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ABSTRACT 

Coaxial magnetic gears (CMGs) have been of great interest amongst researchers and 
the industry since their introduction two decades ago.  Magnetic gears possess 
significant advantages compared to mechanical gears such as higher performance in 
terms of attained speeds, versatility, vibration attenuation, backdrivability and 
efficiency. However, some drawbacks limit their wide adoption in the industry. Even 
with the use of rare-earth permanent magnets and implementing sophisticated 
designs the torque density of magnetic gears is significantly lower compared to 
mechanical gears. Increasing the torque density is a major issue in magnetic 
drivetrains and has been extensively discussed in the literature. However, the 
calculation of the torque is typically performed through FEA and/or numerical 
methods, thus increasing the computational cost for optimization processes. 
Furthermore, slippage that occurs during transient operation of CMG drives is a 
phenomenon that should be thoroughly investigated since it limits their operation 
when high acceleration/deceleration is present. The analysis of slippage in the 
literature has been conducted by mainly implementing FE transient simulations or 
with other iterative methods, without giving additional insights on the complex 
dynamical phenomena of CMGs and with high computational cost. Finally, power 
losses due to eddy current and core losses are a significant drawbacks in CMG drives 
and should be examined since high values of power losses could lead to excess heat 
that could increase the temperature of the system leading to degradation of the 
permanent magnets and the CMG as a whole. The power losses are usually calculated 
implementing FE transient simulations that require high computational cost and 
therefore limiting optimization methods aiming towards the reduction of eddy current 
and core losses.  
 
The objective of this thesis is to introduce two analytical 2D models for fast and 
efficient calculation of the applied torques for every rotation angle, geometry 
configuration and constitutive parameters of the magnets using the Maxwell Stress 
Tensor. The first model refers to the standard CMG drive, while the second to the 
Halbach-array CMG drive, due to its comparative advantages. The results obtained 
from the models were compared against those obtained from FEA. The calculated 
torques at the inner and outer rotor were in perfect agreement with FEA, however the 
analytical models were more than two orders of magnitude faster. In addition, an 
analytical calculation of the torque ripple in coaxial magnetic gear drives is made 
possible using the proposed models. An investigation of the influence of the 
modulator ring on stall torque was performed illustrating that there is an optimum arc 
length for the ferromagnetic segment to maximize torque density.  
 
Furthermore, the dynamical equations of the coaxial magnetic gear drive were 
formulated and a model was developed to simulate the dynamical response of the 
system without the requirement of torque calculation at each time step that 
significantly decreases computational cost. The slippage phenomenon was thoroughly 
investigated in the present thesis. It was demonstrated that the governing equations 
of the dynamical response of the coaxial magnetic gear are the same with the 
dynamical equation of the driven pendulum. A non-dimensional criterion was 
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formulated for the prediction of the dynamical behavior of the CMG drive during 
transient operation. Finally, it was demonstrated that the dynamical response of the 
CMG drive could exhibit chaotic behavior under certain conditions. With the 
developed analysis, besides the significant reduction of the computational cost 
important insights regarding the complex dynamical phenomena during the operation 
of CMG drives are obtained. 
 
Moreover, a detailed analysis regarding the calculation of power losses during the 
operation of CMGs has been conducted. Using the analytical calculation of the 
magnetic induction the eddy current losses in the permanent magnets of the CMG and 
the core losses on the modulator ring were obtained. An investigation on the effect of 
the magnet segmentation to the power losses was conducted, illustrating that eddy 
current losses can be significantly reduced by applying this technique.  
 
Finally, a detailed design of a CMG drive is presented showcasing the important 
designs aspects for manufacturing a robust and efficient CMG drive. A detailed 
analysis regarding the bearing tolerances and their subsequent effect on the natural 
frequencies of the CMG drive is conducted illustrating its significance as a design 
aspect. 
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ΠΕΡΙΛΗΨΗ 

Τα ομοαξονικά συστήματα μαγνητικής μετάδοσης κίνησης (coaxial magnetic gears) 
έχουν προκαλέσει μεγάλο ενδιαφέρον στους ερευνητές και τη βιομηχανία από την 
εισαγωγή τους πριν από δύο δεκαετίες. Τα ομοαξονικά συστήματα μαγνητικής 
μετάδοσης κίνησης διαθέτουν σημαντικά πλεονεκτήματα σε σύγκριση με τα 
μηχανικά όπως υψηλότερη απόδοση όσον αφορά τις ταχύτητες που επιτυγχάνονται, 
μειωμένο θόρυβο και φθορά, μικρότερο κόστος συντήρησης, ενώ δεν απαιτείται 
λίπανση. Ωστόσο, ορισμένα μειονεκτήματα περιορίζουν την ευρεία υιοθέτησή τους 
στη βιομηχανία. Ακόμη και με τη χρήση μόνιμων μαγνητών σπάνιας γαίας και την 
υλοποίηση πολύπλοκων σχεδιασμών, η πυκνότητα ροπής των μαγνητικών 
μεταδόσεων είναι σημαντικά χαμηλότερη σε σύγκριση με τις μηχανικές μεταδόσεις. 
Η αύξηση της πυκνότητας ροπής αποτελεί ένα σημαντικό ζήτημα στις μαγνητικές 
μεταδόσεις και έχει αναφερθεί εκτενώς στην βιβλιογραφία. Ωστόσο, ο υπολογισμός 
της ροπής συνήθως γίνεται μέσω μεθόδων πεπερασμένων στοιχείων (FEA) και/ή 
αριθμητικών μεθόδων, αυξάνοντας έτσι το υπολογιστικό κόστος για τις διαδικασίες 
βελτιστοποίησης. Επιπλέον, η ολίσθηση που συμβαίνει κατά την μεταβατική 
λειτουργία  είναι ένα φαινόμενο που πρέπει να ερευνηθεί εκτενώς καθώς περιορίζει 
τη λειτουργία των μαγνητικών μεταδόσεων όταν υπάρχει υψηλή 
επιτάχυνση/επιβράδυνση. Η ανάλυση της ολίσθησης στη βιβλιογραφία έχει γίνει 
κυρίως μέσω της υλοποίησης προσομοιώσεων FEA μεταβατικής κατάστασης ή με 
άλλες αριθμητικές μεθόδους, χωρίς να δίνουν πρόσθετες πληροφορίες για τα 
πολύπλοκα δυναμικά φαινόμενα και με υψηλό υπολογιστικό κόστος. Τέλος, οι 
απώλειες ισχύος λόγω δινορευμάτων  αποτελούν σημαντικά μειονεκτήματα  και 
πρέπει να εξεταστούν καθώς υψηλές τιμές απωλειών ισχύος μπορεί να οδηγήσουν 
σε υπερβολική παραγωγή θερμότητας που μπορεί να αυξήσει τη θερμοκρασία του 
συστήματος οδηγώντας σε υποβάθμιση των μόνιμων μαγνητών και του συστήματος 
συνολικά. Οι απώλειες ισχύος συνήθως υπολογίζονται υλοποιώντας προσομοιώσεις 
FEA μεταβατικής κατάστασης που απαιτούν υψηλό υπολογιστικό κόστος και κατά 
συνέπεια περιορίζουν τις μεθόδους βελτιστοποίησης που στοχεύουν στη μείωση των 
δινορευμάτων.   
 
Η παρούσα διδακτορική διατριβή πραγματεύεται  την μελέτη και την μοντελοποίηση 
ομοαξονικών συστημάτων μαγνητικής μετάδοσης κίνησης . Στην παρούσα διατριβή 
αναπτύχθηκε ένα καινοτόμο αναλυτικό μοντέλο για τον υπολογισμό του μαγνητικού 
πεδίου και των εφαρμοζόμενων ροπών για κάθε γωνία περιστροφής. Για τον 
υπολογισμό του μαγνητικού πεδίου χρησιμοποιήθηκαν οι εξισώσεις Maxwell ενώ για 
τον υπολογισμό της ροπής ο Τανυστής Maxwell. Επιπλέον, αποδείχτηκε ότι η ροπή σε 
οποιαδήποτε σχετική θέση των δυο ροτόρων μπορεί να υπολογιστεί συναρτήσει της 
γωνίας περιστροφής τους και της μέγιστης ροπής (stall torque). Οι υπολογισθείσες 
ροπές επαληθεύτηκαν με υπολογιστικά πακέτα πεπερασμένων στοιχείων του 
εμπορίου (ANSYS Maxwell). Το μοντέλο αυτό γενικεύτηκε για την περίπτωση των 
ομοαξονικών  συστημάτων μαγνητικής μετάδοσης κίνησης με την χρήση διατάξεων 
Halbach (Halbach-array coaxial magnetic gears). Με την χρήση της διάταξης αυτής, 
γίνεται δυνατή η επίτευξη υψηλότερης πυκνότητας ροπής σε σχέση με την 
περίπτωση του απλού μαγνητικού συστήματος. Στην διατριβή έγινε ο αναλυτικός 
υπολογισμός της ροπής που θα ασκηθεί για κάθε σχεδιασμό της διάταξης Halbach. 
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Επιπλέον, αποδείχτηκε ότι σχέση που συνδέει τις ροπές στους δυο ρότορες με την 
μέγιστη ροπή και τις σχετικές γωνίες είναι ίδιος με την περίπτωση του απλού 
μαγνητικού συστήματος. Με τον τρόπο αυτό μπορεί εύκολα να πραγματοποιηθεί η 
βελτιστοποίηση της διάταξης των ομοαξονικών μαγνητικών συστημάτων μετάδοσης 
κίνησης για την επίτευξη της μέγιστης δυνατής πυκνότητας ροπής με μεγάλη 
ακρίβεια και χαμηλό υπολογιστικό κόστος λόγω του αναλυτικού τρόπου επίλυσης 
του φαινομένου. 
 
Στην συνέχεια, σημαντική βαρύτητα δόθηκε στην μελέτη της δυναμικής 
συμπεριφοράς των ομοαξονικών συστημάτων μαγνητικής μετάδοσης κίνησης καθώς 
η ολίσθηση (slippage) αποτελεί σημαντικό πρόβλημα σε αυτές τις μεταδόσεις. Στην 
βιβλιογραφία ο υπολογισμός της δυναμικής απόκρισης γίνεται συνήθως με την 
χρήση υπολογιστικών πακέτων τα οποία έχουν μεγάλο υπολογιστικό κόστος. Στην 
παρούσα διατριβή χρησιμοποιώντας το αναλυτικό μοντέλο υπολογισμού των ροπών 
που περιγράψαμε παραπάνω έγινε δυνατή η κατάστρωση των δυναμικών εξισώσεων 
του συστήματος με αναλυτική μορφή. Στην συνέχεια δημιουργήθηκε ένα αδιάστατο 
κριτήριο το οποίο μπορεί να προσδιορίσει την συμπεριφορά που θα έχει το σύστημα 
χωρίς την ανάγκη επίλυσης του συστήματος των εξισώσεων με την χρήση 
αριθμητικών μεθόδων. Επομένως, με το κριτήριο αυτό γίνεται δυνατός ο 
υπολογισμός της μέγιστης δυνατής επιτάχυνσης που μπορεί να εφαρμοστεί 
προκείμενου το ομοαξονικό μαγνητικό σύστημα μετάδοσης κίνησης να μην 
ξεπεράσει το μέγιστο επιτρεπτό σφάλμα ανάλογα την εφαρμογή που αυτό θα 
χρησιμοποιηθεί. Αποδείχτηκε ότι η δυναμική συμπεριφορά του συστήματος κατά την 
επιτάχυνση είναι παρόμοια με την συμπεριφορά του εκκρεμούς (driven pendulum). 
Τέλος, δείχθηκε ότι υπό ορισμένες συνθήκες επιτάχυνσης το σύστημα μπορεί να 
παρουσιάσει χαοτική συμπεριφορά.  
 
Έπειτα, έγινε μελέτη των αναπτυσσόμενων δινορευμάτων εξαιτίας των 
εναλλασσόμενων μαγνητικών πεδίων κατά την περιστροφή του συστήματος. Τα 
δινορεύματα έχουν ως αποτέλεσμα την αύξηση της θερμοκρασίας του συστήματος 
γεγονός που μπορεί να οδηγήσει σε υποβάθμιση των μαγνητικών ιδιοτήτων, που θα 
έχει ως αποτέλεσμα την υποβάθμιση του συστήματος συνολικά. Για το λόγο αυτό η 
μελέτη των δινορευμάτων είναι σημαντική και απαραίτητα κατά τον σχεδιασμό των 
ομοαξονικών συστημάτων μαγνητικής μετάδοσης κίνησης. Στην παρούσα διατριβή 
με την χρήση των αναλυτικών μοντέλων υπολογισμού του μαγνητικού πεδίου για 
κάθε γωνία περιστροφής των δυο ροτόρων έγινε αναλυτικός υπολογισμός των 
απωλειών του συστήματος λόγω των δινορευμάτων. Τα αποτελέσματα 
επαληθεύτηκαν με υπολογιστικά πακέτα πεπερασμένων στοιχείων του εμπορίου 
(ANSYS Maxwell). Τέλος, δείχθηκε ότι με την χρήση τεχνικών ελασματοποίησης των 
μαγνητών (magnet segmentation) οι απώλειες των δινορευμάτων μπορούν να 
μειωθούν σημαντικά. 
 
Τέλος, έγινε ο σχεδιασμός ενός ομοαξονικού συστήματος μαγνητικής μετάδοσης 
κίνησης στο οποίο τονίστηκαν τα σημαντικά σημεία κατά την διάρκεια του 
σχεδιασμού/κατασκευής. Ιδιαίτερη έμφαση δόθηκε στην επιλογή των κατάλληλων 
ανοχών των αξόνων και των ρουλεμάν με σκοπό την αποφυγή των επικίνδυνων για 
την ομαλή λειτουργία ιδιοσυχνοτήτων.  
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THESIS OVERVIEW 

 

To facilitate the reading of the present thesis a brief introduction of each chapter is 
presented herein: 
 
Introduction: A brief literature review on magnetic gears is presented. In addition, an 
introduction on non-linear dynamics and chaos theory is presented focusing on the 
complex dynamics of the damped-driven pendulum that would prove to be important 
for the understanding of the dynamical phenomena in coaxial magnetic gear drives. 
 
Chapter 1: The analytical modelling of the scalar magnetic potential, the magnetic 
induction and the induced torque in the two rotors of the CMG drive is presented. The 
analytical solutions are compared with FEA results. An investigation on the effect of 
the modulator ring to the stall torque is conducted. The developed model in this 
Chapter is the core model of the present thesis.  
 
Chapter 2: The analytical model derived in Chapter 1 is generalized for the case of 
Halbach-array CMG drives. It is demonstrated that every Halbach-array CMG could be 
analyzed in the same way as the standard CMG. It is illustrated that Halbach-array 
CMG achieve superior performance compared to the standard CMG. 
 
Chapter 3: A detailed investigation on the dynamics of the CMG during transient 
operation is presented. The similarities between the CMG and the driven-pendulum 
are showcased. An analysis and the formulation of a non-dimensional criterion that 
predicts the response of the CMG drive during transient operation is derived. 
Furthermore, it is demonstrated that under certain conditions, the dynamical 
response of the CMG drive could exhibit chaotic behavior showcasing the fascinating 
dynamics of the CMG drive.  
 
Chapter 4: A detailed analysis on the power losses due to eddy current and core losses. 
An analytical calculation of the power losses during the operation of the CMG is 
derived using the analytical calculation of the magnetic induction as obtained in 
Chapter 1. 
 
Chapter 5: A detailed design of CMG drive is presented showcasing the important 
designs aspects for manufacturing a robust and efficient CMG drive. 
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Introduction 
 

I.1 Magnetic Gears 

Mechanical gears have been extensively used in power transmission application by 

the industry since they can achieve high torque densities. However, they are prone to 

various problems such as noise, friction, requirement for lubrication, wear, fatigue and 

as a consequence poor reliability. Magnetic gears (MGs) on the other hand, have much 

lower level of noise, vibration and wear, therefore requiring a significantly lower 

maintenance cost compared to mechanical gears. In addition, since there is no contact 

between the shafts, MGs are protected against overload, leading to higher reliability 

[I.1] while making them ideal for vibration attenuation applications. In addition, 

backdrivability is a major advantage of magnetic drives, since there is no reduction in 

the efficiency of transmission when it works in reverse.  Therefore, MGs could be used 

in a variety of applications [I.2] such as in aircraft mechanical transmission [I.3]-[I.5], 

wind power generation [I.6]-[I.9], wave energy conversion [I.10], traction [I.11] and 

aerospace [I.12]. 

I.1.1 Magnetic Gear Topologies 

The concept of MGs can be traced back to the early 1900s. Armstrong's patent [I.13] 

laid the foundation by introducing a power-transmission device using magnetic force, 

initially relying on coil-generated magnetism instead of permanent magnets (PMs). 

The first MG utilizing solely PMs was developed in 1941 [I.14]. In 1968, Martin 

proposed a patent for a coaxial MG [I.15]. During that time, various MG designs 

emerged, but their torque density was limited due to suboptimal magnet performance 

and use. The advent of high energy product (BHmax) rare-earth magnets reignited 

interest in MGs. Particularly since 2001, following Atallah's [I.16] introduction of a 

novel coaxial MG with NdFeB magnets, MG research has been increasingly prominent. 

MG topologies are categorized into two main groups. The first group comprises what 

are known as conventional non-modulated MGs, while the second group comprises of 

modulated MGs. 

I.1.1.1 Non-modulated magnetic gears 

These types of MGs function through non-contact interactions where Permanent 

Magnets (PMs) are arranged in various configurations to interact magnetically. 

Essentially, the concept of conventional MGs is derived from traditional mechanical 

gears. Examples include the spur gear, as illustrated in Fig.I.1(a), the worm gear 

depicted in Fig.I.1(b), the perpendicular gear shown in Fig.I.1(c), the magnetic screw 

as in Fig.I.1(d), and the skew gear. These conventional MGs, despite their 

straightforward design, often exhibit low torque density, due to the poor utilization of 

magnets making them unattractive for industrial applications [I.1]. 
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Figure I.1: Different non-modulated topologies of magnetic gear drives that has 
been proposed to literature [I.1] 

In contrast, some other conventional MG topologies demonstrate significantly high 

torque densities, albeit with more complex structures. An example is the magnetic 

planetary gearing setup, analogous to mechanical planetary gears, which was 

simulated and built as shown in Fig.I.1(e) [I.17]. Simulations revealed that with six 

magnetic planet gears, the torque density approached 100 kNm/m³, compared to less 

than 50 kNm/m³ with a three-planetary-gear system. Another example, the cycloid 

MG depicted in Fig.I.1(f) and based on cycloid gearing principles, was detailed in [I.18]. 

This design uses cycloid motion to modulate the air gap between two magnetic rings, 

enabling effective gear reduction. Experimentally, it achieved a torque density of 

approximately 107 kNm/m³. Additionally, a magnetic version of the harmonic gear, 

shown in Fig.I.1(g) and analyzed in [I.19], suits applications requiring high gear ratios. 

This MG design offers ripple-free torque transmission and can reach torque densities 

up to 150 kNm/m³ at high gear ratios. While the cycloid and harmonic MGs boast high 

torque densities and gear ratios, their mechanical complexity significantly impedes 

commercialization prospects. Moreover, a transrotary MG, investigated in [I.20] and 

shown in Fig.I.1(h), presents another example of innovative MG design. 

I.1.1.2 Modulated magnetic gears 

This group appears to be particularly promising due to its combination of high 

efficiency and high torque density. A notable advantage of these configurations is that 

all the permanent magnets (PMs) are engaged in torque transmission. This 

involvement of all PMs is instrumental in achieving the high torque density. Different 

modulated MG topologies are presented in Fig.I.2. 
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Figure I.2: Different modulated topologies of magnetic gear drives that has been 
proposed to literature [I.1] 

The initial proposal for a coaxial Magnetic Gear (MG) using rare-earth magnets was 

made in [I.16], as depicted in Fig.I.2(a), with detailed design and performance analysis 

provided in [I.16] and [I.21]. This MG consists of three components: Permanent 

Magnets (PMs) attached to both the inner and outer rotors (i.e., Surface-Mounted 

Permanent Magnet or SPM rotors), and iron pole-pieces (flux modulators) positioned 

between the two rotors. The yokes of the rotors and iron pole-pieces are made from 

silicon steel lamination or soft magnetic composite. A prototype demonstrated a 

transmitted torque density exceeding 70 kNm/m³ [I.21]. Furthermore, it was shown 

in [I.22] that the coaxial MG can match the performance of its mechanical 

counterparts. Over the past 20 years, a variety of rotor structures have emerged in 

the literature. 

In [I.23], optimization of this SPM MG topology focused on the flux modulator shape, 

leading to a prototype with a measured torque density of 111 kNm/m³. Another 

design, featuring a spoke-type inner rotor shown in Fig.I.2(b), was introduced in [I.24], 
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achieving a torque density of 54 kNm/m³. It was suggested that a surface-mounted 

PM rotor might be more effective than a spoke design of the same volume. 

In contrast, a lower-cost flux-focusing MG using ferrite magnets was explored in [I.25] 

and is illustrated in Fig.I.2(c). Experimental evaluations of ferrite, NdFeB, and hybrid 

designs in [I.26] revealed torque densities of 33 kNm/m³, 151 kNm/m³, and 66 

kNm/m3, respectively. Notably, a significant measured torque density of over 200 

kNm/m³ was achieved in [I.27] by scaling up a previous NdFeB spoke MG design, 

indicating that spoke-type MGs achieve very high torque densities when built with 

NdFeB magnets rather than ferrite. 

In [I.28], a coaxial MG incorporating interior PMs was presented, as illustrated in 

Fig.I.2(d). This study also explored three different methods for connecting stator pole-

pieces. A novel coaxial MG design featuring an interior-magnet outer-rotor 

configuration was introduced in [I.29], shown in Fig.I.2(e). This design employs 

homopolar Interior IPMs, where PMs of the same polarity are arranged along the 

circumference of the outer rotor, simplifying manufacturing. However, due to the 

reduced use of PMs, this prototype achieved a torque density of about 53 kNm/m³. 

A coaxial MG utilizing Halbach PM arrays, depicted in Fig.I.2(f), was proposed and 

thoroughly analyzed in [I.30]. This design demonstrated a 13% increase in torque 

density, a 67% reduction in cogging torque, and a 28% decrease in total iron losses 

compared to a standard coaxial MG. NASA's recent studies on MGs with Halbach 

arrays [I.31] suggest the technology's potential for low-torque applications. 

In [I.32], a new coaxial MG design was developed, featuring an optimized iron pole-

piece shape and a Halbach magnetic arrangement, as shown in Fig.I.2(g). The 

proposed pole-piece design potentially increases torque density by 15% or more 

compared to regular designs. An innovative approach was explored in [I.33] with an 

air-core coaxial MG using Halbach arrays. This design eliminates the use of back irons 

attached to the magnets on both inner and outer rotors. Instead, the magnets are 

mounted on a lighter, nonmagnetic material, leading to designs with reduced weight. 

In [I.34], a new type of reluctance MG designed for high-speed transmission was 

introduced, as seen in Fig.I.2(h). This MG employs salient poles on a high-speed rotor 

made solely of iron core, creating a simple and robust structure. It eliminates magnet 

eddy current loss, thus enhancing efficiency. However, its simulated torque density 

was relatively low at 29.4 kNm/m³. 

A bearingless magnetic gear concept was proposed in [I.35], incorporating levitation 

windings between the iron pole-pieces, as illustrated in Fig.I.2(i). By precisely 

controlling the current, radial forces can be generated for levitation, without 

impacting the torque density of the gear. For applications requiring intersecting 

shafts, a unique solution was described in [I.36]. This design resembles the 

conventional coaxial MG, but with bent flux modulators, as shown in Fig.I.2(j). The 

torque density for this topology was limited to 5.4 kNm/m³, constrained by the size of 

the modulators and flux leakage. 



19 
 

Moving beyond coaxial topologies, various modulated MG structures have been 

proposed. An axial-field MG was described in [I.37], shown in Fig.I.2(k), achieving a 

simulated torque density of around 70 kNm/m³. In [I.38], the use of Halbach PM arrays 

in an axial-field MG was suggested, offering higher torque density than the standard 

axial-field MG. A novel axial-flux MG with L-shaped modulators and a spoke-type 

magnet arrangement was presented in [I.39], as seen in Fig.I.2(l). This complex 

geometry necessitated the use of 3D printing. It improved both flux leakage reduction 

and torque density, reaching a simulated torque density of 74 kNm/m³ using NdFeB 

magnets. An axial-transverse-flux MG with T-shaped flux modulators was introduced 

in [I.40], as depicted in Fig.I.2(m). This design reduces saturation in the iron pole-

pieces and limits flux leakage, with a T-shaped modulator creating both axial and 

transverse flux paths. 3D simulations indicated a significantly higher torque density, 

up to 280 kNm/m³. 

In [I.41], a hybrid transverse-axial MG with additional PMs on the flux modulator side 

was proposed, as shown in Fig.I.2(n). 3D FEM simulations indicated a torque density 

of 181.2 kNm/m³, about a 20% improvement over the axial-flux MG. A high-

performance linear MG was introduced in [I.42], shown in Fig.I.2(o), with a thrust force 

density of 1.7 MN/m³. Its operating principle is akin to that of the coaxial MG. Finally, 

[I.43] proposed a new tubular linear MG utilizing high-temperature superconductor 

(HTS) bulks for field modulation, as illustrated in Fig.I.2(p). With HTS assistance, the 

thrust force transmission capacity is significantly enhanced compared to conventional 

designs. 

