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Abstract

This Master of Science thesis explores the potential of Computer Vision (CV) for wildlife
research and conservation in Europe. | collaborated with Theodoros Kominos, a wildlife
researcher who provided me images and video recordings from trap cameras he set in Greece at
the past. The data includes various wild animals, some of which are protected in Greece, such
as brown bear, wolf, chamois, and wildcat. Other species like roe deer, wild boar, red fox,
European badger, other mustelids, and European hare are also present. The data also contains
domestic animals (like cows, dogs, horses) and human activities (hikers, potential hunters,
conservation workers, and vehicles).

The main objective was to develop a dataset of annotated images from this raw data and
implement Al algorithms to analyze it. The goals were to classify and detect different animal
species and identify potential threats to their habitats. Additionally, I explored how these Al
techniques could enhance existing conservation efforts.

The process involved organizing and annotating the visual data provided by the researcher. |
then employed computer vision techniques and trained models for accurately identifying and
classifying the various subjects in the images and videos.

The study also focused on detecting potential threats to wildlife habitats by identifying forbidden
or concerning activities in the monitored areas. This includes detecting unauthorized human
presence, illegal hunting, or other activities that could harm wildlife or their habitats. This aspect
has significant implications for proactive conservation efforts and the development of early
warning systems for habitat protection, allowing for timely intervention when threats are
detected.

| explored how these Al techniques could be integrated into existing conservation practices,
developing user-friendly interfaces and workflows to incorporate these tools into daily
operations. This integration aims to streamline data analysis, reduce manual labor, and provide
more accurate and timely information for wildlife management decisions.

Furthermore, | propose potential implementations of edge hardware for use by conservationists
or in areas of human-wildlife conflict.

The intended results of this research include practical Al tools and techniques for wildlife
researchers and conservationists to better understand, protect, and manage biodiversity in
Europe.

In conclusion, this thesis demonstrates the potential of Computer Vision in enhancing wildlife
research and conservation efforts, covering a wide range of species from large mammals to
smaller, less studied animals. By providing more accurate, efficient, and scalable methods for
monitoring wildlife and their habitats, this work could potentially be adapted for preserving
Greece's and Europe's biodiversity.

Keywords
Computer Vision, Wildlife Conservation, Object Detection, Edge Al.
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Mepiinyn

Avty n Mertantoygok AmAopotikny Epyocio diepeuvd tic dvvatdmmreg g Opoaong
Ymoloyiotawv (Computer Vision) otnv £épevva Kot tn St jpnon g dyprog (ong oty Evpodn.
Yvvepydotnka pe 10 Oeddmpo Kopnvo, Looldyo epguvni mov Hov mopeiye ded0UEVA EIKOVOV
Kot Bivteo amod kdpepeg maryideg mov eiye tomobetnoel 6to mapeABOv otnv EAANvIKN emkpdrTeta.
Ta dedopéva meptapfdavovy dtaeopa dypro {da, HEPIKA Omd To OTOi0 TPOCTATEVOVIOL GTNV
EXLGSa, 6mwg 1 apkovda, 0 ADK0oG, To aypldytdo Kot 1 ayptoyoto. AAla €101 6rmg 0 opKadt,
0 aypLoyo1pog, n aAemol, 0 acPOg, GAAES LovoTeEAdEG Kot 0 Aaydg emiong spepavifovrol. Ta
dedopéva meptEyovy emiong okootta {do (OTmG ayeAddeg, GKOAOVS, GAOY) Kot avOpOTIVEG
dpaoctpromreg (melomopovg, mhovoLg Kuvnyovs, epyoaldpevoug oe efvikd mhpko Ko
oynuaTa).

O xVp1og otdHY0C MO va avartvydel Eva GOVOLO dedOUEVMVY e EIKOVES KOl VO EQAPLOGTOVV
aAyopiOpot pnyavikng pddnong yu v avaivon tovg. Empépovg otoyor frav n taivounon
Kol 1 aviyvevon OpopeTIK®V €0MV {O®V Kol 0 EVIOMIGUOC TOAVAOV OTENDV Y10 TOVG
Blotomovg tove. Emiong, cav otdyoc elxe 1e0el  avantuén kot vAomoinon T€Tolmv epyareimv
Yo xprion amd Tovg £pyalOUEVOLS Yol T daTpNom NG Ayplag (oG 1) 0 TEPLOYEG GLYKPOLONG
avBpdmov-aypiag Cone.
H dwodikacio mepiehdfove tnv opydvmon TV OTTIK®OV 0E00UEVOV TTOV TAPELYE O EPELVNTNG KoL
TV KOTOYPOOT O MAEKTPOVIKN] HOPON NG TEPOYNS evOlopépovtog o€ KABe apyeio
(annotation). Tt ocuvvéyeln, XPNOLOTOINGO TEYVIKEC OPOOTG VIOAOYIGTAOV Kol OAYopiOumv
aviyvevong avtikewévov (Object detection), yia va v avorntdén poviélev yio v
avayvaopion, ta&vouncn kot akpiPn eviomiopud TV Sopdpov BEUATOV EVOLNQEPOVTOS GTIC
€IKOVEC Kol T Bivteo.
Atepedhivnoa IO VTEG 01 TEXVIKES TEXVNTNG VO Uoovuvng Ba umopodcsav va evempatwdoiv otig
VILAPYOVOEG TPOAKTIKEG GTOYEVOVTOS GTNV ATAOTOINGT TNG AVAAVONG dES0UEVMVY, OTY| HEIMON
™G YEPOVOKTIKNG EPYOCIOG KOL GTNV TOPOYN TO OAKPPOV Kot £YKOPOV TANPOPOPIDV Y10l TIG
OmOPAcELg dlayeipiong ™m¢ ayplog Cone.
Emndéov, mpoteivo mbovég epappoyéc oe cvokevég mediov (edge hardware). Avtéc ot
OLOKEVEG, €EOMMGUEVEG PE HOVTEAM TEYVNTNG vonuoouLvng, Ba pmopodoav vo mopeyovv
OVOADON Kol E00TOMGEIS GE TPAYUATIKO YPOVO, EMITPEMOVTIOS TNV Tayeio avtidpoon o€
KOTOOTACELS EKTAKTNG avAykne N o€ un €£0vc1o00TNUEVEG avOpPOTIVEG dPACTNPLOTNTES GE
TPOGTATEVOUEVEG TEPLOYEG.
SOUTEPACUATIKG, OVTH 1 OWTAMUATIKY £PYAcio KATAOEKVOEL TIG dvvatdtnteg ¢ Opaong
YTOAOYIGTAOV KOt TNG UNYOVIKAG HABNong oty evioyvon g £pEuvag Kot TOV TPOSTOOEIDV
dratnpnong e ayprog Cong, kaAdmTovtag va evpl PAca 0OV amd peydla ONAacTikd £¢
pikpotepa, Aryotepo peietmuéva C(oa. Tlapéyovtog mo axpiPels, AmOTEAEGUOTIKEG Ko
KMpakovpeveg pnefddovg yio v mapakoiovdnon g dyplag {ong Kot Tov PloTdnmV TG, 0vT)
1N epyacio cupPdAiel otn datrpnon g Prorotkiddtntog ™ EAAASag kot tng Evpdmnng kot Oa
UTOPOVGE EVOEYOUEVMOS VO TPOGAPUOCTEL Yo TOYKOGUIEG TPOOTAOELES ST )PNONG.

