important to calculate the increase of temperature in the CMG
in order to determine whether the PMs are affected and if the system will degredate
as the time progresses. The highest losses are expected to be observed in the outer
rotor following the analysis in Chapter 4. To increase the effective cooling area, the
outer rotor is designed with fins as shown in Fig.5.15.

Figure 5.15: Cooling fins in the outer rotor
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A transient thermal analysis was conducted in ANSYS in order to calculate the
temperature on the PMs of the outer rotor. The inner rotor angular velocity was
considered to be equal to 2500 rpm.

In Fig.5.16 the temperature profile of the PMs in the outer rotor is presented after 10
minutes of operation.

Temperature
Type: Temperature
Unit: °C

Time: 600 s
4/2/2024 11:05 AM

47.119 Max
46.809
46.499
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45.879
45.569
45.259
44.948
44.638
44.328 Min

Figure 5.16: Temperature profile of the outer rotor

The temperature is lower than 50°C and therefore the PMs are not affected from the
power losses due to eddy current phenomena. However, as established in Chapter 4
magnet segmentation could significantly decrease the power losses and consequently
the CMG could operate at even higher rotational speeds.

5.7 Torque ripple due to radial forces

The magnetic induction in the CMG besides inducing tangential forces that result in
applied torques in the two rotors, induce radial forces. As a consequence, the
ferromagnetic segments in the modulator ring are displaced. Therefore, the relative
position of segments changes as the CMG rotates. As a result the different geometry
of the modulator ring at each angle of rotation yields different induced torques that
could insert torque ripple during the operation of the CMG [5.3]. For the calculation
of this phenomenon, a transient model taking into account radial forces applied on
the modulator ring at each angle of rotation and the displacement of the modulator
ring depending on the applied radial force is constructed.
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The radial force can be calculated from the Maxwell Stress Tensor [5.4] from the
following equation:

SLr
F _ 3

r

21
_R2
= o | [B2() ~ Byldo (5.2

Due to the deflection of the ferromagnetic segments, the gap between the modulator
ring and the rotors is not constant in the z-direction. Therefore, the torque applied to
the rotors is calculated from:

L
Min(ry) = f dmyn (2)dz (5.3)
0

L
Mou(rs) = f dmou.(2)dz (5.4)
0

where dm;,and dmg,; are the different torque values that appear along the z-axis.

From the performed analysis it was calculated that the torque ripple in the CMG due
to radial forces is 0.2-0.3% which is near the order of the second torque harmonic. The
value of the torque ripple is small and therefore this phenomenon is not expected to
have a significant role during the operation of the CMG.
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Chapter 5-Conclusions

In this Chapter a detailed design of a CMG drive is presented showcasing the important
designs aspects for manufacturing a robust and efficient CMG drive. Special attention
was given to the placement and security of the PMs in the two rotors. A detailed
analysis regarding the bearing tolerances and their subsequent effect on the natural
frequencies of the CMG drive is conducted illustrating its significance as a design
aspect. Furthermore, a transient thermal analysis is conducted in order to investigate
whether the power losses due to eddy current losses could increase the temperature
of the PMs, leading to degradation of the system as whole. It was shown that the
temperature in the PMs did not exceed 50°C and therefore the CMG with the
proposed design is not expected to have temperature problems during its operation.
However, by implementing the magnet segmentation technique the temperature
during the operation of the CMG could decrease further that could make possible the
achievement of higher rotational speeds. Finally, an investigation of the radial forces
on the induced torques in the rotors was conducted. It was shown that the torque
ripple due to the relative displacement of the modulator ring was in the order of the
second torque contributing harmonic and therefore this phenomenon is not expected
to pose problems during the operation of the CMG.
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Thesis Conclusions

In the present thesis two analytical 2D models for fast and efficient calculation of the
applied torques for every rotation angle, geometry configuration and constitutive
parameters of the magnets using the Maxwell Stress Tensor were introduced. The first
model refers to the standard CMG drive, while the second to the Halbach-array CMG
drive, due to its comparative advantages. The results obtained from the models were
compared against those obtained from FEA. The calculated torques at the inner and
outer rotor were in perfect agreement with FEA, however the analytical models were
more than two orders of magnitude faster. In addition, an analytical calculation of the
torque ripple in coaxial magnetic gear drives is made possible using the proposed
models. An investigation of the influence of the modulator ring on stall torque was
performed illustrating that there is an optimum arc length for the ferromagnetic
segment to maximize torque density.