The torque densities for the different MGs topologies are summarized in Table I.1 [I.1]. 

Table I.1: Comparison of different MG topologies in the literature  

Gear Type Gear ratio Torque density (kNm/m3) 

Mechanical Gears 1-1000 47-607 

Planetary MG 3:1 97.3 

Cycloid MG 21:1 142 

Harmonic MG 360:1 75 

SPM MG 5.75:1 117 

Optimized SPM MG 10.5:1 117 

Spoke MG 1 5.5:1 92 

Spoke MG 2 4.25:1 40 

Spoke NdFeB MG 4.25:1 239 

IPM MG 5.5:1 64 

Homopolar IPM MG 7.33:1 53 

Halbach MG 4.25:1 124 

Reluctance MG 8:1 29 

Axial MG 5.75:1 70 

L-shaped axial MG 3.17:1 280 

T-shaped axial MG 3.17:1 74 

Hybrid-flux MG 5.5:1 181 
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I.1.1.3 The Coaxial Magnetic Gear 

The coaxial MG (CMG), shown in Fig.I.3 was proposed by Atallah et al. [I.20] will be 

investigated in depth in the present thesis. The CMG consists of two concentric iron 

yokes, the PMs that are mounted on them and a flux-modulator ring that is placed 

between them. For the proper operation of the CMG it is essential that the number of 

iron pole pieces used in the modulator ring are equal to the sum of the pole pairs of 

the PMs in the inner rotor and the pole pairs of the PMs in the outer rotor. 

Furthermore, the theoretical equivalent gear ratio of CMG in the case of a stationary 

modulator ring is equal to the quotient of the number of pole pairs in the outer rotor 

and the number of pole pairs in the inner rotor [I.44]. The optimization of the CMG 

has been extensively discussed in the literature in order to increase torque density 

[I.45]-[I.49]. Halbach-array CMG is an improved version of the standard CMG topology 

due to its higher torque density and its superior dynamical characteristics [I.30]. 

 

Figure I.3: The Coaxial Magnetic Gear 

The governing equations of the CMG drive are obtained from Maxwell’s equations, 

however, the non-linearity of the iron pole pieces results to complex systems of partial 

differential equations (PDEs) that cannot be solved analytically [I.50]. In particular, Jian 

et al. [I.50] developed a 2D analytical model for the calculation of the scalar magnetic 

potential assuming equipotential iron pole pieces and implementing a Fourier series 

formulation to overcome the non-linearity in the boundary conditions of the iron pole 

pieces. As a consequence, a system of linear equations is formed, from which the 

coefficients of the general solutions of the system’s PDEs are calculated analytically 

implementing Gauss elimination method. Therefore, for a given design of the CMG 

drive, the magnetic induction in the radial and tangential directions can be calculated 

for any angle of rotation of the inner and outer rotor. As a consequence, the torque 

at the inner and outer rotor of the CMG is determined numerically from the Maxwell 
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Stress Tensor, [I.51]-[I.52] for every angle of rotation of the rotors. The slip-effect and 

the dynamical response of the CMG drive during a transient operation are determined 

by calculating the above torques for the new angle of the rotors’ rotation at each time 

step [I.53]. The transient response of the CMG could also result from finite element 

analysis (FEA) [I.54]-[I.55]. 

Due to the complexity and the large number of optimization parameters, i.e. the pole-

pairs number, the dimensions of the iron pole pieces (both in radial and tangential 

direction), the airgap between each rotor and the modulator ring, the thickness of the 

PMs used it is evident that an analytical model of calculation of the torque would 

significantly reduce the computational time required for the optimization algorithm. 

In addition, the variety of optimization goals appear in the design process of a CMG 

drive regarding each application, i.e. achieve high torque density, attain a desired 

dynamical response, vibration attenuation, require a fast calculation of the dynamical 

response of the CMG drive, without the requirement of torque calculation at every 

time step, since the Gauss elimination algorithm requires a non-negligible 

computational cost. In this way, an optimization algorithm with a significantly lower 

computational cost could be developed in order to achieve the desired characteristics 

of the CMG drive in each design process. 

However, specific limitations and inherent problems of MGs have hindered their wide 

establishment in industrial applications. The torque density of MGs is substantially 

lower compared to mechanical gears and as a consequence they cannot be used in 

applications where high torques are required [I.56]. Furthermore, the dynamical 

response and specifically the slip effect of MGs during the transient state of 

acceleration or deceleration has to be investigated thoroughly in applications where 

high accuracy is required [I.2]-[I.4], [I.57]-[I.59]. Finally, eddy current and core losses 

especially in high angular velocities [I.60] should be investigated when designing a 

CMG. 

I.2 Maxwell Equations 

Maxwell's equations, are a set of coupled partial differential equations that, together 

with the Lorentz force law, form the foundation of classical electromagnetism, 

classical optics, electric and magnetic circuits. The equations provide a mathematical 

model for electric, optical, and radio technologies, such as power generation, electric 

motors, wireless communication, lenses, radar, etc. They describe how electric and 

magnetic fields are generated by charges, currents, and changes of the fields. The 

Maxwell equations in their differential form are: 

∇ ∙ 𝐁 = 0 (Ι.1) 
∇ ∙ 𝐃 = ρ (Ι.2) 

∇ × 𝐇 = 𝐉 +
∂𝐃

∂t
 (Ι.3) 

∇ × 𝐄 = −
∂𝐁

∂t
 (Ι.4) 
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where 𝐄 the electric field intensity, 𝐁 the magnetic induction, 𝐇 the magnetic field 

intensity, 𝐉 the electric current density, 𝐃 the electric displacement and ρ the electric 

charge density. 

The Maxwell equations will be used in Chapter 1 and Chapter 2 of the present thesis 

in order to model the magnetic induction in coaxial magnetic gears. 

I.3 Non-linear dynamics 

In mathematics and science, a non-linear system is a system in which the change of 

the output is not proportional to the change of the input. Non-linear problems are of 

interest to engineers, physicists, mathematicians, and many other scientists since 

most systems are inherently nonlinear in nature. Examples of non-linear equations are 

the Navier-Stokes equations, the Van der Pol oscillator the swinging of a clock 

pendulum and many others [I.61]-[I.62].  

I.3.1 The pendulum problem 

It will be demonstrated in the present thesis and specifically in Chapter 3 that the 

governing equations of the dynamical response in coaxial magnetic gears resemble 

the driven pendulum. Therefore, it was deemed necessary to briefly introduce the 

pendulum problem since it showcases a fascinating behaviour even though it is 

governed, at first glance, by a simple ordinary differential equation.  

A pendulum is a body suspended from a fixed support so that it swings freely back and 

forth under the influence of gravity. When a pendulum is displaced sideways from its 

resting, equilibrium position, it is subject to a restoring force due to gravity that will 

accelerate it back towards the equilibrium position. When released, the restoring 

force acting on the pendulum's mass causes it to oscillate about the equilibrium 

position, swinging it back and forth. 

We will begin our journey of understanding the dynamical behaviour of the pendulum 

by initially considering the simplest case. Therefore, no damping or external force will 

be applied to the pendulum except gravity. In order to obtain the governing equation 

of the pendulum we consider Fig.I.4. 

The pendulum equation can be obtained from conservation of energy principle. 

The change in potential energy is given by: 

ΔU = mgh (Ι.5) 
 

The change in kinetic energy is given by: 

ΔK =
1

2
mu2 

(Ι.6) 

 

Since no energy is lost (no damping) it yields that: 
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mgh =
1

2
mu2 

(Ι.7) 

 

The velocity for a given change in height can be expressed as: 

u = √2gh (Ι.8) 

 

  

Figure I.4: Simple pendulum 

 

From the arc length formula we obtain: 

u = l
dθ

dt
= √2gh 

(Ι.9) 

 

where l is the length of the pendulum and g the acceleration of gravity . 

From Fig.I.3, if the pendulum starts its swing from some initial angle θ0 then 𝑦0, the 

vertical distance from the screw, is given by: 

y0 = lcosθ0 (Ι.10) 
 

Similarly, for y1, we have: 
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y1 = lcosθ (Ι.11) 
 

As a result, the difference of 𝑦0 and 𝑦1 is: 

h = l(cosθ −  cosθ0) (Ι.12) 
 

From Eq.(I.9) and Eq.(I.12) we obtain: 

dθ

dt
= √

2g(cosθ −  cosθ0)

l
 (Ι.13) 

 

By differentiating Eq.(I.13) we obtain: 

d2θ

dt2
=

1

2

−
2g
l

sinθ

√2g(cosθ −  cosθ0)
l

dθ

dt
 (Ι.14) 

 

Combining Eq.(I.3) and Eq.(I.14): 

d2θ

dt2
= −

g

l
sinθ 

(Ι.15) 

 

that yields the governing equation of the pendulum: 

θ̈ +
g

l
sinθ = 0 (Ι.16) 

 

The differential equation Eq.(I.16) is not easily solved, and there is no solution that can 

be written in terms of elementary functions. 

When the amplitude of the oscillation of the pendulum the small angle approximation 

can be used due to the fact that sinθ ≈ θ. Therefore, Eq.(I.16) is reduced to: 

θ̈ +
g

l
θ = 0 (Ι.17) 

 

The solution of Eq.(I.17) is: 

θ(t) = θ0 sin (√
g

l
t) (Ι.18) 

 

where θ0 is the amplitude of the oscillations. The period of the oscillation is therefore: 
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T0 = 2π√
l

g
 (Ι.19) 

 

For amplitude beyond the small angle approximation the period of the oscillation can 

be obtained from inverting Eq.(I.13). 

  

dt

dθ
= √

l

2g(cosθ −  cosθ0)
 (Ι.20) 

 

Integrating over a complete cycle and since: 

T = t(θ0 → 0 → −θ0 → 0 → θ0) (Ι.21.Α) 
T = 4t(θ0 → 0) (Ι.21.Β) 

 

yields that the period of oscillation is: 

T = 4√
l

2g
∫

dθ

√cosθ −  cosθ0

θ0

0

 (Ι.22) 

 

The integral of Eq.(I.22) can be simplified as shown in Appendix AI.1 in: 

T = 4√
l

g
K(k) (Ι.23.A) 

 

where K(k) is the complete elliptic integral of the first kind defined as: 

K(k) = ∫
1

√1 − k2 sin2 u

π/2 

0

 du 

 

(Ι.23.B) 

and k = sin
θ0

2
 

The complete elliptic integral K(k) cannot be solved analytically however it can be 

approximated with the use of Taylor series as shown in Appendix AI.2 as: 

K(k) =
π

2
∑ (

(2n − 1)‼

(2n)‼
kn)

2∞

n=0

 

 

(Ι.24) 

Therefore, the period of the oscillation is obtained from: 
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T = 2π√
l

g
∑ (

(2n − 1)‼

(2n)‼
(sin

θ0

2
)

n

)

2∞

n=0

 (Ι.25) 

 

which can also be written as: 

 

T = T0 ∑ (
(2n − 1)‼

(2n)‼
(sin

θ0

2
)

n

)

2∞

n=0

 (Ι.26) 

It is interesting to show how the true period of the oscillation is different from the 

small angle period approximation with respect to the initial angle θ0. In Fig.I.5 the ratio 

of the true and small angle approximation period with respect to the initial angle is 

presented. 

 

 

Figure I.5: Ratio of the true and small angle approximation period with respect to 

the initial angle 

It can be observed that in small angles the approximation is accurate, however as the 

initial angle θ0 is increases the ratio increases and will tend to infinity if the angle 

approaches 180°. 

In Fig.I.6 the oscillation of the pendulum with respect to time is presented at various 

initial angles. The length of the pendulum was considered to be 1m which yields to a 

small angle approximation period T0 ≈ 2s. Eq.(I.16) was solved using Simulink. 
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It can be observed, that in small angles (i.e. θ0 = 10°) the oscillation of the pendulum 

closely resembles a sine wave similar to the Eq.(I.18), while the period of the 

oscillation is approximately 2 seconds close to T0. 

However, as the initial angle increases the oscillation changes its behaviour and the 

period of the oscillation increases. In the extreme case were the initial angle is          

θ0 = 179°, the oscillation no longer resembles a sine wave especially near the angles 

±θ0. The period of the oscillation is almost 4 times higher than T0 at around 8 seconds 

which can also be verified from Fig.I.5. 

 

  

  

  
Figure I.6: Oscillation of the pendulum with respect to time for various initial 

angles 

From the brief analysis of the simple pendulum it can be understood that even though 

the governing ordinary differential equations is relatively simple a very interesting 
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behaviour can be observed especially and large initial angles where the period of the 

oscillation and the oscillation itself has a very different behaviour when compared to 

small initial angles.  

We will now consider a more general case of the simple pendulum the damped-driven 

pendulum, since the governing equations in coaxial magnetic gears resemble more 

the driven pendulum than the simple pendulum. The governing differential equation 

of the damped-driven pendulum is the following (from torque equilibrium in Fig.I.3): 

mL2θ̈ + bL2θ̇ + mglsinθ = FLcos(Ωt) (Ι.27) 
 

where m is the mass of the bob, b is the damping coefficient due to air resistance, F 

is the amplitude of the forcing and Ω is the angular velocity of the forcing oscillations. 

Therefore, dividing Eq.(I.27) with mL2 the following non-dimensional form is derived: 

θ̈ + 2βθ̇ + ω0
2sinθ = γω0

2cos(Ωt) (Ι.28.A) 
 

where: 

2β =
b

m
 

 
(Ι.28.B) 

ω0
2 =

g

L
 

 
(Ι.28.C) 

γ =
F

mg
 (Ι.28.D) 

 

Eq.(I.28.A) exhibits chaotic behaviour [I.63]-[I.64]. The exact motion of this pendulum 

can only be found numerically and is highly dependent on the initial conditions. In 

order to understand chaotic behaviour a set of different case studies will be presented 

according to the parameters of Table I.2. 

Table I.2: Case study parameters 

ω0 1.5 

β 0.375 

Ω 1 

θ0(t = 0) 0 

θ̇0(t = 0) 0 

 

Different values of the non-dimensional force γ will be given and the dynamical 

response of the pendulum will be calculated with Simulink. 

In Fig.I.7 the oscillation of the damped-driven pendulum for various non-dimensional 

force γ is presented. 
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Figure I.7: Oscillation of the damped-driven pendulum with respect to time for 

various non-dimensional force 𝛄 

In most cases, some initial transients are present, however we are will focus our 

attention after the transient period. For the case of  γ = 1, it can be observed that the 

pendulum oscillates with a period of approximately 5 seconds. A similar behaviour, is 

observed for the case of γ = 1.06, although the transient phenomenon is longer. 

However, for the case of γ = 1.07, after the initial transients we observe a period 

doubling. For the case of γ = 1.08, we observe that the period is four times larger 

than the case of γ = 1.06, while for the case of   γ = 1.08, we observe that the period 

is eight times larger than the case of γ = 1.06. Finally for the case of γ = 1.2, we 

observe an aperiodic oscillation and chaotic behaviour. 

An important phenomenon that is observed in all chaotic systems is that a small a very 

small change to the initial conditions of the system could lead to a very different 

dynamical responses of the system as the time progresses. In order to demonstrate 
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this phenomenon, the parameters of Table I.2 were used and a non-dimensional force 

γ = 1.5 was applied to system. In Fig.I.8 the dynamical response of the pendulum for 

different initial conditions is presented. It can be observed that initially the responses 

are very similar, however after some time they begin to showcase a small deviation 

that will eventually lead to a completely different behaviour. 

 

Figure I.8: Oscillation of the damped-driven pendulum with respect to time for 

different initial conditions 

The different initial conditions are compared with the case when θ0(t = 0) = 0° . For 

the case of θ0(t = 0) = 0.1°, the two oscillations begin to deviate at around 45 

seconds, for the case of θ0(t = 0) = 0.01°, the two oscillations begin to deviate at 

around 70 seconds while for the case of θ0(t = 0) = 0.001° the two oscillations begin 

to differ at around 90 seconds.  

As expected, when the initial conditions are closer to each other the deviation of the 

two oscillations requires more time. The amount of time for which the behaviour of a 

chaotic system can be effectively predicted depends on how accurately its current 

state can be measured, and a time scale depending on the dynamics of the system, 

called the Lyapunov time [I.61]. 

It is evident from the example of the damped-driven pendulum that chaotic behaviour 

in dynamical systems is a phenomenon that is hard to predict and could arise in simple 

physical phenomena. Therefore, a brief introduction in chaos theory is necessary in 

order to understand some fundamental principles that will be useful in the dynamical 

response study in coaxial magnetic gears. 
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I.3.2 The essence of chaos 

Chaos theory concerns deterministic systems whose behaviour can, in principle, be 

predicted. Chaotic systems are predictable for a while and then 'appear' to become 

random. Chaos theory states that within the apparent randomness of chaotic complex 

systems, there are underlying patterns, interconnection, constant feedback loops, 

repetition, self-similarity, fractals, and self-organization.  

Small differences in initial conditions, such as those due to errors in measurements or 

due to rounding errors in numerical computation, can yield widely diverging outcomes 

for such dynamical systems, rendering long-term prediction of their behaviour 

impossible in general as seen in the case of the damped-driven pendulum and 

specifically in Fig.I.7. This can happen even though these systems are deterministic, 

meaning that their future behaviour follows a unique evolution and is fully determined 

by their initial conditions, with no random elements involved. In other words, the 

deterministic nature of these systems does not make them predictable. This behaviour 

is known as deterministic chaos, or simply chaos. 

The theory was summarized by Edward Lorenz [I.62] as: 

Chaos: When the present determines the future, but the approximate present does 

not approximately determine the future. 

Chaotic behaviour exists in many natural systems, including fluid flow, heartbeat 

irregularities, weather, and climate. This behaviour can be studied through the 

analysis of a chaotic mathematical model, or through analytical techniques such as 

recurrence plots and Poincare maps. 

One of the most well-known chaotic systems is the Lorenz system. In 1963 Edward 

Lorenz developed a simplified mathematical model for atmospheric convection [I.62].  

dx

dt
= σ(y − x) 

 
(Ι.29.A) 

dy

dt
= x(ρ − z) − y 

 
(Ι.29.B) 

dz

dt
= xy − βz 

 
(Ι.29.C) 

where x is proportional to the rate of convection, y to the horizontal temperature 

variation, and z to the vertical temperature variation. The constants σ, ρ, and β are 

system parameters proportional to the Prandtl number, Rayleigh number, and certain 

physical dimensions of the layer itself. 

In order to investigate the chaotic behaviour of the Lorenz system a case study 

according to the parameters of Table I.3 will be considered 

 



32 
 

 

Table I.3: Case study parameters 

σ 10 

β 8/3 
(x, y, z, t = 0) (1,1,1) 

 

Different values of ρ will be given and the response of the system after 100 seconds 

will be calculated. In Fig.I.9 the solutions for different values of ρ are presented. 

  

  

  
Figure I.9: Lorenz solution for different values of 𝛒 

For small values of ρ the system is stable and evolves to one of two fixed point 

attractors. However, when ρ becomes large the fixed points become repulsors and 

the system trajectory is repelled by them in a very complex way. For ρ = 28, the 
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behaviour of the system is chaotic and almost all initial points will tend to an invariant 

set the Lorentz strange attractor.  

One additional system that has chaotic behaviour, yet described by a very simple 

equation is the logistic map equation. 

xn+1 = rxn(1 − xn) (Ι.30) 
 

where xn is a number between zero and one, which represents the ratio of existing 

population to the maximum possible population. This nonlinear difference equation 

is intended to capture two effects: 

 reproduction, where the population will increase at a rate proportional to the 

current population when the population size is small 

 starvation (density-dependent mortality), where the growth rate will 

decrease at a rate proportional to the value obtained by taking the 

theoretical "carrying capacity" of the environment less the current 

population. 

The usual values of interest for the parameter r are those in the interval [0, 4], so that 

xn remains bounded on [0, 1]. 

In Fig.I.10 the bifurcation diagram of the logistic map is presented. The horizontal axis 

shows the possible values of the parameter r while the vertical axis shows the set of 

values of x visited asymptotically from almost all initial conditions by the iterates of 

the logistic equation with that r value.  

 

Figure I.10: Bifurcation diagram of the logistic map for different values of 𝐫 

Bifurcation theory is the mathematical study of changes in the qualitative or 

topological structure of a given family of curves, such as the integral curves of a family 
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of vector fields, and the solutions of a family of differential equations. Most commonly 

applied to the mathematical study of dynamical systems, a bifurcation occurs when a 

small smooth change made to the parameter values (the bifurcation parameters) of a 

system causes a sudden 'qualitative' or topological change in its behaviour. 

Bifurcations can be divided into two principal classes: 

 Local bifurcations, which can be analysed entirely through changes in the 

local stability properties of equilibria, periodic orbits or other invariant sets as 

parameters cross through critical thresholds 

 

 Global bifurcations, which often occur when larger invariant sets of the 

system 'collide' with each other, or with equilibria of the system. They cannot 

be detected purely by a stability analysis of the fixed points. 

From Fig.I.10 it can be observed that after a certain value of r the system will 

experience consecutive period doublings (at a rate according to the Feigenbaum 

constant) until chaotic behaviour emerges. 

From the different dynamical systems presented it is evident that chaotic behaviour 

could arise even in simple mathematical and physical problems. The dynamical 

response of coaxial magnetic gears as will be demonstrated in Chapter 3 will showcase 

chaotic behaviour. Therefore, the understanding of chaos theory and its principles is 

important in order to investigate the fascinating dynamics that could arise during the 

operation of coaxial magnetic gears.  
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Appendix AI.1 

 

The integral of Eq.(I.22) can be simplified as follows: 

Using the trigonometric identity: 

cosθ = 1 − 2sin2
θ

2
  

 

we obtain: 

T = 4√
l

2g
∫

dθ

√2√sin2 θ0

2 − sin2 θ
2

θ0

0

   (AI. 1.1) 

 

By letting: 

sinu =
sin

θ
2

sin
θ0

2

    (AI. 1.2) 

 

We obtain that: 

cosudu =
cos

θ
2 dθ

2sin
θ0

2

⇒ 

2sin
θ0

2
cosudu = √1 − sin2

θ

2
 dθ ⇒ 

dθ =
2sin

θ0

2 cosu

√1 − sin2 θ0

2 sin2 u

 du                                                                                      (AI. 1.3) 

Therefore, the integral (AI.I.1) takes the following form: 

T = 4√
l

2g
∫

1

√2√sin2 θ0

2 − sin2 θ0

2 sin2 u

π/2 

0

2sin
θ0

2 cosu

√1 − sin2 θ0

2 sin2 u

 du ⇒ 

T = 4√
l

g
∫

sin
θ0

2 cosu

sin
θ0

2 √1 − sin2 u

π/2 

0

1

√1 − sin2 θ0

2 sin2 u

 du ⇒ 
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T = 4√
l

g
∫

1

√1 − sin2 θ0

2 sin2 u

π/2 

0

 du ⇒ 

T = 4√
l

g
K(k)                                                                                                                 (AI. 1.4) 

where K(k) is the complete elliptic integral of the first kind defined as: 

K(k) = ∫
1

√1 − k2 sin2 u

π
2

0

 du                                                                                    (AI. 1.5) 

and k = sin
θ0

2
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Appendix AI.2 

 

In order to approximate the complete elliptic integral of the first kind: 

K(k) = ∫
1

√1 − k2 sin2 u

π
2

0

 du                                                                                     (AI. 2.1) 

 

We will evaluate the Taylor series expansion of the following function: 

f(x) = (1 − x)
1
2                                                                                                               (AI. 2.2) 

where  

x = k2 sin2 u                                                                                                                   (AI. 2.3) 

It relatively easy to show that the nth derivative of f will have the following form: 

f (n)(x) =
(2n − 1)‼

2n
(1 − x)−

2n−1
2  

where n‼ denotes the double factorial and 

f (n)(0) =
(2n − 1)‼

2n
 

Therefore, the Taylor series expansion will have the following form: 

f(x) = ∑
(2n − 1)‼

n! 2n
xn

∞

n=0

                                                                                               (AI. 2.4) 

Therefore the complete elliptic integral (AI.2.1) take the following form: 

K(k) = ∫ ∑
(2n − 1)‼

n! 2n
k2n sin2n u

∞

n=0

π/2 

0

 du ⇒ 

K(k) = ∑
(2n − 1)‼

n! 2n
k2n

∞

𝑛=0

∫ sin2n u

π
2

0

 du                                                                (AI. 2.5) 

since the series converges. Therefore, the complete elliptic integral has the following 

form: 

K(k) = ∑
(2n − 1)‼

n! 2n
k2n

∞

𝑛=0

I                                                                                         (AI. 2.6) 

where I is: 

I = ∫ sin2n u
π/2 

0

 du                                                                                                       (AI. 2.7) 
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The integral I can be calculated with the use of betta and gamma function. 