A€Eerg — kK e101d
Opaon Ymoroyiotov, Awmipnon ¢ Ayplag {ong, Aviyvevon Avtikewévov, Texvnmm
Nonuoovvn awyung
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Acronym Index

CV: Computer Vision

Al: Artificial Intelligence

CT(s): Camera trap(s)

UAV(s): Unmanned Aerial Vehicle(s)
I0T: Internet of Things

mAP: Mean Average Precision

loU: Intersection over Union

YOLO: You Only Look Once

CNN: Convolutional Neural Network

NMS: Non-Maximum Suppression

INTRODUCTION

In an era of environmental challenges, the intersection of cutting-edge technology and wildlife
conservation offers exciting possibilities. This Master of Science thesis explores how Computer
Vision and Artificial Intelligence can make a great impact on wildlife research and conservation.
This research aims to harness these technologies to aid wildlife conservationists. By analyzing
trap camera footage from Greek wilderness areas, | develop tools for automatic species
identification and threat detection. My work encompasses a range of animals, from bears to
wolves and wildcats, as well as the detection of potentially harmful human activities.
Beyond identification, this thesis explores the integration of Al-powered tools into existing
conservation practices. By automating time-consuming tasks, these tools could free up valuable
resources, allowing conservationists to focus on critical conservation efforts.
| also investigate the potential of edge computing devices for real-time field analysis. These
smart devices could provide instant alerts, enabling rapid responses to wildlife emergencies or
unauthorized activities in protected areas, a crucial capability in regions of human-wildlife
conflict.

This research bridges the gap between academic study and practical application. By using user-
friendly interfaces, | aim to make advanced technologies accessible to front-line
conservationists.

In the following chapters, 1 will detail my methods, discuss challenges, and explore the
implications of this work for wildlife conservation on a broader scale.

The subject of this thesis

The subject of this research is the application of computer vision techniques to analyze wildlife
data collected from trap cameras in Greece, encompassing a wide range of species from large
mammals like brown Dbears and wolves to smaller, less studied animals.
As human activities continue to encroach on natural habitats, it's becoming increasingly crucial
to try robust, real-time monitoring systems that can detect and respond to threats quickly. This

research is not only interesting from a technological standpoint but is timely and vital for the
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preservation of Europe's biodiversity.
Moreover, with climate change altering ecosystems at an unprecedented rate, there's an urgent
need for tools that can track these changes and their impacts on wildlife populations efficiently.
By harnessing the power of Al, we aim to provide conservationists with the means to gather and
analyze data at previously unattainable scales, potentially revolutionizing how we approach
wildlife management and protection.

Aim and objectives

The primary aim of this thesis is to develop and implement computer vision techniques to
enhance wildlife research and conservation practices in Europe, using data collected from Greek
wildlife areas as a case study. My objectives include developing a comprehensive annotated
dataset from trap camera footage, implementing machine learning algorithms for species
classification and threat detection, and exploring the integration of these Al techniques into
existing conservation practices. | also aim to investigate the potential of edge computing devices
for real-time wildlife monitoring in the field. Key research questions include optimizing
computer vision for diverse European wildlife, effective methods for detecting threats to wildlife
habitats, seamless integration of Al tools into current practices, and the feasibility of edge
computing in remote areas.

Methodology

My approach includes a collaboration with wildlife researcher to collect and annotate trap
camera footage, developing and training Al models for species classification and possible threat
detection, and designing user-friendly interfaces for integration with existing conservation
practices. | will also explore edge computing applications and evaluate the developed systems
through test data.

Innovation

This thesis offers several innovative aspects. It provides comprehensive coverage of European
wildlife species, moving beyond the typical focus on a few select animals. The research
introduces a novel approach to Al-powered threat detection in habitats, enhancing our ability to
protect wildlife. There's emphasis on practical integration with current conservation methods,
bridging the gap between advanced technology and field application. The exploration of edge
computing for real-time field analysis represents a cutting-edge approach to wildlife monitoring.
Finally, the thesis takes a holistic approach, combining species identification, threat detection,
and implementation strategies into a cohesive framework for wildlife conservation.

Structure

This thesis is structured into three main chapters, followed by conclusions:
Chapter 1 introduces the research topic, providing context on wildlife conservation challenges
and the potential of computer vision and Al in addressing these issues.
Chapter 2 details the methodology employed in this study, including data collection methods,
Al model development processes, and the integration of edge computing technologies.
Chapter 3 presents the results of the research, analyzes the performance of the developed Al
models and systems, and discusses the implications of these findings for wildlife conservation
practices.
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The thesis concludes with a section summarizing key findings, discussing the contributions of
this research to wildlife conservation, acknowledging limitations, and proposing directions for
future research in this field.
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1 CHAPTER 1: Wildlife Conservation and Al

This chapter introduces the core concepts and context of this thesis. It explores the current
challenges in wildlife conservation, the potential of artificial intelligence and computer vision
in addressing these challenges.

1.1 Wildlife Conservation in Greece

The conservation of wildlife in Europe faces numerous challenges in the 21st century. Habitat
loss, climate change, and human-wildlife conflict have put significant pressure on many species,
leading to  population declines  and increased extinction risks [1].
Greece is a prime example of the escalating challenges in wildlife conservation, particularly
those involving large mammals and their interactions with human-populated areas. The wolf
(Canis lupus), wild boar (Sus scrofa), and brown bear (Ursus arctos) frequently capture media’s
attention due to local concerns surrounding their presence near or within populated areas [2]-
[5]. This heightened human-wildlife conflict, coupled with habitat loss and fragmentation, poses
a significant threat to the long-term viability of these species [2],[4]-[5]. Meanwhile, other
species like Balkan chamois (Rupicapra rupicapra balcanica) face additional pressures, notably
illegal hunting, further jeopardizing their survival [6]. These complex and interconnected
conservation challenges underscore the pressing need for effective and multifaceted strategies
in Greece to ensure the coexistence of humans and wildlife.

1.2 Technology in Conservation

A plethora of emerging technologies is reshaping the field of wildlife conservation. Ranging
from camera traps and drones to GPS-connected devices and sophisticated software, these
advancements are transforming how zoologists conduct research and conservation efforts, both
in situ (in the natural habitat) and ex situ (outside the natural habitat) [7]-[10]. This section
explores the key technological tools revolutionizing wildlife conservation, examining their
applications, benefits, challenges, and potential for synergy with Al and particularly Computer
Vision to further enhance their impact.

1.2.1 Camera traps

Camera traps have emerged as one of the most versatile and widely used technologies in wildlife
conservation over the past few decades [11]. These motion-activated devices have
revolutionized our ability to study and monitor wildlife populations, particularly for elusive or
rare species in remote areas.
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In recent years, the integration of camera traps with other technologies has further expanded
their capabilities. For instance, some modern camera traps can transmit images in real-time
using cellular or satellite networks, enabling rapid response to poaching activities or wildlife
emergencies [12].

