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Abstract 
 This thesis explores the process of 3D scene reconstruction using a depth (RGB-D) camera, 

combined with advanced methodologies in artificial intelligence and visual computing. The research 

involves capturing real-world scenes using the RGB-D camera, followed by exporting each frame 

through multiway registration using the Open3D library to ensure accurate alignment and 

reconstruction. The core of this work is conducted within SDFStudio, an extension built on the NeRF 

studio framework, which facilitates the development and experimentation of methods involving 

Signed Distance Fields (SDFs). SDFs are crucial for representing 3D shapes and surfaces with precision, 

making them ideal for applications requiring accurate geometric computations. 

Leveraging the modular design and features of SDFStudio, the research implements and 

compares three state-of-the-art SDF-based algorithms: Neural Unsigned Distance Fields - facto (NeuS-

facto), UNISURF, and MonoSDF. These methods are tested on datasets comprising depth and RGB 

images along with known camera parameters (poses, and intrinsic). The performance and accuracy of 

the algorithms are systematically evaluated by adjusting key parameters, such as SDF grid resolution, 

number of iterations, and learning rates, to assess their impact on 3D reconstructions quality. 
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Thesis Structure 
 This thesis is organized into several sections that thoroughly examine the process of a 3D 

reconstruction using data obtained from an Intel RealSense D455 RGB-D sensor, providing both a 

technical and conceptual framework for understanding the depth detection and reconstruction 

methods applied in this study. 

 Initially, this thesis provides an overview of RGB-D cameras and describes several applications 

where their ability to provide 3D data is creating new opportunities in robotics, augmented reality as 

well relevant computer vision fields. 

Subsequently, the 3rd chapter explores various techniques used for depth detection, such as 

stereoscopic vision, structured light, and time-of-flight cameras. For each technique, the advantages, 

disadvantages, limitations, and suitability for different applications are discussed. A detailed 

presentation of the Intel RealSense D455 camera is also provided, including its technical specifications, 

capabilities, and the way it generates accurate depth maps, emphasizing the importance of selecting 

the appropriate technology for reliable 3D reconstructions. 

Chapter 4th presents methods for performing 3D registration, focusing on techniques such as 

ICP Point-to-Plane, Colored ICP, and the Pose Graph method, which optimizes these processes. 

The 5th chapter examines novel methods for 3D reconstruction, such as NeRF and SDF. The 

capabilities of NeRFstudio are presented, followed by SDFStudio, which is based on NeRFstudio and 

focuses on scene reconstruction through Signed Distance Fields (SDFs). The algorithms NeuS-Facto, 

UniSurf, and MonoSDF are analyzed in detail. 

In the 7th chapter, it describes the workflow for scanning the area of interest using the RGB-D 

camera, providing significant information on optimal scanning practices. 

Chapter 8 details the process of extracting the camera poses during scanning, describing in 

depth the procedure for merging the data. While in 9th section a comprehensive analysis of the 

parameters adjusted during training for model comparison is also provided, aiming to improve the 

accuracy and quality of the reconstruction. 

The 10th section presents and analyzes the experimental results. The performance of the 

MonoSDF, UniSurf, and Neus-Facto models is compared under various training conditions. Changes in 

parameters and iterations are examined, and the models’ responses to challenges such as complex 

geometry, occlusions, and noise in the data are evaluated. Additionally, a comparison is conducted 

between the results (ground truth) obtained through FARO3D focus and the optimal mesh 

reconstruction of each model. 

The concluding section summarizes the key findings of the experiments, highlighting the 

performance of each neural network and identifying the configurations and algorithms that yielded 

the best results. Finally, the thesis concludes with suggestions for future research, including potential 

applications and further exploration of SDFStudio and similar algorithms. 

 

 





   

 

18 
 

1.  Introduction 
The advent of RGB-D cameras has revolutionized in computer vision, by enabling simultaneous 

capture of color and depth information in a single frame. This indeed constitutes a wholly different 

way in which machines will perceive and interact with the world surrounding them. In contrast with 

the traditional camera, which captures only two-dimensional images based on color, RGB cameras are 

enabled to perceive the spatial structure of a scene. This has led to new innovations across a wide 

variety of applications-from 3D scene reconstruction and AR/VR robotics to autonomous systems-all 

demanding spatial awareness for purposes of object detection, navigation, and real-time decision-

making, among other tasks. 

Currently, one of the most popular RGB-D devices on the market is the Intel RealSense D455; its 

depth-sensing capabilities are pretty accurate. It captures depth through a stereo vision system, where 

two stereo cameras calculate the distance from objects in a scene. The D455 stands out by its 

extended depth range and the low error rate, and therefore, is an ideal tool for 3D scanning, robotic 

perception, and interactive digital experiences. This makes it suitable for applications acquiring large 

environments where there is also the need for high accuracy. The capturing of RGB-D data is only the 

first step in a larger process involving meaningful creation of 3D models. While raw data from RGB-D 

cameras are provided per-pixel as color and depth values, transforming them into a coherent, high-

fidelity 3D model remains one of the challenging issues. Transformation from depth maps and point 

clouds into full 3D reconstructions requires robust computational methods. Conventional approaches 

face many practical issues such as noise, incomplete data, and irregular surfaces, seriously affecting 

the quality of 3D reconstructions. Moreover, traditional methods involving voxel grids and mesh-

based models can be computationally expansive and inefficient for cases of large-scale scenarios or 

complex geometries. 

This is where the integration of neural networks particularly those based on Signed Distance Fields 

comes in as a state-of-the-art solution. SDFs allow one of the potent ways of representation of 3-D 

shapes by encoding the distance of every point in space from the closest surface. By doing so, this will 

not only allow for more accurate surface reconstruction but also improve memory efficiency and 

computational performance. By utilizing deep learning techniques, it is possible for SDF-based 

networks to learn how to make inferences on missing data, handle noisy inputs, and produce smooth 

high-resolution surfaces-even in cases where traditional algorithms cannot. 
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2. RGB-D Sensors 

Traditional cameras capture images using a two-dimensional array of pixels, where each pixel 

represents RGB (Red, Green, Blue) values that define its color and intensity. These classical RGB 

cameras excel at capturing high-resolution color images, making them indispensable in applications 

requiring color accuracy and high detail, such as professional photography, videography, and digital 

arts. Their ability to render true-to-life colors and fine details is unparalleled, making them the go-to 

choice when image fidelity is the primary concern. 

 However, despite their strengths, traditional RGB cameras are limited by their lack of depth 

perception. They capture the world in two-dimensional planes, lacking the spatial awareness 

necessary to understand the relative distances between objects in a scene. This limitation can be a 

significant drawback in applications that require an understanding of the three-dimensional structure 

of an environment, such as in robotics, augmented reality (AR), virtual reality (VR), and advanced 

computer vision systems. 

  In contrast, RGBD cameras, or depth cameras, offer a sophisticated imaging system that 

captures both color (RGB) and depth data simultaneously. This dual capability allows RGBD cameras 

to provide a richer spatial understanding of a scene by combining traditional color information with 

depth perception (Figure 1). The depth data is typically captured using various technologies, such as 

structured light, time-of-flight, or stereo vision, and it enables the camera to measure the distance 

between the sensor and objects in the scene with remarkable accuracy. (Beginner’s guide to depth 

(Updated), 2019) 

 

Figure 1: RGB and Depth export from a depth camera (Tang, et al., 2016) 

 

 This ability to capture depth information opens a wide range of possibilities that traditional 

RGB cameras cannot achieve. For instance, in robotics, RGBD cameras are essential for navigation and 

object recognition, allowing robots to interact more intelligently with their environment. In AR and 

VR, RGBD cameras enable more immersive experiences by accurately mapping the physical world into 

digital environments, allowing for realistic object placement and interaction. Additionally, in fields like 

3D modeling and construction, RGBD cameras facilitate the creation of accurate three-dimensional 

representations of spaces, which can be crucial for design and planning. 

The comparison between RGBD cameras and traditional RGB cameras highlights the 

importance of selecting the appropriate imaging system based on specific application requirements. 

While RGBD cameras provide depth perception and a deeper spatial understanding, traditional RGB 

cameras remain unmatched in color fidelity and imaging resolution. Understanding the strengths and 
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limitations of each technology are crucial for making informed decisions when choosing a camera 

system for a given task or application. (Henry, Krainin, Ren, & Fox, 2014) 

 

2.1. Why RGBD? 
Incorporating RGB data into the point cloud or depth map generated by a 3D depth sensing 

camera enhances the precision of object pinpointing, facilitating pattern recognition and detection. 

This capability proves particularly advantageous in applications requiring the identification and 

categorization of objects within a scene, coupled with depth measurement to those objects. 

Furthermore, the capacity to provide both forms of data within a single frame renders the camera 

especially well-suited for applications such as facial recognition-based anti-spoofing systems and 

people counting devices (Kumar, 2022). 

The primary constraints hindering the integration of RGB-D (Red, Green, Blue, and Depth) 

sensors in high-precision surveying applications include the restricted depth range of the sensor, 

typically around three meters for structured light-based RGB-D sensors like the Structure Sensor, and 

approximately five meters for time-of-flight-based RGB-D sensors such as the Kinect v2. Additionally, 

there is a challenge with successive brittle frame registration, resulting in diminished tracking or bias 

in camera pose due to fewer distinctive features in frames (Darwish, Li, Tang, Li, & Chen, 2019). 

 

2.2. Historical Development and Evolution of RGBD Technology 
 The historical development and evolution of RGBD (Red, Green, Blue, and Depth) technology 

have been marked by significant advancements, tracing back to early research in computer vision and 

depth sensing. These advancements have ultimately led to the commercialization of RGBD cameras, 

offering insights into their capabilities and limitations. 

There have been significant developments in the technology of cameras with 3D imaging 

sensors. Figure 2 illustrates the historical progress of this development, although the related 

technology has been developed in recent years. The foundations were first laid in 1989. The 3D 

reconstruction and the RGB-D technology was appreciated a lot, where since 1970 bases related to 

3D modelling and the importance of shape were introduced. In the 1980s, tools for understanding the 

geometry of objects were applied and in the 2000s techniques and methods related to the 

characteristics and textures of objects and scenes were developed. By the end of 2010, relevant 

algorithms had been designed and applied to dynamic environments and robotics, with the most 

satisfactory high-fidelity models being derived from deep learning methods. 

 

Figure 2: Evolution of RGBD Technology 
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Presently, research efforts are directed towards overcoming existing limitations associated 

with the quality fusion of scenes. Data acquisition from depth cameras plays a crucial role in further 

processing to produce qualitative and accurate 3D reconstructed models of the physical world. The 

incorporation of sensors into depth cameras is of paramount importance, with rapid evolution owing 

to parallel developments in technologies. 

Depth cameras typically utilize two main types of sensors: active and passive, which 

complement each other in various implementations. While sensors offer numerous benefits, they may 

also introduce errors and inaccurate measurements. Calibration is often necessary to achieve a high 

degree of detail in 3D reconstructions. 

In summary, RGB-D cameras have seen significant development over the past decades, with 

advancements in sensor technologies, algorithms, and applications. The ongoing evolution of RGBD 

technology reflects the continuous quest for improved performance, accuracy, and reliability in 

capturing and processing three-dimensional data. (Tychola, Tsimperidis, & Papakostas, 2022) 

 

3. Depth Sensing Technologies 
There exist various methods for obtaining data from depth cameras, which can be categorized 

into active and passive sensing, along with the relatively recent development of monocular depth 

estimation (Figure 3). Active sensing techniques involve emitting structured energy to capture objects 

in static environments, enabling the simultaneous capture of entire scenes (Salvi, Pages, & Batlle, 

2004). This simplifies 3D reconstruction, with subcategories including time-of-flight (ToF) and 

structured light (SL) cameras (Alexa, 2003). Passive sensing relies on the triangulation principle and 

epipolar geometry to determine the depth of key points in a scene. Monocular depth estimation, on 

the other hand, utilizes two-dimensional images for reconstructing 3D objects (Ibrahim, et al., 2020).  

 

Figure 3: Existing Depth Sensing Technologies 

 

To fully understand the different types of depth cameras and how they work, the following 

sections of this thesis provide a detailed analysis. 
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3.1. Stereo Vision 

Stereoscopic vision technology mirrors the fundamental principles of human vision by 

leveraging the perception of depth using two cameras mounted on a common baseline, with a fixed 

distance between their lens centers (projection centers). Each camera captures the scene from a 

slightly different angle, resulting in a phenomenon known as parallax, where objects closer to the 

cameras exhibit a greater lateral shift of features between the two images (Figure 4). This disparity is 

then used to compute a depth map, which represents the measurable perception of depth. 

 

Figure 4: Mismatch in Stereo vision (DEPTH SENSING TECHNOLOGIES OVERVIEW, n.d.) 

 

Stereo vision systems are broadly categorized into passive and active systems. Passive systems 

rely on ambient or artificial lighting to illuminate objects, while active systems enhance feature 

recognition by projecting random patterns onto the scene, often using infrared laser projectors with 

pseudo-random patterns or structured light. Active stereoscopic vision offers several advantages, 

including robustness to varying lighting conditions and the ease of installing multiple cameras without 

interference. 

The measurement of 3D target points from multiple images within this technology is based on 

three main principles, with triangulation being the most prevalent. Triangulation is possible when two 

key conditions are met: first, the relative positions between the viewpoints must be known, which is 

typical in RGB-D cameras; and second, the directions from the viewpoints to the targets must be 

determined, which relies on the correct calibration of the camera setup. This integration of principles 

allows for accurate depth perception and is crucial for the effectiveness of stereoscopic vision systems. 

(Sugihara, 1986) 

 

3.1.1. Stereo Vision Principles 

3.1.1.1. Baseline 

Manufacturers provide default baseline configurations for their stereo camera systems 

(Figure 5) based on typical usage scenarios, considering key factors like baseline distance and 

resolution. These configurations are essential for achieving optimal depth estimation across different 

applications. For instance, a larger baseline typically allows for better depth resolution at longer 

distances but may introduce challenges in close-range depth estimation, as it increases disparity error 

for closer objects. Conversely, a smaller baseline is advantageous for close-range depth perception 

but may limit depth accuracy at longer distances due to reduced disparity. 
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Selecting the optimal baseline and resolution is a critical decision that depends on the specific 

application and environment. The baseline, defined as the horizontal distance between the two 

cameras, directly affects both the range and accuracy of depth estimation. A larger baseline is 

beneficial for applications like aerial mapping, where objects of interest are far away. However, it can 

reduce the accuracy for nearby objects, making it unsuitable for close-range tasks like robotics. On the 

other hand, a smaller baseline is ideal for close-up applications but might struggle with faraway 

objects. 