B(x, y) =
Γ(x)Γ(y)

Γ(x + y)
= 2 ∫ sin2x−1 t cos2y−1 t

π/2 

0

 dt                                              (AI. 2.8) 

which yields that: 

I =
Γ (

2n + 1
2 ) Γ(

1
2)

2Γ(n + 1)
                                                                                                      (AI. 2.9) 

By definition: 

Γ (
1

2
) = √π                                                                                                                    (AI. 2.10) 

Γ(n + 1) = n!                                                                                                               (AI. 2.11) 

In order to calculate Γ (
2n+1

2
) we use the following property of the gamma function 

Γ(n + 1) = nΓ(n) 

and since  Γ (
1

2
) = √π we obtain: 

Γ (
2n + 1

2
) =

√π(2n − 1)‼

2n
                                                                                      (AI. 2.12) 

and a consequence: 

I =
1

2

π(2n − 1)‼
2n

n!
⇒ 

I =
π

2

(2n − 1)‼

2nn!
                                                                                                           (AI. 2.13) 

Furthermore, since  

n! 2n = (2n)‼ 

We obtain that the complete elliptic integral can be approximated by the following 

formula: 

K(k) =
π

2
∑ (

(2n − 1)‼

(2n)‼
kn)

2∞

n=0

                                                                                (AI. 2.14) 
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1 2D Analytical Modelling of Coaxial Magnetic Gears 

1.1 Magnetic Potential Calculation 

 
The Coaxial Magnetic Gear (CMG) consists of three parts: the inner rotor, the outer 
rotor and the flux modulator ring. The modulator ring consists of N ferromagnetic 
segments, where: 
 
N = pin + pout (1.1) 

The CMG could operate with two different alternatives. Without loss of generality it is 
considered that the inner rotor is the input of the system (clockwise rotation). In the 
first case of operation (Case A), the modulator ring is fixed and outer rotor is free to 
rotate (counter-clockwise), while in the second case (Case B) the outer rotor is fixed 
and the modulator ring is free to rotate (clockwise). The equivalent gear ratio is: 
 

iA =
pout

pin
 , Case A (1.2) 

iB =
N

pin
= iA + 1 , Case B (1.3) 

 

 
 

Figure 1.1: Coaxial Magnetic Gear 
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In the standard CMG, the polarity of the two rotor’s PMs is alternating. As presented 
in Fig. 1.1, r1, r2, r3, r4, r5, r6, rout are the radii of the inner iron yoke, the inner PMs, 
the inner modulator ring’s side, the outer modulator ring’s side, the outer PMs, the 
outer iron yoke and the outer side of the CMG respectively. In addition, αj and βj are 

the right and left border of the jth ferromagnetic segment. 
 
The analytical model that will be developed, neglects edge effect phenomena in the 
CMG, and thus is a 2D model that assumes infinite length. The developed model can 
only be derived assuming cylindrical sector geometries in all the parts of the CMG. 
Furthermore, the magnetic materials are assumed to be linear, while infinite 
permeability of the iron yokes and the ferromagnetic segments is considered [1.1]. 
  
The total magnetic induction created by the permanent magnets (PMs) can be 
calculated as a superposition of the magnetic inductions created by the PMs of each 
rotor separately [1.1]. Therefore, two models are constructed: one without the outer 
rotor’s magnets and one without the inner rotor’s magnets.  
 
The fundamental equations used to develop the analytical model are the Maxwell’s 
equations (Gauss and Ampere Law): 
 
∇ ∙ 𝐁 = 0  (1.4) 

∇ × 𝐇 = 0 , since no currents are present (1.5) 

where B is the magnetic induction vector and H is the magnetic field intensity vector. 
As a consequence, H can be written in the following form: 
 
𝐇 = −∇φ (1.6) 

where φ is the scalar magnetic potential 
 

 
 

Figure 1.2: Regions of the analytical model 
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In Fig. 1.2, the first model -without the outer rotor’s PMs- is illustrated. Region I 
represents the PMs of the inner rotor, Region II is the airgap below the modulator ring 
and Region III is the space between the above side of the modulator ring and the outer 
rotor’s back iron. The correlation of the magnetic induction vector and the magnetic 
field intensity vector, in each region can be expressed as: 
 
𝐁 = μ0μr𝐇 + μ0𝚳 ,             in Region I (1.7) 
𝚩 = μ0𝚮 in Region II, III and slots (1.8) 

where μ0 is the vacuum permeability, μr is the relative permeability of the PMs and 
𝐌 is the residual magnetization vector of the PMs.  
 
From Eq. (1.4)-(1.8) the partial differential equation (PDE) can be obtained for each 
region: 

∇2φΙ(r, θ) =
div𝐌

μr
 in Region I 

 
(1.9) 

∇2φΙΙ,ΙΙΙ(r, θ) = 0 in Regions II, III (1.10) 

∇2φS(r, θ) = 0 in the slots (1.11) 

 
The PDE in the Regions II, III can be solved as follows as shown in more detail in 
Appendix A1.1: 
 

φΙI(r, θ) = ∑[(Enrn + Fnr−n) cos(nθ) + (Gnrn + Hnr−n) sin(nθ)]   

∞

n=1

+ E0lnr + F0 

(1.12) 

φΙΙI(r, θ) = ∑[(Inrn + Jnr−n) cos(nθ) + (Knrn + Lnr−n) sin(nθ)]   

∞

n=1

+ I0lnr + J0 

(1.13) 

 

 
The solution of the PDE in the slots, although is similar to the PDE in the Regions II and 
III that has been solved above, cannot be solved with the method of the separation 
of variables, since the boundary conditions are not zero. Therefore, the PDE can be 
solved as a sum of two solutions: 
 

φS(r, θ) = φ1(θ) + φ2(r, θ) 
 

(1.14) 

 



48 
 

 
Figure 1.3: Boundary conditions in the slot region 

Where φj+1
F  and φj

F are the magnetic potential of the two consecutive ferromagnetic 

segments, aj is the global angle of φj
F and γ is the central angle between the 

ferromagnetic segments as shown in Fig. 1.3.  
 

φ1 derives from linear interpolation between φj
F and φj+1

F : 

 

φ1(θ) =
φj+1

F − φj
F

γ
(θ − αj) + φj

F 
(1.15) 

 
Therefore, the PDE for φ2(r, θ) is: 
 
∇2φ2(r, θ) = 0 (1.16) 

and the boundary conditions are as shown in Fig.1.4: 
 

φj
F = 0 (1.17) 

φj+1
F = 0 (1.18) 

 

 
Figure 1.4: Zero Boundary conditions for 𝛗𝟐 in the slot region 

The system of Eq.(1.16)-(1.18) can be solved with the separation of variables method 

that yields the following: 

r2R′′ + rR′ − λR = 0 (1.19) 

Θ′′ +
nπ

γ
Θ = 0 (1.20) 

From the boundary conditions: Θ(0) = Θ(γ) = 0 
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Which yields that the general solution of Eq.(1.16) is: 

φ2(r, θ) = ∑ (Xnr
nπ
γ + Ynr

−
nπ
γ ) sin (

nπ

γ
(θ − αj))

∞

n=1

 (1.21) 

 
Therefore, the general solution of the magnetic potential in the slots is: 

φS(r, θ) =
φj+1

F − φj
F

γ
(θ − αj) + φj

F

+ ∑ (Xjnr
nπ
γ + Yjnr

−
nπ
γ ) sin (

nπ

γ
(θ − αj))

∞

n=1

 

 

(1.22) 

 

 

The scalar magnetic potential φ is governed by the Poisson equation in Region I. 
According to the superposition principle, the solution of the Poisson equation in 
Region I consists of the general solution of the Laplace equation (the same as the 
Regions II, III) and a special solution. In order to obtain the special solution, the 
magnetization distribution, shown in Fig.1.5, should be expressed in an analytical and 
continuous function [1.1]. 

 
Figure 1.5: Magnetization distribution in Region 𝚰 

where p is the number of pole pairs, θ0 is the angle of rotation of the inner rotor and 
Bm is the residual magnetism of the PM. 
 
The magnetization vector can be written as follows: 

𝐌 = Mr𝐫 + Mθ𝛉 (1.23) 

with Mθ = 0 (since no tangential component of the magnetization is present). 

The magnetization can be described in an analytical and continuous form with Fourier 
series as shown in Appendix A1.2 as:  
 

Mr(θ) = ∑ Mk[cos(pkθ0) cos(pkθ) + sin(pkθ0) sin(pkθ)]

∞

k=1

 (1.24) 
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where : 
 

Mk =
4Bm

πμ0k
sin (

kπ

2
) (1.25) 

 
Therefore: 
 
div𝐌

μr
=

1

μr
[
1

r

∂

∂r
(rMr) +

1

r

∂

∂θ
(Mθ)] =

Mr(θ)

μrr
 (1.26) 

 
 
As a result, the PDE of Region I is: 
 

φrr +
1

r
φr +

1

r2
φθθ =

Mr(θ)

μrr
 (1.27) 

 
The special solution of Eq.(1.27) will have the following form: 
 

φs(r, θ) = ∑ Wk(r)[cos(pkθ0) cos(pkθ) + sin(pkθ0) sin(pkθ)]

∞

k=1

 (1.28) 

 
Therefore Eq.(1.27) takes the following form: 
 

Ẅk(r) +
1

r
Ẇk(r) −

(pk)2

r2
Wk(r) =

Mk

μr
 

 

(1.29) 

The solution of Eq.(1.29) is: 
 

Wk(r) =

{
 
 

 
 

Mkr

μr(1 − (pk)2)
, if pk ≠ 1

M1rlnr

2μr
, if p = k = 1

 

 

(1.30) 

In order to obtain a more compact solution of the general PDE in Region I we let       
pk = n. Therefore: 
 

φs(r, θ) = ∑ Wn(r)[cos(nθ0) cos(nθ) + sin(nθ0) sin(nθ)]

∞

n=1

 

 

(1.31) 

where: 
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Wn(r) =

{
 

 
Mnr

μr(1 − n2)
, if n = pk,   k = 1,3,5, …   

M1rlnr

2μr
,                            if n = pk = 1

 

 

(1.32) 

Mn(r) = {

4Bm

πμ0k
sin (

nπ

2p
) , if n = pk,   k = 1,3,5, …

0, otherwise

 (1.33) 

 
Therefore, the general solution in Region I is: 

φI(r, θ) = ∑[(Anrn + Bnr−n + Wn(r)cos (nθ0)) cos(nθ)

∞

n=1

+ (Cnrn + Dnr−n + Wn(r)sin (nθ0))sin (nθ)] + Α0lnr + B0 
 

 

(1.34) 

 

The magnetic potential in the N slots can be expressed as: 
 

φS(r, θ) =

{
 
 

 
 

φ1
F 0 ≤ θ ≤ α1

φj
S aj ≤ θ ≤ βj+1

φj
F βj ≤ θ ≤ αj

φ1
F βN+1 ≤ θ ≤ 2π

 

 

(1.35) 

 
In order to calculate the unknown coefficients of Eq. (1.12), (1.13), (1.22), (1.34) and 
(1.35), the magnetic potential at the modulator ring must be described in an analytical 
and continuous form, so the Fourier Series method is implemented as shown in 
Appendix A1.3.  
 

The Fourier Series expansion of φS is: 
 

φS(r, θ) = a0 + ∑(ak cos(kx) + bk sin(kx))

∞

k=1

 

 

(1.36) 

where: 
 

a0 =
1

π
[∑ ∑

γ(1 − cos(nπ)) (Χjnr
nπ
γ + Υjnr

−nπ
γ )

nπ
+ ∑(γ + δ)φj

F

N

j=1

∞

n=1

N

j=1

] 

 

(1.37) 
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ak = ∑ ∑
τknj

π
(Χjnr

nπ
γ + Υjnr

−nπ
γ )

∞

n=1

N

j=1

− ∑
2(φj

F + φj+1
F )

πγk2
sin (

kγ

2
)

N

j=1

sin (k
βj+1 + αj

2
) 

 

(1.38) 

 
 

bk = ∑ ∑
ωknj

π
(Χjnr

nπ
γ + Υjnr

−nπ
γ )

∞

n=1

N

j=1

+ ∑
2(φj

F + φj+1
F )

πγk2
sin (

kγ

2
)

N

j=1

cos (k
βj+1 + αj

2
) 

 

(1.39) 

 

where: 

τnkj =

{
 
 

 
 

nπ
γ [cos(nπ) cos(kβj+1) − cos(kαj)]

k2 −
n2π2

γ2

          k ≠
nπ

γ

−
γ

2
sin(kαj)                                                         k =

nπ

γ

 

 

(1.39) 

 

ωnkj =

{
 
 

 
 

nπ
γ [cos(nπ) sin(kβj+1) − sin(kαj)]

k2 −
n2π2

γ2

          k ≠
nπ

γ

γ

2
cos(kαj)                                                         k =

nπ

γ

 

 

(1.39) 

1.2 Boundary Conditions 

 
For the coefficients determination of Eq. (1.12), (1.13), (1.22), (1.34) and (1.36), the 
boundary conditions are applied in each case [1.1]. 
 

1. At the radius of the inner yoke (r = r1): 
 

φΙ(r1, θ) = 0 (1.40) 

Therefore: 
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Anr1
n + Bnr1

−n + Wn(r1) cos(nθ0) = 0 (1.41) 

Cnr1
n + Dnr1

−n + Wn(r1) sin(nθ0) = 0 (1.42) 

A0lnr1 + B0 = 0 (1.43) 

 

2. On the surface of the inner rotor PMs (r = r2), from the continuity of the 

magnetic potential and its derivative the following equations are derived:  

 

φΙ(r2, θ) = φΙI(r2, θ) (1.43) 

μr

∂φII

∂r
|
r=r2

= μr

∂φI

∂r
|
r=r1

− Mr (1.44) 

  

Therefore: 

Anr2
n + Bnr2

−n + Wn(r2) cos(nθ0) = Enr2
n + Fnr2

−n (1.45) 

Cnr2
n + Dnr2

−n + Wn(r2) sin(nθ0) = Gnr2
n + Hnr2

−n (1.46) 

A0lnr2 + B0 = E0lnr2 + F0 (1.47) 

nEnr2
n − nFnr2

−n

= nAnr2
n − nBnr2

−n + r2Wn(r2) cos(nθ0) −
r2

μr
Mncos(nθ0) 

(1.48) 

nGnr2
n − nHnr2

−n

= nCnr2
n − nDnr2

−n + r2Wn(r2) sin(nθ0) −
r2

μr
Mnsin(nθ0) 

(1.49) 

A0 = E0 (1.50) 

 

3. At the radius of the outer iron yoke (r = r6):     

φΙΙΙ(r6, θ) = 0 (1.51) 

 

Therefore: 

Inr5
n + Jnr5

−n = 0 (1.52) 

Knr5
n + Lnr5

−n = 0 (1.53) 

I0lnr5 + I0 = 0 (1.53) 
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Furthermore, the magnetic potential has already been described as a continuous 
Fourier Series in the slots.  
 
The coefficients of Fourier Series are c0, cn, dn and e0, en, fn for the cases of r = r3 and 
r = r4 respectively. Consequently, the following relations can be obtained: 
 

4. From the continuity of the magnetic potential at the radius r = r3: 

φΙΙ(r3, θ) = φj
S(r3, θ) (1.54) 

Therefore: 

E0lnr3 + F0 =
c0

2
 (1.55) 

Enr3
n + Fnr3

−n = cn (1.56) 

Gnr3
n + Hnr3

−n = dn (1.57) 

 

5. From the continuity of the magnetic potential at the radius r = r4: 

φΙΙI(r4, θ) = φj
S(r4, θ) 

 

(1.58) 

Therefore: 

I0lnr4 + J0 =
e0

2
 (1.59) 

Inr4
n + Jnr4

−n = en (1.60) 

Knr4
n + Lnr4

−n = fn (1.61) 

 

6. From the continuity of the induction at the radius r = r3: 

∂φII

∂r
|
r=r3

=
∂φj

S

∂r
|
r=r3

 (1.62) 

 
Therefore, the following equation must be satisfied for every slot: 

∫
∂φj

S

∂r
|
r=r3

sin (
nπ

γ
(θ − αj)) dθ

βj+1

αj

= ∫
∂φII

∂r
|
r=r3

sin (
nπ

γ
(θ − αj)) dθ

βj+1

αj

 (1.63) 

 

which yields: 
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mπ

2
(Χjmr3

mπ
γ

− Yjmr3

−
mπ
γ

)

= ∑ n[(Enr3
n − Fnr3

−n)τnmj + (Gnr3
n − Hnr3

−n)ωnmj]

∞

n=1

+
γ(1 − cos(mπ))E0

mπ
 

 

 

(1.64) 

 
where m = 1, … , n 
 
Following a similar procedure, the following equation can be obtained for r = r4: 

mπ

2
(Χjmr4

mπ
γ

− Yjmr4

−
mπ
γ

)

= ∑ n[(Inr4
n − Jnr4

−n)τnmj + (Knr4
n − Lnr4

−n)ωnmj]

∞

n=1

+
γ(1 − cos(mπ))I0

mπ
 

 

 

(1.65) 

 
In addition, the continuity of the magnetic flux across the ferromagnetic segments 
should also be satisfied, so the flow through the inside and outside surface should be 
equal: 
 

∮
∂φΙΙ

∂r
|
r=r3

rdθ = ∮
∂φΙΙΙ

∂r
|
r=r4

rdθ (1.66) 

 
 
Evaluating both sides of Eq.(1.66), the following relation is derived: 
 
E0 = I0 (1.67) 

Finally, the flux flowing into the ferromagnetic segment should be equal to the flux 
flowing out, thus: 
 

∫
∂φΙΙ

∂r
|
r=r3

rdθ

αj

βj

+ ∫
∂φj−1

S

r ∂θ
|
θ=βj

dr

r4

r3

= ∫
∂φΙIΙ

∂r
|
r=r4

rdθ

αj

βj

+ ∫
∂φj

S

r ∂θ
|
θ=αj

dr

r4

r3

 (1.68) 

After simplifications Eq.(1.69) is derived. 
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∑ 2 sin (n
δ

2
) [(Enr3

n − Fnr3
−n − Inr4

n + Jnr4
−n) cos (n

αj + βj

2
) + (Gnr3

n

∞

n=1

− Hnr3
−n − Knr4

n + Lnr4
−n) sin (n

αj + βj

2
)]

= ∑ [(Xjn − X(j−1)n cos(nπ)) (r4

nπ
γ

− r3

nπ
γ

) − (Yjn

∞

n=1

− Y(j−1)n cos(nπ)) (r4

−
nπ
γ

− r3

−
nπ
γ

)]

+ (
φj+1

F − 2φj
F + φj−1

F

γ
) ln

r4

r3
 

(1.69) 

Therefore, from the boundary conditions, a linear system of (2Nn + N + 12n + 6) 
equations is derived, where n is the number of solutions of the general solutions of 
the PDE of the system, from which the unknown coefficients: 

An, Bn, Cn, Dn, En, Fn, Gn, Hn, In, Jn, Kn, Ln, A0, B0, E0, F0, I0, J0, Xjn, Yjn, φj
F can be 

calculated.  

Therefore, the radial and tangential components of magnetic induction can be 
obtained: 

Br = −μ0

∂φ

∂r
 

(1.70) 

 

Bθ = −
μ0

r

∂φ

∂θ
 

(1.71)  

 

Following the same methodology, the respective coefficients of the second model -
without the inner rotor’s PMs- can be calculated. 

 

1.3 Torque Calculation 

 
In order to evaluate the tangential force and therefore the resulting torque at the two 
rotors of the CMG, the Maxwell Stress Tensor will be constructed. The Maxwell Stress 
Tensor is derived through the Lorentz force [1.2], [1.3]: 
 
𝐅 = q(𝐄 + 𝐯 × 𝐁) 
 

(1.72) 

where 𝐅 is the force, q is the charge, 𝐯 is the velocity of the charge, 𝐄 is the applied 
electric intensity field and 𝐁 is the applied magnetic induction. The Lorentz force in 
differential form is: 
 
𝐟 = ρ(𝚬 + 𝐯 × 𝐁) (1.73) 
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where 𝐟 is the force density and ρ is the charge density per unit volume. 
 
Furthermore, since 𝐉 = ρ𝐯: 
 
𝐟 = ρ𝐄 + 𝐉 × 𝐁 
 

(1.74) 

 
From Maxwell laws the following relation is obtained as shown in Appendix A1.4: 
 

𝐟 = E0 [(∇ ∙ 𝐄)𝐄 + (𝐄 ∙ ∇)𝐄 −
1

2
∇𝐄2] +

1

μ0
[(∇ ∙ 𝚩)𝚩 + (𝚩 ∙ ∇)𝚩 −

1

2
∇𝐁2]

− E0

∂

∂t
(𝐄 × 𝐁) 

(1.75) 

 
Hence, the Maxwell Stress Tensor can be introduced as: 
 

∇ ∙ 𝐓⃡  = 𝐟 + E0μ0

∂𝐒

∂t
 (1.76) 

 

Where 𝐓⃡   is the Maxwell Stress Tensor and 𝐒 is the Poynting vector: 

𝐒 =
1

μ0
𝚬 × 𝚩 (1.77) 

𝐓⃡   can be written as: 

Tij = E0EiEj +
1

μ0
BiBj −

1

2
(E0E2 +

1

μ0
Β2) δij (1.78) 

Where 𝛿𝑖𝑗 is the Kronecker delta: 

δij = {
1  , i = j
0  , i ≠ j

 (1.79) 

And i, j are the r, θ, z coordinates. 

Furthermore: 

(𝐚𝐢 ∙ 𝐓⃡  𝐢𝐣)𝐣
= ∑ aiTij

i=r,θ,z

 
(1.80) 

Following the simplifications shown in Appendix A1.5 the Maxwell Stress Tensor is 

obtained from: 

𝐓⃡  =
1

μ0

[
 
 
 
Br

2 − Bθ
2

2
BrBθ

BθBr

Bθ
2 − Br

2

2 ]
 
 
 

 (1.81) 
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Therefore, the force can be calculated from: 

𝐅 = L ∫ 𝐓  ⃡  d𝐚 ds

2π

0

 (1.82) 

where L is the effective length of the coaxial magnetic gear in the z-direction. At a 

radius r it can be written as: 

𝐅(r) = L ∫
1

μ0

[
 
 
 
Br

2 − Bθ
2

2
BrBθ

BθBr

Bθ
2 − Br

2

2 ]
 
 
 

[
1
0
] r dθ

2π

0

 (1.83) 

that yields: 

𝐅(r) =
Lr

μ0
∫ [

Br
2 − Bθ

2

2

BθBr

] dθ

2π

0

 (1.84) 

 

Therefore, the tangential force at the radius r is: 

Fθ(r) =
Lr

μ0
∫ ΒθΒr dθ

2π

0

 (1.85) 

As a result, the torque is: 

M(r) =
Lr2

μ0
∫ ΒθΒr dθ

2π

0

 (1.86) 

The torque at the inner rotor can be obtained, after the superposition of the magnetic 
induction of inner and outer rotor, as follows [1.4]: 
 

Min(r2) =
Lr2

2

μ0
∫ (Bθ,in(r2) + Bθ,out(r2))(Βr,in(r2) + Br,out(r2))dθ 

2π

0

 

 

(1.87) 

 

The integrals ∫ Bθ,in(r2)Βr,in(r2)dθ 
2π

0
 and ∫ Bθ,out(r2)Βr,out(r2)dθ 

2π

0
are zero.  

 
The integral of Eq.(1.87) can be solved analytically as shown in Appendix A1.6 which 
yields that:  
 

Min(r2) = πμ0Lr2
2 ∑[

∞

n=1

(Pn,outSn,in + Qn,outRn,in) + (Pn,inSn,out

+ Qn,inRn,out)] 

 

 
(1.88.A) 

where: 
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Pn,in = n(En,inr2

n−1 − Fn,inr2
−n−1) (1.88.B) 

Qn,in = n(Gn,inr2
n−1 − Hn,inr2

−n−1) (1.88.C) 

Rn,in = −n(En,inr2
n−1 + Fn,inr2

−n−1) (1.88.D) 

Sn,in = n(Gn,inr2
n−1 + Hn,inr2

−n−1) (1.88.E) 

Pn,out = n(En,outr2
n−1 − Fn,outr2

−n−1) (1.88.F) 

Qn,out = n(Gn,outr2
n−1 − Hn,outr2

−n−1) (1.88.G) 

Rn,out = −n(En,outr2
n−1 + Fn,outr2

−n−1) (1.88.H) 

Sn,out = n(Gn,outr2
n−1 + Hn,outr2

−n−1) (1.88.I) 

1.4 Torque as a function of rotation 

 
The contributing terms to the calculation of 𝑀𝑖𝑛 are the harmonics of the inner rotor’s 
pole pairs [1.5] which can be written in the form of m = (2k − 1)pin where k a 
positive integer. If the contributing terms have been calculated for a given angle of 
the inner rotor, an analytical equation correlating Min at every position of the inner 
rotor can be derived, using these terms [1.4].  
 