However, the widespread adoption of camera traps has also introduced new challenges,
particularly in data management and analysis. A single camera trap study can generate
thousands of images, creating a bottleneck in data processing [13]. This challenge has spurred
the development of automated image analysis techniques, setting the stage for the application
of artificial intelligence in wildlife conservation, which will be discussed in the subsequent
section.

1.2.2 Drones and Other Technologies

Drones, or Unmanned Aerial Vehicles (UAVs), have rapidly become an invaluable tool for
wildlife conservationists, offering a bird's-eye view of ecosystems and wildlife populations that
were previously unattainable. Their ability to capture high-resolution imagery and videos,
access remote and inaccessible areas, and conduct surveys with minimal disturbance has
revolutionized various aspects of conservation research and management [10].
For example, drones have been successfully employed to monitor wildlife populations, map
habitats,  assess  ecosystem  health or detect poaching activities [14].
However, the use of drones in wildlife conservation also presents some challenges. The noise
generated by drones can disturb wildlife, particularly during sensitive periods like breeding or
nesting [15]. Moreover, the regulatory environment for drone use can be complex and vary
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across countries and regions. It is crucial for researchers to comply with all relevant regulations
and obtain necessary permits before deploying drones for conservation purposes.

Beyond camera traps and drones, several other technologies are playing a crucial role in wildlife
conservation. GPS tracking devices, for instance, enable researchers to monitor the movements
and behavior of individual animals, providing valuable insights into their ecology and migration
patterns [16]. Bioacoustics monitoring, using sound recorders to capture and analyze the
soundscapes of natural habitats, helps researchers track the presence and abundance of
vocalizing species, as well as detect threats like illegal logging or poaching [17].

1.3 Al in Conservation

The massive amount of data generated by these technologies has sparked an intense interest in
harnessing the power of Al to extract knowledge and insights. For the first time in history, we
have the potential to track and detect anomalies or patterns that have remained hidden from
traditional observation methods. Al allows us to group, classify, and predict ecological
phenomena with unprecedented accuracy, opening new avenues for understanding and
conserving our natural world.

1.3.1 Computer Vision in Wildlife Conservation

Computer Vision (CV) has emerged as a powerful tool in wildlife conservation, offering
unprecedented capabilities in analyzing visual data from various sources such as camera traps,
drones, or even satellite imagery [19].

Key applications of CV in wildlife conservation may include [13], [20] - [21]:

1. Automated Species ldentification: CV algorithms can rapidly and accurately identify
animal species in images or videos, significantly reducing the time and effort required
for manual identification.

2. Individual Animal Identification and Tracking: Advanced CV techniques can recognize
and track individual animals within a species, based on unique features such as stripe
patterns, spot configurations, or facial characteristics. This capability is crucial for:

Estimating population sizes more accurately

Monitoring individual animal movements and behavior

Studying social structures within animal groups

Tracking the health and life history of specific animals over time

3. Population Monitoring: By analyzing large sets of visual data and leveraging individual
identification capabilities, CV can assist in estimating population sizes, demographic
composition, and tracking changes over time with greater precision.

4. Behavior Analysis: CV techniques can be used to study animal behavior patterns,
interactions, and movements captured in video footage, including complex social
behaviors and predator-prey interactions.
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5. Habitat Mapping and Monitoring: CV can analyze satellite or drone imagery to classify
land cover types, detect changes in vegetation, and identify potential threats to habitats.

6. Anti-poaching Efforts: CV-enabled systems can detect human intrusions in protected
areas and identify potential poaching activities in real-time.

The integration of CV with other technologies, such as edge computing and IoT devices, is
pushing the boundaries of real-time wildlife monitoring and conservation efforts.

1.3.2 Other Al Practices in Conservation

While Computer Vision plays a crucial role, other Al techniques are also making significant
contributions to wildlife conservation:

e Machine Learning for Predictive Modeling: ML algorithms can predict species
distribution, population trends or migration [21].

e Deep Learning for Acoustic Analysis: DL models can identify and classify animal
vocalizations, enabling non-invasive monitoring of biodiversity [22].

These Al practices, often used in combination with CV and other technologies, are
revolutionizing our approach to wildlife conservation, enabling more efficient, accurate, and
timely interventions to protect biodiversity.

1.3.3 Related works and datasets

DeepFaune

One notable initiative in wildlife monitoring techniques, particularly through the integration of
camera trap technology and machine learning is the DeepFaune project, a collaborative effort
involving over 50 partners across France and other European countries [29]. This project
represents a significant step forward in automated species identification from camera trap
images in European ecosystems.

The DeepFaune team developed a deep learning model capable of identifying 26 different
species or higher taxonomic groups, with a primary focus on mammals. Their approach involved
aggregating a substantial dataset of over 2 million annotated pictures and 20,000 annotated
videos from various partners. This diverse dataset, collected from a wide range of habitats and
contexts, provided a robust foundation for training a versatile model.

A key component of the DeepFaune pipeline is the use of MegaDetector, an open-source model
developed by Microsoft [30]. MegaDetector efficiently filters images to detect the presence of
animals, humans, or vehicles, serving as a crucial first step in the classification process. The
DeepFaune team used MegaDetector v5a, which is based on the YOLOV5 architecture [31], to
prepare their training and validation datasets.

However, to improve processing speed on CPUs, the team developed an alternative detector
using YOLOV8 [32]. This custom detector, trained on a subset of their full dataset, achieved
similar detection performance to MegaDetectorv5 but at a much higher speed (approximately
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0.3 seconds per image compared to 2-3 seconds). This optimization demonstrates the team's
commitment to creating practical, efficient tools for ecological research.

To address common challenges in machine learning applications to ecological data, the
researchers implemented several innovative techniques. They employed transfer learning,
starting with a ConvNext-Base model pre-trained on ImageNet 22K. To combat class
imbalance, a pervasive issue in ecological datasets, they developed a novel approach combining
downsampling and upsampling techniques during both training and validation phases. This
method successfully prevented performance biases towards more common species.

The resulting model demonstrated impressive performance, achieving an overall balanced
validation accuracy of 97.3%. Class-specific results were equally strong, with recall and
precision exceeding 0.9 for most classes. Notably, the model performed well even for some
species with limited training data, such as the lynx.

A key strength of the DeepFaune project is its rigorous evaluation on out-of-sample data. The
model maintained high performance when tested on entirely new datasets from unseen locations,
with an overall accuracy of 93.6% on individual images. This robust generalization ability is
crucial for practical applications in new contexts.

The DeepFaune model (version 1.1) can identify a wide range of European fauna. The classes
it can recognize, listed alphabetically, are:

e Badger

e Bear

e Bird

e Cat

e Chamois
e Cow

e Dog

e Equid

e [ox

e Genet

e Goat

e Hedgehog
e |bex

e Lagomorph
e Lynx

e Marmot

e Micromammal
e Mouflon

e Mustelid
e Nutria

e Red deer
e Roe deer
e Sheep

e Squirrel
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e Wild boar
e Wolf

This broad coverage makes the model particularly valuable for studies focusing on large
mammalian communities and for quantifying human disturbance levels.

The DeepFaune project also stands out for its commitment to practical applicability.
Recognizing the diverse needs of potential users, the team developed a user-friendly, cross-
platform software that can run locally on standard personal computers. This approach addresses
concerns about data privacy and the challenges of uploading large image sets to online
platforms, making the tool accessible to a wide range of practitioners.