 

Figure 5: Baseline length of Intel RealSense Depth cameras 

 

Resolution plays an equally important role in stereo vision. Higher resolution provides more 

detail and can improve depth accuracy by enabling finer disparity calculations. However, it also 

increases computational load and memory requirements, which can be a challenge in real-time 

applications that require quick responses. Lower resolution, while reducing computational demands, 

may degrade depth estimation quality by introducing more noise and ambiguity in pixel matching.  

(How do you choose the optimal baseline and resolution for a stereo vision camera?, 2024) 

 

3.1.1.2. Calibration 

RGB-D camera heavily relies on the high-precision calibration of its constituent cameras. 

Traditional calibration methods for optical cameras based on the "pinhole" perspective model, such 

as Zhang's calibration method, have been extensively studied. However, the calibration of the infrared 

sensor in RGB-D cameras remains a significant challenge. Traditional feature extraction algorithms 

encounter difficulties in infrared images, and accessing auxiliary information like the disparity image 

for depth correction proves challenging in practice. (Yang, Danqing, Jun, Mingyi, & Yubin, 2022) 

Calibration is essential for accurately computing depth information in stereo cameras. It 

involves determining parameters such as intrinsic matrices, distortion coefficients, and extrinsic 

parameters like rotation and translation between cameras. Calibration ensures proper rectification 

and matching of images from both cameras, enabling accurate depth computation. (Basso, Menegatti, 

& Pretto, 2017) 

The Intel RealSense™ Depth Cameras D400-series like the one used in this thesis, are based 

on stereo vision and designed to maintain calibration and performance over their lifetime. However, 

factors like extreme temperature cycling or excessive shock and vibration can degrade performance 

over time. To address this, Intel provides tools for recalibrating cameras back to their factory 

condition, including OEM (Original Equipment Manufacturer) calibration based on targets (Figure 6) 

and dynamic calibration methods that restore performance in the field. 
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Intel introduces a set of components called "Self-Calibration" in its RealSense™ SDK2.01, aimed 

at restoring depth performance and improving accuracy for Intel RealSense™ Depth Camera D400 

series that may have degraded over time. These components, running on any operating system or 

compute platform, invoke new firmware functions inside the ASIC with minimal load on the host CPU. 

They require no motion or repositioning during calibration and can complete in seconds. While 

RealSense cameras are designed to maintain calibration, these tools serve as a validation of device 

performance and can monitor calibration state over time without special targets. (Anders, et al.) 

 In summary, the calibration of stereo cameras, particularly in RGB-D systems, is critical for 

achieving accurate depth information and ensuring reliable performance in various applications, 

including robotics and computer vision. Continuous monitoring and recalibration methods provided 

by manufacturers are essential for maintaining optimal performance over the camera's lifetime. 

 

 

3.1.1.3. Features Extraction Using key point-based Stereo Matching 

Stereo matching, a cornerstone of stereo vision and computer vision, involves the task of 

identifying corresponding points or features across images captured from different viewpoints, 

commonly referred to as left and right images. This process facilitates the computation of depth 

information, thereby enabling the creation of 3D representations of scenes. In stereo matching, 

disparities, or differences between corresponding points in left and right images play a crucial role in 

determining object depth. Larger disparities correspond to objects closer to the camera, while smaller 

disparities indicate objects farther away. However, the stereo matching process is fraught with 

complexities, including occlusions, textureless regions, illumination variations, and the imperative of 

computational efficiency, especially in real-time applications. To tackle these challenges, various 

algorithms and techniques have been devised, including correlation-based methods, feature-based 

methods, and deep learning approaches. These methodologies aim to establish correspondences 

between image pairs (Figure 7) accurately and efficiently, thus facilitating precise depth estimation 

and 3D reconstruction in stereo vision applications. (Sun, Mei, Jiao, Zhou, & Wang, 2011) 

 
1 https://dev.intelrealsense.com/docs/self-calibration-for-depth-cameras  

Figure 6: Calibration Targets 

https://dev.intelrealsense.com/docs/self-calibration-for-depth-cameras
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Figure 7: Example of correspondence points between an image pair (Ma, et al., 2018) 

 

In parallel, feature extraction serves as a fundamental domain within computer vision, closely 

intertwined with tasks like object recognition, image matching, and synthesis. The objective of feature 

extraction is to pinpoint robust positions invariant to image features, sizes, camera viewpoints, and 

lighting conditions.  

To address this limitation, Mikolajczyk's Harris Laplacian method emerges as a complementary 

approach, adept at detecting Harris corner points across various scales, ensuring resilience against 

scale variants. Shi and Tomasi further refined corner detection by proposing the Shi-Tomasi corner, 

which accounts for affine transformations. However, Lowe's SIFT (Scale Invariant Feature Transform) 

method emerges as the most renowned. SIFT employs a four-step process encompassing scale-space 

extrema detection, keypoint localization, orientation assignment, and keypoint description. 

In the scale-space extrema detection phase, keypoints are identified as maxima/minima of 

the Difference of Gaussians (DoG) across multiple scales. Keypoint localization involves precise 

positioning, scale determination, and principal curvature ratio estimation, followed by orientation 

assignment based on local image gradient directions, ensuring rotation invariance. Finally, keypoint 

descriptors are computed to ensure distinctiveness and partial invariance to remaining variations like 

illumination and 3D viewpoint. (Kim, et al., 2022) 

 

3.1.1.4. Triangulation 

In the world of stereoscopic cameras, triangulation serves as a foundation for understanding 

depth. Stereoscopic cameras, as mentioned above, consisting of a left and right lens, project two-

dimensional images of a scene. By knowing the relative distance between the cameras and the camera 

parameters, the depth (d) of each point (S) (Figure 8), whose projections are embedded in the 

corresponding pixels (L and R) in both the left and right images, can be determined. 

 

Figure 8: Example of relative distance between 2 corresponding pixels 
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Epipolar geometry describes the complex relationships between 3D points and their 

projections in 2D images. Despite the limitations of "planar projection", the differences between 

stereoscopic images, called "disparity", serve the perception of depth. 

The essence of triangulation lies in the directional vectors emanating from the pixels in the 

stereoscopic images. These vectors converge at points in the 3D scene, allowing depth to be calculated 

perpendicular to the line joining the cameras. By applying the Pythagorean theorem, the depth of 

each point is accurately discerned. 

Triangulation and disparity maps are the cornerstone of the implementation of stereoscopic 

vision. Triangulation extracts information about where objects in the image are located in three-

dimensional space. Inequality maps, derived from pixel differences, help create depth maps (Figure 

9), that provide information for spatial understanding. 

 

Figure 9: Example of depth map 

 

 Today, modern computers mimic the complex process of stereoscopic vision by deriving 

disparity maps from pairs of stereoscopic images. Through triangulation and meticulous depth 

calculations, computers decipher the spatial complexities embedded in scenes, enhancing visual 

understanding and spatial perception. (Computer Vision: Stereo 3D Vision, 2022) 

 

3.1.2. Passive stereo camera 
Passive stereoscopic vision is a method that aims to extract three-dimensional (3D) 

information about the environment using a pair of cameras. The process involves taking images from 

a left and a right camera, with a baseline distance separating them. When corresponding points are 

detected in the left and right images, the difference in their positions is recorded as a difference, which 

is related to depth. 

The relationship between dissimilarity (in pixels) and depth is expressed by a mathematical 

relationship (Figure 10). It illustrates that as the baseline distance and focal length increase, the depth 

resolution improves. The accuracy of depth is influenced by baseline distance, resolution, and lens 

focal length. (Sharma, Kim, & Singh, 2012) 

 

Figure 10: Equation for calculating depth in a stereo camera system 

 

Stereo cameras operate by matching pixels between images from each camera and 

triangulating pixel depth using the baseline. While stereo cameras have advantages in terms of cost 
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and performance in bright environments, there are challenges, such as algorithmic complexity and 

inferior performance in low-light conditions.  

Rectification is crucial in stereo cameras, affecting camera calibration and the matching of 

corresponding scanlines in left and right images. The provided text also touches upon the fundamental 

difficulty of establishing correspondence between imaged points from different viewpoints. The 

concept of parallax, or the displacement of image projections, is inversely proportional to distance 

and is employed in computing 3D geometry through triangulation. 

In summary, passive stereo vision utilizes the principles of triangulation, disparity, and 

baseline distance to extract 3D information from images captured by a pair of cameras (Figure 11). It 

offers advantages in terms of cost and performance outdoors but faces challenges related to 

algorithmic complexity and low-light conditions. The accuracy of depth is influenced by factors like 

baseline distance, the resolution, and lens focal length. (Seitz, 1999) 

 

Figure 11: Illustration of a stereo vision system 

 

3.1.3. Active stereo vision 
Active stereo vision systems enhance traditional stereo vision setups by incorporating 

additional elements, such as projectors or structured light sources. These additions serve to simplify 

the stereo matching problem and improve depth perception in challenging environments. A common 

approach in active stereo vision involves integrating projectors into single or stereo camera systems. 

These projectors emit light, either in the form of structured patterns or through Time-of-Flight (ToF) 

technology, to aid in depth measurement and correspondence matching between camera images.  

Structured light involves projecting a known light pattern, such as dots, stripes, or color-coded 

patterns (Figure 12), onto an object or scene using a projector, allowing the system to analyze 

distortions in these patterns to infer depth information. 

 

Figure 12: Structured light patterns 
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One notable application of structured light technology has been seen in several depth 

cameras. This technology revolutionized depth sensing by bringing affordable depth sensors to the 

mass market. Structured light sensors offer high accuracy and resolution in depth data, making them 

valuable for various applications such as RGB-D SLAM (Simultaneous Localization and Mapping). 

Despite their advantages, structured light sensors have limitations. They tend to be more expensive 

than stereo camera modules and require additional power to operate the projector and compute 

depth information. Additionally, their range is typically limited to under 5-7 meters, and they may 

struggle with highly reflective surfaces or outdoor environments where sunlight could overpower the 

projector. (Depth cameras and RGB-D camera SLAM, 2020) 

Sunlight can pose significant challenges to structured light systems for several reasons, 

including interference from sunlight. Sunlight contains infrared light, which is similar to the light used 

in structured light systems. When a structured light camera operates in bright sunlight, the camera’s 

IR sensor can pick up the IR light from the sun, which interferes with the structured light pattern. This 

interference can cause the camera to misinterpret the light pattern, leading to errors in depth 

measurements. 

Another issue is reduced contrast, where the strong light from the sun can overwhelm the 

projector’s pattern. In bright sunlight, the contrast between the structured light pattern and the 

background can be reduced, making it difficult for the camera to detect the subtle changes needed to 

measure depth accurately. This can lead to a less detailed or inaccurate depth map and expansion in 

the 3D reconstruction (Figure 13). 

 

Figure 13: How 3D reconstructions affected by sunlight examples 

 

Sensor saturation is also a problem, as the camera's IR sensor might become overloaded when 

exposed to direct sunlight. When the sensor receives too much light, it can't accurately detect the 

structured light pattern, resulting in areas of the depth image being washed out or completely blank. 

(Gupta, Yin, & Nayar, 2013) 

In summary, active stereo vision, especially through structured light systems, provides 

enhanced depth perception and performance in low-light environments. However, it also introduces 

considerations such as cost, power consumption, and environmental limitations that must be weighed 

against its benefits in specific applications.  
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3.1.4. Passive Vs Active stereo vision 
Stereoscopic vision, a fundamental principle of computer vision, mimics human binocular 

vision by using two or more cameras to perceive depth through triangulation. This technology is 

passive, requiring no active illumination, making it suitable for long-range and outdoor applications. 

However, stereoscopic vision struggles with flat, untextured scenes and may not provide dense point 

cloud representations. It relies on area-based matching and can face challenges with the matching 

problem. 

Active stereoscopic vision builds on the principles of stereoscopic vision by incorporating an 

additional random pattern projector (RPP) into the system. Like stereoscopic vision, active 

stereoscopic vision aims to mimic human vision but offers a smaller operating range. While active 

stereoscopic vision is less affected by ambient light and does not require surface texture, it can face 

challenges in direct sunlight. 

When comparing point cloud stereo vision and point cloud structured light vision, both 

technologies have their unique advantages and applications. Stereo cameras excel in outdoor 

environments and offer a passive solution for depth perception, while structured light cameras, use 

time-coded patterns to infer depth. The structured light approach provides high accuracy at short 

distances at a fair cost compared to other technologies. However, it may face limitations with 

transparent objects, highly reflective surfaces, or long-range applications. The choice between 

stereoscopic vision and structured light vision depends on the specific requirements of the application, 

including range, environmental conditions, and desired accuracy. (Stereo Vision for 3D Machine Vision 

Applications, n.d.) 

 

3.2. Time of Flight (ToF) camera 
It is also worth mentioning time-of-flight (TOF) cameras, which revolutionise 3D imaging by 

adopting a time-domain approach instead of a space-domain approach. These cameras, sometimes 

referred to as LIDAR or laser radar, measure the time delay between the emitted laser light and its 

reflection from the surface of an object to obtain accurate distance measurements (Figure 14). 

 

Figure 14: LiDAR distance measurement technique 

 

 Τhere are two main techniques are used in TOF cameras.  

• Pulsed laser light systems: These measure the time delay between emitted and received laser 

pulses, determining relative positions based on the speed of light. While offering speed, the 

shorter baseline can reduce depth resolution. 
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• Phase-based systems: These modulate a sine wave in the emitted laser beam and measure 

the phase difference between the emitted and reflected waves. While providing better 

accuracy for longer integration times, they are sensitive to ambient lighting and reflections. 

TOF cameras use near-infrared light to illuminate scenes and measure the phase shift of reflected 

light to determine distances. They operate at high speeds, capturing entire images at video 

frequencies or higher. However, they typically offer lower spatial resolution, with VGA resolution 

being considered high-end due to manufacturing complexity. 

Despite their lower theoretical accuracy compared to structured light systems at shorter 

distances, TOF (Time of Flight) cameras excel beyond 10 meters. They allow pixel-level processing, 

enhancing accuracy and avoiding loss of spatial resolution. TOF cameras represent a cutting-edge 

technology with tremendous potential for various applications requiring real-time 3D distance 

imaging. 

 

3.3 D455 Intel RealSense 

The Intel RealSense D455 depth camera, used in this research, represents the forefront of 

active sensor technology, offering significant advances in depth and spatial perception. Building upon 

the success of its predecessors, the D455 enhances range, accuracy, and versatility to meet the 

evolving demands of modern applications. 