If the inner rotor’s angle of rotation is θin and the outer rotor is at a given position 
θout implementing a similar process as this described for the Eq. (1.87), Min is obtained 
as follows: 
 

∫ Bθ,in(r2)Βr,out(r2)dθ 
2π

0

= ∑ π[U1,m sin(mθin) + V1,m cos(mθin)]

m

 

 

(1.89.A) 

where: 
 
U1,m = Sm,inQm,out − Rm,inPm,out (1.89.B) 

V1,m = Pm,outSm,in + Rm,inQm,out   (1.89.C) 

 
In addition, 

∫ Br,in(r2)Βθ,out(r2)dθ
2π

0

= ∑ π[U2,m sin(mθin) + V2,m cos(mθin)]

m

 

 

(1.90.A) 

where: 
 
U2,m = Pm,inRm,out − Qm,inSm,out (1.90.B) 

V2,m = Pm,inSm,out + Qm,inRm,out (1.90.C) 
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As a consequence, from Eq.(1.89.A) and Eq. (1.90.A) the induced torque at the inner 
rotor is: 

Min(r2) = πμ0Lr2
2 ∑[(U1,m + U2,m) sin(mθin) + (V1,m

m

+ V2,m) cos(mθin)] 

 

(1.91) 

 

Eq. (1.91) can be further simplified to: 

Min(r2) = ∑ ξ(2k−1)pin,insin [

∞

k=1

(2k − 1)pinθin

+ (2k − 1)poutθout] 
 

(1.92) 

where ξ(2k−1)pin,in is the amplitude of each contributing term that can be determined 

as follows: 

ξ(2k−1)pin,in = πμ0Lr2
2√(U1,(2k−1)pin

+ U2,(2k−1)pin
)

2
+ (V1,(2k−1)pin

+ V2,(2k−1)pin
)

2
  

 

(1.93) 

It should be noted that U1,m, V1,m, U2,m and V2,m are dependent on the position of the 
outer rotor and independent of the position of the inner rotor due to its harmonics. 
However, the amplitude of each contributing term ξ(2k−1)pin,in is constant and 

independent of the angle of rotation of the rotors [1.4]. 
 
A similar form for the torque at the outer rotor can be obtained following the same 
process. Therefore, analytical expressions for the induced torque at the two rotors for 
every angle of rotation are derived, hence there is no requirement to solve the system 
of (2Nn + N + 12n + 6) linear equations at every position.  
 
From Eq. (1.92) it can be observed that the induced torque is a sum of infinite 
sinusoidal terms of decreasing amplitude that generate torque ripples that are also 
observed in the literature [1.5]. The torque ripples are significant especially in low 
pole-pairs number configurations of CMGs, due to its low contributing harmonics.  
 
The torque ripples approach zero in high pole-pairs numbers and the induced torque 
can be simplified to: 
 
Min = Mstall,in sin(pinθin + poutθout) (1.95.A) 
Mout = −Mstall,out sin(pinθin + poutθout) (1.95.B) 

where Mstall is the stall torque. 
 

1.5 Validation of the analytical model with FEA 

 
For the calculation of the coefficients an algorithm was developed in MATLAB. The 
resulting magnetic induction and the induced torques in the two rotors were 
calculated. The results obtained from the analytical model was compared with those 
obtained from a 2D FE model.  
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Ansys Maxwell was used to perform the validation of the analytical model due to its 
high degree of parametrization of the geometry inputs and its consistency at every 
angle of rotation and configuration of the CMG drive. A convergence rate of 0.01% 
was set, while the automatic generated mesh was refined in every pass by 30%.  
 
A case study was performed for the developed model with the following parameters 
presented in Table 1.1. 
 
 
 
 
 
 

Table 1.1: Parameters of the CMG 
pin 4 

pout 10 

r1 [mm] 80 

r2 [mm] 100 

r3 [mm] 105 

r4 [mm] 125 

r5 [mm] 130 

r6 [mm] 150 

rout [mm] 170 

L [mm] 100 

δ [deg] 15 

Br [T] 1.44 

 
The analytical solutions were derived taking into account the first 100 solutions of the 
PDEs. 
 
In Figs.1.6-1.8 the scalar magnetic potential produced from the inner rotor PMS at 
some critical radii is presented when θin = 0 and θout = 0. 
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Figure 1.6: Scalar magnetic potential generated from the inner rotor PMs at 𝐫𝟐 

when 𝛉𝐢𝐧 = 𝟎 and 𝛉𝐨𝐮𝐭 = 𝟎 

From Fig.1.6 it can be observed that the scalar magnetic potential at r2 has four 
periods (as expected since the inner rotor has four pole-pairs) and alternates between 
a positive and negative value.  The small difference in the value of the scalar magnetic 
potential at some peaks is attributed to the presence of the modulator ring.   

 
Figure 1.7: Scalar magnetic potential generated from the inner rotor PMs at 𝐫𝟑 

when 𝛉𝐢𝐧 = 𝟎 and 𝛉𝐨𝐮𝐭 = 𝟎 

From Fig.1.7 it can be observed that the scalar magnetic potential at r3 in the fourteen 
ferromagnetic segments are clearly shown to be equipotential as expected from 
Eq.(1.35). Furthermore, it is demonstrated that the first 100 solutions of PDE yield an 
accurate result.  
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Figure 1.8: Scalar magnetic potential generated from the inner rotor PMs at 𝐫𝟒 

when 𝛉𝐢𝐧 = 𝟎 and 𝛉𝐨𝐮𝐭 = 𝟎 

From Fig.1.8 it can be observed that the scalar magnetic potential at r4 in the fourteen 
ferromagnetic segments are clearly shown to be equipotential as expected from 
Eq.(1.35). Furthermore, it is demonstrated that the first 100 solutions of PDE yield an 
accurate result.  
In Figs.1.9-1.11 the scalar magnetic potential produced from the outer rotor PMS at 
some critical radii is presented when θin = 0 and θout = 0. 

 
Figure 1.9: Scalar magnetic potential generated from the outer rotor PMs at 𝐫𝟓 

when 𝛉𝐢𝐧 = 𝟎 and 𝛉𝐨𝐮𝐭 = 𝟎 

From Fig.1.9 it can be observed that the scalar magnetic potential at r5 has ten periods 
(as expected since the outer rotor has ten pole-pairs) and alternates between a 



64 
 

positive and negative value. The small difference in the value of the scalar magnetic 
potential at some peaks is attributed to the presence of the modulator ring.   
 

 
Figure 1.10: Scalar magnetic potential generated from the outer rotor PMs at 𝐫𝟒 

when 𝛉𝐢𝐧 = 𝟎 and 𝛉𝐨𝐮𝐭 = 𝟎 

From Fig.1.10 it can be observed that the scalar magnetic potential at r4 in the 
fourteen ferromagnetic segments are clearly shown to be equipotential as expected 
from Eq.(1.35). Furthermore, it is demonstrated that the first 100 solutions of PDE 
yield an accurate result.  
 

 
Figure 1.11: Scalar magnetic potential generated from the outer rotor PMs at 𝐫𝟑 

when 𝛉𝐢𝐧 = 𝟎 and 𝛉𝐨𝐮𝐭 = 𝟎 



65 
 

From Fig.1.11 it can be observed that the scalar magnetic potential at r3 in the 
fourteen ferromagnetic segments are clearly shown to be equipotential as expected 
from Eq.(1.35). Furthermore, it is demonstrated that the first 100 solutions of PDE 
yield an accurate result.  
 
In Fig.1.12 the radial and tangential magnetic induction at the radius r3 is presented. 
 

  
(a) (b) 

 
Figure 1.12: Radial (a) and tangential (b) magnetic induction at 𝐫𝟑 when 𝛉𝐢𝐧 = 𝟎 

and 𝛉𝐨𝐮𝐭 = 𝟎 

It is observed that both the radial and tangential magnetic induction at r3 have a 180° 
symmetry. Furthermore, it can be observed that the tangential magnetic induction in 
the modulator ring is zero (the fluctuations exist due to the finite solutions considered) 
which is expected since the ferromagnetic segments are equipotential and Eq.(1.71). 
 
In Fig.1.13 the radial and tangential magnetic induction at the radius r4 is presented. 

  
(a) (b) 

 
Figure 1.13: Radial (a) and tangential (b) magnetic induction at 𝐫𝟒 when 𝛉𝐢𝐧 = 𝟎 

and 𝛉𝐨𝐮𝐭 = 𝟎 

It is observed that both the radial and tangential magnetic induction at r4 have a 180° 
symmetry. Furthermore, it can be observed that the tangential magnetic induction in 
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the modulator ring is zero (the fluctuations exist due to the finite solutions considered) 
which is expected since the ferromagnetic segments are equipotential and Eq.(1.71). 
 
The induced toques in the inner and outer rotor for the case of θin = 0 and θout = 0 
are zero. Therefore, for θin = 0 and θout = 0 no torques are induced to the CMG. 
 
In Figs.1.14-1.16 the scalar magnetic potential produced from the inner rotor PMS at 
some critical radii is presented when θin = 22.5° and θout = 0. 
 
 

 
Figure 1.14: Scalar magnetic potential generated from the inner rotor PMs at 𝐫𝟐 

when 𝛉𝐢𝐧 = 𝟐𝟐. 𝟓° and 𝛉𝐨𝐮𝐭 = 𝟎 

From Fig.1.14 it can be observed that the scalar magnetic potential at r2 has four 
periods (as expected since the inner rotor has four pole-pairs) and alternates between 
a positive and negative value.  The small difference in the value of the scalar magnetic 
potential at some peaks is attributed to the presence of the modulator ring.   
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Figure 1.15: Scalar magnetic potential generated from the inner rotor PMs at 𝐫𝟑 

when 𝛉𝐢𝐧 = 𝟐𝟐. 𝟓° and 𝛉𝐨𝐮𝐭 = 𝟎 

From Fig.1.15 it can be observed that the scalar magnetic potential at r3 in the 
fourteen ferromagnetic segments are clearly shown to be equipotential as expected 
from Eq.(1.35). Furthermore, it is demonstrated that the first 100 solutions of PDE 
yield an accurate result.  
 

 
Figure 1.16: Scalar magnetic potential generated from the inner rotor PMs at 𝐫𝟒 

when 𝛉𝐢𝐧 = 𝟐𝟐. 𝟓° and 𝛉𝐨𝐮𝐭 = 𝟎 

From Fig.1.16 it can be observed that the scalar magnetic potential at r4 in the 
fourteen ferromagnetic segments are clearly shown to be equipotential as expected 
from Eq.(1.35). Furthermore, it is demonstrated that the first 100 solutions of PDE 
yield an accurate result.  
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In Figs.1.17-1.19 the scalar magnetic potential produced from the outer rotor PMS at 
some critical radii is presented when θin = 22.5° and θout = 0. 
 

 
Figure 1.17: Scalar magnetic potential generated from the outer rotor PMs at 𝐫𝟓 

when 𝛉𝐢𝐧 = 𝟐𝟐. 𝟓°  and 𝛉𝐨𝐮𝐭 = 𝟎 

From Fig.1.17 it can be observed that the scalar magnetic potential at r5 has ten 
periods (as expected since the outer rotor has ten pole-pairs) and alternates between 
a positive and negative value. The small difference in the value of the scalar magnetic 
potential at some peaks is attributed to the presence of the modulator ring. 

 
Figure 1.18: Scalar magnetic potential generated from the outer rotor PMs at 𝐫𝟒 

when 𝛉𝐢𝐧 = 𝟐𝟐. 𝟓° and 𝛉𝐨𝐮𝐭 = 𝟎 



69 
 

From Fig.1.18 it can be observed that the scalar magnetic potential at r4 in the 
fourteen ferromagnetic segments are clearly shown to be equipotential as expected 
from Eq.(1.35). Furthermore, it is demonstrated that the first 100 solutions of PDE 
yield an accurate result.  
 

 
Figure 1.19: Scalar magnetic potential generated from the outer rotor PMs at 𝐫𝟑 

when 𝛉𝐢𝐧 = 𝟐𝟐. 𝟓° and 𝛉𝐨𝐮𝐭 = 𝟎 

From Fig.1.19 it can be observed that the scalar magnetic potential at r3 in the 
fourteen ferromagnetic segments are clearly shown to be equipotential as expected 
from Eq.(1.35). Furthermore, it is demonstrated that the first 100 solutions of PDE 
yield an accurate result.  
 
In Fig.1.20 the radial and tangential magnetic induction at the radius r3 is presented. 

  
(a) (b) 

 
Figure 1.20: Radial (a) and tangential (b) magnetic induction at 𝐫𝟑 when 𝛉𝐢𝐧 =

𝟐𝟐. 𝟓° and 𝛉𝐨𝐮𝐭 = 𝟎 
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It is observed that both the radial and tangential magnetic induction at r3 have a 180° 
symmetry. Furthermore, it can be observed that the tangential magnetic induction in 
the modulator ring is zero (the fluctuations exist due to the finite solutions considered) 
which is expected since the ferromagnetic segments are equipotential and Eq.(1.71). 
 
In Fig.1.21 the radial and tangential magnetic induction at the radius r4 is presented. 

  
(a) (b) 

 
Figure 1.21: Radial (a) and tangential (b) magnetic induction at 𝐫𝟒 when 𝛉𝐢𝐧 =

𝟐𝟐. 𝟓° and 𝛉𝐨𝐮𝐭 = 𝟎 

It is observed that both the radial and tangential magnetic induction at r4 have a 180° 
symmetry. Furthermore, it can be observed that the tangential magnetic induction in 
the modulator ring is zero (the fluctuations exist due to the finite solutions considered) 
which is expected since the ferromagnetic segments are equipotential and Eq.(1.71). 
 
The induced toques in the inner and outer rotor for the case of θin = 22.5° and 
 θout = 0 are 333.81 Nm and 832.98 Nm. Therefore, for θin = 22.5°  and θout = 0 
the maximum induced torque in the rotors can be applied. This is expected from 
Eq.(1.95.A) and Eq.(1.95.B). 
 
In order to demonstrate the accuracy of the developed model two cases were 
considered. In the first case, the outer rotor was held stationary and the inner rotor 
made a full rotation, while in the second case the inner rotor was held stationary and 
the outer rotor made a full rotation respectively. In Fig.1.22 the results of the 
described case studies are presented.  
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(a) (b) 

 
Figure 1.22: Torque at the rotors with (a) the inner rotor rotating and the outer 

rotor stationary, (b) the outer rotor rotating and the inner rotor stationary 

The results were confirmed with ANSYS Maxwell, since the values obtained are within 
1% of the analytical torque values.  
 
In terms of computational time, there is a significant difference between FEA and the 
analytical model. FEA requires 23 minutes for the convergence of the torque values. 
On the other hand, for the analytical model the exact solution is obtained in 11 
seconds which is 125 times faster compared to the FE model. Both models ran on a 
laptop with Intel i5 7th Gen processor, 8 GB of RAM and 2.5 GHz max clocking speed. 
In Table 1.2 the amplitude of each conributing harmonic is presented for the inner and 
outer rotor.  
 

Table 1.2: Amplitude of contributing harmonics 

Amplitude of inner rotor harmonics 
(Nm) 

Amplitude of outer rotor harmonics 
(Nm) 

 
ξ4 333.81  ξ10 832.98  

ξ12 1.25  ξ30 3.26  

ξ20 0.02  ξ50 0.05  

 
The stall torque of the inner and outer rotor is calculated from the amplitude of the 
first contributing harmonic. Therefore the stall torques are: 
 

Table 1.3: Stall torques as calculated from analytical model and FEA 

Analytical model FEA 
Mstall,in   = 333.81 Nm Mstall,in   = 337.15 Nm 

Mstall,out = 832.98 Nm Mstall,out = 841.31 Nm 
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It can be observed that in both rotors the second contributing harmonic introduces a 
torque ripple of about 0.37% to the CMG drive. In both rotors the amplitude of the 
third and higher harmonics is small and could be neglected.  
 
It can be observed that in both rotors the second contributing harmonic introduces a 
torque ripple of about 0.5% to the CMG drive. In both rotors the amplitude of the 
third and higher harmonics is small and could be neglected.  
 
Furthermore, the equivalent gear ratio, that can be determined as the quotient of the 
torque in the outer rotor and the torque in the inner rotor, is 2.4953 with a deviation 
of 0.01% for every angle of rotors’ rotation, which is within 0.19% of the nominal 
gear ratio. 
 

1.6  Influence of modulator ring in torque density 

 
For a defined application of the CMG drive, the modulator ring affects significantly the 
torque density of the CMG drive. To demonstrate this effect, the stall torque was 
calculated for different configurations of the modulator ring. The parameters 
described in Table 1.1 remain the same except for the dimensions of the 
ferromagnetic segments of the modulator ring. These are given as the fill percentages 
of the air space in the radial and tangential direction respectively: 
 
 

Radial fill percentage =
r4 − r3

r5 − r2
 (1.96.A) 

Tangential fill percentage =
Nδ

2π
 (1.96.B) 

 
A case study was performed where the above percentages ranged from 40% to 90% 
and 25% to 75% in the radial and tangential direction respectively. The stall torque 
calculated in each configuration is presented in the contour map of Fig.1.23. 
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Figure 1.23: Contour map of stall torque at each configuration of the modulator 

ring 

The stall torque increases proportionaly with the radial percentage, as expected due 
to lower magnetic resistance, while in the tangential direction a saturation can be 
observed above 60%. Therefore, the central angle (δ) of each ferromagnetic segment 
requires a thorough investigation in every design process of a CMG drive.  
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Chapter 1-Conclusions        

 
 
In the present chapter a novel analytical 2D model was developed for the calculation 
of the torque in the inner and outer rotor in the CMG drive for every angle of their 
rotation using the Maxwell Stress Tensor. In addition, the torque ripple of CMGs 
caused by the contributing terms of higher harmonics is calculated analytically with 
the proposed model. The developed system requires only one calculation of the inner 
and outer torque at a given angle of their rotation and therefore the computational 
time of the dynamical response is significantly reduced since it is not essential to 
calculate the torque at each time step implementing the Gauss elimination algorithm 
that requires a non-negligible computational cost. A case study was performed where 
4 and 10 pole pairs were mounted in the inner and outer rotor respectively. The 
torque at the inner and outer rotor was calculated for different angle of rotation of 
the two rotors. The obtained results were compared to a FE simulation that was 
developed in order to validate the proposed model, which showed a convergence of 
1.1%. In addition, a torque ripple of 0.37% was calculated for the CMG drive. However, 
the analytical model obtained the torque results 125 times faster compared to FEA.  
In addition, the equivalent gear ratio was within 0.19% of the theoretical gear ratio for 
every combination of the angle of their respective rotation. The above difference 
between the two models could be attributed to the assumption of equipotential 
ferromagnetic segments and linearity of the PMs in that are necessary in order to 
obtain an analytical solution. However, the above deviation is very small and will not 
affect the optimization process of a CMG drive and will have a little effect on the 
accuracy of the dynamical response during transient operation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



75 
 

Appendix A1.1 

 
The solution of the Laplace PDE in polar coordinates can be calculated as follows: 
 

∇2φ(r, θ) = 0 ⇒ φrr +
1

r
φr +

1

r2
φθθ = 0                                                              (A1.1.1) 

 
There are values ρ0 and ρ such as, for ρ0 ≤ r ≤ ρ: 
 
φ(ρ0, θ) = g(θ)      and       φ(ρ, θ) = f(θ) 
 
So, we implement the separation of variables method: 
 
φ(r, θ) = R(r)Θ(θ)                                                                                                        (A1.1.2) 
 
The above PDE can be written as: 
 

R′′Θ + R′
Θ

r
+ R

Θ′′

r2
= 0 ⇒ 

r2R′′Θ + rR′Θ + RΘ′′ = 0 ⇒ 

(r2R′′ + rR′)Θ = −RΘ′′ ⇒ 

r2R′′ + rR′

R
= −

Θ′′

Θ
= λ                                                                                                (A1.1.3) 

 
Therefore: 
 

{r
2R′′ + rR′ − λR = 0

Θ′′ + λΘ = 0
                                                                                                   (A1.1.4) 

 
and also: Θ(π) = Θ(−π), Θ′(π) = Θ′(−π) 
 
For λ = 0: 

Θ0
′′ = 0 ⇒ Θ0

′ = c1 ⇒ Θ0 = c1θ + c2 

From the boundary conditions: 

c1π + c2 =  c1(−π) + c2 ⇒ c1 = 0 

Therefore: 

Θ0(θ) = c2 

Therefore λ0 = 0 is an eigenvalue of the equation and the eigenfunction is: 
 
 Θ0 = 1                                                                                                                              (A1.1.5)  
 
Also, for λ0 = 0 we obtain: 
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r2R0
′′ + rR0

′ = 0 ⇒ 

R0
′′

R0
′ = −

1

r
⇒ 

ln(R0
′ ) = −lnr + c1 ⇒ 

ln(R0
′ ) = ln(ec1) − ln(r) ⇒ 

ln(R0
′ ) = ln (

ec1

r
) ⇒ 

R0
′ =

c

r
⇒ 

R0(r) = c ln(r) + c2                                                                                                      (A1.1.6) 

 
For n = 1,2,3, …  ∶ λn = n2, so: 

Θ′′ + n2Θ = 0                                                                                                                  (A1.1.7) 

The solution of this equation is: 

Θ(θ) = an cos(nθ) + bn sin(nθ)                                                                               (A1.1.8) 

Furthermore: 

r2Rn
′′ + rRn

′ − n2Rn = 0                                                                                               (A1.1.9) 

The solution of the above equation implementing the Frobenius method is: 

Rn = rs, so   Rn
′ = srs−1,    and    Rn

′′ = s(s − 1)rs−2 

Therefore: 

r2s(s − 1)rs−2 + rsrs−1 − n2rs = 0 ⇒ 

s(s − 1) + s − n2 = 0 ⇒ 

s = ±n 

As a consequence: 

Rn(r) = c1rn + c3r−n                                                                                                 (A1.1.10) 

As a result, the general solution of the PDE is: 

φ(r, θ) = R0Θ0 + ∑ RnΘn

∞

n=1

              (A1.1.11) 
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Appendix A1.2 

 
For the formation of the magnetization vector in a Fourier Series form the following 
methodology is implemented: 
 
The period of magnetization is: 
 

T0 =
2π

p
                                                                                                                            (A1.2.1) 

 
Therefore the magnetization vector can be expressed as: 
 

Mr(θ) = ∑ ake−i2πkf0θ

+∞

−∞

                                                                                              (A1.2.2) 

where: 
 

ak =
1

T0
∫ Mre

−i2πkf0θ dθ

T0

=
p

2π
∫ Mre

−ipkθ dθ

T0

                                                   (A1.2.3) 

 
If  k = 0: 

a0 =
p

2π
∫ Mre

0 dθ

T0

⇒ a0 = 0                                                                                    (A1.2.4) 

 
If  k ≠ 0: 

ak =
p

2π

[
 
 
 
 

∫ −
Bm

μ0
e−ipkθdθ + ∫

Bm

μ0
e−ipkθdθ + ∫ −

Bm

μ0
e−ipkθdθ

π
p

π
2p

π
2p

−
π
2p

−
π
2p

−
π
p ]

 
 
 
 

⇒ 

ak =
Bm

πμ0k
[2 sin (

kπ

2
) − sin(kπ)]  

 
For k = ±1, ±2, ±3, … ∶ sin(kπ) = 0, so: 

ak =
2Bm

πμ0k
                                                                                                                        (A1.2.5) 

It can be observed that ak = a−k , therefore: 

Mr(θ) = ∑ akeikpθ

∞

−∞

= ∑ ak(eipkθ + e−ipkθ)

∞

k=1

⇒ 

Mr(θ) = ∑
4Bm

πμ0k
sin (

kπ

2
) cos(pkθ)

∞

k=1

                                                                       (A1.2.6) 
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Mr(θ) = ∑ Mk cos(pkθ)

∞

k=1

                                                                                           (A1.2.7) 

where: 

Mk =
4Bm

πμ0k
sin (

kπ

2
)                                                                                                     (A1.2.8) 

 
In case of an initial phase angle θ0 of the inner rotor, the Fourier Series can be 
written as: 

Mr(θ) = ∑ Mk cos(pk(θ − θ0))

∞

k=1

⇒ 

Mr(θ) = ∑ Mk[cos(pkθ0) cos(pkθ) + sin(pkθ0) sin(pkθ)]

∞

k=1

                          (A1.2.9) 
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Appendix A1.3 

 
The Fourier series expansion in the slots has the following form: 

φS(r, θ) = a0 + ∑(ak cos(kx) + bk sin(kx))

∞

k=1

    

 

 (A1.3.1) 

which can take the following form: 

f(x) =  a0 + ∑ ckeikx

∞

k=1

                                                                                                (A1.3.2) 

where: 

ck =

{
 
 

 
 

a0, k = 0

ak − ibk

2
, k = 1,2,3, …

ak + ibk

2
, k = −1, −2, −3, …

                                                                     (A1.3.3) 

 
Therefore: 
ak = 2Re(ck)                                                                                                                  (A1.3.4) 

bk = −2Im(ck)                                                                                                              (A1.3.5) 

 
The coefficients ak and bk will be evaluated for each domain separately.  
 

For [αj, βj+1] the magnetic potential is obtained from the solutions φ1(r, θ) and 

φ2(r, θ) that was previously calculated. The Fourier Series for φ2(r, θ) can be derived 
as follows: 
 
For k = 0: 

c0 =
1

2π
∫ sin (

nπ

γ
(θ − αj)) e−i0θdθ

βj+1

αj

⇒ 

c0 =
γ

2nπ2
[1 − cos(nπ)], n ∈ ℤ                                                                         (A1.3.6) 

since γ = βj+1 − αj. The term Xnr
nπ

γ + Ynr
−

nπ

γ  has been neglected because it is 

constant and will be added in the end. 
 