The DeepFaune model has been incorporated into EcoAssist, an Al platform designed to
streamline the work of ecologists dealing with camera trap images [33]. EcoAssist allows users
to analyze images on their local computers, using machine learning models for automatic
detection and identification. This integration demonstrates the practical value of the DeepFaune
model and its potential to save time for ecologists, allowing them to focus more on conservation
efforts.

As the field of automated wildlife monitoring continues to evolve, the DeepFaune project serves
as both a benchmark and a roadmap. It demonstrates the potential of multi-partner collaborations
to create robust, widely applicable models, while also illuminating the practical considerations
necessary for successful deployment in real-world ecological research and management
contexts. The ongoing development of the DeepFaune model, with regular updates to improve
accuracy and expand species coverage, highlights the dynamic nature of this field and the
potential for continued advancements in automated wildlife monitoring.
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Pytorch-Wildlife

Another significant development in wildlife monitoring is PyTorch-Wildlife [34], an open-
source deep learning framework developed through a collaboration between Microsoft Al for
Good and the Universidad de los Andes. This platform addresses the growing need for
accessible and efficient tools in automated wildlife detection and classification.

The PyTorch-Wildlife  framework emphasizes practical usability, incorporating
MegaDetectorVV6-compact, an optimized detection model that achieves a recall rate of 0.85
while using only one-sixth of the parameters compared to its predecessor. This efficiency makes
it particularly suitable for field deployments and resource-constrained environments, achieving
detection results in approximately 0.3 seconds per image on standard CPUs.

A key strength of PyTorch-Wildlife is its modular architecture, which includes a model zoo
featuring various pre-trained models for wildlife detection and classification. The platform
supports multiple data formats and integrates with established tools like Timelapse and
EcoAssist, making it compatible with existing wildlife monitoring workflows.

The framework has demonstrated strong real-world performance through several
implementations. In one application focused on genus-level classification in the Amazon
Rainforest, the system achieved 92% classification accuracy across 36 different genera when
operating above a 98% confidence threshold, which accounted for 90% of the analyzed data.
This level of performance was maintained while requiring human validation for only 10% of
the detected animals, significantly reducing manual review requirements. Similarly, in another
application in the Galapagos Islands, the framework achieved 98% accuracy in classifying
invasive opossums from other wildlife in video footage, processing over 491,471 videos split
between training (343,053) and validation (148,418) sets.

To ensure reliable model evaluation and selection, PyTorch-Wildlife maintains a standardized
leaderboard using hidden test sets from the LILA (Labeled Information Library of Alexandria)
dataset. This feature allows users to assess model performance across different geographical
contexts and species distributions, helping researchers select the most appropriate models for
their specific monitoring needs.

The platform's development also prioritizes accessibility through:

e Cross-platform compatibility and straightforward installation processes

e Support for both local processing and cloud-based operations via Hugging Face

e User-friendly interfaces designed for researchers without extensive technical
backgrounds

e Comprehensive documentation and technical support resources

PyTorch-Wildlife represents a significant step forward in making advanced wildlife monitoring
technologies accessible to conservation practitioners. Its emphasis on efficiency and usability,
combined with strong detection and classification capabilities, makes it a valuable tool for
wildlife research and conservation efforts.
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The framework continues to evolve, with ongoing development focusing on expanding species
coverage and optimizing performance for various field conditions. This development includes
regular updates to improve accuracy and adapt to new conservation challenges, demonstrating
the platform's commitment to supporting long-term wildlife monitoring efforts.

2 CHAPTER 2: Data and Methodology

This chapter presents a comprehensive overview of the data and methodological approach
employed in this study. It details the process of collecting, preprocessing, and annotating
wildlife imagery data from Greece, followed by the development and implementation of
machine learning models for species classification and threat detection. The chapter outlines the
steps taken in dataset creation, model selection, training, and evaluation, culminating in an
exploration of how these Al techniques can be applied to enhance wildlife conservation efforts.
By providing a clear and detailed account of the research methodology, this chapter lays the
foundation for understanding the results and implications discussed in subsequent chapters.

2.1 Data Collection and Description

The data used in this study was provided through a collaboration with Theodoros Kominos. The
dataset consists of images and video recordings obtained from trap cameras set up in various
locations across Greek wildlife habitats. The initial dataset comprised 3,551 camera trap images
from which 2,747 images were successfully annotated. Analysis of the dataset revealed
significant variability in species representation, which substantially influenced our subsequent
methodological decisions.
The raw data captured a diverse range of wildlife, including:

e Protected species, including brown bear (Ursus arctos), wolf (Canis lupus lupus),
chamois (Rupicapra rupicapra balcanica), and wildcat (Felis silvestris)

e Other wild animals, including roe deer (Capreolus capreolus), wild boar (Sus scrofa),
red fox (Vulpes vulpes), European badger (Meles meles), other mustelids, and European
hare (Lepus europaeus)

e Domestic animals: cows, dogs, horses

e Human activities: hikers, potential hunters, conservation workers, and vehicles
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Figure 2.1 Images of a bear (left), image of a wolf (right)
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Figure 2.2 Images of wild boar, roe deer, badger and mustelid

The initial dataset included 3,551 images from which 2,747 images were annotated across these
classes. The most frequently captured species in the dataset was the roe deer (Capreolus
capreolus), representing 29.6% of the annotations with 814 images. This was followed by red
fox (Vulpes vulpes) with 411 images (15%), wild boar (Sus scrofa) with 233 images (8.5%),
and domestic cattle with 225 images (8.2%). Protected species were present in smaller numbers:
Brown Bear (Ursus arctos) with 150 images, Wildcat (Felis silvestris) with 61 images, and Wolf
(Canis lupus lupus) with 40 images. Human-related categories, 98 images of people and 101 of
vehicles, were present with some data for distinguishing between wildlife and human activity.

It is worth mentioning the significant amount of noise that some of the samples, depending on
the subject of the image, some of the captured animals’ behavior vary significantly, mainly
nocturnal animals are presented mostly in greyscale while mainly diurnal passive herbivores are
more present during the day and stay longer times in front of the cameras (Figures 2.1-2.3).
Therefore, some species are represented by less and lower quality pictures while others are
captured clearly and for more instances.

2.2 Data Preprocessing and Annotation

The preprocessing and annotation phase was crucial in transforming the raw visual data into a
structured, labeled dataset suitable for machine learning applications. This section details the
systematic approach taken to organize, clean, and annotate the collected images and video
footage. The process involved careful data organization to ensure efficient handling, followed
by a meticulous annotation procedure using the Roboflow platform. These steps were essential
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in preparing a high-quality dataset that would serve as the foundation for subsequent model
training and evaluation.

2.2.1 Data Organization

The organization phase focused on creating a systematic structure for the visual data to ensure
efficient processing and analysis. A comprehensive file organization system was implemented,
incorporating logical hierarchical folders and consistent naming conventions. This structure
facilitated efficient data access and processing throughout the subsequent stages of the research.

The quality control process involved careful assessment of each image and video file. Through
systematic review, duplicate images were identified and removed, while maintaining only the
highest quality versions of similar content. Image resolution and clarity were evaluated against
predetermined standards, ensuring the final dataset maintained consistent quality levels.