One of the key enhancements of the D455 is the extended distance between depth sensors, 

now spanning 95 mm. This extension significantly improves depth accuracy, with an impressive error 

rate of less than 2% at 4 meters (Figure 15). ). Such precision is crucial for tasks requiring reliable depth 

measurements, such as collision avoidance and object recognition. Additionally, the D455 provides 

data in real-world scale and distances, ensuring accurate and practical applications across various 

fields. 

 

Figure 15: Intel RealSense D455 sensors distances 

 

 To complement its superior depth sensing capabilities, the D455 features an RGB 

sensor/imager (Figure 16) equipped with a global shutter, perfectly matched to the depth field of view. 

This integration ensures seamless correspondence between RGB and depth images, facilitating 

effortless scan recreations and enabling the creation of digital twins with unmatched precision. 
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Figure 16: Intel RealSense D455 camera 

 

Moreover, the D455 incorporates an infrared projector that enhances the stereo camera 

system's ability to determine depth. By projecting a static infrared pattern onto the scene (Figure 17), 

the infrared projector increases the depth accuracy on low-texture scenes, in challenging 

environments. 

 

Figure 17: D455 infrared pattern 

 

 Notably, the infrared projector meets the Class 1 laser safety standard under normal 

operation, ensuring user safety during use (Figure 18). In addition to depth sensing, the color sensor 

on the stereo depth module provides texture information, enabling various applications such as 

overlaying texture on a depth image to create a colorized point cloud and overlaying texture on 3D 

model for reconstruction. 

 

Figure 18:  Lasers are categorized into 4 classes based on their optical power levels 

Furthermore, the integration of an Inertial Measurement Unit (IMU) empowers applications 

to refine depth awareness, even in dynamic environments where the camera is in motion. The D455's 

versatility is evident in its adaptability to both indoor and outdoor environments. With its robust 
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global shutter technology, the camera delivers exceptional performance in various lighting 

conditions, ensuring reliable operation across diverse settings. 

The specifications of the Intel RealSense D455 underscore its capabilities. Utilizing 

stereoscopic depth technology, the D455 offers a depth field of view of 87° × 58° and outputs depth 

streams at resolutions of up to 1280 × 720, achieving frame rates of up to 90 fps. The RGB sensor 

boasts a resolution of 1 MP and a field of view of 90° × 65°, capturing crisp and detailed images at 

30 fps. (Figure 19). (RealSense I. , 2023) 

 

 

 

3.3.1. Coordinate Axes Description 
 The coordinate system of the D455 camera plays a crucial role in ensuring the accuracy of 3D 

reconstruction processes. Understanding this coordinate system is essential for the correct 

interpretation of the depth data produced by the camera. The D455 camera applies a specific 

coordinate system in which the Z-axis extends forward from the camera lens, the Y-axis is oriented 

downward, and the X-axis extends to the right. These axes are critical for determining the spatial 

relationships within the camera's field of view (Figure 20). 

 

 
Figure 20: Coordinate system of D455 

 

It is important to note that this coordinate system is defined from the perspective of a person 

standing behind the camera and looking in the direction it is facing. As a result, when the camera is 

viewed from the front, the left infrared sensor actually appears on the right side. This configuration is 

Figure 19: Specifications of the Intel RealSense D455 capabilities 
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characteristic of a left-handed coordinate system, which is a crucial factor when the data produced by 

the D455 camera are used in subsequent stages of analysis or processing. Proper awareness and 

understanding of this coordinate system are essential for fully leveraging the depth sensor capabilities 

of the camera in various applications. (RealSense, D435i, n.d.) 

Τhis understanding is particularly important because the data produced by the camera may 

require transformation due to the potential use of a different reference system in other environments 

where they will be further processed. Incompatibility between different reference systems can lead 

to errors or discrepancies in the results. 

  

4. 3D Registration 
For the process of 3D registration, preprocessing of the data exported from the depth camera 

is essential. RGBD images must be aligned so that each pixel in the color image corresponds to a pixel 

in the depth image. This alignment ensures the integrity of subsequent processes, such as the creation 

and alignment of point clouds. 

 

4.1. RGBD Images to Point cloud 
Each scan export from the D455 depth camera has a .bag file, which includes two folders for 

each frame type (color & depth) and a .json file. The JSON file provides metadata and calibration 

information associated with the images and depth data captured by the Intel RealSense D455 camera 

(Figure 21). It contains the information necessary to map the depth data to real-world distances and 

accurately align the color and depth images. 

 

Figure 21: Scan metadata from .json file 

 

 An RGBD image is a composite image created by combining both color and depth information. 

This fusion of data allows for enhanced perception of three-dimensional environments. To achieve 

this, both the color and depth images must be aligned, meaning they must be registered within the 

same camera frame and possess identical resolutions. This alignment ensures that every pixel in the 

RGB image corresponds precisely to a pixel in the depth image. 

The default conversion function for generating an RGBD image involves taking a pair of color 

and depth images as inputs. The color image in RGB format (.png) is first converted to grayscale, which 
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simplifies the data while preserving the luminance information. This grayscale image is then stored as 

a floating-point array with values normalized within the range [0, 1]. This normalization makes the 

data more manageable for further processing. On the other hand, the depth image (.jpg) is stored as 

a floating-point array representing the depth values in meters. This depth information indicates the 

distance from the camera to the objects in the scene at each pixel. (YodaYoda, 2020) 

To calculate the three-dimensional (3D) coordinates from the depth image, it is necessary to 

use the intrinsic parameters of the camera. These intrinsic parameters include key values such as the 

focal length and the principal point (the optical center of the camera). The focal length, concerning 

depth image case, determines how strongly the camera converges light rays to a single point, affecting 

how depth is perceived. The principal point is the coordinate in the image where the optical axis 

intersects the image plane. 

Using these intrinsic parameters, each pixel in the two-dimensional image (color or depth) can 

be transformed into a three-dimensional point in space. Specifically, for each pixel in the depth image, 

the depth value is combined with the pixel's position and the camera's intrinsic parameters to 

calculate its 3D coordinates in the camera's reference frame. This process allows the depth image to 

be converted into a 3D point cloud, where each point represents a physical location in space (Figure 

22). 

 

Figure 22: Point cloud calculated from depth map 

 

To create a visually meaningful 3D representation, it's essential to colorize the point cloud. 

This involves combining the RGB data (color information) with the depth data. Each depth point, now 

represented as a 3D coordinate, is matched with its corresponding color value from the RGB image. 

This matching is performed using the same two-dimensional pixel coordinates (Figure 23).  

 

Figure 23: Depth and Color frame 

 

In essence, the color of each point in the point cloud is determined by the RGB values at the 

corresponding location in the color image. This results in a colored point cloud, where each point is 

not only positioned accurately in 3D space but also displays the correct color as seen in the original 

RGB image (Figure 24).  
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Figure 24: Colored point cloud from depth and rgb frames 

 

Before applying any point cloud alignment techniques, it is crucial to preprocess the data. One 

of the primary preprocessing steps is downsampling. Downsampling reduces the number of points in 

the point cloud, which simplifies the dataset, reduces noise, and significantly optimizes computational 

efficiency (Figure 25). This step is especially important when dealing with large-scale point clouds, as 

it makes subsequent processing, such as alignment and registration, much faster and less prone to 

errors. 

 

Figure 25: DownSampled colored point cloud 

 

 Down sampling typically involves selecting a subset of points based on a defined sampling 

criterion, such as voxel grid filtering, where the space is divided into a 3D grid and a representative 

point is chosen for each grid cell. This reduces the overall number of points while retaining the 

essential structure of the point cloud. Once down sampling is complete, point cloud alignment can be 

performed more effectively. Alignment is the process of registering multiple point clouds into a single 

coherent model, which is critical in applications such as 3D reconstruction, where multiple views of an 

object or scene are merged to create a complete 3D model. 

 

4.2. Local refinement 
Local refinement aims to achieve precise alignment between two point clouds by iteratively 

minimizing discrepancies and ensuring an accurate match of their geometric structures. This step is 

critical in pairwise registration, as it refines the initial rough alignment and prepares the data for more 

complex operations, such as multiway registration or global optimization. 

The refinement process relies on advanced algorithms like ICP (Iterative Closest Point) and its 

variations, which introduce enhancements to address specific challenges in point cloud alignment. 

These methods optimize the transformation parameters (rotation and translation) to achieve accurate 

alignment while preserving the spatial relationships and geometry of the point clouds.  
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4.2.1. ICP (Iterative Closest Point) Point-to-Plane 
The ICP (Iterative Closest Point) algorithm is a method used to align two 3D point clouds by 

iteratively minimizing the distances between them. This involves finding a transformation consisting 

of a rotation matrix and a translation vector to align one point cloud (source) with another (target). 

Through repeated iterations, the algorithm refines this transformation until the point clouds are 

sufficiently aligned, minimizing the error. Is a local registration algorithm that minimizes the distances 

between two 3D point clouds to align them. This is achieved by calculating the parameters of a rigid 

body transformation, represented by a 4x4 homogeneous matrix H, specifically a rotation matrix R 

and a translation vector t, preserving their shape and scale (Figure 26). This transformation is applied 

to one point cloud (source) to bring it into the same reference frame as another point cloud (target) 

so that their points correspond to the same spatial coordinates. (Ho, n.d.) 

 

Figure 26: Transformation matrix (Matrix Transformations, n.d.) 

 

The ICP point-to-plane2 variant enhances this process by not only minimizing the Euclidean 

distance between corresponding points but also considering the surface geometry of the target point 

cloud. Instead of aligning a point from the source to a point in the target, this method aligns the point 

from the source to the tangent plane of the corresponding point in the target (Figure 27). This 

approach generally converges faster and can be more accurate, as it incorporates the local geometry 

and reorientation of the surface, resulting in better matching between cloud points. (Low, 2004) 

 

Figure 27: Point to Plane method 

 

 The ICP point-to-plane algorithm is particularly useful when point clouds represent complex 

surfaces. In the context of pairwise registration or multiway registration in 3D, the process begins with 

an initial alignment of the source and target point clouds by minimizing the distances between points 

and planes. Moreover, the use of a pose graph ensures that each new point cloud is aligned with the 

 
2 https://www.open3d.org/docs/release/tutorial/pipelines/icp_registration.html#Point-to-plane-ICP  

https://www.open3d.org/docs/release/tutorial/pipelines/icp_registration.html#Point-to-plane-ICP
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set of previously registered and aligned point clouds. This maintains the overall accuracy and 

consistency of the combined dataset during the integration of new point clouds. 

 

4.2.2. Colored ICP 
Colored ICP3 (Iterative Closest Point) is an advanced variation of the traditional ICP algorithm 

used for aligning 3D point clouds. Unlike traditional ICP, which relies solely on geometric information 

(the positions of points in space), Colored ICP incorporates color information (RGB values) to enhance 

alignment accuracy. This method is particularly useful for complex scenes and large datasets, ensuring 

high precision. (Park, Zhou, & Koltun, 2017) 

In each iteration of the Colored ICP algorithm, pairs of corresponding points between the 

source and target point clouds are identified. This involves finding the closest points based on both 

spatial distance and color similarity. The color values (red, green, and blue) of each point are utilized 

to help determine correspondences. Points with similar colors are considered more likely to be correct 

matches. By incorporating color information, the algorithm can better distinguish between points that 

are geometrically close but have different colors, overcoming challenges posed by repetitive or 

ambiguous geometry. 

Once the corresponding points are identified, the algorithm refines the rigid transformation 

matrix T, which consists of a rotation matrix R and a translation vector t, to align the source point 

cloud to the target point cloud. This process iteratively reduces the misalignment by optimizing a joint 

energy function, which combines geometric and photometric consistency. 

The Colored ICP algorithm achieves this by minimizing a joint energy function composed of 

two terms. The first term, the geometric term EG(T) (Figure 28), measures the point-to-plane error 

and ensures alignment based on spatial geometry. It minimizes the perpendicular distance between 

the transformed points in the source point cloud and the tangent planes at their corresponding points 

in the target point cloud.  

 

Figure 28: Colored ICP geometric term 

 

The second term, the color term EC(T) (Figure 29), measures the photometric error and 

ensures alignment based on color similarity, minimizing the differences in the RGB values of 

corresponding points. 

 

Figure 29: Colored ICP color term 

 

A parameter λ (Figure 30) is used to balance the contributions of the geometric and color 

terms in the energy function. When λ is closer to 1, the algorithm prioritizes geometric alignment, 

 
3 https://www.open3d.org/docs/release/tutorial/pipelines/colored_pointcloud_registration.html  

https://www.open3d.org/docs/release/tutorial/pipelines/colored_pointcloud_registration.html
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whereas lower values of λ place more emphasis on photometric consistency. This balance allows the 

Colored ICP algorithm to adapt flexibly to different scenarios, ensuring that both geometry and color 

are utilized effectively for robust and accurate alignment. (Jaesik, Park, Zhou, & Koltun, 2017) 

 

Figure 30: Colored ICP balance term 

 

4.2.3. Pose Graph  
The pose graph is a critical component in 3D reconstruction for optimizing point cloud 

alignment. It enables the integration of new point clouds into an already aligned dataset, ensuring 

accuracy and consistency. This methodology is particularly valuable for large-scale reconstructions 

with multiple views. 

 

4.2.3.1. Initialization of Pose Graph 

The first node in the pose graph typically represents the initial position of the sensor and is 

initialized with the identity matrix. This matrix indicates that the robot's starting position is at the 

origin of the coordinate system, with no rotation or translation applied. This initial pose serves as a 

fixed reference point against which all subsequent poses will be compared and connected within the 

graph. Once initialized, this first node is added to the pose graph as the starting point, and initially, it 

does not have any edges connected to it because it is the only pose in the graph at that moment. 