For k ≠
nπ

γ
 : 

ck =
1

2π
∫ sin (

nπ

γ
(θ − αj)) e−ikθdθ

βj+1

αj

⇒ 
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ck =

nπ
γk2 [cos(nπ) cos(kβj+1) − cos(kαj) − i(cos(nπ) sin(kβj+1) − sin(kαj))]

2π (1 −
n2π2

γ2k2)
    (A1.3.7) 

Therefore: 

ak = 2Re(ck) =

nπ
γ [cos(nπ) cos(kβj+1) − cos(kαj)]

π (k2 −
n2π2

γ2 )
                                        (A1.3.8) 

βk = −2Im(ck) =

nπ
γ [cos(nπ) sin(kβj+1) − sin(kαj)]

π (k2 −
n2π2

γ2 )
                                     (A1.3.9) 

 

For k = ±
nπ

γ
 : 

ck =
1

2π
∫ sin (

nπ

γ
(θ − αj)) e−ikθdθ

βj+1

αj

⇒ 

ck = −
γ

4π
(sin(kαj) + i cos(kαj))                                                                         (A1.3.10) 

 
Therefore:  
 

ak = 2Re(ck) = −
γ

2π
sin(kαj)                                                                               (A1.3.11) 

bk = −2Im(ck) =
γ

2π
cos(kαj)                                                                               (A1.3.12) 

 
So, φ2(r, θ) can be expanded in Fourier Series in all domains, so as a continuous 
function to be derived: 
 

φ2(r, θ) =
a0

2
+ ∑(ak cos(kθ) + bk sin(kθ))

∞

k=1

                                                  (A1.3.13)  

 
a0, ak, bk can be evaluated from the following equations: 
 

a0 = ∑ ∑
γ(1 − cos(nπ)) (Χjnr

nπ
γ + Yjnr

−nπ
γ )

nπ2

∞

n=1

N

j=1

                                             (A1.3.14) 

ak = ∑ ∑
τknj (Χjnr

nπ
γ + Yjnr

−nπ
γ )

π

∞

n=1

N

j=1

                                                                   (A1.3.15) 
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bk = ∑ ∑
ωknj (Χjnr

nπ
γ + Yjnr

−nπ
γ )

π

∞

n=1

N

j=1

                                                                 (A1.3.16) 

 
where: 
 

τnkj =

{
 
 

 
 

nπ
γ [cos(nπ) cos(kβj+1) − cos(kαj)]

k2 −
n2π2

γ2

          k ≠
nπ

γ

−
γ

2
sin(kαj)                                                         k =

nπ

γ

                        (A1.3.17) 

 

ωnkj =

{
 
 

 
 

nπ
γ [cos(nπ) sin(kβj+1) − sin(kαj)]

k2 −
n2π2

γ2

          k ≠
nπ

γ

γ

2
cos(kαj)                                                         k =

nπ

γ

                          (A1.3.18) 

 

 

Additionally, φ1(r, θ) and φj
F can be expanded into Fourier Series as follows: 

 
For k = 0: 
 

c0,j =
1

2π
∫ [

φj+1
F − φj

F

γ
(θ − αj) + φj

F] dθ + ∫ φj
Fdθ

αj

βj

βj+1

αj

                           (A1.3.19) 

 

c0,j =
φj+1

F + φj
F

4π
γ + φj

Fδ                                                                                        (A1.3.20) 

 
The sum for N slots yields: 
 

c0 =
1

2π
∑ φj

F(γ + δ)

N

j=1

                                                                                             (A1.3.21) 

 
For k ≠ 0, φ1(r, θ) can be expanded in Fourier Series as follows: 
 

ck,j =
1

2π
∫ (

φj+1
F − φj

F

γ
(θ − αj) + φj

F) e−ikθdθ

βj+1

αj

⇒ 
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ck,j =
φj+1

F

2πk
[icos(kβj+1) + sin(kβj+1)] −

φj
F

2πk
[sin(kαj) + icos(kαj)]

−
φj+1

F − φj
F

γk2
[2 sin (

kγ

2
) sin (k

βj+1 + αj

2
)

+ 2isin (
kγ

2
) cos (k

βj+1 + αj

2
)]                                                (A1.3.22) 

 

Following the same process, the Fourier Series coefficients for the ferromagnetic 

segments (φj
F) can be calculated: 

 

ck,j =
1

2π
∫ φj

Fe−ikθdθ

αj

βj

⇒ 

 

ck,j =
φj

F

2kπ
(sin(kαj) + icos(kαj) − sin(kβj) − icos(kβj)                              (A1.3.23) 

 

From the sum of the coefficients of φ1(r, θ) and φj
F in the ferromagnetic segments we 

obtain: 
 

ck = ∑
φj

F − φj+1
F

2πγk2
[2 sin (

kγ

2
) sin (k

βj+1 + αj

2
)

N

j=1

+ 2isin (
kγ

2
) cos (k

βj+1 + αj

2
)]                                                  (A1.3.24) 

 
Therefore: 

ak = 2Re(ck) = ∑
2(φj

F − φj+1
F )

πγk2
sin (

kγ

2
) sin (k

βj+1 + αj

2
)

N

j=1

                       (A1.3.25) 

bk = −2Im(ck) = ∑
2(φj

F − φj+1
F )

πγk2
sin (

kγ

2
) cos (k

βj+1 + αj

2
)

N

j=1

                   (A1.3.26) 

 
Overall, the coefficients a0, ak and bk for the expansion of the magnetic potential the 
slots, in Fourier Series can be calculated as the sum of the coefficients for 

φ2(r, θ), φ1(r, θ) and φj
F: 

 

a0 =
1

π
[∑ ∑

γ(1 − cos(nπ)) (Χjnr
nπ
γ + Υjnr

−nπ
γ )

nπ
+ ∑(γ + δ)φj

F

N

j=1

∞

n=1

N

j=1

]         (A1.3.27) 
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ak = ∑ ∑
τknj

π
(Χjnr

nπ
γ + Υjnr

−nπ
γ )

∞

n=1

N

j=1

− ∑
2(φj

F + φj+1
F )

πγk2
sin (

kγ

2
)

N

j=1

sin (k
βj+1 + αj

2
)                        (A1.3.28) 

 

bk = ∑ ∑
ωknj

π
(Χjnr

nπ
γ + Υjnr

−nπ
γ )

∞

n=1

N

j=1

+ ∑
2(φj

F + φj+1
F )

πγk2
sin (

kγ

2
)

N

j=1

cos (k
βj+1 + αj

2
)                       (A1.3.29) 

where: 

 

τnkj =

{
 
 

 
 

nπ
γ [cos(nπ) cos(kβj+1) − cos(kαj)]

k2 −
n2π2

γ2

          k ≠
nπ

γ

−
γ

2
sin(kαj)                                                         k =

nπ

γ

                           (A1.3.30) 

 

ωnkj =

{
 
 

 
 

nπ
γ [cos(nπ) sin(kβj+1) − sin(kαj)]

k2 −
n2π2

γ2

          k ≠
nπ

γ

γ

2
cos(kαj)                                                         k =

nπ

γ

                             (A1.3.31) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



84 
 

Appendix A1.4 

 
From the Lorenz force equation: 
 
𝐟 = ρ𝐄 + 𝐉 × 𝐁                                                                                                         (A1.4.1)        
 
and from the Maxwell laws: 
 

∇ ∙ 𝐄 =
ρ

Ε0
⇒ ρ = E0(∇ ∙ 𝐄)                                                                                   (A1.4.2) 

and: 

∇ ∙ 𝐁 = μ0𝐉 + μ0Ε0

∂𝚬

∂t
⇒ 

𝐉 =
∇ × 𝐁

μ0
− E0

∂𝐄

∂t
                                                                                                  (A1.4.3) 

 

From Eq.(A1.4.1)-(A1.4.3) the following relation is obtained: 

𝐟 = E0(∇ ∙ 𝐄)𝐄 +
1

μ0

(∇ × 𝚩) × 𝚩 − E0

∂𝐄

∂t
× 𝐁                                                (A1.4.4) 

Furthermore: 
∂

∂t
(𝐄 × 𝐁) =

∂𝐄

∂t
× 𝐁 + 𝐄 ×

∂𝐁

∂t
⇒ 

∂

∂t
(𝐄 × 𝐁) =

∂𝐄

∂t
× 𝐁 − 𝐄 × (∇ × 𝐄)                                                                   (A1.4.5) 

 
Therefore from Eq.(A1.4.4) and Eq.(A1.4.5): 
 

𝐟 = E0(∇ ∙ 𝐄)𝐄 +
1

μ0

(∇ × 𝚩) × 𝚩 − E0

∂

∂t
(𝐄 × 𝐁) − E0𝐄(∇ × 𝐄) ⇒ 

 

𝐟 = E0 [(∇ ∙ 𝐄)𝐄 + (𝐄 ∙ ∇)𝐄 −
1

2
∇𝐄2] +

1

μ0
[(∇ ∙ 𝚩)𝚩 + (𝚩 ∙ ∇)𝚩 −

1

2
∇𝐁2]

− E0

∂

∂t
(𝐄 × 𝐁)                                                                            (A1.4.6) 
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Appendix A1.5 

 
The divergence of the Maxwell Stress Tensor on the i component is: 

(∇i ∙ 𝐓⃡  𝐢𝐣)j
= ∑ ∇iTij

i=r,θ,z

= ∑ ∇i [E0 (EiEj −
1

2
δijE

2) +
1

μ0
(BiBj −

1

2
δijB

2)]

i=r,θ,z

⇒ 

(∇i ∙ 𝐓⃡  𝐢𝐣)j
= E0 [(∇ ∙ 𝐄)Ej + (𝐄 ∙ ∇)Ej −

1

2
∇j𝐄

2]

+
1

μ0
[(∇ ∙ 𝚩)Bj + (𝚩 ∙ ∇)Bj −

1

2
∇j𝐁

2]                                           (A1.5.1) 

And as a consequence: 

(∇ ∙ 𝐓⃡  ) = E0 [(∇ ∙ 𝐄)𝐄 + (𝐄 ∙ ∇)𝐄 −
1

2
∇𝐄2]

+
1

μ0
[(∇ ∙ 𝚩)𝐁 + (𝚩 ∙ ∇)𝐁 −

1

2
∇𝐁2]                                              (A1.5.2) 

Therefore: 

𝐟 = ∇ ∙ 𝐓⃡  − E0μ0

∂𝐒

∂t
                                                                                                       (A1.5.3) 

The force can be calculated as: 

𝐅 = ∫𝐟
V

dV = ∫∇ ∙ 𝐓⃡  
V

dV − E0μ0 ∫
∂𝐒

∂tV

dV                                                                (A1.5.4) 

Using the Gauss theorem of divergence: 

𝐅 = ∮𝐓⃡  d𝐚
S

− E0μ0 ∫
∂𝐒

∂tV

dV                                                                                         (A1.5.5) 

Since the model is in 2D and 𝐄 = 0. As a consequence, the Maxwell Stress Tensor is: 

Tij =
1

μ0
BiBj −

1

2μ0
Β2δij                                                                                              (A1.5.6) 

where: 

B2 = Br
2 + Bθ

2                                                                                                                  (A1.5.7) 

Hence, the Maxwell Stress Tensor can be written as: 

𝐓⃡  =
1

μ0

[
 
 
 
Br

2 − Bθ
2

2
BrBθ

BθBr

Bθ
2 − Br

2

2 ]
 
 
 

                                                                                       (A1.5.8) 
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Appendix A1.6 

 
The calculation of the torque in the inner and outer rotor respectively consists of two 
sums of integrals in the following form: 
 

I = μ0
2 ∫ {∑ Pn cos(nθ) + Qn sin(nθ) +

E0

lnr2

∞

n=1

} {∑ Rn sin(nθ)

∞

n=1

2π

0

+ Sn cos(nθ)} dθ                                                                            (A1.6.1)   

Since: 

Br = −μ0 {∑ Pn cos(nθ) + Qn sin(nθ) +
E0

lnr2

∞

n=1

}                                     (A1.6.2) 

Bθ = −μ0 {∑ Rn sin(nθ) + Sn cos(nθ)

∞

n=1

}                                                 (A1.6.3) 

The above integral can be simplified to:  
 

I = πμ0Lr2
2 ∑(PnSn + QnRn)                                                                      (A1.6.4)   

∞

n=1

 

 
since: 
 

∫ cos(nθ) sin(mθ) dθ
2π

0

= 0    ∀ n, m                                                         (A1.6.5) 

∫ cos(nθ) cos(mθ) dθ
2π

0

= {
0,   n ≠ m

π,   n = m
                                                     (A1.6.6)   

∫ sin(nθ) sin(mθ) dθ
2π

0

= {
0,   n ≠ m

π,   n = m
                                                      (A1.6.7) 

∫ [cos(nθ) + sin(nθ)]dθ
2π

0

= 0    ∀ n                                                         (A1.6.8) 

 

Therefore the analytical form of Min(r2) is:  
 

Min(r2) = πμ0Lr2
2 ∑[

∞

n=1

(Pn,outSn,in + Qn,outRn,in) + (Pn,inSn,out

+ Qn,inRn,out)]                                                                             (A1.6.9) 

 

 
 

where: 
 
Pn,in = n(En,inr2

n−1 − Fn,inr2
−n−1)         (A1.6.10) 
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Qn,in = n(Gn,inr2
n−1 − Hn,inr2

−n−1)         (A1.6.11) 

Rn,in = −n(En,inr2
n−1 + Fn,inr2

−n−1)         (A1.6.12) 

Sn,in = n(Gn,inr2
n−1 + Hn,inr2

−n−1)         (A1.6.13) 

Pn,out = n(En,outr2
n−1 − Fn,outr2

−n−1)         (A1.6.14) 

Qn,out = n(Gn,outr2
n−1 − Hn,outr2

−n−1)         (A1.6.15) 

Rn,out = −n(En,outr2
n−1 + Fn,outr2

−n−1)         (A1.6.16) 

Sn,out = n(Gn,outr2
n−1 + Hn,outr2

−n−1)         (A1.6.17) 
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2   Halbach-Array Coaxial Magnetic Gears 
 

CMG performance can be further improved if the permanent magnets (PMs) are 
placed in a specific arrangement called Halbach-array [2.1]-[2.4]. Halbach-arrays can 
create a strong magnetic field [2.5] due to their inherent capability to generate one-
sided magnetic field [2.6]. The Halbach-array CMG (HAL-CMG) drive has higher torque 
density, superior dynamical response under load and good self-shielding 
magnetization [2.7]-[2.10]. However these drives, insert further parameters in the 
optimization process, making the problem of increasing the torque density 
computationally intensive. Therefore, an analytical calculation of the torque would 
significantly reduce the computational cost required to achieve optimal torque 
density for a given configuration of the HAL-CMG drive and in general would facilitate 
the design of application-specific HAL-CMG drives.  

In the present chapter a novel analytical 2D model for the calculation of the 
magnetic potential for every rotation angle, geometry configuration and constitutive 
parameters of the magnets of the HAL-CMG drive has been derived. The applied 
torque on the two rotors and the torque ripple were calculated analytically from the 
Maxwell Stress Tensor. A case study was performed for a 4 pole pair inner rotor and a 
10 pole pair outer rotor in a standard CMG and an optimised HAL-CMG with the same 
geometrical and parameters of the PMs. The stall torque and the amplitude of the 
harmonics contributing to the torque ripple were calculated and compared for the 
two drives. In addition, the obtained torques were verified with Finite Element 
Analysis (FEA). The stall torque of the HAL-CMG was 14.3% higher than the standard 
CMG’s while the amplitudes of the torque contributing harmonics which generate 
torque ripple were slightly reduced. 
 

2.1     Analytical model of Halbach-array CMG drives 

 

 
 

Figure 2.1: Halbach-array Coaxial Magnetic Gear  
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The three components of the HAL-CMG are: the inner rotor, the outer rotor and the 
flux modulator ring. As shown in Fig.2.1, r1, r2, r3, r4, r5, r6, rout are the radii of the 
inner iron yoke, the inner PMs, the inner and the outer side of the modulator ring, the 
outer PMs, the outer iron yoke and the external side of the HAL-CMG respectively. In 

addition, αj and βj are the right and left border of the jth ferromagnetic segment. The 

basic geometric parameters of the HAL-CMG are therefore similar to the standard 
CMG. The different colors of the PMs represent the different orientations of the 
magnets. 
 
In Fig.2.2, a linear analogue of the HAL-CMG shown in Fig.2.1 with PMs only on the 
inner rotor is presented. 
 

 
 

Figure 2.2: Linear analogue of a section of HAL-CMG (one pole-pair) 

The magnetic induction of the HAL-CMG is obtained as a superposition of the magnetic 
inductions generated by the PMs of the inner and outer rotor separately. In order to 
obtain an analytical solution, infinite permeability of the iron yokes and the 
ferromagnetic segments is assumed, similar to the standard CMG. 
 
The only difference in terms of modelling between the standard and Halbach-array 
CMG is at the magnetization vector of the PMs and as a result at the general solution 
of the Region I for the magnetic potential. The magnetization vector in this case can 
be written as: 
 
𝐌 = Mr𝐫 + Mθ𝛉 (2.1) 

 
In order to obtain the special solution, the magnetization distribution should be 
expressed in an analytical and continuous function. Mr (radial) and Mθ (tangential) 
magnetization distributions are presented in Fig.2.3 and Fig. 2.4. 
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Figure 2.3: Radial magnetization distribution in Region 𝚰 

 

 
Figure 2.4: Tangential magnetization distribution in Region 𝚰 

 
where p is the number of pole pairs, Bm is the residual magnetism of the PM and 
αh, βh, γh, ψ are the PMs’ angles of Fig. 2.2.  
 
The magnetization can be described in an analytical and continuous form with Fourier 
series as shown in Appendix A2.1. Therefore, the magnetization can be obtained from: 
 

Mr(θ) = ∑ ak cos(pk(θ − θ0)) + bk sin(pk(θ − θ0))

∞

k=1

 (2.2) 

Mθ(θ) = ∑ dk cos(pk(θ − θ0)) + ek sin(pk(θ − θ0))

∞

k=1

 (2.3) 
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where θ0 is an initial phase angle and  

 

ak =
Bm

πμ0k
[− sin(kpαh) − sinψ(sin(kp(αh + βh)) − sin(kpαh))    

+ sinψ(sin(kp(αh + 2βh + γh)) − sin(kp(αh + βh + γh)))

+ sin(kp(2αh + 2βh + γh)) − sin(kp(αh + 2βh + γh))

+ sinψ(sin(kp(2αh + 3βh + γh))

− sin(kp(2αh + 2βh + γh)))

− sinψ(sin(kp(2αh + 4βh + 2γh))

− sin(kp(2αh + 3βh + 2γh)))] 

 

(2.4) 

bk = −
Bm

πμ0k
[− cos(kpαh) − cos(0)

− sinψ(cos(kp(αh + βh)) − cos(kpαh))

+ sinψ(cos(kp(αh + 2βh + γh))

− cos(kp(αh + βh + γh))) + cos(kp(2αh + 2βh + γh))

− cos(kp(αh + 2βh + γh))

+ sinψ(cos(kp(2αh + 3βh + γh))

− cos(kp(2αh + 2βh + γh)))

− sinψ(cos(kp(2αh + 4βh + 2γh))

− cos(kp(2αh + 3βh + 2γh)))] 

(2.5) 

dk =
Bm

πμ0k
[cosψ(sin(kp(αh + βh)) − sin(kpαh))

+ sin(kp(αh + βh + γh)) − sin(kp(αh + βh))    

+ cosψ(sin(kp(αh + 2βh + γh)) − sin(kp(αh + βh + γh)))

− cosψ(sin(kp(2αh + 3βh + γh))

− sin(kp(2αh + 2βh + γh))) − sin(kp(2αh + 3βh + 2γh))

− sin(kp(2αh + 3βh + γh))

− cosψ(sin(kp(2αh + 4βh + 2γh))

− sin(kp(2αh + 3βh + 2γh)))] 

 

(2.6) 
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ek = −
Bm

πμ0k
[cosψ(cos(kp(αh + βh)) − cos(kpαh))

+ cos(kp(αh + βh + γh)) − cos(kp(αh + βh))    

+ cosψ(cos(kp(αh + 2βh + γh))

− cos(kp(αh + βh + γh)))

− cosψ(cos(kp(2αh + 3βh + γh))

− cos(kp(2αh + 2βh + γh))) − cos(kp(2αh + 3βh + 2γh))

− cos(kp(2αh + 3βh + γh))

− cosψ(cos(kp(2αh + 4βh + 2γh))

− cos(kp(2αh + 3βh + 2γh)))] 

 

(2.7) 

Therefore the divergence of the magnetization vector in a Halbach-array is: 
 
div𝐌

μr
=

1

μr
[
1

r

∂

∂r
(rMr) +

1

r

∂

∂θ
(Mθ)] (2.8) 

 
Which yields: 
 

div𝐌

μr
=

1

rμr
(∑[(ak cos(pkθ0) − bk sin(pkθ0)) cos(pkθ)

∞

k=1

+ (ak sin(pkθ0) + bk cos(pkθ0)) sin(pkθ)]

+ ∑{dk[−pk sin(pkθ) cos(pkθ0)

∞

k=1

+ pk cos(pkθ) sin(pkθ0)]

+ ek[pk cos(pkθ) cos(pkθ0) + pk sin(pkθ) sin(pkθ0)]}) 

(2.9) 

 
Therefore, the PDE in Region I is: 
 

φrr +
1

r
φr +

1

r2
φθθ =

div𝐌

μr
 

(2.10) 

 
The special solution will have the following form: 
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φs(r, θ) = ∑{Wk(r)[(ak cos(pkθ0) − bk sin(pkθ0) + dkpk sin(pkθ0)

∞

k=1

+ ekpk cos(pkθ0)) cos(pkθ)

+ (ak sin(pkθ0) + bk cos(pkθ0)

− dk pk cos(pkθ0) + ek pk sin(pkθ0)) sin(pkθ)]} 

 

(2.11) 

 
 
Therefore, the PDE takes the following form: 
 

Ẅk(r) +
1

r
Ẇk(r) −

(pk)2

r2
Wk(r) =

Mk

μr
 

 

(2.12) 

which yields that: 
 

Wk(r) =

{
 
 

 
 

r

μr(1 − (pk)2)
, if pk ≠ 1

rlnr

2μr
, if p = k = 1

 

 

(2.13) 

 
Therefore, the general solution in Region I is: 
 

φI(r, θ) = ∑[(Anrn + Bnr−n

∞

n=1

+ Wn(r)(an cos(nθ0) − bn sin(nθ0) + dn n sin(nθ0)

+ en n cos(nθ0))) cos(nθ)

+ (Cnrn + Dnr−n

+ Wn(r)(an sin(nθ0) + bn cos(nθ0)

− dn n cos(nθ0) + en n sin(nθ0))) sin(nθ)] + Α0lnr + B0 

(2.14) 

 
where: 

Wn(r) =

{
 

 
r

μr(1 − n2)
, if n = pk,   k = 1,3,5, …   

rlnr

2μr
,                            if n = pk = 1

 

 

(2.15) 

 

The remaining of the methodology is identical to the one followed for the standard 
CMG. A linear system of equations is formed and the coefficients are calculated. 
Therefore, an analytical method for magnetic induction calculation in Halbach-array 
CMG drives have been developed. Then, following a similar process as in Chapter 1 
the torque can be calculated in every angle of rotation of the two rotors. 
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2.2         Optimization of HAL-CMG and comparison with standard CMG 

 
To illustrate the improvement in the torque density that is achieved with the use of 
HAL-CMG drives, a case study was performed for a standard CMG and a HAL-CMG 
drive with the same geometrical and constitutive parameters of the PMs as it is 
presented in Table 2.1.  
 

Table 2.1: Geometrical Parameters 

pin 4 

pout 10 

r1 [mm] 80 

r2 [mm] 100 

r3 [mm] 105 

r4 [mm] 125 

r5 [mm] 130 

r6 [mm] 150 

rout [mm] 170 

L [mm] 100 

δ [deg] 15 

Br [T] 1.44 

 
The parameters of the Halbach-array for the inner and outer rotor (described in 
Fig.2.2) resulted from optimization of the stall torque and are presented in Table 2.2.  
The optimization process did not require an advanced technique since with the 
proposed model, the stall torque can be obtained analytically for any Halbach-array 
arrangement in the two rotors with a low computational cost.  It should be noted that 
the optimal arrangement of the outer rotor, in the performed case study, is the 
standard CMG since the angles βh and γhof the outer rotor are equal to zero.  
 

Table 2.2: Parameters of the HAL-CMG drive 

Inner Rotor  

αh [deg] 20 

βh [deg] 12.5 

γh [deg] 12.5 

ψ  [deg] 60 

Outer Rotor  

αh [deg] 18 

βh [deg] − 

γh [deg] − 

ψ  [deg] − 
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In Fig.2.5 the applied torque in the two rotors is presented for the two drives for the 
case of fixed inner rotor and rotating outer rotor. 

 
Figure 2.5: Comparison of the torques applied on the inner and outer rotor in the 

standard and the HAL-CMG 

It can be observed that there is a significant improvement in the torque density with 
the use of HAL-CMG. More specifically, the stall torque of the HAL-CMG was 14.3% 
higher than the standard CMG’s. 
 