Video processing required particular attention to detail, as each video file needed to be
converted into usable frame sequences. This process involved careful consideration of frame
extraction intervals to capture relevant information while avoiding redundancy. Each extracted
frame underwent quality assessment, with redundant or blurred frames being removed to
maintain dataset quality.
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Figure 2.3 Sample of Images included in the dataset

2.2.2 Data Annotation

The annotation process was conducted through a collaborative effort, combining the researcher's
systematic approach with expert validation from Mr. Theodoros Kominos. This collaboration
proved particularly valuable for challenging cases requiring specialized expertise, ensuring high
accuracy and reliability in the dataset labeling.
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The annotation infrastructure centered around Roboflow.com, selected for its comprehensive
annotation capabilities and robust cloud-based collaboration features. The platform's version
control and annotation history tracking facilitated efficient collaboration and quality assurance.
Supporting tools included custom Python scripts for annotation verification and a
comprehensive tracking system to monitor annotation progress.

The annotation workflow was structured to maximize accuracy and consistency. Initial
annotations were performed by the primary researcher, followed by regular consultation
sessions with Mr. Kominos. These sessions focused on reviewing difficult cases, verifying
species identification, and resolving ambiguous examples. All challenging cases and their
resolutions were thoroughly documented to maintain consistency in future annotations.

Strict annotation guidelines were established to ensure consistency across the dataset. These
guidelines detailed specific protocols for bounding box placement and standardized labeling
taxonomy. Special attention was given to handling complex cases such as partially visible
subjects, multiple subjects in frame, and obscured or ambiguous situations. Quality assurance
checkpoints were integrated throughout the process to maintain high standards.

Figure 2.4 Sample of annotated images

2.3 Dataset Preparation and Model Training

Using Roboflow platform, the annotated data was processed to create a robust dataset suitable
for machine learning applications. This process included:

1. Splitting the data into training, validation, and test sets. The splitting process followed
these guidelines:

Approximately 70% of images were allocated to the training set, about 20% were
assigned to the validation set and the remaining 10% were reserved for the test set.
This distribution ensures a sufficient number of images for training while providing
adequate data for model validation and final testing.
While the target split was 70/20/10 for training, validation, and test sets this was
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adjusted for classes with fewer instances. For these classes, a higher proportion of
images were allocated to the training set to help the model to learn the features of
these less frequent classes.
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Training
Class Name (Species/ Subfamily) Total Images set Validation set Test set
roeDeer (Capreolus capreolus) 814 585 150 79
fox (Vulpes vulpes) 411 295 82 34
wildBoar (Sus scrofa) 233 158 44 31
cow 225 155 43 27
weasel (Mustelinae) 215 141 44 30
hare (Lepus europaeus) 201 137 45 19
Bear (Ursus arctos) 150 104 32 14
car 101 69 25 7
person 98 69 23 6
badger (Meles meles) 64 48 11 5
wildcat (Felis silvestris) 61 45 9
chamois (Rupicapra rupicapra balcanica) 54 44 2
wolf (Canis lupus lupus) 40 26 10 4
dog 24 21 3 0
horse 20 14 6 0
hedgehog (Erinaceus europaeus) 12 8 3 1
redDeer (Cerus elaphus) 10 6 4 0
bird 7 3 3 1
gun 5 3 2 0
Squirrel (Sciurus vulgaris) 2 2 0 0
Sum of annotated 2747 1933 545 269

Table 2.1 Annotated images counts

Some of the classes were underrepresented (less than 100 images totally in the class) in
the dataset, so | decided to apply data augmentation techniques to increase dataset
diversity and improve model generalization.

2. Data augmentation techniques were implemented to enhance the robustness and
generalization capabilities of the object detection model while addressing the common
challenges associated with camera trap imagery. These techniques simulate various real-
world conditions and variations that might occur in wildlife photography [36]. The
following augmentation methods were applied: Augmentation methods that were

applied:
e (Geometric Transformations
Horizontal Flip: Mirror reflection across the vertical axis, simulating different
animal orientations

Random Rotation: Applied within a range of -15° to +15°, accounting for camera
installation variations

Shear Transformation: Applied at £15° both horizontally and vertically, helping
model adapt to perspective variations
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e Photometric Transformations

Brightness Adjustment: Modulation between -20% and +20% of original intensity,
simulating different lighting conditions and times of day
Gaussian Blur: Applied up to 4.9 pixels, mimicking motion blur and focus variations
common in camera trap images
Random Noise: Injection of noise affecting up to 1.96% of pixels, simulating sensor noise
under low-light conditions

preprocessed

209 9
horizontal 150 15° 159 -15° 2 2 4.9px 1.96%

Figure 2.5 Types of augmentation techniques, from left to right
Horizontal Flip, Rotation £15°, Brightness £20%, Blur, Noise

To maintain dataset integrity, a comprehensive cross-validation process was
implemented to verify the accuracy of annotations and ensure that augmentation
procedures did not introduce artifacts or compromise the ecological validity of the
images. This validation step was crucial in maintaining the quality of the training data
throughout the splitting and augmentation pipeline.

2.3.1 Model Selection, Implementation and Metrics

Two main options provided by Roboflow were explored for the machine learning
implementation:

1. Roboflow 3.0 Object Detection (Fast or Accurate)
This is the recommended Model Architecture from the platform, it is claimed to provide
higher rates of accuracy and competitive training times across the other available options
on the platform.
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Figure 2.6 Roboflow Train 3.0 comparison to it predecessor [27]

2. YOLO-NAS (You Only Look Once - Neural Architecture Search)
A cutting-edge object detection model developed by Deci Al. It distinguishes itself from
previous YOLO versions by leveraging Neural Architecture Search (NAS) technology
to discover an optimal architecture for object detection, leading to improved accuracy
and efficiency.

YOLOvS 0.801
YOLOvVS 0.734

YOLOv7 0.676

decli.
Figure 2.7 Average mAP on Roboflow-100 for YOLO-NAS vs other models [28]
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YOLO (You Only Look Once)

YOLO, which stands for "You Only Look Once,” is a deep learning-based real-time object
detection algorithm. First introduced by Joseph Redmon et al. in 2015[31], it revolutionized
object detection by introducing a single-stage detection framework that treats object detection
as a regression problem. Unlike traditional two-stage detectors (like R-CNN family), YOLO
divides the image into a grid and predicts bounding boxes and class probabilities
simultaneously, enabling real-time detection. Various versions of YOLO have been developed
over time to improve accuracy, detection speed, and robustness, especially for applications in
dynamic settings

Core Architecture and Methodology

YOLO’s architecture is based on a single Convolutional Neural Network (CNN) that processes
the entire image at once, rather than performing multiple region-based scans. The CNN divides
the input image into an S x S grid, where each grid cell is responsible for detecting objects that
fall within its boundaries. This grid-based approach allows YOLO to handle object detection in
a computationally efficient manner. Each cell predicts a fixed number of bounding boxes and
provides:

e Bounding Box Coordinates: Representing the location and size of the box around each
detected object.

e Confidence Score: Indicating the certainty of an object being present in a bounding box.

e Class Probabilities: A vector representing the likelihood of each detected object
belonging to each class.