As new nodes are added, if a neighboring node exists, an odometry edge is created, using a 

transformation matrix computed from the application of ICP (Iterative Closest Point) between the new 

node and the neighboring node. If there are non-neighboring nodes that might have overlaps, a loop 

closure edge is added, with the transformation matrix computed from pairwise registration between 

the new node and the non-neighboring node. (Grisetti, Kümmerle, Stachniss, & Burgard, 2010) 

 

4.2.3.2. Pose Graph Construction 

Spatial relationships and transformations between different poses (positions, orientations) of 

a sensor with respect to time are represented by the pose graph4. A pose graph represents the spatial 

relationships and transformations between different poses (positions and orientations) of a sensor 

over time. Each node in the pose graph represents a piece of geometry, specifically a point cloud, and 

has an associated pose matrix. This matrix transforms the geometry from the node's local coordinate 

system to the global coordinate system. The first node, or the first point cloud in this case, serves as 

the reference point and corresponds to the identity matrix. The remaining nodes are initialized based 

on transformations from neighboring nodes.  (Choi, Zhou, & Koltun, 2015) 

Edges connect pairs of nodes, indicating spatial measurements. Odometry provides a rough 

initial guess of the relative pose between consecutive frames, based on the assumption that the 

movement between consecutive frames is small and can be estimated. The edges in the pose graph 

connect two nodes and contain a transformation matrix that aligns the geometry of the source node 

with the geometry of the target node (Figure 31). The edges are divided into two categories: 

 
4 https://www.open3d.org/docs/release/tutorial/pipelines/multiway_registration.html#Pose-graph  

https://www.open3d.org/docs/release/tutorial/pipelines/multiway_registration.html#Pose-graph
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Figure 31: Pose Graph Construction example (Pfingsthorn, 2014) 

 

• Odometry Edges: As the sensor acquires new poses, a new node is added to the pose graph. If there 

is a neighboring node, meaning a pose that is temporally or spatially close, an odometry edge is 

created between the new node and the neighboring node. This edge represents the estimated 

transformation between the two poses, derived from the sensor's odometry data. The transformation 

matrix defining this edge is computed using the Iterative Closest Point (ICP) algorithm, which aligns 

two point clouds by minimizing their differences. Odometry edges connect temporally close nodes, 

providing a reliable initial estimate of the relative pose between consecutive frames due to the high 

overlap ratio between the corresponding point clouds. (Iterative Closest Point). 

• Loop Closure Edges: When the sensor revisits a previously explored area, non-neighboring nodes, 

nodes that are not temporally or spatially adjacent but represent the same physical location, can be 

identified. This identification is crucial for correcting accumulated drift in pose estimates by 

recognizing when the sensor has returned to a previously visited location. When a potential overlap 

is detected, a loop closure edge is added between the new node and the non-neighboring node. This 

edge, similar to an odometry edge, contains a transformation matrix computed through pairwise 

registration, which may involve more robust methods than ICP, such as RANSAC-based alignment or 

global optimization techniques. While loop closure edges are essential for maintaining global 

consistency in the pose graph, they are inherently less reliable than odometry edges due to the lower 

overlap ratio between the point clouds being aligned. Nonetheless, these edges are crucial for 

correcting errors accumulated over long trajectories in the 3D reconstruction process. (Simsangcheol, 

2023) 

At the end of the process and before the results are extracted, the pose graph is optimized 

using the Levenberg-Marquardt method. It further involves a global optimization algorithm to improve 

the poses of the nodes. The optimization aims to minimize the error on all edges of the pose graph 

globally and not individually as in the previous methods. Levenberg-Marquardt is an iterative method 

that combines the concepts of gradient descent and Gauss-Newton methods. It is particularly effective 

for nonlinear least squares problems. The algorithm adjusts the positions iteratively to minimize the 

sum of squared errors. Levenberg-Marquardt algorithm is known for its robustness and its ability to 

converge to a good solution even when the initial estimates are far from the optimal solution. (Henri, 

2024) 

 

5. Novel 3D reconstruction approaches 
3D reconstruction has made significant progress in recent years, with new methods being 

developed to overcome the limitations of traditional approaches. Classic techniques, such as voxel 

grids and polygonal meshes, often struggle to balance quality, computational efficiency, and memory 
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usage. These methods require large amounts of memory to store high-resolution data and frequently 

fail to accurately render complex geometric details or lighting effects in intricate scenes. 

To address these challenges, advanced methods such as Neural Radiance Fields (NeRF) and 

Signed Distance Fields (SDF) have been developed. These techniques leverage deep learning and 

mathematical models to achieve detailed and efficient 3D reconstructions. 

 

5.1. NeRF 
Traditional 3D scene reconstruction and rendering methods often struggle to balance quality 

and computational efficiency. Voxel grids require significant memory to store high-resolution details, 

while mesh-based methods may not accurately represent complex geometries and view-dependent 

lighting effects. Neural Radiance Fields (NeRF) overcome these challenges by representing a scene as 

a neural radiance field, a continuous function parameterized by a neural network. This innovative 

technique in computer vision and graphics enables the production of high-resolution, photorealistic 

3D renderings from a limited number of 2D images (Figure 32). 

 

Figure 32: High-resolution 3d rendering from 2D images 

 

 Unlike traditional methods that rely on voxel grids or meshes, NeRF employs a continuous 

volumetric scene representation enhanced by deep learning techniques. Compared to standard 

methods using voxel grids or meshes, NeRF works with a continuous point density field supported by 

deep learning methods. This allows NeRF to form new views of complex scenes, such as scenes with 

complex geometry and lighting details, generated with high photorealism while maintaining 

reasonable runtimes. 

 To accurately reconstruct the 3D scene, NeRF requires overlapping images of the scene and 

corresponding camera poses. After capturing these images, the camera poses are commonly 

estimated. Once the camera poses and images are aligned, NeRF can effectively render the scene by 

learning how light interacts with the environment from different perspectives, ultimately producing 

highly realistic 3D visualizations. 

 

5.1.1. Neural Network Architecture of NeRF 
NeRF (Neural Radiance Fields) encodes a scene by using a continuous 5D function to output 

the color and density of a point based on its position and the direction it is viewed from. This method 

relies on 3D spatial coordinates (x, y, z) to represent the location within the scene and 2D angles (θ, 

φ) to define the viewing direction. This complex relationship is captured by a Multilayer Perceptron 

(MLP), a type of deep neural network. 
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The NeRF (Neural Radiance Fields) architecture uses a Multi-Layer Perceptron (MLP) to 

process 5D inputs, which consist of a 3D spatial location and 2D viewing direction, with the goal of 

predicting the color (RGB) and density (σ) for each point in a scene. 

In this process, the 5D inputs are passed through 8 fully connected layers, each followed by 

ReLU activation functions, enabling the model to learn complex patterns and relationships, effectively 

mapping the inputs into a high-dimensional feature space. After these layers, the model outputs two 

key elements: the density (σ) of the point, which indicates how much light is absorbed or scattered at 

that point, and a 256-dimensional feature vector that captures rich details about the point in the 

scene. This 256-dimensional feature vector is then combined with the viewing direction of the camera 

ray, and the combined information is passed through one more fully connected layer with ReLU 

activation and 128 channels, which finally outputs the view-dependent RGB color for that point (Figure 

34). This entire process allows the NeRF model to reconstruct scenes from different viewpoints by 

predicting how each point in the scene should look based on its position, viewing direction, and 

learned features. 

 

Figure 33: Multi-Layer Perceptron (MLP) architecture commonly used in NeRF (Neural Radiance Fields) 

 

The network produces two essential outputs: volume density, which indicates how opaque a 

material is at a specific point in 3D space, and a feature vector (Figure 34). This feature vector is then 

integrated with the viewing direction to generate the RGB color, which changes based on the 

observation angle. This approach allows the MLP to capture intricate scene details, including effects 

like reflections, refractions, and shading, leading to highly realistic 3D renderings with detailed lighting 

and fine textures.  

 

Figure 34: Core concepts behind Neural Radiance Fields (NeRF) 

 

The MLP in NeRF effectively transforms 5D input coordinates into high-dimensional feature 

representations via multiple layers and non-linear activations. This allows the network to learn and 

represent complex interactions between 3D spatial latent locations in relation to view angles, leading 

to the extraction of rich lighting effects, fine details, or other scene-specific information. During 

training, the network's weights are optimized using backpropagation and gradient descent to improve 

predictions of scene details. As a result, NeRF can produce extremely detailed and photorealistic 3D 

renderings from a limited number of camera views. 
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5.1.1.1. Multilayer Perceptron (MLP) 

In machine learning, a Multilayer Perceptron (MLP) is the foundational model of an artificial 

neural network, consisting of multiple layers. The MLP is a network made up of layers of nodes, called 

neurons, which are the basic units for processing and transmitting information from one layer to 

another. Each neuron in the network receives input data, applies a mathematical operation (typically 

a weighted sum followed by an activation function) on this input, and then passes it forward to 

neurons in the next layer. Weights connect neurons in different layers, and adjusting these weights 

during training optimizes the network's performance.  

An MLP generally has three types of layers. The input layer, one or more hidden layers, and 

an output layer (Figure 35). The input layer receives raw data, such as images or text sequences, and 

feeds it into the network. Learning occurs in the hidden layers between the input and output layers, 

where information is gradually refined into a form that the output layer can use to produce the final 

result, which could be a classification label, numerical value, or another type of output depending on 

the specific task. 

 

Figure 35: Example of an MLP with two hidden layers 

 

 The use of activation functions in MLPs adds non-linearity, which is crucial for learning 

complex patterns. These complexities are captured by modulating or transforming the passing 

information using activation functions such as the Rectified Linear Unit (ReLU), Sigmoid, and Tanh. 

Without these activation functions, an MLP would essentially be a linear model, unable to solve 

complex problems. 

MLP training involves a supervised learning process known as backpropagation, which aims to 

minimize the difference between the network's predictions and target values. During 

backpropagation, the network determines its error and adjusts each weight based on this feedback to 

avoid repeating similar mistakes. The network is updated iteratively over millions of records, reducing 

error gradually. Optimization algorithms like Stochastic Gradient Descent (SGD) or Adam are 

commonly used to adjust the weights efficiently during training. (Sejal, 2024) 

 

5.1.1.2. Volume Rendering 

Volume rendering is a technique used to produce 2D images from 3D scenes by simulating 

how light interacts with opaque materials. Neural Radiance Fields (NeRF) enhance this process by 

using a 5D function that captures essential information about a scene: volume density (σ) and radiance 

(or color). Volume density indicates the probability of light being absorbed or scattered in a certain 

space, while radiance represents the color emitted from a point based on the viewing direction. 
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Radiance fields are valuable in NeRF because they depict intricate light behaviors in a scene, 

crucial for creating photorealistic images. These fields visualize how light behaves as it passes through 

different materials and interacts with surfaces, capturing effects like reflections and refractions. By 

encoding not just the color at a point but also how that color changes based on the viewing angle, 

radiance fields enable NeRF to generate realistic object appearances under varying lighting conditions 

and perspectives. 

To render an image, NeRF simulates light rays passing through each pixel of the image. Each 

ray r(t) is emitted from the camera origin o, through the pixel C(r), and into the 3D scene. As the ray 

traverses the scene, NeRF samples multiple points along its path. For each of these points, the neural 

network predicts the volume density and the radiance (Figure 36). For example, when a ray intersects 

an object the volume density is high, indicating that the object absorbs or scatters light significantly. 

The radiance at this point reflects the color as seen from the specific viewing direction of the camera. 

 

Figure 36: Illustrates of the concept of Volume Rendering 

 

 The outputs are radiance and density values from all sampled points along the ray, which the 

neural network combines to compute the final pixel color. This process involves aggregating 

contributions from every point along the ray path, considering how light is absorbed and scattered in 

between. The transmittance function calculates the probability that a ray will continue traveling 

without being blocked by particles. During color accumulation, all sampling points are summed with 

weights based on their transmittance values to produce the final pixel color. 

Radiance fields enhance this process by allowing NeRF to model nuanced lighting changes and 

details, such as light filtering through a translucent material or reflecting sharply off a glossy surface. 

This capability is especially important in scenes with complex lighting effects, where traditional 

rendering methods might struggle to achieve the same realism. NeRF uses stratified sampling to 

estimate the integral representing the total color for each ray. This technique involves dividing the 

ray's path into multiple bins and sampling from each bin, ensuring that the entire range of the ray is 

well represented for a more accurate approximation. 

Stratified sampling helps NeRF approximate a continuous scene representation by evaluating 

the scene at various locations during optimization, contributing to high-quality visual effects like 

reflections, refractions, and realistic shading. (Wu, Lee, Bhattad, Wang, & Forsyth, 2022) 

 

5.1.1.3. Neural Radiance Field Optimization 

 The techniques used to optimize a Neural Radiance Field (NeRF) aim to render high-resolution 

and complex scenes with realistic quality. While the core elements of NeRF, such as scene modelling 

and rendering new views, are fundamental to the process, they alone are not sufficient to achieve the 



   

 

44 
 

best possible results. For this reason, two significant improvements are introduced: positional 

encoding and hierarchical volume sampling. 

 

5.1.1.3.1. Positional Encoding 

While training a neural network like the MLP in NeRF, it's important to understand that these 

networks can theoretically learn any function, given enough data and time. However, when the 

network directly processes raw 3D coordinates and 2D viewing angles, it often struggles to capture 

high-frequency details in the scene. These high-frequency details include sharp edges, intricate 

textures, and fine lighting variations. 

Neural networks, particularly deep ones, naturally find it easier to learn general, low-

frequency details than more intricate, high-frequency details. As a result, they may overlook the small, 

detailed aspects of a scene. To address this problem, there is a modification to the way the network 

handles the input coordinates. Instead of using the raw coordinates directly, first map them into a 

higher-dimensional space using sine and cosine functions with different frequencies, a technique 

known as positional encoding (Figure 37). This transformation makes each of the spatial coordinates 

(x, y, z) and each component of the viewing direction more complex and detailed. This allows the MLP 

to better approximate fine details in the scene, improving its ability to render sharper textures and 

edges more realistically. (Mildenhall, et al., 2022) 

 

Figure 37: Positional Encoding Technique 

 

5.1.1.3.2. Hierarchical Volume Sampling 

 Hierarchical Volume Sampling is a crucial technique used in NeRF to improve the efficiency 

and accuracy of rendering 3D scenes. When NeRF sends rays into a scene to sample points along each 

ray, it initially uses equal intervals between points. This basic approach ensures that the entire scene 

is covered but can be inefficient, especially in areas where there is no meaningful information, such 

as empty spaces or occluded regions. These regions do not contribute much to the final rendered 

image, leading to unnecessary computations and longer rendering times. 

To address this inefficiency, Hierarchical Volume Sampling dynamically adjusts the sampling 

process when rays encounter objects or areas of interest within the scene. Instead of sampling points 

at fixed distances, this technique reduces the distance between sampled points in critical regions 

where important details, such as edges, textures, and lighting variations, are likely to be present 

(Figure 38). This finer sampling ensures that these complex features are captured more accurately, 

resulting in higher-quality renderings. (Skann.ai, 2023) 
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Figure 38: Hierarchical Volume Sampling Technique 

 

The process works by using two neural networks in tandem. A "coarse" network and a "fine" 

network. The coarse network first evaluates a broad set of points using stratified sampling to create a 

rough estimate of the scene's structure. Based on this rough estimate, the fine network then focuses 

on a more targeted set of points, prioritizing those that are likely to contain significant details. This 

hierarchical approach allocates more computational resources to regions that contribute the most to 

the final image, thereby enhancing both the efficiency and the accuracy of the rendering process. 