In Fig.2.6 the induced torques in the two rotors of the HAL-CMG where verified with 
FEA (ANSYS Maxwell). The adopted mesh type used in the FEA model is triangles with 
automatic meshing method that refines the mesh until convergence.  A difference of 
1-1.5% was observed between the analytical and FEA model, however, the analytical 
model was two orders of magnitude faster.  

 
Figure 2.6: Torque in the two rotors of the HAL-CMG as calculated from the 

analytical model and FEA 

Therefore, with the developed analytical model an accurate and fast calculation of 
torque in the two rotors of the HAL-CMG is achieved. Furthermore, with the 
developed model the torque ripple generated from the torque contributing harmonics 
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can be determined, a result that cannot immediately be obtained from FEA since only 
the resulting torque is calculated (sum of the contributing harmonics). In order to 
calculate the torque ripple from FEA it is necessary to perform a Fourier transform. 
The process would require additional computational time and several FEA simulations 
at different angles of rotation, while with the analytical model a single calculation is 
sufficient to determine the torque ripple. 
 
The amplitudes of the torque-contributing harmonic terms of the two rotors for the 
standard and Halbach-array CMG are presented in Table 2.3. 
 

Table 2.3: Amplitude of contributing harmonics 

Amplitude of inner rotor harmonic (Nm)  Amplitude of outer rotor harmonic (Nm) 

 Standard CMG HAL-CMG   Standard CMG HAL-CMG 

ξ4 333.81 381.89  ξ10 832.98 952.95 

ξ12 1.25 1.09  ξ30 3.26 2.88 

ξ20 0.02 0.001  ξ50 0.05 0.002 
 
Due to the higher harmonics torque ripple is observed in both drives. The torque ripple 
of the HAL-CMG is 0.3% which is slightly lower than the torque ripple observed in the 
standard CMG drive. Therefore, with the use of HAL-CMG the stall torque is increased 
compared to the standard CMG drive without comprising the other operational 
characteristics. 
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Chapter 2-Conclusions        

 
In the present chapter a novel analytical 2D model was developed for the calculation 
of the magnetic potential of HAL-CMGs for every angle of rotation, geometry 
configuration and magnet parameters. The applied torque in the two rotors was 
calculated analytically from the Maxwell Stress Tensor. The induced torques in the two 
rotors of the HAL-CMG were verified with FEA. A case study was performed for a 4 
pole pair inner rotor and a 10 pole pair outer rotor for a standard CMG and an 
optimised HAL-CMG with the same geometrical and constitutive parameters of the 
PMs. The stall torque of the HAL-CMG was improved by 14.3%. In addition, the torque 
ripple with the use of Halbach-arrays was slightly reduced compared to the standard 
CMG. Therefore, from the performed case study it can be observed that the HAL-CMG 
offers significant increase in torque density which is in accordance with other results 
in the literature. The developed model could be a valuable design tool for the 
optimization of HAL-CMGs since the applied torque in the two rotors can be calculated 
analytically thus reducing significantly the computational cost. Furthermore, the 
torque ripple of the HAL-CMG due to the torque contributing harmonics can be 
calculated analytically a result that cannot immediately be obtained from FEA since a 
Fourier transform is required that would increase the computational cost and FEA 
simulations. 
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Appendix A2.1 

 
The period of magnetization is: 
 

 T0 =
2π

p
                                                                                                                          (A2.1.1) 

 
Therefore the magnetization vector of the HAL-CMG can be expressed as: 
 

Mθ(θ) = ∑ cke−i2πkf0θ

+∞

−∞

⇒ 

Mθ(θ) = ∑ dk cos(pkθ) + ek sin(pkθ)

∞

k=1

                                                              (A2.1.2) 

where: 
 
dk = 2Re(ck)                                                                                                                (A2.1.3) 

ek = −2Im(ck)                                                                                                             (A2.1.4) 

 
If  k = 0: 
 

c0 =
p

2π
∫ Mθe0 dθ

T0

⇒ c0 = 0                                                                                  (A2.1.5) 

 
If  k ≠ 0: 

ck =
p

2π
[ ∫

Bmcosψ

μ0
e−ipkθdθ

αh+βh

αh

+ ∫
Bm

μ0
e−ipkθdθ + ∫

Bmcosψ

μ0
e−ipkθdθ

αh+2βh+γh

αh+βh+γh

αh+βh+γh

αh+βh

− ∫
Bmcosψ

μ0
e−ipkθdθ

2αh+3βh+γh

2αh+2βh+γh

− ∫
Bm

μ0
e−ipkθdθ

2αh+3βh+2γh

2αh+3βh+γh

− ∫
Bmcosψ

μ0
e−ipkθdθ

2αh+4βh+2γh

2αh+3βh+2γh

]                                              (A2.1.6) 

 

From Euler identity: 
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ck =
Bm

2πμ0k
[cosψ (sin(kp(αh + βh)) − sin(kpαh)

+ i(cos(kp(αh + βh)) − cos(kpαh))) + sin(kp(αh + βh + γh))

− sin(kp(αh + βh))

+ i(cos(kp(αh + βh + γh)) − cos(kp(αh + βh)))

+ cosψ (sin(kp(αh + 2βh + γh)) − sin(kp(αh + βh + γh))

+ i(cos(kp(αh + 2βh + γh)) − cos(kp(αh + βh + γh))))

− cosψ (sin(kp(2αh + 3βh + γh)) − sin(kp(2αh + 2βh + γh))

+ i(cos(kp(2αh + 3βh + γh)) − cos(kp(2αh + 2βh + γh))))

− sin(kp(2αh + 3βh + 2γh)) − sin(kp(2αh + 3βh + γh))

+ i(cos(kp(2αh + 3βh + 2γh)) − cos(kp(2αh + 3βh + γh)))

− cosψ (sin(kp(2αh + 4βh + 2γh)) − sin(kp(2αh + 3βh + 2γh))

+ i(cos(kp(2αh + 4βh + 2γh))

− cos(kp(2αh + 3βh + 2γh))))]                                                  (A2.1.7) 

 

Therefore, dk and ek are: 

dk = 2Re(ck) =
Bm

πμ0k
[cosψ(sin(kp(αh + βh)) − sin(kpαh))

+ sin(kp(αh + βh + γh)) − sin(kp(αh + βh))    

+ cosψ(sin(kp(αh + 2βh + γh)) − sin(kp(αh + βh + γh)))

− cosψ(sin(kp(2αh + 3βh + γh)) − sin(kp(2αh + 2βh + γh)))

− sin(kp(2αh + 3βh + 2γh)) − sin(kp(2αh + 3βh + γh))

− cosψ(sin(kp(2αh + 4βh + 2γh))

− sin(kp(2αh + 3βh + 2γh)))]                                                     (A2.1.8) 
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ek = −2Im(ck)

= −
Bm

πμ0k
[cosψ(cos(kp(αh + βh)) − cos(kpαh))

+ cos(kp(αh + βh + γh)) − cos(kp(αh + βh))    

+ cosψ(cos(kp(αh + 2βh + γh)) − cos(kp(αh + βh + γh)))

− cosψ(cos(kp(2αh + 3βh + γh)) − cos(kp(2αh + 2βh + γh)))

− cos(kp(2αh + 3βh + 2γh)) − cos(kp(2αh + 3βh + γh))

− cosψ(cos(kp(2αh + 4βh + 2γh))

− cos(kp(2αh + 3βh + 2γh)))]                                                 (A2.1.9) 

Similarly, Mr can be written as: 

Mr(θ) = ∑ ak cos(pkθ) + bk sin(pkθ)

∞

k=1

                                                               (A2.1.10) 

Where αk and bk can be calculated similarly: 

ak = 2Re(ck) =
Bm

πμ0k
[− sin(kpαh) − sinψ(sin(kp(αh + βh)) − sin(kpαh))    

+ sinψ(sin(kp(αh + 2βh + γh)) − sin(kp(αh + βh + γh)))

+ sin(kp(2αh + 2βh + γh)) − sin(kp(αh + 2βh + γh))

+ sinψ(sin(kp(2αh + 3βh + γh)) − sin(kp(2αh + 2βh + γh)))

− sinψ(sin(kp(2αh + 4βh + 2γh))

− sin(kp(2αh + 3βh + 2γh)))]                                                    (A2.1.11) 

bk = −2Im(ck)

= −
Bm

πμ0k
[− cos(kpαh) − cos(0)

− sinψ(cos(kp(αh + βh)) − cos(kpαh))

+ sinψ(cos(kp(αh + 2βh + γh)) − cos(kp(αh + βh + γh)))

+ cos(kp(2αh + 2βh + γh)) − cos(kp(αh + 2βh + γh))

+ sinψ(cos(kp(2αh + 3βh + γh)) − cos(kp(2αh + 2βh + γh)))

− sinψ(cos(kp(2αh + 4βh + 2γh))

− cos(kp(2αh + 3βh + 2γh)))]                                                 (A2.1.12) 

 
In case of an initial phase angle θ0 of the inner rotor, the Fourier Series can be 
written as: 

Mr(θ) = ∑ ak cos(pk(θ − θ0)) + bk sin(pk(θ − θ0))

∞

k=1

                                  (A2.1.13) 

Mθ(θ) = ∑ dk cos(pk(θ − θ0)) + ek sin(pk(θ − θ0))

∞

k=1

                                  (A2.1.14) 
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3   Dynamical response in coaxial magnetic gears 
 

During acceleration, slippage phenomena could occur due to absence of contact 
between the two rotors of the magnetic gears. The dynamical phenomena during 
transient operation should be investigated in order to determine the transmission 
error [3.1]-[3.3]. The dynamical equations in coaxial magnetic gears consist of a 
system of two non-linear differential equations [3.4] that cannot be solved 
analytically. As a consequence, iterative methods are used in order to determine the 
dynamical response of the system that could increase the computational cost in an 
optimization processes. When acceleration and applied torque are small the system 
will converge to a solution depending on the equivalent gear ratio. However, when 
the values of acceleration and applied torque are high the system will diverge and the 
dynamical behaviour will not be depending on the gear ratio of the magnetic gear. A 
process that could determine the maximum operational characteristics (acceleration 
and torque) without the requirement for a numerical solution of the system of 
equations would be beneficial to researchers and the industry. 

In the present work, an analytical non-dimensional condition will be derived that 
can determine the convergence/divergence of the system under constant 
acceleration and applied torque. A set of case studies will be performed with arbitrary 
inputs of inner rotor acceleration and applied torque in the outer rotor. A prediction 
on convergence/divergence of the system will be made from the developed non-
dimensional condition. The dynamical equation of the outer rotor will be solved 
numerically in order to verify the prediction of the model. Finally, since in most 
applications it would be useful to restrict the transmission error to a certain value the 
derived non-dimensional condition could be modified in order to calculate the 
maximum operational characteristics that yield the allowed transmission error. A case 
study was performed where for a given acceleration of the inner rotor the maximum 
applied torque on the outer rotor was calculated so that the transmission error of the 
system did not exceed a certain value.  

Furthermore, the case of acceleration with ripple has been investigated. It was 
demonstrated that during acceleration with ripple under constant applied outer load, 
the system showcases a chaotic behaviour similar to the driven pendulum [3.5]-[3.6]. 
A case study for the dynamical operation of coaxial magnetic gears under constant 
applied outer load and acceleration with ripple was performed. Specifically, a 
thorough analysis on the frequency of the ripple has been conducted. It was observed 
that when the ripple frequency was slightly lower than the frequency of the oscillation 
under steady acceleration, the system could potentially diverge even if the 
acceleration of the system was lower than the critical value. Furthermore, it was 
shown that a smaller acceleration with a given ripple frequency could lead to 
divergence while a higher acceleration with the same ripple frequency could not, a 
phenomenon that emphasizes the significance of the frequency ratio. Finally, it was 
observed that the system could appear to have a periodic-like behaviour for a 
considerable time of operation before it diverges which showcases the chaotic 
behaviour of the system. 

With the present work, a detailed non-dimensional model has been derived that 
could be a useful tool for determining the stability of coaxial magnetic gears without 
the requirement of numerical solution of the governing equations. In addition, some 
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interesting observations are made regarding the chaotic behaviour of the dynamical 
response of coaxial magnetic gears during acceleration with ripple. 

 

3.1 Non-dimensionalization of the governing ODEs 

 
In coaxial magnetic gears the system of the dynamical equations of the inner and outer 
rotor has the following form [3.2]-[3.4]: 

Iinθ̈in + ∑ ξ(2k−1)pin,insin [

∞

k=1

(2k − 1)pinθin + (2k − 1)poutθout] = Tin (3.1) 

Ioutθ̈out + ∑ ξ(2k−1)pout,outsin [

∞

k=1

(2k − 1)pinθin + (2k − 1)poutθout] = Tout (3.2) 

where (ξ(2k−1)pin,in) and (ξ(2k−1)pout,out) are the amplitudes of the torque-

contributing harmonics that can be calculated analytically for a given configuration of 
a coaxial magnetic gear [3.4], while (Tin) and (Tout) are the applied torques in the 
inner and outer rotor respectively. Neglecting the higher order harmonics (torque 
ripple) that have considerably lower amplitude (lower than 1%) [10], Eq.(3.1)-(3.2) 
take the following form: 
 

Iinθ̈in +
Mpin

pout
sin(pinθin + poutθout) = Tin (3.3) 

Ioutθ̈out + Msin(pinθin + poutθout) = Tout (3.4) 

where (M) is the stall torque (first contributing harmonic) of the outer rotor [3.4], 
[3.7]. 
 
In general, magnetic gears are prone to slippage during acceleration. Therefore, 
without loss of generality, we will investigate the response of the outer rotor under 
acceleration a of the inner rotor. As a result, Eq.(3.4) could be written in the following 
form: 
 

Ioutθ̈out + Msin [
1

2
pinat2 + poutθout] = Tout 

(3.5) 

Eq.(3.5) is a non-linear differential equation that describes the dynamical response of 
the outer rotor of the magnetic gear, under constant applied torque and acceleration 
in the inner rotor. Eq.(3.5) cannot be solved analytically and its solution can only be 
determined numerically. However, it would be useful to know whether the solution 
will converge or if it will diverge without the requirement for numerical calculation of 
the solution of the system.  
 
The transmission error of the system (x) is defined by equation (3.6.A).  

x =
1

2
pinat2 + poutθout 

(3.6.A) 
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As a consequence, it yields that: 
 

θ̈out =
ẍ

pout
−

pina

pout
 

(3.6.B) 

and therefore Eq.(3.7) is derived: 
 
Iout

pout
ẍ + Msinx = Tout +

pinIouta

pout
 

(3.7) 

As a consequence, Eq.(3.7) could be written in  the following form: 
 
ẍ + ω0

2sinx = ω0
2(τ + γ) (3.8) 

where (τ) and (γ) are non-dimensional constants defined as:  
 

τ =
pinIouta

poutM
 (3.9.A) 

γ =
Tout

M
 (3.9.B) 

and 

ω0
2 =

Mpout

Iout
 (3.9.C) 

By multiplying Eq.(3.8) with (ẋ) and differentiating with respect to time we obtain: 
 

d

dt
(
1

2
ẋ2 − ω0

2cosx) =
d

dt
(ω0

2(τ + γ) x + c)  (3.10) 

In general, the initial condition of the system for t=0 could be the case where the outer 
load (Tout) is applied and the coaxial magnetic gear operates under constant 
conditions without any kind of oscillations or ripple. As a result, the initial conditions 

for the transmission error (x) are: x(0) = sin−1 (
Tout

M
) = sin−1 γ and 𝑥̇(0) = 0.  

Therefore, applying the initial conditions to Eq.(3.10) we obtain: 
 
1

2
ẋ2 − ω0

2cosx = ω0
2(τ + γ) x − ω0

2 cos(sin−1 γ) − ω0
2(τ + γ) sin−1 γ (3.11) 

It would be useful to investigate the stability of Eq.(3.11) when the acceleration (a) 
(and consequently the non-dimensional constant (τ)) is applied. For every different 
initial condition x(0) a different maximum acceleration can be applied to the system. 
If the acceleration exceeds the critical value, the system will diverge and the 
transmission error (x) will tend to infinity.  
 
The fixed points of the system can be obtained from the solution of Eq.(3.5) for ẍ = 0: 
x′ = sin−1(τ + γ) (3.12.A) 

x∗ = π − sin−1(τ + γ) (3.12.B) 
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The fixed point (x∗), is the critical point for the stability of the system. If the 
transmission error exceeds (x∗) then the system will diverge. Therefore, a criterion 
could be formed [3.8] for the stability of the system as follows, since ẋ2 ≥ 0: 
 
cosx∗ + (τ + γ) x∗ − cos(sin−1 γ) − (τ + γ) sin−1 γ ≥ 0 (3.13) 

By applying different initial conditions, the maximum acceleration (a) and as a 
consequence the maximum non-dimensional constant (τ) can be calculated 
numerically from Eq.(3.13). In Fig.3.1 the maximum non-dimensional constant (τ) and 
the maximum sum of (γ + τ) is presented with respect to (γ).   

  
Figure 3.1: Maximum non-dimensional acceleration (τ) as a function of the initial 

non-dimensional applied load (γ). 
 

It can be observed, that as expected when the outer applied load (Tout) is increased 
the maximum acceleration that can be induced to the system is reduced. In addition, 
in the limit case where the applied load (Tout) is equal to the stall torque (M) and thus 
γ = 1, no acceleration can be applied to system. However, the maximum sum of 
(γ + τ) is increases as the outer applied load (Tout) is increased. Therefore, from 
Eq.(3.11) and Fig.2 the stability of the system can be determined for any given non-
dimensional constant (γ) and (τ).  
 
In general, however the sum of (γ + τ) will be lower than the critical case derived 
from Eq.(3.11). In that case, the system will oscillate between the initial condition x(0) 
and maximum transmission error value (xmax) that can be calculated from Eq.(3.11) 
by applying the values of (γ) and (τ) and letting 𝑥̇ = 0. The equation could then be 
solved numerically in order to calculate the (xmax) value. 
 
When the system oscillates between the x(0) and (xmax) the period of the system 
could be determined from Eq.(3.11) as follows:  
 
dx

dt
= √2ω0√cosx + (τ + γ) x − cos(sin−1 γ) − (τ + γ) sin−1 γ 

(3.14.A) 

Eq.(3.14.A) could be written to the following form: 
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dt =
dx

√2ω0√cosx + (τ + γ) x − cos(sin−1 γ) − (τ + γ) sin−1 γ
 

(3.14.B) 

Integrating Eq.(3.14.B) from x(0) and (xmax) which is equal to half of the period (T0), 
we can obtain the period of the oscillation from Eq.(3.15) 
 

T0 =
√2

ω0
∫

dx

√cosx + (τ + γ) x − cos(sin−1 γ) − (τ + γ) sin−1 γ

xmax

x(0)

 
(3.15) 

The integral of Eq.(3.15) can only be solved numerically. The frequency of the 

oscillation can be obtained from f0 = 1
T0

⁄ .  

 
When the amplitude of the oscillation is increased (xmax − x(0))  the period of the 
system is increased and as a consequence the frequency (f0) is decreased.  
 
The minimum period of the oscillation is obtained when no external load is applied 
(γ = 0) and a very small acceleration is applied to the system (τ → 0). The period 
calculation for this case is shown in Appendix A3.1. 

3.2 Modelling for acceleration with ripple and chaotic behaviour 

 
It is common for power transmission systems to exhibit ripple during acceleration. We 
will investigate the case where the acceleration is of the following form: 
 

a(t) = a(1 + εsin(2πft)) (3.16) 

where (a) is the nominal acceleration, (ε) is the ripple of the acceleration (as a 
percentage) and (f) is the frequency of the ripple. A similar to Eq.(3.8) non-
dimensional form can be obtained: 
 
ẍ + ω0

2sinx = ω0
2(τ + γ) + ω0

2ετsin(2πft) (3.17) 

Eq.(3.17) has a similar form to the driven pendulum that exhibits chaotic behaviour 
[3.5], [3.6] and  could be written in the following form as a system of a three-
dimensional first order ordinary differential equations: 
 
v̇ = −ω0

2sinx+ω0
2(τ + γ) + ω0

2ετsinφ (3.18.Α) 
ẋ = v (3.18.B) 
φ̇ = 2πf (3.18.C) 

 
The system of Eq.(3.18.A)-(3.18.C) could exhibit chaotic behaviour. It is interesting to 
investigate the behaviour of the system for various frequencies of the acceleration 
ripple (f), especially for the case when the frequency of the ripple is near the 
frequency of the oscillation of the system (f0) under steady acceleration as calculated 
from Eq.(3.15). 
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3.3.1 Verification of the stability criterion and discussion  

 
In order to validate the developed model a case study was performed with the 
parameters presented in Table 3.1, while the permanent magnets used are Nd-Fe. The 
stall torque can be obtained following the methodology described in [3.4]. In addition, 
the torque ripple was also calculated and equal to 0.49 Nm which is lower than 0.2% 
of the stall torque and therefore the assumption of neglecting the torque ripple is 
justified.  

Table 3.1: Geometrical parameters 
pin 8 

pout 32 

r1 [mm] 80 

r2 [mm] 100 

r3 [mm] 105 

r4 [mm] 125 

r5 [mm] 130 

r6 [mm] 150 

rout [mm] 170 

δ [deg] 5 

L[mm] 100 

M [Nm] 270 

Iout [kgm2] 0.64748 

 
The following two cases presented in Table 3.2 were considered in order to 
demonstrate the validity of the developed criterion. The critical value for convergence 

is τ + γ ≤ 0.724611 
Table 3.2: Performed case studies-results 

 
a[

rad

s2
] Tout[Nm] τ + γ 

Theoretical 
prediction 

Simulation 
result 

Case 1 1208.64 0 0.724610 Converges Converges 

Case 2 1208.66 0 0.724612 Diverges Diverges 
 
The transmission error for the two is presented in Fig.3.2 by solving numerically Eq.(8) 
in Simulink. For the numerical solution of the Eq.(3.8) a time step of Δt = 10−7s is 
used. 

 
Figure 3.2: Transmission error in cases 1-2 of Table 3.2. 
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In Fig.3.2a and Fig.3.2b the transmission error for Case 1 and Case 2 is presented. The 
two cases represent a system of an accelerating inner rotor without an applied torque 
in the outer rotor. In Case 1 the acceleration is lower than the critical value and 
therefore the system will converge depending on the gear ratio. A transmission error 
with an oscillatory behaviour of a constant amplitude will be present in the response 
of the outer rotor. However, when the acceleration is higher than the critical value the 
system will diverge as shown in Case 2. 
 
Finally, the maximum operational characteristics that yield a transmission error within 
a certain limit can be calculated. The maximum operational characteristics could be 
easily obtained from Eq.(3.11) where (x) will take the value of the transmission error 
limit. For the parameters of the case study if the transmission error should be confided 

at x = 10° then the stability equation yields: τ + γ ≤ 0.08704. 
 
If no outer load is applied then the maximum acceleration that can be induced in the 

inner rotor without the transmission error exceeding 10° is: a = 145.18 rad/s2. 

 
Figure 3.3: Transmission error for 𝐓𝐨𝐮𝐭 = 𝟎 𝐍𝐦 and 𝐚 = 𝟏𝟒𝟓. 𝟏𝟖 𝐫𝐚𝐝/𝐬𝟐. 

 
In Fig.3.3 the transmission error for Tout = 0 Nm and a = 145.18 rad/s2 is presented. 
It can be observed that the transmission error does not exceed 10 degrees. 

3.3.2 Chaotic behaviour and discussion 

 
A different case study presented in Table 3.3 is considered to showcase the chaotic 
behaviour during acceleration with ripple. 
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Table 3.3: Geometrical parameters 

pin 4 

pout 10 

r1 [mm] 28 

r2 [mm] 33 

r3 [mm] 37.5 

r4 [mm] 47.5 

r5 [mm] 51 

r6 [mm] 56 

rout [mm] 70 

δ [deg] 15 

L[mm] 100 

M [Nm] 40 

Iout [kgm2] 0.020316 

 
Furthermore, the following non-dimensional parameters presented in Table 3.4 are 
considered. The maximum non-dimensional acceleration that can be applied to the 
system is equal to τ = 0.3696 (when ε=0) as calculated from Eq.(10). For the 
numerical solution of the Eq.(3.8) and Eq. (3.17) a time step of Δt = 10−7s is used.  
 

Table 3.4: Case study parameters 
γ 0.5 

τ 0.34 

ε 0.01 

 
In Fig.3.4 the transmission error (x)  with respect to time is presented for the case of 
steady acceleration (ε=0).  
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Figure 3.4: Transmission error for steady acceleration (ε=0). 

 
In Fig. 3.5 the phase diagram of the oscillation is presented. 

 
Figure 3.5: Phase diagram for steady acceleration (ε=0). 

The frequency of the oscillation can be obtained from Eq.(3.15) and is equal to            
f0 = 14.48 Hz.  
 
The acceleration ripple is applied and the maximum transmission error is determined 
for different frequencies of the acceleration ripple. In Fig.3.6 for reasons of clarity, 
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when the system diverges the transmission error value is bounded to 200 degrees in 
order to showcase the trend of the phenomenon. 