These three elements are then combined to identify objects and assign them the most likely
labels with corresponding confidence scores. YOLO uses a technique called Non-Maximum
Suppression (NMS) to refine its detections by keeping the bounding box with the highest
confidence score and eliminating redundant detections for the same object.

The model has evolved through numerous versions, each introducing critical improvements to
enhance both detection capabilities and versatility:

YOLOvV2 [37]: This second iteration introduced anchor boxes, batch normalization, and
dimension clustering, significantly improving accuracy and localization precision.

YOLOV3 [38]: This version featured an improved backbone network (Darknet-53) and multiple
anchor boxes for multi-scale object detection. It also introduced a more refined Spatial Pyramid
Pooling (SPP) approach for better feature extraction.

YOLOvV4 [35]: Developed with a focus on optimizing detection accuracy without sacrificing
speed, YOLOV4 introduced Mosaic data augmentation, an anchor-free detection head, and a
new loss function to improve performance on complex scenes.
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YOLOVS [41]: Developed by Ultralytics, YOLOV5 brought significant enhancements, such as
hyperparameter optimization, integrated experiment tracking, and automatic export options for
popular formats, making it highly accessible to developers and researchers.

YOLOvV6 [39]: Open-sourced by Meituan, this version found applications in autonomous
delivery systems, emphasizing computational efficiency and versatility in real-world
applications.

YOLOv7 [40]: Building on previous innovations, YOLOv7 added capabilities for pose
estimation on keypoint datasets (such as COCO), expanding the model's applications to broader
computer vision tasks.

YOLOVS8 [32]: Released by Ultralytics, YOLOVS introduced features that improved flexibility,
efficiency, and overall performance, supporting a range of vision Al tasks including
classification, detection, and segmentation.

YOLOV9 [42]: This version incorporated innovations such as Programmable Gradient
Information (PGI) and Generalized Efficient Layer Aggregation Network (GELAN) to further
enhance detection and efficiency.

YOLOvV10 [43]: Developed by Tsinghua University using the Ultralytics Python framework,
YOLOV10 introduced an End-to-End head architecture, which eliminated the need for Non-
Maximum Suppression (NMS) and streamlined processing.

YOLOv11 [44]: The latest release from Ultralytics focuses on delivering state-of-the-art
(SOTA) performance across tasks including detection, segmentation, pose estimation, tracking,
and classification, enhancing its versatility across a wide range of Al applications.

This progression of YOLO versions highlights the algorithm’s adaptability and enduring
relevance in fields requiring both high-speed processing and accuracy, from autonomous
vehicles to surveillance and wildlife monitoring. The continual innovations within the YOLO
framework exemplify the rapid advancements in deep learning for object detection.
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Strengths of YOLO

e Speed: YOLO’s single-pass detection allows it to run at high frame rates, making it
suitable for real-time applications.

e Accuracy: YOLO achieves high accuracy with relatively simple architecture, balancing
localization and classification effectiveness.

e Adaptability: It can be adapted for a range of object detection tasks, from general-
purpose applications to specialized tasks.

Limitations of YOLO

e Coarse Localization: YOLO sometimes struggles with fine-grained localization in
images with closely spaced objects.

e Struggles with Small Objects: Although later versions improved on this, YOLO can
sometimes miss smaller objects in images, which may be a challenge when detecting
small animals or distant wildlife in camera trap images.

YOLO-NAS (YOLO with Neural Architecture Search)

YOLO-NAS is a state-of-the-art object detection framework that leverages quantization-aware
design and selective quantization techniques to achieve optimal performance. By quantizing the
model, it maintains high accuracy while significantly reducing computational costs. This
innovative approach results in a more efficient and powerful architecture compared to traditional
YOLO models.
A key advantage of YOLO-NAS is its ability to adapt to diverse requirements. Unlike manually
designed architectures, YOLO-NAS employs AutoML techniques to tailor its structure to
specific tasks and datasets. This flexibility allows for the creation of models that are well-suited
for real-time applications, resource-constrained environments, or specialized domains.
The YOLO-NAS framework incorporates advanced training methodologies and quantization
techniques to enhance its overall performance. It is pre-trained on large-scale datasets like
COCO, Objects365, and RoboFlow 100, making it readily adaptable for object detection tasks
in production settings.

After several iterations and comparative analyses, Roboflow 3.0 was selected as the primary
model for this study. The selection process involved:

Training both models on the prepared dataset

Evaluating performance metrics

Assessing inference speed and resource requirements

Considering the ease of deployment and integration with existing conservation tools

M owbdhE
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Metrics

Object detection model performance is evaluated using Mean Average Precision (mAP), mAP
is a key metric used to evaluate the performance of object detection models. It provides a single
score that reflects how accurately a model can identify and localize objects within images using
bounding boxes.

Calculation of mAP:

Intersection over Union (loU): loU measures the overlap between the predicted bounding box
and the actual ground truth box, with a higher loU indicating a more accurate match. To compute
mMAP, an loU threshold is first set, defining the minimum overlap required for a detection to be
considered correct.

Figure 2.8 How loU applies to an image [26]

roboflow

Precision and Recall: Precision measures the proportion of predicted bounding boxes that are
correct, while Recall measures the proportion of actual objects that were successfully detected
by the model. Together, these metrics provide insight into the model's accuracy and its ability
to detect relevant objects.

Average Precision (AP): For each class of objects, we calculate the average precision across
different levels of confidence. This gives us a measure of how well the model performs for that
specific class.
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Figure 2.9 Precision and Recall [26]

Mean Average Precision (mAP): The overall Mean Average Precision (mAP) score is obtained
by averaging the Average Precision (AP) values across all object classes, resulting in a single
metric that represents the model's general accuracy in identifying and localizing objects within
images.

Choosing the loU Threshold:

The Intersection over Union (loU) threshold can greatly impact the mAP score. A higher loU
threshold (e.g., 0.75) requires the model to be more precise in aligning bounding boxes with
ground truth boxes for a detection to be considered correct. loU is used during model evaluation
to compare each predicted bounding box with the corresponding ground truth box, determining
whether a detection meets the accuracy threshold to be considered correct. It’s common to
calculate mAP across a range of loU thresholds, typically from 0.5 to 0.95, then average these
scores to obtain a more comprehensive evaluation of the model’s performance.

In simpler terms, if a model is trained to detect objects like cats and dogs, mAP assesses how
well it can:

e Correctly identify whether an object is a cat or a dog.
e Accurately place bounding boxes around the cats and dogs in the image.

A higher mAP indicates that the model excels in both distinguishing objects and accurately
localizing them, reflecting stronger overall performance.
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2.3.2 Class Reduction

During the initial stages of model training, it became clear that some classes in the dataset were
significantly underrepresented. This imbalance posed challenges for the model's ability to
accurately detect and classify these less frequent species or objects. After conducting several
training iterations and analyzing the results, a decision was made to reduce the number of classes
being detected.

The primary reasons for class reduction were:

e Insufficient training data: Some classes had very few examples (less than 20 images),
which is generally not enough for the model to learn robust features for accurate
detection.

e Model performance: The underrepresented classes were causing decreased overall
model performance, as the model struggled to differentiate between these rare classes
and more common ones.

e Conservation priorities: By focusing on the more prevalent and ecologically significant
species, the model could better serve immediate conservation needs.