(Mildenhall, et al., 2022) 

 

5.1.1.3.3. Implementation details 

 In NeRF, every 3D scene is represented by an individual neural network that needs to be 

trained independently for each new view needed to generate. The training process requires a dataset 

of captured RGB images of the scene, along with information about camera position (camera poses) 

and intrinsics like focal length and sensor size. For real-world scenes, these camera details are often 

estimated using tools like COLMAP, a structure-from-motion (SFM) package, to recover the scene from 

the captured images. 

During training, the process is divided into several steps. In each step, a randomly selected 

batch of camera rays is taken. A camera ray is essentially a straight line extending from the camera 

into the scene. The network samples point along these rays to determine what should be visible at 

each point in the final rendered image. As the network processes these points, it uses volume 

rendering techniques to determine the color of each ray by combining information from all sampled 

points to figure out the color of each pixel in the final image. 

The goal of training is to make the rendered images look as close as possible to the actual 

images in the dataset. This is achieved by adjusting the network weights to closely match real-life 

images, a process guided by a loss function that quantifies the accuracy of the network's predictions. 

As NeRF continuously refines the network weights, it becomes increasingly proficient at generating 

photorealistic images, capturing fine details like textures and lighting effects with great accuracy. This 

careful balance of sampling, rendering, and optimization processes allows NeRF to produce realistic 

images from 2D data. 

 

5.2. SDF (Signed Distance Fields) 
Signed Distance Fields (SDFs) are a mathematical representation of shapes and are often used 

in ray marching and implicit rendering techniques. An SDF is a function that, given a particular point 

in space, will provide the value of the shortest distance from the nearest surface. The "signed" part 

means that this distance can be positive, negative, or equal to zero. A positive value of the symbol 

indicates that it is within the surface and a value equal to zero indicates a certainty that it is exactly 
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on the surface. This concept is very important in rendering techniques such as modeling, ray tracing, 

illumination and others. 

For example, for a spherical shape with a center at the origin and a unit radius, the SDF 

function is defined accordingly (Figure 39). 

 

Figure 39: SDF function 

 

In this case, points inside the sphere will yield a negative distance, points on the surface will 

return zero, and points outside the sphere will produce a positive distance (Figure 40). 

 

Figure 40: Negative distances inside the sphere (Left) and positive distances outside (Right). 

 

SDFs utilize fundamental principles and tools, extending their capabilities to complex and 

advanced applications such as Ray Marching, surface normal calculations, and Constructive Solid 

Geometry (CSG). These techniques enable the efficient representation and rendering of intricate 

geometries in computer graphics.  (Chris, 2023) 

 

5.2.1. Ray Marching & SDFs 
Ray Marching is a rendering technique that leverages Signed Distance Fields (SDFs) for 

efficient visualization of 3D scenes. This approach involves casting rays from a camera into a scene 

and using the SDF to determine the distance from the ray's current position to the nearest surface at 

each step (Figure 41). By advancing the ray by this precise distance, the algorithm guarantees that it 

will not miss any surface, making it both efficient and accurate for scenes described by SDFs. 

 

Figure 41: Rays from the camera use SDFs to compute the distance to the nearest surfaceRay Marching differs from 
traditional ray tracing in that it calculates intersections using Signed Distance Functions (SDFs) to implicitly define surfaces 
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rather than relying on geometric primitives like triangles or spheres. An implicit surface is defined by an equation such as 
f(x,y,z)=0, where x, y, and z are the coordinates of points in 3D space. Unlike surfaces represented by parametric or 

geometric elements like polygonal meshes or Bezier surfaces, implicit surfaces use functions to describe scalar fields at 
every point in space. 

Implicit surfaces are particularly effective for representing continuous and deformable 

objects. They allow for high geometric complexity and can be smoothly deformed by adjusting the 

functions' parameters, making them ideal for organic shapes and intricate designs. However, 

computing implicit surfaces can be demanding, especially in complex scenes with many control points. 

Despite this, implicit surfaces are widely used in fields such as scientific visualization, video game 

development, image processing, and other applications where smooth, deformable surfaces are 

essential. (Bourke, 1997) 

Ray Marching begins by firing a ray from the camera's origin and moving it through space 

along a defined direction. At each step, the SDF is evaluated at the ray's current position to determine 

the distance to the nearest surface. The ray is then moved forward by this distance. If the SDF returns 

a value close to zero, the ray is considered to have hit a surface, and the algorithm stops. Otherwise, 

the ray continues marching until it either hits the surface or reaches the maximum number of steps. 

A key optimization in Ray Marching is sphere tracing, which allows the ray to take the largest 

possible step without crossing any surfaces, as determined by the SDF. This approach minimizes the 

number of steps needed to reach a surface, improving performance. Sphere tracing also reduces 

computational load by enabling the ray to traverse large empty spaces quickly and slowing down as it 

approaches the surface (Figure 42). 

 

Figure 42: Sphere Tracing for Optimizing Ray Marching 

 

Despite its efficiency, Ray Marching does face challenges when dealing with complex scenes 

or when the precision of the SDF is low. Inaccuracies in the SDF can lead to smaller than necessary 

steps, slowing down the algorithm. Additionally, complex intersections between objects can create 

scenarios where the ray overshoots or underestimates distances, requiring careful handling of SDF 

approximations to maintain accuracy and convergence. (Wong, 2016) 

 

5.2.2. Surface Normals and Lighting 
Surface normals are critical in computer graphics for calculating lighting and shading effects, 

as they represent the direction perpendicular to a surface at any given point. In the context of Signed 

Distance Functions (SDFs), calculating surface normals involves approximating the gradient of the 

distance field. The gradient at a point on the surface indicates the direction in which the SDF increases 

most rapidly, and by normalizing this gradient, the surface normal is obtained. 

In an SDF, the surface normal on the surface can be estimated numerically by sampling the 

SDF at slightly offset points around the surface location. This measures how the distance changes as 
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α point is shifted slightly in various directions (x, y, z). The collection of these minor changes forms the 

"differential" which when normalized (adjusted to have a length of 1) provides the surface normal. 

An important aspect of ensuring the accuracy and smoothness of these surface normals is the 

Eikonal Loss. This loss function plays a key role in controlling how smoothly the surface normals are 

calculated by enforcing a specific constraint on the gradient of the SDF. Specifically, it ensures that the 

magnitude of the gradient is always equal to 1 (Figure 43). By doing so, it helps the model maintain 

consistent surface normals, resulting in smoother, more accurate surfaces in 3D reconstructions. 

Without this loss, the surface normals could be irregular or noisy, leading to poor lighting and shading 

effects. (Yang, Sun, Sundaramoorthi, & Yezzi, 2023) 

 

Figure 43: Visualization of a gradient with a value of 1 

 

This normal vector is then used in lighting calculations, which are typically based on models 

such as Phong shading or Blinn-Phong reflection, to determine how light interacts with the surface. 

The dot product between the surface normal and the light source direction determines the diffuse 

lighting, while the angle between the normal and the viewer's perspective affects the specular 

highlights (Figure 44).  

 

Figure 44: Normal vector used in lighting calculations 

 

One of the main advantages of using SDFs in lighting calculations is that they provide a smooth 

and continuous representation of surfaces, leading to more accurate normal estimations even in 

complex or procedurally generated shapes. Unlike polygonal models, which approximate surfaces 

with flat faces and discrete normals at vertices, SDFs implicitly define surfaces, resulting in more 

natural lighting transitions. (Wong, 2016) 

 

5.2.3. Constructive Solid Geometry (CSG) 
Constructive Solid Geometry (CSG), a way of creating complex 3D objects by combining 

simpler geometric blocks via functions like union ( ∪ ), intersection ( ∩ ) and difference ( - ) (Figure 45). 

In the scenario of an SDF, these operations are condensed to some simple math adjustments in the 

distance value of the SDFs, enabling highly flexible and efficient shape composition. 
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Figure 45: Creating complex 3D objects by combining simplier geometric 

 

The union of SDFs for two objects creates a combined shape by joining the surfaces of both 

objects. This can be useful for producing objects held in place by multiple surfaces, but it also has the 

same limitations as union, where it may introduce errors at areas where two shapes meet. SDF 

generation may not be as accurate if the surfaces do not nicely intersect with one another. 

The intersection between two objects involves taking the pointwise maximum of their 

distance functions. The resulting SDF describes the overlap between these two objects—where, for 

any given point in space, it will be considered inside this shape only if it lies within both shapes. This 

operation is helpful for forming capsulators bound to two areas, yet like union, it can create errors 

where both shapes meet. The accuracy of the generated SDF depends on how smoothly the surfaces 

intersect. 

A difference operation subtracts one object from another by taking the maximum of one 

shape and the negative of the other shape's distance. This carves out the second shape from the first 

one, leaving behind complex geometry. The subtraction operation is useful for creating objects with 

voids or hollowed-out shapes. However, like union and intersection, the generated SDF may be 

inexact, particularly at the boundaries of objects. 

CSG operations on SDFs are computationally efficient because they translate complex Boolean 

operations into simple minimum-maximum calculations. This method is very flexible and efficient, 

capable of quickly generating complex geometries and dynamic shapes suitable for real-time 

applications. For instance, CSG lends itself to procedural modeling, where complex structures can be 

constructed from simple shapes assembled hierarchically with Boolean set operators. 

One of the major issues in CSG with SDFs is maintaining an accurate enough field after several 

operations. The resulting SDF may not exactly be a "signed distance function" which could slow down 

rendering algorithms like sphere tracing. More recent research has focused on bounding these 

inaccuracies to ensure that convergence is maintained for complex CSG operations in the context of 

sphere tracing. Specific distance function estimates (SDFEs) are introduced to effectively handle more 

complex geometries in an approximate but reasonably accurate manner. (Bálint, Valasek, & Gergo, 

2023) 

 

6. Applications of NeRF and SDF in 3D Reconstruction 
3D reconstruction has made significant progress, introducing new tools that simplify the use 

of complex techniques. NeRF Studio and SDFStudio are two frameworks that utilize Neural Radiance 

Fields (NeRF) and Signed Distance Fields (SDF) to create efficient and detailed 3D representations. 

These tools are flexible and user-friendly, with features that address various needs, such as 

photorealistic rendering and surface reconstruction. 
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6.1. NeRF-studio 
NeRF studio5 is an easy-to-use framework that helps develop and deploy Neural Radiance 

Fields (NeRFs). It was created by students at the KAIR lab in Berkeley AI Research (BAIR) and launched 

in October 2022. Now, it has grown into a robust open-source project supported by both researchers 

and community contributors. 

NeRF studio ’s design includes several key parts, each essential to the NeRF process (Figure 

46). These parts can be easily adapted to different needs. It provides an easy-to-use environment 

necessary for creating, training and testing NeRFs. In addition, NeRFstudio also consists of an API to 

make it even more flexible for developers. (Tancik, Weber, Ng, Li, & Yi, Nerfstudio, 2023) 

 

Figure 46: Overview of NeRF studio ’s Modular Framework 

 

6.1.2. NeRF studio ’s Core Components 
NeRF studio 's architecture consists of several core components that aid the NeRF pipeline. 

These elements are designed to be modular, making it easier to customize and extend them. 

 

6.1.2.1. Data Management and Parsing 

 The first critical component in the NeRFstudio framework is the DataManager, which is 

responsible for converting posed images into Ray Bundles. Ray Bundles are essentially slices of 3D 

space originating from the camera. The process begins with the DataParser, a subcomponent designed 

to load input images and camera data. NeRFstudio supports a variety of data formats. This includes 

mobile apps like Record3D, Polycam, KIRI Engine, and 3D tools such as Metashape and Reality Capture. 

This wide compatibility makes the framework accessible to a broader audience. Once the images and 

data are loaded, the DataManager processes them to generate Ray Bundles and ground truth 

supervision, and it can also optimize camera poses during training. (Tancik, et al., Nerfstudio: A 

Modular Framework for Neural Radiance Field Development, 2023) 

 

6.1.2.2. Ray Bundles, Ray Samples, and Frustums 

For 3D rendering and Neural Radiance Fields (NeRFs), Ray Bundles are a core tool for 

describing 3D space. These bundles encapsulate how light interacts with objects and scenes as 

recorded through various camera views. Ray Bundles, which consist of rays with similar directions but 

minimal spread, harmoniously represent a slice of 3D space (Figure 47). While each ray within a bundle 

 
5 https://docs.nerf.studio/  

https://docs.nerf.studio/
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has a specific direction, the entire complex of rays can be seen as spreading over multiple directions. 

This allows for a more robust sampling of light interactions in the scene, and the high coherence within 

a Ray Bundle ensures that the rays behave more like synchronized vectors. 

 

Figure 47: A ray bundle, in which the rays have a large spread of propagation direction 

 

 Each Ray Bundle is characterized by several parameters such as the starting point (origin) of 

each ray within the bundle, typically corresponding to the position of the camera or light source, and 

a vector indicating the path along which the ray travels from its origin. This direction is crucial as it 

defines how the ray intersects with objects in the scene. (Steinberg, et al., 2023) 

 Ray Samples are the result of converting Ray Bundles by sampling the 3D space along the 

paths defined by the rays. This sampling process is determined by the interval bin spacing, which sets 

the distance between consecutive samples along a ray, affecting both the resolution and detail of the 

samples. Smaller intervals lead to higher resolution and more detailed sampling but increase 

computational complexity and processing time. Ray Samples are further encapsulated into geometric 

shapes known as frustums. A frustum in this context is a segment of the Ray Sample that captures the 

3D space it represents. Frustums can be represented as point samples or Gaussian distributions (Figure 

48). Representing frustums as point samples means that each frustum of a ray is treated as an 

individual point in space. (Relja & Andrew, 2021)  

 On the other hand, representing frustums with Gaussian distributions (Gaussians) is a more 

advanced method that allows for the accurate capture of spatial variations of a Ray Sample, enabling 

the sample to describe not just a point but also the distribution around it, thereby capturing more 

detailed information about the 3D space. (Kate, 2023) 

 

Figure 48: Visualization of Frustum Parameterization and Sampling Techniques in 3D Volume Rendering6.1.2.3. Models & 
Fields 

The models supported by NeRF studio play a crucial role in sampling the Ray Bundles into Ray 

Samples, which are then processed by Fields to extract meaningful quantities such as color and density 

(Figure 49). The NeRF studio framework’s support for a diverse array of models and field components 

enables it to handle various NeRF applications with efficiency and precision. The models, including 

MLPs, voxel grids, hybrid models, and real-time optimized models, provide the necessary 
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computational power and flexibility. The effectiveness of models in NeRF studio is further enhanced 

by various feature encoding schemes like Fourier Features, hash encoding, spherical harmonics and 

matrix decompositions, which transform input data into formats that models can process more 

efficiently. 