 
Figure 3.6: Maximum transmission error for different acceleration ripple 

frequencies. 
It can be observed that the system will diverge when the ratio is between 
approximately 0.915 and 0.930 despite the fact that the sum of (γ + τ + ε) is lower 
than the critical value as calculated from Eq. (3.11). In addition, it can be observed that 
when the frequency of the ripple is equal to (f0) the system does not tend to increase 
the maximum value of the transmission error (x) significantly. This phenomenon can 
be explained due to the fact that when the system increases its maximum value of (x) 
then the period of the system will change according to Eq. (3.15). Specifically, the 
period of the system will increase as we approach higher values of (x) and as a result 
the frequency of the oscillation of (x) will decrease. Therefore, even though the ratio 
is initially equal to 1, the frequency of (x) (f0) will soon be decreased and the system 
will stop being in phase and therefore the oscillation of (x) will be limited to certain 
maximum.  
 
However, when the acceleration ripple frequency (f) is slightly lower than the initial 
frequency (f0) the system will gradually increase the maximum value of (x) thus 
leading to larger period of oscillations and consequently lower (f0). Therefore, as the 
time progresses the frequency (f0)  will tend towards the frequency of the 
acceleration ripple (f) and could potentially lead to the divergence of the system due 
to resonance.  
 
In general the sum of (γ + τ) should be close to the critical value so that the system 
will diverge under acceleration ripple (f). This is attributed to the fact that the 
frequency of the oscillation of (x), (f0), changes as the amplitude of the oscillation 
increases. Thus, it is difficult to have a resonant frequency for the entire oscillation of 
(x)  phenomenon when the initial sum of (γ + τ) is not close to the critical value.  



113 
 

 
In Fig. 3.7 the Poincare sections for different f/f0 cases are presented. The sections 
are obtained after a simulation time of 30s. Each point at the Poincare sections is 
obtained depending on the frequency of the acceleration ripple. Therefore, each point 
is obtained every 1/f seconds. It is interesting to notice the behaviour of the section 
when the value f/f0 is lower than 1 and near the divergence bandwidth. 
 
From Fig. 3.7 the different behaviour of the system with respect to the ratio f/f0 is 
presented. When the value of the ratio f/f0 is not close to the divergence bandwidth 
(i.e. f/f0 =1.07 and f/f0 =0.90 case) the Poincare sections appear to be similar to the 
phase diagram of steady acceleration case presented in Fig.3.5 which implies that the 
ripple of the acceleration does not affect significantly the dynamical response of the 
system. However, when the ratio f/f0 approaches the divergence bandwidth the 
Poincare sections showcase a significant alteration from the phase diagram presented 
in Fig.3.5.  
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Figure 3.7: Poincare sections for different acceleration ripple frequencies 

 
In Fig.3.8 the transmission error with respect to time is presented for two cases where 
the system will diverge. It is interesting to notice that the divergence could occur after 
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a significant number of oscillations as shown in the f/f0=0.93 case. The system initially 
appears to have a periodical behaviour when suddenly diverges. Even, though an 
acceleration that exceeds 20 seconds is not expected during the operation of the 
coaxial magnetic gear it is interesting to showcase such phenomenon in order to 
further understand the chaotic behaviour of Eq.(3.17).   
 

  
Figure 3.8: System divergence for different acceleration ripple frequencies 

 
In Fig.3.9 the maximum transmission error for different non-dimensional acceleration 
with respect to the ratio f/f0 is presented.  
 

  
Figure 3.9: Maximum transmission error for different acceleration ripple 

frequencies 
 

From Fig.3.9 it can be observed that for the case of τ = 0.35 the system will diverge 
for a given bandwidth of the ratio f/f0. The bandwidth is increased when compared to 
the case of τ = 0.34 presented in Fig.3.6. This phenomenon, is expected since the sum 
of (γ + τ) is closer to the critical value. However, for the case of τ = 0.33 the system 
does not diverge for any frequency of the ripple which validates the fact that the sum 
of (γ + τ) should be close to the critical value in order for the system to diverge under 
any frequency of the acceleration ripple (f).  
 
For the case of τ = 0.35 and ε = 0  Eq. (3.15) yields f0 = 13.697 Hz while for the case 
of τ = 0.33 and ε = 0  Eq.(3.15) yields f0 = 15.079 Hz. 
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It is interesting to notice that the same frequency of acceleration ripple could cause 
the divergence of the system at lower acceleration rates. For instance, an acceleration 
ripple frequency of f = 13.3 Hz could result in divergence of system when τ = 0.34 
while the system has a periodical behaviour when τ = 0.35.  
 
Initially this phenomenon, could be regarded as counter intuitive, however it can be 
explained from Fig.3.6 and Fig.3.9.         
               
For τ = 0.34 the ratio f/f0 is approximately equal to 0.919 while for τ = 0.35 the ratio 
f/f0 is equal to 0.971. As a result, for the case of τ = 0.34  the oscillation is well within 
the critical bandwidth while for the case of τ = 0.35  it is outside the critical 
bandwidth. The transmission error (x)  with respect to time is presented in Fig.3.10 
for the two cases.  
 

  
Figure 3.10: Transmission error for different acceleration and same ripple 

frequency 
 

Finally, it is interesting to investigate the effect of the ripple of the acceleration (ε) to 
the stability of the system. For the case study presented according to the parameters 
of Table 3.3 and γ = 0.5 the maximum non-dimensional acceleration (τmax) of the 
inner rotor was calculated for different values of the ripple of the acceleration. The 
results are presented in Table 3.5. The maximum percentagewise non-dimensional 
acceleration (τ%) is calculated as the ratio of the maximum non-dimensional 
acceleration under ripple conditions to the maximum non-dimensional acceleration 
when no ripple is present. 
 
Table 3.5: Maximum non-dimensional acceleration for different acceleration ripple 

values 

ε (%) τmax τ% (%) 

0 0.3696 100 

0.5 0.3498 94.64 

1 0.3343 90.45 

2 0.3049 82.49 

5 0.2426 65.64 
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In Fig.3.11 the maximum percentagewise acceleration (τ%) with respect to the ripple 
of acceleration (ε) and the fitted curve are presented. 

 
Figure 3.11: Maximum (𝛕%) for different acceleration ripple values (𝛆) and fitted 

curve 
As expected the maximum (τ%) is decreased as the acceleration ripple (ε) is increased. 
 
Furthermore, the effect of the non-dimensional value (γ) on the maximum 
percentagewise non-dimensional acceleration (τ%) for different values of the ripple 
of the acceleration (ε) was investigated. The results are presented in Table 3.6. 
 
Table 3.6: Maximum (𝛕%) for different acceleration ripple (𝛆) and non-dimensional 

(𝛄) values 

γ ε (%) τmax τ% (%) 

0.3 

0 0.5138 100 

0.5 0.4858 94.55 

1 0.4655 90.60 

2 0.4248 82.68 

5 0.3372 65.63 

0.5 

0 0.3696 100 

0.5 0.3498 94.64 

1 0.3343 90.45 

2 0.3049 82.49 

5 0.2426 65.64 

0.7 

0 0.2232 100 

0.5 0.2116 94.80 

1 0.2008 89.96 

2 0.1848 82.80 

5 0.1469 65.82 
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0.9 

0 0.0748 100 

0.5 0.0709 94.79 

1 0.0676 90.37 

2 0.0620 82.89 

5 0.0496 66.31 

 
From the results presented in Table 3.6 it is evident that the non-dimensional value 
(γ) has a negligible effect on the maximum percentagewise non-dimensional 
acceleration of the inner rotor regardless of the acceleration ripple.  
 
From the analysis demonstrated in the present work some engineering insights can be 
obtained regarding the operation of coaxial magnetic gears. First and foremost it is 
important to protect the coaxial magnetic gear drive from resonance phenomena due 
to the oscillations that occur during acceleration. The frequency of the oscillation can 
be obtained from Eq.(3.15) for every applied outer load and inner rotor acceleration. 
The highest frequency that can be observed when no external load is applied (γ = 0) 
and a very small acceleration is applied to the inner rotor (τ → 0). The frequency of 
the oscillation calculation for this case is shown in Appendix A3.1. Therefore, to avoid 
resonant phenomena during acceleration the coaxial magnetic gear should be 
constructed in a way that the torsional frequencies of the system are significantly 
higher than the maximum frequency of the oscillations during acceleration. If this 
consideration is not taken into account then the coaxial magnetic gear could 
potentially experience high energy vibrations during acceleration that could endanger 
its operation. 
 
Furthermore, the acceleration of the inner rotor is typically not steady in most 
engineering applications. For example, an inverter can provide a steady acceleration, 
however ripple is usually present. From the analysis of the present work it was 
demonstrated that the ripple of the acceleration could lead to the divergence of the 
system even if the non-dimensional value of the acceleration is lower than the critical 
value as obtained from the stability criterion of Eq.(3.13). For that reason, it is critical 
to examine the frequency of the ripple of the acceleration. It was shown that the 
system is particularly prone to this phenomenon if the ratio of the frequency of the 
ripple to the frequency of the oscillation, as obtained from Eq.(3.15), is in the range of 
0.92-0.93. If the frequency of the ripple is within that bandwidth, for a given set of 
non-dimensional constants (γ) and (τ), then it is vital that the non-dimensional 
acceleration of the inner rotor is lower than the (τ%) value depending on the 
amplitude of the acceleration ripple (ε) as shown in Fig.3.11.  
 
The above considerations should be taken into account when designing a coaxial 
magnetic gear in order to ensure a stable and robust operation during acceleration 
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Chapter 3-Conclusions 

 
In the present chapter a non-dimensional stability criterion for the dynamical 
response of coaxial magnetic gears under steady acceleration and constant applied 
outer load has been developed. A non-dimensional criterion was derived analytically 
in order to assess the dynamical convergence of the drive without the requirement of 
a numerical solution of the dynamical equation of the system. In addition, a closed-
form of the period of the oscillations has been derived when a steady acceleration is 
induced to the system. Furthermore, the case of acceleration with ripple has been 
investigated since it is common for power transmission drives to operate under ripple. 
It was demonstrated that for the case of constant applied outer load and acceleration 
with ripple the non-dimensional governing differential equation is similar to the driven 
pendulum equation that can have chaotic behaviour. A thorough investigation on the 
effect of ratio between the frequency of the ripple and the frequency of the oscillation 
obtained for steady acceleration was conducted. A case study was performed where 
the effect of the ripple frequency was investigated. It was observed, that when the 
ratio was between 0.9-0.95 the system could exhibit divergence even if the applied 
acceleration was lower than the critical value. Furthermore, it was shown that a 
smaller acceleration with a given ripple frequency could lead to divergence while a 
higher acceleration with the same ripple frequency could not, a phenomenon that 
emphasizes the significance of the frequency ratio. In addition, it was observed that 
the system could appear to have a periodic-like behaviour for a considerable time of 
operation before it diverges which showcases the chaotic behaviour of the system. 
Finally, the effect of the ripple of acceleration was investigated. It was shown, that 
when the acceleration ripple (ε) is increased then the maximum percentagewise 
acceleration (τ%) is decreased. Therefore, the developed non-dimensional model 
could be a valuable tool for the understanding of the dynamical response in coaxial 
magnetic gears both during steady acceleration and acceleration with ripple that 
could lead to efficient and robust operation. 
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Appendix A3.1 

 
The integral of Eq.(3.15) cannot be solved analytically in its general form. However, 
when no external load is applied (γ = 0) and a very small acceleration is applied to 
the system (τ → 0) both the calculation of (xmax) and the integral can be solved 
analytically implementing the Taylor expansion as follows: 
 
The maximum transmission error value (xmax) can be calculated after simplifying 
Eq.(3.11) from: 
 
cosx + τ x − 1 = 0                                                                                          (A3.1.1)  

and since: 

cosx = 1 −
x2

2!
+

x4

4!
− ⋯ + ⋯                                                                      (A3.1.2) 

 

From Eq.(A3.1.1) and Eq.(A3.1.2) and neglecting the higher order terms we obtain: 
 
 xmax = 2τ                                                                                                           (A3.1.3)                                                                                                          
 
Therefore, Eq.(3.15) takes the following form: 
 

T0 =
√2

ω0
∫

dx

√−
x2

2
+ τ x

2τ

0

                                                                              (A3.1.4) 
 

which could be written as: 
 

T0 =
√2

ω0
∫

√2dx

√τ2 − (x − τ)2

2τ

0

                                                                        (A3.1.5) 
 

By substituting u = x − τ and w =
u

τ
 yields that: 

 

T0 =
2

ω0
∫

dw

√1 − w2

1

−1

                                                                                     (A3.1.6)  

Therefore:  
 

T0 =
2π

ω0
                                                                                                             (A3.1.7) 
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4   Power losses in coaxial magnetic gears 

 

Power losses should be investigated during the design of coaxial magnetic gear 

drives in order to achieve optimal efficiency and avoid phenomena that could lead to 

the degradation of the system as a whole. In particular, eddy current losses have been 

a significant issue in CMGs especially in higher rotational speeds [4.1]. Therefore, it is 

essential during the design of CMGs drives to investigate this phenomenon, since 

excess eddy current losses could lead to increase of the temperature and 

deterioration of the PMs in the rotors that could gradually lead to degradation of the 

system as a whole. 

In general, the calculation eddy current and core losses is a strenuous process that 

requires complex transient electromagnetic phenomena. Desvaux et al. [4.2] and 

Wang et al. [4.3] computed the eddy current losses of the PMs, by firstly calculating 

the square of the current density throughout the PMs and multiplying by the 

resistivity, then performing a volume integration and finally integrating with respect 

to time and dividing by the period of the system, to get the average value of the eddy 

current losses. They also performed tangential magnet segmentation to decrease the 

eddy current losses, by performing the volume integration on each segment 

separately. Filippini [4.4] performed both tangential and axial magnet segmentation 

and correlated the eddy current losses and the number of segments to a rational 

function. Regarding core losses, Filippini [4.4] starts with the computation of the 

induction throughout the ferromagnetic segments, with a simple finite-difference 

model that utilizes the boundary scalar magnetic potential conditions and the Laplace 

equation in cylindrical coordinates. Core losses, according to Deng [4.5], require using 

the rate of change of the induction to calculate hysteresis, eddy current and excess 

losses. Deng introduced a formula to calculate these losses while including the 

harmonic effect. Desvaux et al. [4.2] used this formula to perform core losses 

calculations. Hein et al. [4.6] reviews different approaches of the Steinmetz equation, 

which calculates hysteresis losses. Lee et al. [4.7] and Li et al. [4.8] propose that for 

the same magnitude of induction, rotational core losses are almost double the 

alternating core losses. 

The calculation of the power losses, is a computationally high process as it requires 

the calculation of the magnetic induction in different angles of rotation of the rotors 

of the CMG. FE models, despite having high accuracy require significant computational 

time. As a consequence, an optimization process in order to minimize the power losses 

could potentially be a time consuming procedure. Therefore, a model that would 

utilize analytical solutions of the magnetic induction in the CMG could significantly 

reduce the computational cost and facilitate optimization processes and could 

become a valuable design tool.  

This chapter focuses on the computation of PMs and ferromagnetic segments’ 

losses. The analytical solutions of the scalar magnetic potential derived from 

Maxwell’s equations are used to calculate the current density and thus the eddy 
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current losses of the PMs. Tangential segmentation is also performed to investigate 

its impact regarding loss reduction. Core losses are determined using a hybrid 

analytical-finite element model that utilizes the boundary scalar magnetic potential 

conditions. The resulting PMs and core losses were in excellent coherence with FEA 

results, while tangential segmentation greatly improved PMs efficiency. In addition, 

an investigation on the effect of different applied external loads, on the PMs efficiency 

is conducted. Finally, a study on the average power losses throughout one full period 

is conducted, along with a mesh sensitivity analysis in order to reduce the 

computational time without losing accuracy in the obtained results. From the 

conducted analysis it was demonstrated that the computational time can be reduced 

up to 80%. The mesh sensitivity analysis showed that mesh resolution is crucial for 

accurate core losses calculation, as meshes that are too coarse result in inaccurately 

high core losses while meshes that are too fine result in high computational costs. 

These two analyses are of great importance, as they ensure high accuracy and 

relatively low computational costs simultaneously, facilitating optimization efforts. 

4.1 Mathematical Modelling of Power Losses 

The power losses in coaxial magnetic gears are attributed to eddy current losses in the 

PMs of the inner and outer rotor and to core losses in the ferromagnetic segments. 

4.1.1 Eddy current losses in the PMs 

For the calculation of the PM losses the vector magnetic potential 𝐀 throughout the 

PMs is required. The vector magnetic potential can be easily determined after the 

scalar magnetic potential φ calculation as calculated in Chapter 1.  

The vector magnetic potential 𝐀 can be determined, using the following equations: 

Βr
k(r, θ) = −μ0

∂φk

∂r
=

1

r

∂Ak

∂θ
 (4.1) 

Βθ
k(r, θ) = −μ0

∂φk

∂θ
= −

∂Ak

∂r
  (4.2) 

 

where Βr
k and Bθ

k are the radial and tangential induction of a point of the inner and 

outer rotor (k:in or out), r and θ refer to the polar coordinates and μ0 is the vacuum 

permeability. 

The eddy current losses for each PM are computed using the following formula [4.2]: 

Peddy
k =

L

Θp
k

∫
1

σ
∫ ((Jk)

2
rdrdθ) dθ0

k

SPM
k

Θp
k

0

 (4.3) 

Jk(r, θ, θ0
k) = σωk

∂𝐀k

∂θ0
+ Ck(θ0

k) (4.4) 

Ck(θ0
k) = −

1

SPM
k

 ∫ σωk
∂𝐀k

∂θ0
k

rdrdθ
SPM

k
 (4.5) 
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where Jk is the eddy current density, Ck is a term used to guarantee that the net 

current flowing in each PM arc segment is zero at any moment, SPM
k  is the area of a 

PM and σ is the conductivity of the PMs. θ0
k and ωk  refer to the angle of rotation and 

the rotational speed of each rotor, while Θp
k  is the angle that each rotor rotates in a 

complete period of the system.  

For the calculation of Θp
k, one must find the greatest common divisor of pin and pout, 

and divide them with it. The result of this simple operation is the amount of 

revolutions the outer and inner rotor, respectively, complete in a period. For example, 

if pin = 4 and pout = 10, means that the inner rotor completes 5 revolutions, while 

the outer rotor completes 2 revolution in a period, resulting in Θp
in = 10π rad and 

Θp
out = 4π rad.  

4.1.2 Tangential segmentation of PMs 

Eddy currents losses in PMs can be reduced with their axial or tangential 

segmentation. The present work focuses on tangential segmentation. Incorporating 

tangential segmentation into the analytical model requires partitioning the angle, with 

respect to which the integration is performed, by the number of total segments 

(Kin, Kout), as shown in Eq. (4.6) [4.3] for each rotor. 

θ ∈ [θ0, θ0 +
π

pin

1

Kin
] , θ ∈ [θ0, θ0 +

π

pout

1

Kout
] (4.6) 

 

An example of tangential segmentation is presented in Fig. 4.1. 

 

Figure 4.1: Illustration of magnet segmentation (𝐊𝐢𝐧𝐭 = 𝟐 𝐚𝐧𝐝 𝐊𝐨𝐮𝐭 = 𝟑). 
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4.1.3 Computation of core losses of the ferromagnetic segments using 
a hybrid model 

In a special case of sinusoidal variation of the magnetic fields, core losses are 

calculated from [4.2]:  

Pcore, sinusoidal = n(khystf
αBm

β
+ keddyf2Bm

2 + kexcf
1.5Bm

1.5) (4.7) 

 

where f and Bm are the frequency and peak value of the induction, respectively, and 

α, β, khys, keddy and kexc are constants that depend on the material and are provided 

by the manufacturer. Rotational fields results in core losses that are double those 

produced from alternating fields [4.7], [4.8]. This is denoted in Eq.(4.7) with the 

variable n, which has a value of 1 when referring to alternating fields and 2 when 

referring to rotating fields, as in this case. 

In general, fields in CMGs do not appear with a strict sinusoidal variation, so a 

generalized equation is used to calculate the core losses [4.2], [4.5], [4.6]: 

Peddy
F = Pcore,generalised =
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T

0
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(4.8) 

{
  
 

  
 khyst

′ =
khyst

2β−α(2π)α−1 ∫ |cos θ|αdt
2π

0

keddy
′ =

keddy

2π2

kexc
′ =

kexc

(2π2)0.75

 (4.9) 

 

Bmaj and Bmin represent the major and minor axes of the ellipse fitted to the induction 

locus. Sfer refers to the area of a segment, while T is a complete period of the system. 

Βmaj(t) and Bmin(t) are calculated using the following equations: 

Bmaj(r, θ, t) = ‖B(r, θ, t)‖ cos(a(t)) (4.10) 

Bmin(r, θ, t) = ‖B(r, θ, t)‖ sin(a(t)) (4.11) 

ξ(r, θ) = arctan (
Br(r, θ, tmax‖B(r,θ,t)‖)

Bθ(r, θ, tmax‖B(r,θ,t)‖)
) (4.12) 

a(r, θ, t) = arctan (
Br(r, θ, t)

Bθ(r, θ, t)
) − ξ(r, θ) (4.13) 
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where ξ and a(t) are defined in Fig. 4.2. 

 

Figure 4.2: A sketch of the fitted ellipse, along with the parameters required for 

core loss calculations. 

In order to calculate the core losses, the values of Βr and Bθ on the ferromagnetic 

segment’s surface should be calculated. However, the analytical model developed in 

Chapter 1 doesn’t calculate the scalar magnetic potential of the segments, but it does 

calculate the magnetic potential on their boundaries. Those analytically calculated 

values can be used as boundary conditions for a finite element model. This model 

makes use of the Laplace’s equation of the scalar magnetic potential φ in a cylindrical 

coordinate system [4.4]. 

∂2φ

∂r2
+

1

r

∂φ

∂r
+

1

r2

∂2φ

∂θ2
= 0 (4.14) 

 

A grid is created, using the reference system shown in Fig. 4.3. The average radius ri 

and angle θj of each module are calculated as in Eq. (4.15-4.16), where                             

Δr = (r4 − r3)/N and Δθ = δ/N, where N is the number of rows and columns of the 

finite element grid. 
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Figure 4.3: The reference system of the finite element grid. 

ri = r4 − (i −
1

2
) Δr  (4.15) 

θj = β − (j −
1

2
) Δθ  (4.16) 

 

Using central finite differences, Laplace’s equation leads to a system of N2 equations, 

presented in the following equations:  

DN2xN2 ΦΝ2x1 = RΝ2x1 (4.17) 
 

For all (i, j) pairs where i = 1 or i = N or j = 1 or j = N, the corresponding modules 

of D, Φ and R are assigned values according to Eq. (4.18), where φ(ri, θj) is the 

boundary condition. For the rest of the (i, j) pairs, Eq. (4.19) is followed. 

{
D(i−1)N+j,(i−1)N+j = 1

R(i−1)N+j,1 = φ(ri, θj) 
 (4.18) 

{
 
 
 
 

 
 
 
 D(i−1)N+j,(i−1)N+j = −

2

Δr2
−

2

r2Δθ2

D(i−1)N+j,(i−1)N+j+1 =
1

r2Δθ2

D(i−1)N+j,(i−1)N+j−1 =
1

r2Δθ2

D(i−1)N+j,(i−1)N+j+N =
1

Δr2 +
1

2rΔr

D(i−1)N+j,(i−1)N+j−N =
1

Δr2 −
1

2rΔr

R(i−1)N+j,1 = 0

   (4.19) 

 

Solving for ΦΝ2x1 returns the scalar magnetic potential φ(ri, θj) on every module of 

the grid. Βr and Βθ on the ferromagnetic segment can now be calculated using Eq. 

(4.1, 4.2) and the core losses can be calculated.  
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4.2 Results and discussion 

4.2.1 Eddy current and core losses calculation and comparison with FEA 

A case study is performed with the parameters described in Table 4.1. The rotational 

speed of the inner rotor is assumed to be 2500 rpm. The time step used is equal to the 

time it takes for the inner rotor to rotate by 2° and, equivalently, for the outer rotor 

to rotate by 0.8°. This time step allows for high accuracy computations and 

simultaneously limits the amount of time steps in one period. The computations are 

performed for the case of full load. An algorithm based on the developed model is 

constructed in MATLAB. The results were compared to those obtained from the FE 

transient analysis performed in the Ansys Maxwell software. 

Table 4.1: Parameters of the CMG example used for the calculations 

pin Number of inner ring pole pairs 4 

pout Number of outer ring pole pairs 10 

Q Number of ferromagnetic segments 14 

r1 Inner radius of inner ring 53mm 

r2 Outer radius of inner ring 66mm 

r3 Inner radius of flux-modulator ring 69mm 

r4 Outer radius of flux-modulator ring 84mm 

r5 Inner radius of outer ring 87mm 

r6 Outer radius of outer ring 87mm 

L Length 100mm 

δ Ferromagnetic segment angle 15° 

Br Residual induction of magnets 1.47T 

μ0 Vacuum magnetic permeability 4π ∙ 10−7 Hm−1 

μr
Ι = μr

ΙΙΙ Relative permeability of the magnets 1.05 

σ Conductivity of the magnets 0.9MS/m 

 

Fig. 4.4.a shows that the eddy current losses of the PMs are proportional to the square 

of the rotational speed of the rotors, while Fig. 4.4.b shows that the percentage of 

eddy current losses to total transmitted power is proportional to the rotational speed 

of the rotors, as expected from Eq.(4.3-4.5).  
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Figure 4.4: Comparison of results obtained from the analytical model and the 2D 

finite element analysis model regarding: a) eddy current losses and b) percentage 

of eddy current losses to total transmitted power. 