As a result of this process, several classes with few instances were initially removed from the
detection task, including dogs, horses, hedgehogs, red deer, birds, guns, and squirrels.

However, after further consideration and experimentation, a more radical simplification was
implemented. The final decision was made to consolidate all animal classes into a single
"animal” class. This approach was chosen for several reasons:

e Improved model generalization: By focusing on detecting the presence of any animal,
the model could leverage features common to all wildlife, potentially improving overall
detection rates.

e Simplified data requirements: This approach could reduce the need for species-specific
labeling, according to specific use case, which can be time-consuming and requires
expert knowledge.

e Broader applicability: A general "animal” detector could be more easily applied to new
environments or used as a first-stage filter in a multi-stage detection pipeline.

e Focus on primary conservation goal: For many applications, simply detecting the
presence of wildlife (as opposed to human activity) is the crucial first step.

This decision to use a single "animal™ class aligns with successful approaches in the field, such
as MegaDetector [24], which has been widely adopted for its ability to efficiently detect animals
in diverse camera trap datasets. Similarly, the PyTorch Wildlife project [25] has demonstrated
the effectiveness of transfer learning from general object detection models to wildlife-specific
tasks.

This final reduction to a single "animal™ class allowed the model to focus on the fundamental
task of distinguishing wildlife from non-wildlife elements in the camera trap images. While this
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approach sacrifices species-specific information, it provides a robust foundation for detecting
animal presence in diverse environments.

It's important to note that while the model was trained on this simplified class structure, the
original dataset with detailed species classifications is preserved. Roboflow platform allows
keeping several different versions of your custom dataset. Potential future expansion of the
model's capabilities is possible as more data becomes available or as conservation priorities
shift, potentially reintroducing multi-class species detection.
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3 CHAPTER 3: Results, Analysis and Discussion

This chapter presents the outcomes of the research of this Thesis. | present the stages of the
training process and iterations.

3.1 Model Performance Results

Here we present some of the train Metrics of our Roboflow 3.0 (Fast) model in detecting objects
between the 20 different classes.
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Figure 3.1 Confusion matrix of 20 class model
Average Precision by Class (mAP50) for the Test Set was the following.
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Figure 3.2 Average Precision by Class (mAP50) for the Test Set
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The Training Graphs of the model are the following.
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Figure 3.3 mAP (mAP@0.5) and mAP@0.5:0.95 across training of 20 class model
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Figures 3.4 Training Graphs of 20 class model

| trained the model after stretching the images to 640x640, in Grayscale and filtered the null
images to 15% of the total dataset.

Figure 3.4 illustrates that the model is prone to distractions from non-target objects within the
images. Although it generally succeeds in detecting the presence of animals, it often misclassifies
them and, in some cases, assigns multiple classes to a single object. This indicates a challenge in
maintaining both specificity and accuracy, particularly when distinguishing among similar classes.
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wildBoar

Figure 3.5 Sample of the test images, Ground Truth (left) and Model Predictions (right)
(20 class model)

3.2 Class drop and Augmentation

In this model training | decided to drop some classes that were either under or over represented
in the dataset and tried to develop a model that detects the incidents of interest, so | kept person
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and car and dropped deers, squirrel, bird, chamois, hare and hedgehog.
Also, it is worth mentioning that train started using the previous model as a checkpoint.

3.2.1 Additional Augmentation steps
| also added some additional Augmentation steps to the improve the performance of the model:

e Horizontal Flip

e Rotation between -15° and +15°

e Shear £15° Horizontal, +15° Vertical

e Brightness adjustment between -20% and +20%

e Blur up to 4.9px

e Noise up to 1.96% of pixels
I also limited the augmented outputs per training example to 3. This dataset version contains in
total 4041 images.

3.2.2 10 class Model Performance Results
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Figure 3.6 Confusion matrix of 10 class model on test dataset
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Figure 3.7 Average Precision by Class (mAP50) for the Test Set of model with 10 classes
mAP
B v mAP@50:95
09
08
07
06
05
04
03
02
01
0
0 50 100 150 200 250
Epochs
Figure 3.8 mAP (mAP@0.5) and mAP@0.5:0.95 across training of 10 class model
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Figures 3.9 Training Graphs of 10 class model
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Figures 3.10 Sample of the test images, Ground Truth (left) and Model Predictions (right)
(10 class model)
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3.3 Animal Detection model and deployment

After reducing the number of classes, | observed an improvement in the model's performance
for detecting animals and accurately assigning classes. However, some erroneous detections still
occurred, with the model occasionally identifying animals in background areas that contained
no relevant objects. Drawing inspiration from the MegaDetector approach, | decided to train a
model focused solely on detecting the presence of any animal within an image.

3.3.1 Animal detection model training

|  remapped all classes that are animals to one new class, Animal.
I also dropped person, car and gun classes.
Lastly, 1 removed the Shear augmentation method because | noticed that it results in fault
annotations, specifically there were some imageses that area of the ribbon of the cameras were
in the annotated augmented results.
The dataset is contained by 6443 images and | decided that the model would start from the
previous checkpoint (with the 10 classes).

mAP

0:

[
(&}

@

B e mAP@

0,9
0.8

0,7

06

0,5

0 20 40 60 80 100 120 140
Epochs

Figure 3.11 mAP (mAP@0.5) and mAP@0.5:0.95 across training (of animal detection model)
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Figures 3.12 Animal detection Training Graphs

MSc in Artificial Intelligence & Deep Learning, MSc Thesis
Christos Panagiotopoulos AIDL-0027. 43



Machine Learning for Animal Detection and Recognition for European Wildlife Conservation

animal

animal

animal

animal animal

e F T

Figure 3.13 Sample of the test images, Ground Truth (left) and Model Predictions (right)
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3.3.2 Testing and deployment
Roboflow platform provides several deployment options once you have trained your model.

It is available for the account user to try the trained models on videos from the web, on their
mobile using their integrated camera and also on edge devices like Jetson Nano through their
Hosted API.

It was a quite a surprise that the model performed quite well on range of similar content | have
tried it on.

I have provided the QR codes of all the three models on the Appendix so any user may try it
on their mobile phone with a camera accessing the internet. The following screenshots are
from my mobile phone pointing on video footage from the web and it seems that the model
generalizes in an interesting way and detects animal species that has not been exposed in the
past like the bird in the next figure.

O 2% noroboflow.com 4 : ) 2% noroboflow.com 4 : > % noroboflowcom + (@ : O % noroboflowcom + @

roboflow R — roboflow R roboflow Trap Images v10 EEZEy robeflow Trap Images v10

Figure 3.14 Animal detection on mobile

| also tried the inference server option hosted on a Jetson Nano Developer Kit 2GB that was
provided to the students of the Master program through NVIDIA’s academic Grant program.

The implementation was tested on some pictures from trap cameras that were not exposed to the
model and it seem to predict in a satisfactory level.
There is a limitation for the deployment for Roboflow developer accounts as for the one that
was used for this project, an internet connection is necessary for the Hosted API call, but there
are alternative plans for Enterprise deployments. At the appentix there is a screenshot of the
model calling to predict if there is an animal in an image with a canine taken from a camera trap
during nighttime and it is executed on the mentioned edge hardware.
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4  CONCLUSIONS

This thesis has explored the application of Computer Vision and Artificial Intelligence
techniques in wildlife conservation, focusing on the analysis of trap camera footage from Greek
wilderness areas. The research aimed to develop tools for automatic species identification and
threat detection, with a particular emphasis on creating practical, accessible solutions for
conservationists in the field.