 

Figure 49: Pipeline Architecture in NeRFstudio for NeRF Training and Rendering 

 

Fields are essential model elements that turn Ray Samples into meaningful attributes like color 

or density, which are used to create photorealistic 3D renderings. Fields associate a region of space 

with some quantity, using activation functions to introduce non-linearity, which helps capture 

complex patterns in data. Voxel grids provide a spatial representation of the scene, with each voxel 

storing information about the 3D space. Mixed MLPs combine multiple tasks or feature sets into a 

single network, enhancing computational efficiency and effectiveness. Surface normal MLPs predict 

surface normals, which are vectors perpendicular to points on surfaces, crucial for rendering realistic 

lighting and shading effects. Spatial distortions simulate variations in a scene, providing more accurate 

real-world behaviour, while temporal distortions account for changes over time, allowing the 

framework to handle dynamic scenes where lighting conditions or objects change. Fields work with 

models to produce the final, highly detailed and realistic rendered image of 3D scenes. (Tancik, et al., 

Nerfstudio: A Modular Framework for Neural Radiance Field Development, 2023) 

 

6.1.2.4. Real-Time Viewer 

The NeRFstudio Real-Time Viewer, inspired by Instant NGP, is a comprehensive tool designed 

to enhance the workflow for those working with Neural Radiance Fields (NeRFs). It offers a dynamic 

and interactive environment where users can not only visualize the ongoing training process but also 

manipulate various aspects of the 3D scene directly from the viewer interface. 

The NeRF studio Viewer features a powerful viewport that allows users to view the entire 

scene, including the perspective of each training camera and all objects within the scene. This tool is 

invaluable for troubleshooting and optimizing the training process. Users can switch camera views on 

and off, offering flexibility in how they analyze the scene. Additionally, the viewport enables users to 

toggle the visibility of scene objects, making it easier to focus on specific elements within the NeRF 

model. The viewer also supports various visualization modes, enabling users to switch between 

different output forms such as RGB, depth and others. These options are essential for understanding 

how the model interprets the scene and for fine-tuning the training parameters. 

Moreover, the viewer isn’t just a passive tool, it also offers several settings that can directly 

impact the speed and efficiency of the training process. These options allow users to optimize their 

workflow by adjusting training parameters, helping to accelerate model convergence or improve the 

quality of the results. 

Once a NeRF model is trained, the NeRF Studio Viewer offers intuitive tools for exporting 

results. There are two primary methods for exporting: rendering a video or generating a point cloud. 
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To render a video, a camera path must first be created within the viewer (Figure 50). While NeRF 

models are not inherently designed to create point clouds, the NeRF studio Viewer offers an option to 

generate them. (Tancik, et al., Nerfstudio: A Modular Framework for Neural Radiance Field 

Development, 2023) 

 

Figure 50: Example of camera path in viewer 

 

6.1.2.5. Outputs 

NeRF studio provides extensive support for exporting various types of geometry. Among the 

supported formats, point clouds can be exported as PLY files, which are commonly used in 3D 

modeling and visualization. For mesh exports, NeRFstudio offers multiple methods tailored to 

different needs. The TSDF Fusion method converts truncated signed distance functions into mesh 

representations, producing OBJ files. This approach is compatible with all models, making it a versatile 

option for many applications. Additionally, Poisson surface reconstruction is available, providing high-

quality mesh generation by solving the Poisson equation from point cloud data. This method is 

particularly effective when working with models like Nerfacto that predict normals, enabling the 

creation of detailed and accurate meshes. 

For users who need to refine and process their meshes further, NeRFstudio also supports 

advanced texturing workflows. After simplifying or smoothing a mesh offline, users can reapply 

textures using NeRF. This process involves dense sampling of the texture image and employs 

barycentric interpolation to accurately map 3D point locations on the mesh. By rendering short rays 

along the surface normals, NeRFstudio captures RGB values, ensuring that the textured mesh 

maintains a high level of detail and visual fidelity. (Nerfstudio: A Modular Framework for Neural 

Radiance Field Development, 2023) 

NeRF studio's export capabilities are designed to be flexible and adaptable, supporting various 

formats and methods to meet the diverse needs of creators and developers. Whether exporting point 

clouds, generating meshes through TSDF Fusion or Poisson surface reconstruction, or applying 

textures with Nerf, NeRFstudio provides the tools necessary for precise and high-quality 3D geometry 

outputs. This flexibility makes it an ideal choice for professionals who require integration with 

downstream software and the ability to extend and customize their export processes. (Kazhdan, 

Bolitho, & Hoppe., 2006) 
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 6.2. 3D Reconstruction with SDFStudio 
The 3D reconstruction of the scanned scene will be carried out using SDFStudio, a specialized 

framework built on the NeRFstudio framework. SDFStudio is designed for working with Signed 

Distance Fields (SDFs), a mathematical concept widely used in 3D graphics to represent shapes and 

surfaces. By using the flexible design and tools from NeRFstudio, SDFStudio makes it easier to create, 

test, and use methods that work with Signed Distance Fields (SDFs). These methods are important for 

tasks that need accurate 3D shapes and detailed surface measurements. 

SDFStudio inherits the modularity, flexibility, and ease of use that NeRF studio is known for, 

allowing users to easily swap out different components such as data parsers, rendering methods, and 

models, depending on the specific needs of their project. This shared foundation between SDFStudio 

and NeRFstudio simplifies the process of testing new algorithms and quickly iterating on designs. 

While NeRFstudio primarily focuses on Neural Radiance Fields (NeRFs) to synthesize realistic 

images from 2D photos by modeling light interactions with objects, SDFStudio takes a different 

approach by using SDFs to directly represent the geometry of objects. This makes SDFStudio 

particularly powerful for tasks where the exact shape and structure of an object are more important 

than its appearance under various lighting conditions. (Yu, Chen, Antic, Peng, & Bhattacharyya, 

SDFStudio: A Unified Framework for Surface Reconstruction, 2022) 

In addition to its form viewer, SDFStudio is integrated with Weights & Biases (W&B), a 

machine learning platform designed to help developers build better models faster. W&B offers 

lightweight, interoperable tools to quickly track experiments, version and iterate on datasets, evaluate 

model performance, reproduce models, visualize results, and spot regressions (Figure 51). This 

integration enables users of SDFStudio to seamlessly track, visualize, and analyze their experiments, 

facilitating better workflow management and the ability to share findings with colleagues. (Weights & 

Biases Documentation, n.d.) 

 

Figure 51: Wandb platform 

 

At SDFStudio, the choice of NeuSfacto, MonoSDF, and UNISURF methods was based on the 

unique techniques each one offers for reconstructing three-dimensional scenes from images. These 

three methods were selected because they approach the extraction of 3D information differently, 

enabling the studio to respond to various challenges. NeuSfacto and UNISURF use techniques inspired 

by NeRF (Neural Radiance Fields), adapted for more demanding real data and environments. 

NeuSfacto includes improvements in camera position estimation and advanced sampling techniques, 
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while UNISURF incorporates surfaces and radiance fields to produce very detailed and accurate 3D 

representations. On the other hand, MonoSDF uses the Signed Distance Functions (SDFs) technique, 

utilizing predicted monocular depths and normal maps as supervision to improve the accuracy of 3D 

representations. The use of SDFs allows MonoSDF to provide solutions when information from 

multiple cameras is not available, thus offering an alternative when detailed spatial representation 

from a single perspective is critical. 

This different approach by each method allows SDFStudio to be flexible and efficient in a wide 

range of reconstruction scenarios, offering the ability to handle various types of data and detail 

requirements in the representations. 

 SDFStudio has native support for RGB-D data meant for high-quality 3D reconstructions from 

images co-captured with both color information (RGB) and depth information (Depth). Converting 

one's own RGB-D data6 into the appropriate SDFStudio format (Figure 52), is required because any 

model in SDFStudio needs to use it. This conversion involves aligning the camera poses with the system 

used by SDFStudio, normalizing the scene's geometry, and ensuring that the RGB images and depth 

maps are correctly formatted for accurate 3D reconstruction. 

 

Figure 52: Data structure after converting the custom data to SDFStudio format 

 

6.2.2. Surface Reconstruction Methods Supported by SDF Studio 
SDF Studio provides a unified and modular framework for neural implicit surface 

reconstruction, supporting a range of cutting-edge methods in the field. It integrates several 

prominent surface reconstruction techniques, offering flexibility in how scenes are represented and 

sampled. The key methods supported by SDF Studio include UniSurf, VolSDF, and Neus, which all 

tackle the challenge of reconstructing 3D surfaces from input data but employ different strategies for 

handling surfaces and sampling points within a scene. The framework also allows for modular 

combination of different techniques, making it easy to experiment with new ideas and compare 

results across methods. 

SDFStudio supports a variety of scene representations such as Multi-Layer Perceptrons 

(MLPs), Tri-plane features, and Multi-Resolution Feature Grids, providing flexibility in how geometry 

and appearance are encoded. Furthermore, different point sampling strategies such as surface-guided 

sampling (used in UniSurf) and voxel-surface guided sampling (from NeuralReconW) enable efficient 

and accurate surface reconstructions. 

This study explores three advanced methods for surface reconstruction NeuS-facto, UniSurf 

and MonoSDF by systematically comparing their performance under varying parameters. Each 

method represents a unique approach to extracting 3D geometry from 2D images. We will examine 

how modifications to network architectures, sampling strategies, and the integration of monocular 

cues or multi-view consistency impact the quality and accuracy of the reconstructed surfaces. The 

 
6 https://github.com/autonomousvision/sdfstudio/blob/master/docs/sdfstudio-data.md#rgbd-data  

https://github.com/autonomousvision/sdfstudio/blob/master/docs/sdfstudio-data.md#rgbd-data
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selection of these methods was strategic, as their distinct techniques offer complementary strengths 

for tackling different challenges in 3D scene reconstruction. NeuS-facto focuses on neural implicit 

surfaces, MonoSDF incorporates monocular depth estimation, and UniSurf emphasizes consistency 

across multiple views. By evaluating their performance in SDFStudio, this study aims to provide 

insights into how these methods address the complexities of surface reconstruction in various 

contexts. (Yu, Chen, Antic, Peng, & Bhattacharyya, SDFStudio: A Unified Framework for Surface 

Reconstruction, 2022) 

NeuSFacto and UNISURF use techniques inspired by NeRF (Neural Radiance Fields), adapted 

for more demanding real data and environments. NeuSFacto includes improvements in camera 

position estimation and advanced sampling techniques, while UNISURF incorporates surfaces and 

radiance fields to produce very detailed and accurate 3D representations. On the other hand, 

MonoSDF uses the Signed Distance Functions (SDFs) technique, utilizing predicted monocular depths 

and normal maps as supervision to improve the accuracy of 3D representations. The use of SDFs allows 

MonoSDF to provide solutions when information from multiple cameras is not available, thus offering 

an alternative when detailed spatial representation from a single perspective is critical. This different 

approach by each method allows SDFStudio to be flexible and efficient in a wide range of 

reconstruction scenarios, offering the ability to handle various types of data and detail requirements 

in the representations. 

 

6.2.2.1. NeuS-Facto Model 

 The NeuS-facto model is a new and improved method for creating 3D scenes by combining 

two powerful techniques: neural surface reconstruction (from NeuS ) and neural radiance fields (from 

Nerfacto). It uses a smart approach, inspired by mip-NeRF360, to pick fewer but better samples along 

rays of light, making the process faster and more accurate. (Yu, et al., Methods, 2022) 

 By reducing the number of samples needed, NeuSfacto finds a good balance between building 

detailed 3D surfaces and using efficient rendering techniques. This leads to quicker, high-quality 3D 

scene creation with better details.   

 

6.2.2.1.1. Neus 

NeuS combines two important concepts: the Signed Distance Function (SDF) and techniques 

used in NeRF (Neural Radiance Fields). While NeuS primarily relies on the use of SDF to represent 

surface geometry, it borrows elements from NeRF for rendering color and light. At the same time, 

NeRF focuses on modeling light and color by predicting light interaction with objects through camera 

rays. NeuS uses similar techniques for volume rendering (as in NeRF) to enhance rendering and link 

SDF with color representation. (Wang, και συν., 2021) 

The rendering process of NeuS involves two main stages. Volume rendering and surface 

rendering. Initially, volume rendering is used to understand the general structure of the scene. This is 

done by sampling the volume of the scene with a 3D grid, where each voxel contains information 

about local geometry and appearance. As the model improves, the process shifts to surface rendering, 

which focuses on improving the detail of the surface defined by the SDF and the computations around 

these surfaces, achieving better detail and reducing computational burden. To enhance the efficiency 

of the rendering process and address real-world challenges, NeuS uses advanced sampling techniques. 

Importance sampling focuses on critical areas of the scene, such as edges or areas with significant 
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detail. Adaptive sampling changes the sample density according to the complexity of the area, offering 

more samples in complex areas and fewer in simpler ones. 

A significant challenge in 3D reconstruction is accurately estimating the camera's position. 

NeuS addresses this by allowing continuous adjustment of the camera position during training. Instead 

of using static camera positions, NeuS adjusts these positions through an iterative process to reduce 

errors in the rendered images. 

For accurate 3D model reconstruction, it is crucial to select the appropriate weight function 

that links output colors to the Signed Distance Function (SDF). This function must have two key 

characteristics. It should give greater importance to the points where the SDF surface intersects the 

camera plane (unbiased). In other words, the function should reach a local maximum at the 

intersection with the zero-level set of the SDF, ensuring that this surface contributes proportionally 

more to the pixel color. Additionally, the weight function should give more importance to points closer 

to the camera, especially when there are multiple surface intersections along a ray (occlusion-aware). 

This means that if there are multiple surfaces along the same line of sight, the function should 

prioritize the points closer to the camera over those further away. These requirements ensure that 

the weight function will contribute accurately to the color representation of the 3D models, improving 

the quality and fidelity of the reconstruction. 

 

6.2.2.1.2. Nerfacto 

Nerfacto is a 3D scene reconstruction model designed to address the challenges encountered 

when working with real-world data, such as photos or videos, in contrast to NeRF (Neural Radiance 

Fields), which performs well primarily with synthetic or ideal data. Although it is based on NeRF 

(Neural Radiance Fields), Nerfacto introduces new techniques that make it more efficient and more 

suitable for real-world applications (Figure 53). (Tancik, et al., Nerfacto, 2022) 

 

Figure 53: Nerfacto pipeline model 

 

 In contrast to NeRF, one of the primary changes introduced in Nerfacto is an enhancement in 

camera pose refinement. While NeRF uses fixed, predetermined viewpoints, Nerfacto improves 

camera positions during training. The cameras adjust their locations through backpropagation to 

reduce the error observed in the results. 