It is observed that the eddy current losses on the outer rotor are higher compared to 

the inner rotor, a result that is in coherence with similar studies in the literature [4.2], 

[4.4]. In addition the total eddy current losses in the PMs exceed 5% of the total 

transmitted power after 2000 rpm, illustrating the drawback of CMGs in high 

rotational speeds which has also been reported in the literature [4.1]. The analytical 

results of the developed model were verified with FEA. The discrepancies between the 

analytical model and the FEA simulations are small and of the same nature for both 

rotors. For slower rotational speeds, the analytical model results in slightly less eddy 

current losses, 0.01% for the inner rotor and 0.9% for the outer rotor PMs less that 

FEA simulations for an inner rotational speed of 750rpm. As rotational speeds 

increase, the analytical model results in larger eddy current losses, reaching deviances 

of 7.8% and 3.1% for the inner and outer rotor PMs, respectively, for an inner 

rotational speed of 3500rpm.  

Fig. 4.5 shows the effect of magnet segmentation on the eddy current losses.  

 

Figure 4.5. Tangential segmentation effects on the eddy currents losses of the PMs. 

The losses decrease rapidly in the outer rotor and more slowly in the inner rotor, as 

tangential segments increase. According to Fillipini [4.4], the eddy current losses 
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should follow the function Peddy(Kk) =
c

a2+b2Kk
2, where Kk is the number of tangential 

segments of every PM of a rotor and a, b, c are constants. 

Fitting this function results in a coefficient of determination of 𝑅2 = 0.9842 and          

𝑅2 = 0.9963, for the inner and outer PMs losses, while the values of 𝑎, 𝑏 and c are 

equal to 0.115, 0.039 and 0.016 for the inner PMs and 0.031, 0.215 and 0.280 for the 

outer PMs, respectively. 

For the calculation of the core losses some additional parameters are required and are 

presented in Table 4.2. 

Table 4.2: Parameters used in this case study for the calculation of core losses 

kh Hysteresis loss coefficient 152.2WsT−βm−3 

ked Eddy current loss coefficient 0.403Ws2T−2m−3 

kex Excess loss coefficient 0.1Ws1.5T−1.5m−3 

α Steinmetz coefficient 1 

β Steinmetz coefficient 2 

 

The induction locus of a single finite element of a ferromagnetic segment and its fitted 

ellipse is presented in Fig. 4.6.  

Figure 4.6: The induction locus of a finite element of a ferromagnetic segment, the 

fitted ellipse and its axes. 

The resulting induction of the proposed hybrid model on a ferromagnetic segment at 

a random point in time is shown in Fig. 4.7. For the ferromagnetic segments, a 60x60 

mesh grid is used. 
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Figure 4.7: Induction distribution on a ferromagnetic segment. 

Induction is generally close to zero and smooth, except for some small areas around 

the edges, and especially the corners, where it can reach values as high as 5T. 

Fig. 4.8.a) and 4.8.b) compare the computed results to those obtained using FEA, for 

various rotational speeds. 

 
 

Figure 4.8: Comparison of results obtained from the hybrid model and the 2D finite 

element analysis model regarding: a) core losses and b) percentage of core losses 

to total transmitted power. 

Core losses were found to be one order of magnitude less that inner PMs losses and 

two orders of magnitude less that outer PMs losses. Specifically, the core losses do 

not exceed 0.2% of the total transmitted power, even at high rotational speeds. The 

results of the analytical model were compared to those obtained from FEA. Higher 

discrepancies in core losses between the results from the hybrid model and the FEA 

software for lower rotational speeds, that are further highlighted in Fig. 4.8.b), can be 

attributed to the overall lower losses, that make slight deviations stand out. However, 

the discrepancies don’t surpass 10% for an inner rotational speed greater than 

500rpm, and they decrease, percentage-wise, as the rotational speeds increase.  
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4.2.2 Power losses for different external loads 

Different external loads result in different relative positions of the two rotors. It would 

be interesting to investigate how and if the transmitted load has any effect of the 

power losses of the CMG. To simplify the calculations, θout is initialized as zero, and 

θin is assigned different values that correspond to certain percentages of stall torque. 

In addition, only PMs losses were taken into account, as core losses are two orders of 

magnitude less that total PMs losses, while having a greater computational cost. Fig. 

4.9 illustrates how, in this case study, the efficiency peaks at about 88% load. Total 

losses for the case of 88% of the stall torque are 5.5% lower than for the case of full 

load. 

Figure 4.9: PMs power losses as a percentage of total power transmitted versus 

load. 

The analytical results were verified and found to be in excellent coherence with FEA. 

Overall, deviances between the two methods do not exceed 1.5%. 

4.2.3 Algorithm computational cost vs accuracy 

For the calculation of the eddy current losses a full period as defined from Θp
k  is 

required. However, the developed model requires time steps throughout one 

complete period of the system. In addition, the hybrid model for the calculation of 

core losses requires a meshing technique that could significantly increase the 

computational cost. Therefore, it is important to investigate how the computational 

cost could be reduced without losing accuracy in the obtained results. 

4.2.3.1 Reduction of time steps 

To reduce computational time, it is investigated whether a period is needed to 

compute the power losses with adequate accuracy or if the losses converge sooner 

than that. Therefore, the time of the integration ts  will be investigated.  The value ts 

can range between 0 and T. It is noted that the time step used remains the same in all 

cases and it is equal to the time it takes for the inner rotor to rotate by 2° and, 

equivalently, for the outer rotor to rotate by 0.8°. 
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The average PMs and core losses are calculated for various 𝑡𝑠 values. Fig. 4.10 

illustrates that the power losses converge rapidly. The computational time cost can be 

reduced by a factor of 5, with a deviation of less than 2% from the results obtained 

for a complete period. 

 

Figure 4.10: Average power losses versus the percentage of a complete period used 

to calculate them a) inner PMs, b) outer PMs, c) ferromagnetic segments. 

4.2.3.2 Mesh sensitivity analysis 

A mesh sensitivity analysis on the adopted mesh on the ferromagnetic segments is 

conducted in order to find the optimal mesh resolution that provides accurate core 

losses results in minimal computational time. Starting from a 10x10 grid and gradually 

reaching a 120x120 grid, it is found that for a very coarse mesh the computed value 

of the core losses is significantly larger than their true value, and for finer meshes, the 

computed losses decrease and converge, as shown in Fig. 4.11. 

Figure 4.11: Convergence of core losses using mesh sensitivity analysis. 

Grids ranging from 10x10 to 40x40 don’t significantly increase the computational time, 

as solving the system of N2 equations requires less of time than calculating the 

induction values on the boundary of the ferromagnetic segments, as obtained in the 

methodology followed in Chapter 1. However, the finer the meshes get, the 

computations get more time consuming, as it is known that solving a system of linear 

equations can have a complexity of up to O(N3).   
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Coarse meshes lead to greater computed core losses because, as shown in Fig. 4.7, 

the largest values of induction and the corresponding time derivatives, which define 

the losses, are concentrated in small areas near the edges and corners of each 

ferromagnetic segment. This means that a coarse mesh attributes a large value of  
dBmaj

dt
 and 

dBmin

dt
 to a relatively large element, resulting in greater computed core 

losses. Thus, it is imperative that areas near the edges of the ferromagnetic segments 

have a mesh that is fine enough to accurately determine the induction distribution. 

Future research could conduct mesh sensitivity analysis with a focus on utilizing finer 

mesh near the boundaries and gradually transitioning to coarser mesh towards the 

center, where induction is generally smoother, to reduce a significant percentage of 

computational time. 
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Chapter 4-Conclusions        

 

In the chapter an analytical 2D model is used to calculate eddy currents losses in the 

PMs of a coaxial magnetic gear, as well as their minimization using magnet 

segmentation. A hybrid model is used to calculate the core losses in the ferromagnetic 

segments of the flux-modulator ring. The model utilizes the analytically computed 

values of the scalar magnetic potential on the boundaries of the segments and uses 

Laplace’s equation in order to compute the magnetic induction throughout the 

segments for the calculation of the core losses. Both models are validated using a 

transient FEA simulation which shows a convergence of 1.51% and 3.18% for the eddy 

current and core losses respectively, for an indicative inner rotor speed of 2500rpm. 

It was demonstrated that as expected the total power losses increase as the rotational 

speed increase. The segmentation of the PMs was shown to play a crucial role in 

reducing the eddy current losses. The method showed that by performing just 2 

segmentations on the outer rotor PMs, the overall losses decrease by over one order 

of magnitude. In addition, an investigation of the effect of the initial positioning of the 

rotors shows that peak efficiency is achieved at about 88% load in the performed case 

study. Finally, an attempt to reduce computational time while keeping the accuracy 

high is made, by proving that only a small fraction of the period of the system is 

needed in order to accurately calculate total losses and by performing a mesh 

sensitivity analysis on the adopted grid the ferromagnetic segments. The results of 

average power losses throughout one full period illustrate the rapid convergence of 

power losses in a period, which can reduce the computational time by 80% with 

negligible errors. The mesh sensitivity analysis shows that mesh resolution is crucial 

for accurate core losses calculation, as meshes that are too coarse result in 

inaccurately high core losses and meshes that are too fine results in very high 

computational costs. These two analyses are of great importance, as they ensure high 

accuracy and relatively low computational costs simultaneously, facilitating 

optimization efforts. The developed model could be a valuable optimization tool for 

the reduction of power losses since it combines high accuracy and low computational 

cost. 
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5   Design of an experimental coaxial magnetic gear 
 

The purpose of this chapter is the analysis of the design of a Coaxial Magnetic Gear 

(CMG) illustrating its key aspects during its design. For the overall system design, a 

detailed calculation of machine elements was carried out. Following the basic design, 

special attention was given to the selection of ball bearing clearances with shafts and 

housings. The study of the system's natural frequencies revealed that the preload of 

the bearings and, consequently, the operating internal clearance is a crucial factor 

affecting the natural frequency and the risk of resonance. Furthermore, a simulation 

was conducted using appropriate software to analyse the thermal losses due to eddy 

currents, ensuring that the temperature remains within an allowable range to prevent 

magnet demagnetization. Finally, the effect of the radial forces applied in the 

modulator ring to the induced torques in the rotors was investigated. 

5.1 Basic Geometrical Parameters 

The main geometrical parameters of the designed CMG are presented in Table 5.1. 

Table 5.1: Parameters of the designed CMG  

pin Number of inner ring pole pairs 4 

pout Number of outer ring pole pairs 10 

Q Number of ferromagnetic segments 14 

r1 Inner radius of inner ring 28mm 

r2 Outer radius of inner ring 33mm 

r3 Inner radius of flux-modulator ring 37.5mm 

r4 Outer radius of flux-modulator ring 47.5mm 

r5 Inner radius of outer ring 51mm 

r6 Outer radius of outer ring 56mm 

rout Outer radius of outer rotor 70mm 

L Length 100mm 

δ Ferromagnetic segment angle 15° 

 

From the analytical model developed in Chapter 1, the stall torque of the inner rotor 

is 20 Nm while the stall torque of the outer rotor is 50 Nm based on Table 5.1 

parameters. 
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5.2 Alternative ways of operation 

During the analysis of the present thesis, it was assumed that inner rotor is the input 

of the system, the outer rotor the output of the system, while the modulator ring is 

fixed. However, the modulator ring could also be the output of the system. Therefore, 

it was deemed necessary in the design of an experimental setup to include both ways 

of operation. In Fig 5.1, the alternative where the output is the outer rotor is 

presented: 

 

Figure 5.1: Output from the outer rotor 

In Fig 5.2, the alternative where the output of the CMG is the modulator ring is 

presented: 

 

Figure 5.2: Output from the modulator ring 
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5.3 Stress on the rotors and modulator ring 

The induced stress on the two rotors and the modulator ring based on the expected 

torques were calculated with SolidWorks. In Fig. 5.3 the resulting safety factor of the 

inner rotor is presented: 

 

Figure 5.3: Safety factor of the inner rotor 

It is observed that the applied stresses are well below the critical values since the 

safety factor is over 3.5 in the entire inner rotor. 

In Fig. 5.4 the resulting safety factor of the outer rotor is presented: 

 

Figure 5.4: Safety factor of the outer rotor 

It is observed that the applied stresses are well below the critical values since the 

safety factor is over 2.1 in the entire outer rotor. 
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For the reduction of the manufacturing cost, the modulator ring is designed as shown 

in Fig.5.5. The modulator ring is comprised from 14 bars that are connected with bolts.  

 

Figure 5.5: Modulator ring design 

 

The safety factor of the modulator ring is shown in Fig.5.6. It is observed that stress 

concentration occurs in the connection of the modulator ring bars with the bolts. 

However, the safety factor is higher than 1.3 in the entire modulator ring. 

 

Figure 5.6: Safety factor of the modulator ring 
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5.4 Magnet attachment to the rotors 

The placement of the permanent magnets is a crucial aspect for the smooth operation 

of the CMG. During the operation of the CMG centrifugal forces and radial forces 

between the magnets are applied that could lead to detachment of the PMs, especially 

for the case of the inner rotor where the centrifugal force is in the outward direction. 

To secure the position of the PMs a combination of attachment rings and epoxy glue 

is employed. In Fig.5.7 the applied stresses on a single PM due to the centrifugal force 

is presented. 

 
Figure 5.7: Stress on PM and attachment rings 

For additional security, epoxy glue is placed between the rotors and the PMs using 

the design shown in Fig.5.8 and Fig.5.9 for the inner rotor. 

 

Figure 5.8: Positioning of the PMs in the inner rotor 
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Figure 5.9: Detail of the configuration of epoxy glue placement in the inner rotor 

Similarly, for the outer rotor the design for epoxy glue placement is presented in 

Fig.5.10 and Fig.5.11. 

 

Figure 5.10: Positioning of the PMs in the outer rotor 

 

 

Figure 5.11: Detail of the configuration of epoxy glue placement in the outer rotor 
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5.5 Bearing selection and natural frequencies of the CMG 

An important design parameter of the CMG is the selection of the ball bearings in the 

rotors. The selection of the ball bearings and their clearances with the shafts and 

housings, plays a crucial role on the natural frequencies of the system and expected 

life of operation of the bearing. In general, the optimal effective clearance is negative 

implying that preload is required as shown in Fig.5.12 [5.1].  

 

Figure 5.12: Effective clearance and life ratio of a ball bearing 

From Fig.5.12 it is observed that the optimal clearance is in vicinity of -10 μm. For that, 

reason the ball bearings along with the shafts and housings and their tolerances are 

selected in a way that a total effective clearance of -10 μm is achieved in order to 

combine both rigidity and longevity [5.2].  

During the analysis of the transient response of the CMG in Chapter 3, the period of 

possible oscillations is obtained. Since these oscillations have a significant energy as 

observed from Fig.3.4, the design of the CMG should avoid the vicinity of the 

frequencies as obtained from Eq.(3.15). 
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The highest frequency that can be observed (small oscillation amplitude case as 

illustrated in Appendix 3.1) can be determined from the following equation: 

ω2 = Mstall

p

I
 (5.1) 

 

where Mstall is the stall torque of, p the number of pole pairs and  I  is the moment 

of inertia of each respective rotor. 

In Fig.5.13 the natural frequency of the inner rotor is obtained in ANSYS.  The effective 

clearance is -11 μm. The torsional frequency is approximately 412 Hz which is almost 

one order of magnitude higher than the oscillation frequency as obtained from 

Eq.(5.1). 

 

 

Figure 5.13: Natural frequency of the inner rotor for an effective clearance of            

-11μm 

As a consequence, the inner rotor of the CMG is protected from resonant phenomena 

that could be caused during transient operation. 

In Fig.5.14 the natural frequency of the outer rotor is obtained in ANSYS.  The effective 

clearance is -11 μm. The torsional frequency is approximately 451 Hz which is almost 

one order of magnitude higher than the oscillation frequency as obtained from 

Eq.(5.1). 

 



147 
 

 

Figure 5.14: Natural frequency of the outer rotor for an effective clearance of            

-11μm 

As a consequence, the outer rotor of the CMG is protected from resonant phenomena 

that could be caused during transient operation. 

5.6 Temperature calculation of the CMG due to power losses 

From the analytical model developed in Chapter 4, the eddy current and power losses 

can be calculated. It is important to calculate the increase of temperature in the CMG 

in order to determine whether the PMs are affected and if the system will degredate 

as the time progresses. The highest losses are expected to be observed in the outer 

rotor following the analysis in Chapter 4. To increase the effective cooling area, the 

outer rotor is designed with fins as shown in Fig.5.15. 

 

Figure 5.15: Cooling fins in the outer rotor 



148 
 

A transient thermal analysis was conducted in ANSYS in order to calculate the 

temperature on the PMs of the outer rotor. The inner rotor angular velocity was 

considered to be equal to 2500 rpm. 

In Fig.5.16 the temperature profile of the PMs in the outer rotor is presented after 10 

minutes of operation.  

 

Figure 5.16: Temperature profile of the outer rotor  

The temperature is lower than 50oC and therefore the PMs are not affected from the 

power losses due to eddy current phenomena. However, as established in Chapter 4 

magnet segmentation could significantly decrease the power losses and consequently 

the CMG could operate at even higher rotational speeds.  

5.7 Torque ripple due to radial forces 

The magnetic induction in the CMG besides inducing tangential forces that result in 

applied torques in the two rotors, induce radial forces. As a consequence, the 

ferromagnetic segments in the modulator ring are displaced. Therefore, the relative 

position of segments changes as the CMG rotates. As a result the different geometry 

of the modulator ring at each angle of rotation yields different induced torques that 

could insert torque ripple during the operation of the CMG [5.3]. For the calculation 

of this phenomenon, a transient model taking into account radial forces applied on 

the modulator ring at each angle of rotation and the displacement of the modulator 

ring depending on the applied radial force is constructed. 
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The radial force can be calculated from the Maxwell Stress Tensor [5.4] from the 

following equation: 

Fr =
δLr3

4πμ0
∫ [Br

2(r3) − Bθ
2(r3)]dθ 

2π

0

 (5.2) 

 

Due to the deflection of the ferromagnetic segments, the gap between the modulator 

ring and the rotors is not constant in the z-direction. Therefore, the torque applied to 

the rotors is calculated from: 

Min(r2) = ∫ dmin(z)dz
L

0

 (5.3) 

Mout(r5) = ∫ dmout(z)dz
L

0

 (5.4) 

 

where dminand dmout are the different torque values that appear along the z-axis.  

From the performed analysis it was calculated that the torque ripple in the CMG due 

to radial forces is 0.2-0.3% which is near the order of the second torque harmonic. The 

value of the torque ripple is small and therefore this phenomenon is not expected to 

have a significant role during the operation of the CMG. 
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Chapter 5-Conclusions 

 

In this Chapter a detailed design of a CMG drive is presented showcasing the important 

designs aspects for manufacturing a robust and efficient CMG drive. Special attention 

was given to the placement and security of the PMs in the two rotors. A detailed 

analysis regarding the bearing tolerances and their subsequent effect on the natural 

frequencies of the CMG drive is conducted illustrating its significance as a design 

aspect. Furthermore, a transient thermal analysis is conducted in order to investigate 

whether the power losses due to eddy current losses could increase the temperature 

of the PMs, leading to degradation of the system as whole. It was shown that the 

temperature in the PMs did not exceed 50oC and therefore the CMG with the 

proposed design is not expected to have temperature problems during its operation. 

However, by implementing the magnet segmentation technique the temperature 

during the operation of the CMG could decrease further that could make possible the 

achievement of higher rotational speeds. Finally, an investigation of the radial forces 

on the induced torques in the rotors was conducted. It was shown that the torque 

ripple due to the relative displacement of the modulator ring was in the order of the 

second torque contributing harmonic and therefore this phenomenon is not expected 

to pose problems during the operation of the CMG. 
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Thesis Conclusions 
 
In the present thesis two analytical 2D models for fast and efficient calculation of the 
applied torques for every rotation angle, geometry configuration and constitutive 
parameters of the magnets using the Maxwell Stress Tensor were introduced. The first 
model refers to the standard CMG drive, while the second to the Halbach-array CMG 
drive, due to its comparative advantages. The results obtained from the models were 
compared against those obtained from FEA. The calculated torques at the inner and 
outer rotor were in perfect agreement with FEA, however the analytical models were 
more than two orders of magnitude faster. In addition, an analytical calculation of the 
torque ripple in coaxial magnetic gear drives is made possible using the proposed 
models. An investigation of the influence of the modulator ring on stall torque was 
performed illustrating that there is an optimum arc length for the ferromagnetic 
segment to maximize torque density.  
 
Furthermore, the dynamical equations of the coaxial magnetic gear drive were 
formulated and a model was developed to simulate the dynamical response of the 
system without the requirement of torque calculation at each time step that 
significantly decreases computational cost. The slippage phenomenon was thoroughly 
investigated in the present thesis. It was demonstrated that the governing equations 
of the dynamical response of the coaxial magnetic gear are the same with the 
dynamical equation of the driven pendulum. A non-dimensional criterion was 
formulated for the prediction of the dynamical behavior of the CMG drive during 
transient operation. Finally, it was demonstrated that the dynamical response of the 
CMG drive could exhibit chaotic behavior under certain conditions. With the 
developed analysis, besides the significant reduction of the computational cost 
important insights regarding the complex dynamical phenomena during the operation 
of CMG drives are obtained. 
 
Moreover, a detailed analysis regarding the calculation of power losses during the 
operation of CMGs has been conducted. Using the analytical calculation of the 
magnetic induction the eddy current losses in the permanent magnets of the CMG and 
the core losses on the modulator ring were obtained. An investigation on the effect of 
the magnet segmentation to the power losses was conducted, illustrating that eddy 
current losses can be significantly reduced by applying this technique.  
 
Finally, a detailed design of a CMG drive is presented showcasing the important 
designs aspects for manufacturing a robust and efficient CMG drive. A detailed 
analysis regarding the bearing tolerances and their subsequent effect on the natural 
frequencies of the CMG drive is conducted illustrating its significance as a design 
aspect. 
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Thesis Novelties 
 
In the present thesis, the following novelties regarding the modelling of coaxial 
magnetic gear drives were made: 
 

 An analytical model for the calculation of the induced torques in the two 
rotors for every configuration and constitutive parameters of the standard 
CMG was established. In addition, the developed model also facilitates the 
analytical calculation of torque ripple. The model was generalized for the case 
of Halbach-array CMGs.  

 
 The applied torque in the two rotors can be calculated as a function of the 

stall torque and the position of the two rotors. Therefore, only one calculation 
of the magnetic induction in the CMG is required (in the stall torque position) 
to determine the induced torques in the two rotors for every angle of their 
rotation. As a result, the applied torques are calculated analytically as a 
function of rotation that reduces significantly the computational cost and 
facilitates the formulation of an analytical system of ODEs for the dynamical 
response of the CMG drive. 

 
 The dynamical response of the CMG during transient operation was 

thoroughly investigated. Due to the analytical expression of the applied 
torques as a function of the rotation angles of the rotors, an analytical system 
of ODEs for the dynamical response of CMGs was formed. It was shown that 
the dynamical equations of CMGs resemble the driven pendulum equation. A 
non-dimensional criterion was formulated for the prediction of the dynamical 
behavior of the CMGs during transient operation. Therefore, a significant 
reduction of the computational cost was achieved since no iterative methods 
are required for the simulation of the CMG during transient operation. 
Furthermore, important insights regarding the complex dynamical 
phenomena during the operation of CMG drives are obtained. Finally, it was 
demonstrated that the dynamical response of the CMGs could exhibit chaotic 
behavior under certain conditions.  
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Future Work 
 
From the observations of the present thesis, some ideas regarding future work are 

presented below: 

 The present analysis regarding the analytical modelling of the scalar magnetic 

potential, the magnetic induction and the induced torques in the two rotors is 

implemented through a 2D model. It would be interesting to investigate the 

possibility of an analytical 3D model that would take into consideration the 

edge effects on the CMG drive. 

 The modelling of the dynamical response of the CMG during transient 

operation could include the effect of damping. The power losses as discussed 

in Chapter 4 of the present thesis can be attributed mainly to the eddy current 

losses in the PMs of the CMG drive. It was demonstrated that the power losses 

in each rotor are proportional to the square of their respective angular 

velocity. Including the phenomenon of damping could lead to similar equations 

as the coupled damped-driven pendulum. However, in that case the two 

dynamical equations of the two rotors cannot be decoupled and therefore the 

dynamical response would be even more complex and chaotic compared to 

the presented case were damping is neglected. Therefore, it could be 

interesting to investigate the dynamical response of the CMG under these 

conditions. 

 A generalized optimization could be implemented taking into account 

parameters such as the achieved torque density, the minimization of slippage 

during transient operation and the reduction of the power losses due to eddy 

current and core losses. Even though such an optimization process could be 

time consuming the analytical models derived in the present thesis can 

facilitate such endeavour.  

 It would be important to investigate how the analytical models and results 

obtained in the present thesis compare to experimental results.  

 

With the proposed ideas of future work the analysis and understanding of the complex 

phenomena that govern CMG drives could be improved that could possibly lead to 

their wider adoption in the industry. 
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