4.1 Key Findings

1. Model Development and Performance: The study successfully developed a computer
vision model capable of detecting animals in camera trap images. Through iterative
refinement, including class reduction and data augmentation, the final model
demonstrated robust performance in distinguishing wildlife from non-wildlife elements.

2. Challenges in Multi-species Classification: Initial attempts at multi-species
classification faced challenges due to class imbalance and limited data for some species.
This led to the strategic decision to focus on a binary classification (animal vs. non-
animal), which improved overall model performance and generalizability.

3. Data Augmentation Effectiveness: The implementation of various data augmentation
techniques, including horizontal flips, rotations, and brightness adjustments, proved
effective in enhancing the model's ability to generalize across diverse image conditions.

4. Real-world Applicability: Testing on mobile devices and edge computing platforms
(Jetson Nano) demonstrated the model's potential for real-time, in-field application,
aligning with the research goal of creating accessible tools for conservationists.

5. Generalization to Unseen Species: Interestingly, the model showed some ability to
generalize to species not present in the training data, as evidenced by successful
detection of birds in mobile testing.

4.2 Implications for Wildlife Conservation

This research contributes to the field of wildlife conservation by:

e Providing a foundation for automated analysis of camera trap data, potentially saving
significant time and resources in conservation efforts.

e Demonstrating the feasibility of deploying Al models on edge devices for real-time
wildlife monitoring in remote areas.

e Offering a scalable approach that can be adapted to different ecosystems and
conservation priorities.
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4.3 Limitations and Future Work

While the study achieved its primary objectives, several limitations and areas for future research
were identified:

1. Species-specific Classification: Future work should focus on expanding the dataset to
enable reliable multi-species classification, which would provide more detailed
ecological insights.

2. Behavioral Analysis: Incorporating video analysis could enable the study of animal
behaviors, providing richer data for conservation research.

3. Integration with Existing Systems: Further research is needed to seamlessly integrate
these Al tools with existing conservation practices and databases.

4. Ethical Considerations: As Al becomes more prevalent in conservation, careful
consideration must be given to the ethical implications of increased surveillance of
wildlife and potential unintended consequences.

In conclusion, this thesis demonstrates the potential of Al and computer vision in
revolutionizing wildlife conservation practices. By providing efficient, accessible tools for
wildlife detection and monitoring, this research contributes to the ongoing efforts to protect
biodiversity in the face of growing environmental challenges. The successful deployment on
mobile and edge devices points to a future where Al can empower conservationists with real-
time insights, enabling more rapid and effective responses to threats to wildlife and their
habitats.
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Appendix A

Deployment on NVIDIA Jetson Nano Developer 2GB Developer Kit

Tested on a new image provided, that did not exist in the dataset.

B Q nvidia@nvidia-desktop: ~, X o

"type": "InvalidParameterException”
"hint": "Pass a base6d encoded image as the request body or a (url-e
ncoded) image url in the query string as ‘image'."

$1s
PICT5088. JPG
: $ basel PICT5088.JPG | curl -d @
- "http://localhost:9881/trap-images/117api_key=8IJKCTHSTTgPulCFevnp"
{

1 E
PICT1777.JPG PICT1862.JPG PICT5085.JPG

"predictions": [

"x": 2649.5,

"y": 2179.8,
"width": 1300,
"height": 882,
"class": "roeDeer"
"confidence": 0.7

1

"image": {
"width": deee,
"height": 3600

1 E $ base6d PICT5088.JPG | curl -d
- "http://localhost:9001/trap-images/1087api_key=8IJkCTHS7TgPulCfevnp"
{

"predictions": [

"width": 1355,
"height": 793,
"class": "animal"
"confidence": 0.847
}
1,
"image": {
"width": d4eee,
"height": 3008

Ploting the prediction

from PIL import Image, ImageDraw
import matplotlib.pyplot as plt

image_filename = 'PICT5088.JPG'
prediction = {
"predictions™: [
{
"x": 2660.8,
"Y' 2222.4,
"width": 1355,
"height™: 793,
"class": "animal",
"confidence": 0.847

1
"image": {
"width": 1920,
"height™: 1080
}
}
img = Image.open(image_filename)
draw = ImageDraw.Draw(img)
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Bl jop MAXNICPU 34%IGPU31 X + v

Model: NVIDIA Jetson Nano 2GB Developer Kit - Jetpack 4.6.1 [L4T 32.7.1]
Temperatures: GPU 36.56C

iGPU gpu GPU Shared RAM

100% 1.
80% 1.
60% 1.
ue% [

20% ]

L -6s 8 time 0t

3D scaling:[
[

L-gs L 25
JRailgate:

L -2s

TPC PG: OFF
] 921MHz

[20] USER GPU TYPE PRI MEM [GPU MEM]  Command
10166 root I [4 20 z 309M 325M node
5762 root I G 20 . 1.9H 30.2M Xorg
6943  root I G 20 : 879k 3.8M6.1 compton
5207 root I G 20 c 387k 76k = nvargus-daemo

L-6s L -us
Power ctrl: auto

Interfaces

1ALL rlelzVl 3CPU 4MEM SENG 6CTRL 7INFO

B nvidia@nvidia-desktop: ~ + | > [u] x

2024-10-08 01:09:30.093665: I tensorflow/core/common_runtime/bfc_allocator.c
c:923] total_region_allocated_bytes_: 188618248 memory_limit_: 100618240 ava
ilable bytes: @ curr_region_allocation_bytes_: 268435456

2024-10-88 01:09:30.093687: I tensorflow/core/common_runtime/bfc_allocator.c
€:929] Stats:
Limit lee61824e
InUse: 892288680
MaxInUse: 108617984
NumAllocs: 1765
MaxAllocSize: 63452416

2024-10-08 01:09:30.093730: W tensorflow/core/common_runtime/bfc_allocator.c

R b1 ) T T T T ——— e sk ke e e

et e e e e 000 000 0000000000000

2024-10-88 01:09:30.114021: W tensorflow/core/framework/op_kernel.cc:1651] 0
P_REQUIRES failed at cast_op.cc:189 : Resource exhausted: OOM when allocatin
g tensor with shape[300@,4000, 3] and type int32 on /job:localhost/replica:8/
task:0/device:GPU:® by allocator GPU_B_bfc
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for pred in prediction['predictions']:
X = pred['x]
y = pred['y]
width = pred[‘'width']
height = pred['height’]

left = x - width / 2

top =y - height/ 2
right = x + width / 2
bottom =y + height / 2

draw.rectangle([left, top, right, bottom], outline="red", width=3)
draw.text((left, top - 10), f*{pred['class]} ({pred['confidence'] )", fill="red")

plt.figure(figsize=(10, 8))
plt.imshow(img)

plt.axis(‘'off’)
plt.show()
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Appendix B

By scanning the following QR codes the user may test the models using their smartphone

camera

Animal detection model:
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