Backpropagation is a method used after processing a batch of data to update each neuron's 

contribution to the model's output. It works in two phases. In the forward pass, input data is passed 

through the network to produce an output (Figure 54). ). In the backward pass, the loss between the 

actual and predicted output is calculated and propagated back through the network. The algorithm 

then adjusts its weights and biases to improve future predictions. Backpropagation is a fundamental 

method for training artificial neural networks. (Backpropagation in Neural Network, 2024) 
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Figure 54: Backpropagation method 

 

This method is a critical step for using real-world data, as camera positions may be inaccurate. 

It corrects these positions during training, improving the quality of the reconstruction and reducing 

blurry and low-quality results. In contrast to NeRF, where sampling is done uniformly along the rays 

without considering the distance from the camera or the importance of points, Nerfacto introduces 

more advanced techniques like Proposal Sampling and Piecewise Sampling, making it more efficient 

for reconstructing scenes from real-world data. 

Piecewise Sampling in Nerfacto divides samples into two categories. Close samples are taken 

more densely near the camera to accurately capture the details of nearby objects, which are more 

visible and significant for the scene's reconstruction. Distant samples, on the other hand, are sampled 

more sparsely as they move away from the camera, saving resources in areas where detail is less 

critical. This strategy allows Nerfacto to render close-up details with precision while maintaining 

efficiency in distant areas of the scene, where high resolution isn't as necessary. 

At the same time, Proposal Sampling further enhances the sampling process. This sampler 

focuses on areas of space that contribute more to the final render, such as points where rays first 

intersect with surfaces. This approach reduces the waste of resources on irrelevant areas of the scene, 

unlike NeRF, which samples uniformly along the rays without prioritizing the area’s most important 

for the result. 

The core of Nerfacto is the Nerfacto Field (Figure 55), which consists of a series of stages and 

encoding techniques that contribute to producing the results, such as density and RGB colors. This 

process begins with sampling the scene and encoding spatial and directional information to render 

the scene with both accuracy and efficiency. 

 

Figure 55: Nerfacto Field for extraction results 
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 In Nerfacto7, the density field takes a more efficient and focused approach. Instead of 

capturing high-frequency details across the entire scene, it provides a coarser representation that 

guides the sampling towards important areas. High detail is not necessary at this stage; the field only 

needs to be accurate enough to direct sampling to regions that matter most for the final render. The 

3D coordinates of the scene (x, y, z) are processed through a hash encoding method, allowing the 

system to represent spatial information more efficiently without needing large memory to store all 

scene values. The result of this encoding is fed into a small Multi-Layer Perceptron (MLP). 

Viewing direction is encoded using spherical harmonics, a method that efficiently breaks down 

direction into a limited number of angle-based components, preserving the required accuracy. 

Appearance information, representing characteristics like lighting or color variations, is combined with 

other inputs like position and direction. This technique improves the quality of the final render by 

accounting for variations in the appearance of each image. The outputs of these encodings are fed 

into a small multi-layer neural network (MLP), which predicts two key elements: the scene's density 

based on position (x, y, z) and the colors of each scene point, using the viewing direction and 

appearance information. 

In addition, Nerfacto uses two encoding techniques to improve efficiency. Hash encoding and 

hash table encoding. Hash encoding converts categorical variables into numerical values using a 

hashing function (Figure 56). While one-hot encoding can be useful, it is not suitable for large datasets 

because it requires substantial memory, and other encoding techniques are slower. Hash encoding 

assigns a unique integer value to each category within a predefined range using a hash function. 

Collisions can degrade model performance, but this can be mitigated by increasing the hash space or 

using a different hashing function. Nerfacto also employs hash table encoding to achieve faster and 

less memory-consuming storage and retrieval of density information (Swayam, 2023). This approach 

avoids the need for large, detailed tables, saving the memory required to represent the scene. Spatial 

density is learned using a small multi-layer neural network (MLP) in Nerfacto, which facilitates training 

in a simplified manner without compromising important regions. This helps Nerfacto sample 

meaningful directions while simplifying the density field, making it smoother and less expensive while 

retaining high-frequency information without needing to learn at every pixel. 

 

Figure 56: Hash encoding example (Tutorialspoint, n.d.) 

 

This reduction in detail does not compromise quality, as the density field guides sampling in 

high-probability areas of the scene, while higher-resolution details are captured by other stages in the 

reconstruction. Nerfacto combines a sequence of encoding and machine learning techniques to 

synthesize high-quality scenes, maintaining fidelity and quality while optimizing resource efficiency 

through density field-guided sampling and hash encoding. (Tancik, et al., Nerfacto, 2022) 

  

 
7 https://github.com/autonomousvision/sdfstudio/blob/master/docs/sdfstudio-methods.md#neus-facto  

https://github.com/autonomousvision/sdfstudio/blob/master/docs/sdfstudio-methods.md#neus-facto
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6.2.2.1.3. Mip-NeRF 360 

Mip-NeRF 360 builds on conventional Neural Radiance Fields (NeRF) technology, introducing 

a more advanced method for representing and rendering images through deep learning across 

unbounded scenes. This approach is designed to represent and render images through deep learning 

across scenes that are not restricted by a fixed viewpoint or location. Unlike traditional methods, Mip-

NeRF 360 effectively handles scenes that extend to infinite depth-distance, which helps address 

common issues encountered in these types of environments. 

The core innovation of Mip-NeRF 360 is its novel scene parameterization, which is optimized 

for better handling of unbounded spaces. This parameterization operates in non-linear space, allowing 

more computational power to be allocated to elements closer to the camera, while distant objects, 

which contribute less to the overall image, consume fewer resources. This selective focus enhances 

efficiency without sacrificing visual quality. Mip-NeRF 360 introduces a new sampling and scene 

representation strategy that employs two separate Multi-Layer Perceptrons (MLPs). The first of these, 

called the "proposal MLP," is responsible for calculating the density distribution of all locations within 

a scene, without considering color. It generates rays and passes them to a density prediction model, 

referred to as the "Density MLP," which samples the densities. These sampled rays are then sent to a 

second network, the "NeRF MLP," which predicts the final image outputs for each ray (Figure 57). 

 

Figure 57: Pipeline comparison of Mip-NeRF and Mip-NeRF 360 

 

By separating these processes, computational efficiency is improved on the Mip-NeRF 360. 

The "MLP proposal" addresses well the maximization of scene volumes, so that it is possible to control 

volumes at real-time scale by emphasizing quality, especially when different graded thresholds for 

scenes are proposed according to their importance. While "NeRF MLP" uses an MLP to focus more 

intensively on the reconstruction of image samples by paying more attention to the context of the 

images that need to be captured, thus achieving higher scene reconstruction performance. 

Moreover, the training process of Mip-NeRF 360 is streamlined by remapping entire scenes 

to represent Gaussians inside a predetermined bounding box. Rather, the shallow Proposal MLP is 

used to read from Gaussian-encoded intervals: instead of producing weights and colors in this setting, 

we go directly for outputting weights. These weights are resampled and passed into the NeRF MLP to 

predict high-fidelity colors (and more fine-scale weights) for rendering pixel colors. The coupled 

proposal loss function enforces consistency between the histograms generated by a shallow Proposal 

MLP and those produced from NeRF, offering tighter control during rendering. The most significant 

advancement in Mip-NeRF 360 is a novel regularization to suppress typical artifacts such as “floaters” 

and “background collapse.” Model-generated data artifacts are frequently found where the model is 

trying to explain some of the sparsest, smallest regions by representing them with tiny high-density 

sticks, or this often happens when dust clouds are being represented as semi-transparent go closer to 
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the camera. Thus, Mip-NeRF 360 introduces a novel regularizer that is based on a step function which 

parameterizes the distance of rays. The regularizer tries to localize densities around rays, narrowing 

down the spread of density and eliminating the semi-transparent regions that usually cause these 

artifacts. In addition, this scheme of regularization for each ray histogram helps in generating less 

unphotorealistic views.  

The addition of these new methods has resulted in a considerable enhancement of the 

model's performance. Mip-NeRF 360 introduces an architecture that unifies the synthesis of plausible 

images and detailed depth maps for complex scenes without bounds, leading to more realistic yet 

high-quality results when generated samples are already comparably accurate to those synthesized 

by using a model with identical training time. (Barron, Mildenhall, Verbin, Srinivasan, & Hedman, 2011) 

 

6.2.2.2. UniSurf Model 

UNISURF introduces a revolutionary approach by merging neural implicit surface models with 

radiance field techniques. This integration facilitates a dual capability where the model not only 

predicts the geometry using implicit surfaces but also captures the appearance and lighting variations 

through radiance fields. Implicit Surface Models are utilized to define the geometry of the scene as 

zero level sets of a Signed Distance Function (SDF) parameterized by a neural network. While implicit 

surfaces model geometry, radiance fields are used to model the color and light interactions within the 

scene. By sampling points along camera rays and predicting the color and density at each point, 

radiance fields enable photorealistic rendering from novel viewpoints. 

UNISURF's rendering pipeline uniquely combines volume rendering and surface rendering 

(Figure 58). Initially, the entire scene volume is sampled to capture the coarse structure of the scene. 

This stage uses a 3D grid where each voxel stores a feature vector that captures local geometric and 

appearance properties. As training progresses and the model's predictions become more accurate, 

the rendering focus shifts more towards surface rendering. Here, the surface is defined precisely by 

the implicit function, and rendering computations are concentrated around these surfaces to enhance 

detail and reduce computational overhead. 

 

Figure 58: UniSurf rendering pipeline 

 

To optimize the rendering process and handle real-world complexities, UNISURF implements 

several advanced sampling strategies. Importance Sampling focuses on regions that significantly 

impact the rendered image, such as edges or areas with high detail. By prioritizing these areas, 

UNISURF can allocate more computational resources where they are most needed, improving both 

efficiency and output quality. Adaptive Sampling adjusts the density of sample points dynamically 
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based on the complexity of the region being rendered. Areas with complex geometry or higher visual 

importance receive more samples, while simpler regions are sampled less densely. 

UNISURF addresses one of the common challenges in 3D reconstruction the inaccuracies in 

camera pose. Unlike traditional methods that fix camera poses, UNISURF allows for their refinement 

during training using gradient descent. By backpropagating the errors from the rendered images back 

to the camera parameters, UNISURF iteratively adjusts the camera positions to minimize rendering 

errors.  

The backbone of UNISURF's capability lies in its neural architecture and the training process. 

The Multi-Layer Perceptron (MLP) is crucial for modeling the continuous fields required for both 

geometry and appearance. It is designed to be deep enough to capture complex patterns but also 

efficient to prevent overfitting. The training leverages a composite loss function, including 

photometric loss (ensuring rendered and actual images match) and regularization terms (encouraging 

smoothness and continuity in the predicted surfaces). To enhance the model's sensitivity to detail, 

positional encoding is applied to the inputs of the MLP. This technique helps in representing high-

frequency functions and capturing fine details in the scene. (Oechsle, Peng, & Geiger, 2021) 

 

6.2.2.3. MonoSDF Model 

MonoSDF, or Monocular Single View Depth Fusion, is an innovative tool that creates accurate 

3D surfaces from a single image. Unlike traditional techniques that require multiple images from 

various angles to gather 3D information, MonoSDF achieves the same result by using unique 

geometric cues from just one image. It does this by extracting implicit surfaces. From each image, the 

necessary geometric cues required for reconstruction are extracted, which include depth maps and 

normal maps (Figure 59). A normal map uses RGB values to represent the direction that surfaces in 

the scene are facing. Essentially, it informs the model about the orientation of each part of the object's 

surface. A depth map is a crucial factor for accurately reconstructing the scene's geometry, as it affects 

how light interacts with the objects, which in turn influences the appearance and realism of the 

rendered 3D model. (Understanding the normal mapping process., n.d.) 

 

Figure 59: Depth and normal map from one image (Unity, n.d.) 

 

The two main components in the neural network of MonoSDF predict, respectively, the 

distance from any point to the nearest surface and the colors. This structure enhances the model’s 

understanding of both the shape and appearance of objects. This approach highlights the model’s 

strength in utilizing advanced computer vision techniques to extract spatial depth and surface 

orientation from limited visual data, particularly when multiple views are not available. 

More specifically, MonoSDF uses a Signed Distance Function (SDF) to represent the geometry 

of the scene (Figure 60). The options for the SDF representation involve a simple MLP, a dense SDF 

grid, the Single-Resolution structure and two hybrids, the Feature Grid with MLP Decoder and the 
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Multi-Resolution Feature Grids with MLP Decoder. In addition to the 3D data, the color values are also 

estimated based on an MLP (Multi-Layer Perceptron). 

 

Figure 60: MonoSDF Model Overview 

 

The Dense SDF Grid is a method where the space of interest is discretized into a three-

dimensional grid. Each cell in this grid stores an SDF value, representing the shortest distance from 

the center of the cell to the nearest surface of the object, with the sign indicating whether the point 

is inside or outside the surface. To determine the SDF value at any arbitrary point in space, which may 

not necessarily be at the center of a grid cell, trilinear interpolation is used. This method interpolates 

the values based on the eight nearest grid points around the arbitrary point, providing a smooth 

estimate of the distance field. 

An alternative to the dense grid is modeling the SDF using a single Multi-Layer Perceptron 

(MLP). The output of the MLP is a single value representing the signed distance from the input point 

to the nearest surface. 

Hybrid approaches within the context of MonoSDF and similar neural surface reconstruction 

methods combine MLPs with feature grids to improve 3D surface modeling. These methods leverage 

the MLPs' capability to learn general characteristics and the details that can be captured by feature 

grids. In the approach with a Feature Grid and MLP Decoder, the MLP is used to calculate the Signed 

Distance Function (SDF). However, instead of working alone, the MLP also receives information from 

a feature grid, which is a three-dimensional grid storing data. In the approach with Multi-Resolution 

Feature Grids and MLP Decoder, multiple grids of different resolutions (cell sizes) are used to capture 

details at various scales. Like the simple grid, the MLP receives information from these grids, but here 

it uses data from grids of different resolutions simultaneously. This allows the MLP to capture details 

at different levels, offering greater accuracy and a more faithful representation of the scene, as it 

incorporates both general and detailed information from the various grids. 

An MLP used for predicting colors is specifically designed to analyze each point in the scene. 