Furthermore, the dynamical equations of the coaxial magnetic gear drive were
formulated and a model was developed to simulate the dynamical response of the
system without the requirement of torque calculation at each time step that
significantly decreases computational cost. The slippage phenomenon was thoroughly
investigated in the present thesis. It was demonstrated that the governing equations
of the dynamical response of the coaxial magnetic gear are the same with the
dynamical equation of the driven pendulum. A non-dimensional criterion was
formulated for the prediction of the dynamical behavior of the CMG drive during
transient operation. Finally, it was demonstrated that the dynamical response of the
CMG drive could exhibit chaotic behavior under certain conditions. With the
developed analysis, besides the significant reduction of the computational cost
important insights regarding the complex dynamical phenomena during the operation
of CMG drives are obtained.

Moreover, a detailed analysis regarding the calculation of power losses during the
operation of CMGs has been conducted. Using the analytical calculation of the
magnetic induction the eddy current losses in the permanent magnets of the CMG and
the core losses on the modulator ring were obtained. An investigation on the effect of
the magnet segmentation to the power losses was conducted, illustrating that eddy
current losses can be significantly reduced by applying this technique.

Finally, a detailed design of a CMG drive is presented showcasing the important
designs aspects for manufacturing a robust and efficient CMG drive. A detailed
analysis regarding the bearing tolerances and their subsequent effect on the natural
frequencies of the CMG drive is conducted illustrating its significance as a design
aspect.
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Thesis Novelties

In the present thesis, the following novelties regarding the modelling of coaxial
magnetic gear drives were made:

» An analytical model for the calculation of the induced torques in the two
rotors for every configuration and constitutive parameters of the standard
CMG was established. In addition, the developed model also facilitates the
analytical calculation of torque ripple. The model was generalized for the case
of Halbach-array CMGs.

» The applied torque in the two rotors can be calculated as a function of the
stall torque and the position of the two rotors. Therefore, only one calculation
of the magnetic induction in the CMG is required (in the stall torque position)
to determine the induced torques in the two rotors for every angle of their
rotation. As a result, the applied torques are calculated analytically as a
function of rotation that reduces significantly the computational cost and
facilitates the formulation of an analytical system of ODEs for the dynamical
response of the CMG drive.

» The dynamical response of the CMG during transient operation was
thoroughly investigated. Due to the analytical expression of the applied
torques as a function of the rotation angles of the rotors, an analytical system
of ODEs for the dynamical response of CMGs was formed. It was shown that
the dynamical equations of CMGs resemble the driven pendulum equation. A
non-dimensional criterion was formulated for the prediction of the dynamical
behavior of the CMGs during transient operation. Therefore, a significant
reduction of the computational cost was achieved since no iterative methods
are required for the simulation of the CMG during transient operation.
Furthermore, important insights regarding the complex dynamical
phenomena during the operation of CMG drives are obtained. Finally, it was
demonstrated that the dynamical response of the CMGs could exhibit chaotic
behavior under certain conditions.
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Future Work

From the observations of the present thesis, some ideas regarding future work are
presented below:

» The present analysis regarding the analytical modelling of the scalar magnetic
potential, the magnetic induction and the induced torques in the two rotors is
implemented through a 2D model. It would be interesting to investigate the
possibility of an analytical 3D model that would take into consideration the
edge effects on the CMG drive.

» The modelling of the dynamical response of the CMG during transient
operation could include the effect of damping. The power losses as discussed
in Chapter 4 of the present thesis can be attributed mainly to the eddy current
losses in the PMs of the CMG drive. It was demonstrated that the power losses
in each rotor are proportional to the square of their respective angular
velocity. Including the phenomenon of damping could lead to similar equations
as the coupled damped-driven pendulum. However, in that case the two
dynamical equations of the two rotors cannot be decoupled and therefore the
dynamical response would be even more complex and chaotic compared to
the presented case were damping is neglected. Therefore, it could be
interesting to investigate the dynamical response of the CMG under these
conditions.

» A generalized optimization could be implemented taking into account
parameters such as the achieved torque density, the minimization of slippage
during transient operation and the reduction of the power losses due to eddy
current and core losses. Even though such an optimization process could be
time consuming the analytical models derived in the present thesis can
facilitate such endeavour.

» It would be important to investigate how the analytical models and results
obtained in the present thesis compare to experimental results.

With the proposed ideas of future work the analysis and understanding of the complex
phenomena that govern CMG drives could be improved that could possibly lead to
their wider adoption in the industry.
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