This network considers the exact position of each point in space and the direction from which the 

camera sees it. The network then combines this data with the geometric properties of the surface at 

that point, such as the surface normals, which indicate the surface's orientation. In this way, the MLP 

can predict the color that each point on the 3D surface will have, contributing to the creation of a 

more realistic and visually convincing final image. 

Moreover, MonoSDF uses volume rendering to convert the 3D representations into 2D 

images, a process crucial for comparing the model’s output with real images, thereby guiding 

optimization. The process begins with casting rays from the camera’s viewpoint through each pixel. 
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Points are sampled along these rays, and the Signed Distance Function (SDF) and color values are 

evaluated. The SDF values are converted into densities using a predefined function, helping to manage 

surfaces crossing the zero level-set. Finally, the color is accumulated along the ray, considering the 

computed densities and transparencies, allowing for the rendering of realistic images. 

As previously mentioned, MonoSDF exploits monocular geometric cues to address challenges 

in reconstructing complex real-world scenes, especially in areas with sparse or textureless regions. 

Depth maps are generated using a pretrained model like Omnidata, which has been trained on a wide 

variety of images to reliably predict depth from a single view. Meanwhile, normal maps are derived 

through a process of estimating the surface normals in the 3D space, which complement the depth 

maps by providing detailed information about the surface geometry that depth alone cannot, such as 

the tilt and curvature of surfaces. 

Finally, the optimization process in MonoSDF is designed to continually improve the model's 

output. This is achieved through a series of loss functions that ensure both geometric accuracy and 

visual fidelity. The RGB Reconstruction Loss aims to reduce the difference between the colors of the 

rendered images and those of the actual photographs. By adjusting the model parameters to minimize 

these discrepancies, the model learns to produce visually similar outputs to the input images, 

enhancing the realism of the reconstructed scenes. The Eikonal Loss ensures that the gradients of the 

SDF maintain a norm close to one, which is crucial for a smooth and realistic surface representation. 

This regularization helps prevent sharp discontinuities or unrealistic smoothness in the rendered 

surfaces, promoting a more natural and physically plausible surface model. The Depth Consistency 

Loss aligns the depth values predicted by the model with those from the depth maps, dynamically 

correcting scale and shift issues per batch. This is vital, as each image may have its own scale and 

depth perception, especially when dealing with diverse datasets or varying camera setups. Finally, the 

Normal Consistency Loss ensures that the normals rendered by the model match those provided by 

the normal maps. Accurate alignment of normals is crucial for correctly rendering the interaction of 

light with surfaces, which affects the visual quality of shadows, highlights, and textures. (Yu, Peng, 

Niemeyer, Sattler, & Geiger, 2022) 

 

7. Object Scanning Process  
Before starting the scanning process, the camera underwent an initial calibration using the 

Intel RealSense Viewer v2.54.2. This tool facilitates self-calibration by allowing the camera to adjust 

its internal parameters automatically, compensating for environmental changes and ensuring the 

reliability of 3D reconstructions. This feature addresses common issues such as temperature 

fluctuations and minor physical displacements, ensuring the camera operates optimally over time. 

Additionally, maintaining correct intrinsics is critical, as they define the geometric and optical 

characteristics of the camera, which are critical for accurate depth measurement and 3D 

reconstruction 

To achieve optimal scanning results, several parameters were defined. The frame rate was set 

to 5 frames per second (fps) for both depth and RGB data streams. This frame rate was chosen to 

balance the need for sufficient data capture with the practical considerations of processing time and 

dataset size. Also, depth and RGB data were captured at a resolution of 640 x 480 pixels. This 

resolution was selected to maintain a manageable dataset size while ensuring adequate detail for 

accurate 3D reconstruction. The chosen configuration aimed to generate fewer frames, thus creating 

smaller datasets. This approach reduces the processing time required for data analysis and 3D model 
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generation, making the process more efficient without compromising the quality of the final output. 

Both the frame rate and resolution were set to ensure synchronization between color and depth data.  

(RealSense, 2018) 

 The scanning process involved the vertical movement of the camera, both downward and 

upward, to fully capture the environment, with the movement being performed in a right-handed 

direction. These movements were carried out smoothly to avoid abrupt changes that could affect the 

quality of the data, while maintaining an overlap of over 40% between the movements. The final 

dataset included 833 color and depth frames. 

 The scanning method of a space is crucial for the success of camera alignment. If the captured 

images do not have sufficient overlap or common features, there is a high likelihood of alignment 

errors and geometric issues in the scene representation. 

 A notable example of this challenge arose from a test scan conducted in a corridor at the 

University of West Attica. The scanning was done separately for each side of the corridor. During the 

camera's turn after completing the scan of the first side, the movement was counterclockwise instead 

of clockwise. This choice resulted in capturing fewer nearby objects that could have aided in 

subsequent processing. As a result, the connection between the two sides of the corridor relied mainly 

on shared elements like the floor and ceiling. This limited overlap led to poor alignment and significant 

deviation in the final point cloud composition (Figure 62). Therefore, it is important to ensure that the 

scan directions allow for the best possible overlap and capture of important objects. 

 

Figure 611: Misalign merged point cloud 

 

7.1. Sunlight Interference Issue 
During the scanning process, an issue was encountered with the RGB sensor of the Intel 

RealSense D455 camera displaying a pink hue in the lower right part of the image when exposed to 

sunlight (Figure 62). This is a known behaviour for the D455 camera in extremely bright scenes, caused 
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by a saturation issue. It occurs when the sensor is set to short exposure times under high light 

intensity, leading to color distortion. (Garcia, 2020) 

 

Figure 62: Saturation issue in RGB images in sunlight exposure 

 

 To mitigate this issue, it is advisable to refer to the Intel white paper on Optical Filters for Intel 

RealSense Cameras. One effective solution is to use a Neutral Density (ND) filter, often referred to as 

"sunglasses" for cameras. ND filters work by uniformly reducing the amount of light entering the 

camera lens without affecting the color of the light. This reduction in light intensity allows the camera 

to operate with longer exposure times, thus avoiding the saturation that causes the pink hue. (John, 

Sweetser, & Grunnet-Jepsen, n.d.)  

Additionally, incorporating a polarizing filter can further enhance image quality by reducing 

reflections and glare from bright surfaces, such as water or metal. Polarizers help in controlling the 

polarization of light, which can significantly diminish unwanted reflections and improve color 

saturation in images. By combining an ND filter with a polarizer, the likelihood of encountering color 

distortions, like the pink hue observed, can be greatly minimized, leading to clearer and more accurate 

images. 

Due to the lack of the necessary filters and the camera's difficulty in adequately capturing and 

utilizing the pattern under strong sunlight, the scanning was conducted indoors. The time of day was 

chosen when the sunlight was not strong, and there was no direct exposure to the object being 

scanned, to avoid issues with image quality and to ensure the most reliable recording possible. 

 

8. Pose Extraction and Camera Alignment 
Open3D offers a powerful data structure for image manipulation, supporting a variety of 

functions. Extracting a point cloud from an RGBD image involves several steps, each of which is crucial 

for accurately converting color and depth information into a 3D representation. 

This chapter discusses the process of aligning multiple point clouds in a global coordinate 

system and extracting the corresponding 4x4 transformation matrices (poses) for each frame, which 

are necessary for the further processing of the data during the 3D reconstruction process. 

  To achieve this goal, Open3D's Multiway Registration using the pose graph process was 

applied. This method involves constructing a pose graph and optimizing it through multiple 

registration algorithms to ensure accurate and uniform alignment of all points. The input typically 

consists of point cloud geometries, while the output is a series of rigid transformations (4*4 

homogenous matrices) that align the point clouds within the global space. 
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Initially, using a coarse point-to-plane ICP with a larger matching distance, we first improve 

the rough alignment based on odometry by using a minimum point-to-plane distance between the 

source and target cloud points. To further improve this initial alignment, we apply a finer point-to-

plane ICP using a smaller matching distance to further optimize the alignment to achieve higher 

accuracy.  

Due to the complexity of the scanning scene in this specific application, Colored ICP is also 

integrated, which uses both geometric and photometric information to further refine the alignment. 

This step leverages the color information from the RGBD images to enhance the accuracy of the 

registration, particularly in regions where geometric features alone may not provide sufficient 

information for accurate alignment. 

The combination of point-to-plane ICP and color ICP significantly enhances the overall 

accuracy and robustness of the alignment process. By incorporating photometric information 

alongside geometric information, Colored ICP extends the capabilities of traditional ICP, making it 

well-suited for a wide range of 3D reconstruction and scene understanding tasks. 

A very important step involves the transformation of the exported poses from the camera's 

coordinate system to the SDFStudio coordinate system for their correct placement. The D455 uses a 

left-handed coordinate system, where the +X axis points to the right, the +Y axis points downward, 

and the +Z axis extends forward from the camera. In contrast, SDFStudio follows the right-handed 

coordinate system used in OpenGL/Blender, where the +X axis remains to the right, the +Y axis points 

upward, and the +Z axis points backward. This inversion is achieved using a transformation matrix 

(Figure 64) that changes the signs of the Y and Z axes by combining the two inverse transformation 

matrices (Figure 63).  

 

Figure 63: Transformation matrices for rotation of Y (left) and Z (right) axes 

 

 The transformation matrix used refers to that reverses the directions of the Y and Z axes so 

that the D455’s coordinate system aligns with the one used in SDFStudio. After applying this 

transformation, the camera’s data adopts the same orientation as the data used by SDFStudio, 

ensuring correct interpretation and processing. This transformation is applied only to the camera 

poses, ensuring that the positional and orientational data is fully compatible with the coordinate 

system used in SDFStudio. This allows for accurate representation of the camera's movement and 

orientation within the 3D space. (GateVidyalay, 2020) 

 

Figure 64: Transformation matrix for rotation of Y and Z axes 
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 The process resulted is a final combined point cloud for visualization and evaluation (Figure 

65), along with a text file containing all the rigid transformations for each frame (                                             

Figure 66).  

  

Figure 65: Final combined point cloud                                             Figure 66: Sample of poses.txt file 

 

  Also, a file was created at the end of the process for the merging of the point clouds that had 

included both Average Fitness and Average RMSE (Figure 67). The average fitness: 0.3358, reflects the 

appropriateness of how the point clouds were aligned; for higher alignment, the value should be closer 

to 1. The Average RMSE: 0.023 m, represents the mean error between corresponding points of aligned 

clouds. In this context, the lower the value, the higher the accuracy. Thus, according to both metrics, 

the alignment of point clouds reached quite a satisfying accuracy level, though further optimization 

may potentially promote the Fitness score. 

 

Figure 67: Average fitness and RMSE values after registration 

 

 Τhe final merged point cloud provides a quite accurate view of the object, but it is foreseen 

that the noise and data gaps increased the value of Fitness and the RMSE (Figure 68). Indeed, in the 

final point cloud, it is possible to see that the built-in benches have some noise and slight 

misalignments that might be due to poor capture or noise during the scanning process. Also, there is 

lack of data on the right sides of the columns, as during scanning, the camera did not capture data 

from column rear sides. That would introduce inaccuracies and voids inside the point cloud 

representation, hence a domino effect in the final alignment metrics. Therefore, the visual errors with 

data gaps probably are the leading sources of such Fitness and RMSE values. 



   

 

69 
 

 

Figure 68: Misalignment or noisy areas of the final combined point cloud 

 

9. Parameter Selection and Preparation for Reconstruction 
SDFStudio, for reproducing reconstruction results with RGBD data, suggests training the Neus 

model with the following defined parameters, as presented in the table below: 

Table 1:  Example parameter values used in the 3D reconstruction process with the NeuS model 

Model Parameter Example Value Default value 
pipeline.model.sdf-field.use-grid-feature  TRUE FALSE 

pipeline.model.sdf-field.hidden-dim 256 256 

pipeline.model.sdf-field.num-layers  2 8 

pipeline.model.sdf-field.num-layers-color  2 4 

pipeline.model.sdf-field.use-appearance-embedding  TRUE FALSE 

pipeline.model.sdf-field.geometric-init  TRUE TRUE 

pipeline.model.sdf-field.inside-outside  TRUE TRUE 

pipeline.model.sdf-field.bias  0.8 0.8 

pipeline.model.sdf-field.beta-init  0.3 0.1 

pipeline.datamanager.train-num-images-to-sample-from  -1 500 

trainer.steps-per-eval-image  5,000 0.0 

pipeline.model.background-model  none none 

pipeline.model.sensor-depth-l1-loss-mult  0.1 0.0 

pipeline.model.sensor-depth-freespace-loss-mult  10 0.0 

pipeline.model.sensor-depth-sdf-loss-mult  6,000 0.0 

pipeline.model.mono-normal-loss-mult  0.05 0.0 

pipeline.datamanager.train-num-rays-per-batch 1,024 1,024 

include_sensor_depth  TRUE FALSE 

 

From the parameters mentioned above, some will remain fixed, according to the 

recommendations of the SDFStudio team. These concern the number of images used during training 

(all images = -1), the Inside-Outside parameter, which is suggested to be kept as "True" for indoor 

scans, the inclusion of the generated camera depth maps in the final model, the reconstruction of the 

background, and the mono normal loss. 

The parameters to be used for evaluating the reconstructions include “pipline.model.sdf-

field.use-grid-feature,” which determines whether the model will use a grid feature to represent the 
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3D space. The grid feature essentially divides the space into small cubes (grid), and each cube stores 

information about the part of the scene it represents (Figure 69). Application of grid features is 

advantageous if any scene involves many intricate details since the model can easily arrange these 

details in a network. In the example, this feature is enabled (TRUE) which means a grid-based 

representation can be used, but the default status is FALSE meaning a grid will not be used by default 

in a model. (Wang, Bleja, & Agapito, 2022) 

 

Figure 69: 3D scene representation divided into grid-like cubes 

 

 The pipeline.model.sdf-field.hidden-dim parameter indicates the size of the hidden layers in 

the neural network architecture. Neural networks consist of multiple layers and each layer contains a 

number of neurons that process information. The hidden dimension refers to the number of neurons 

in these layers. A larger hidden dimension allows the model to learn more complex patterns and 

details, but it also increases the computational resources required for training and execution. (Dutta, 

2024)  

 Depending on the setting on the number of layers, a certain number of layers are used to 

process the Signed Distance Field (SDF), which is the technique that the particular model applies to 

model the shapes of objects in 3D space. When there are many layers, something complex is achieved 

through the shapes and details that the model can recognize. However, expanding the number of 

layers in a network increases the complexity of the model, this results in slowing down the training 

time and the time required to make predictions. (Krish, 2019) 

The color layer depth determines how many layers will be used to calculate the scene's color 

information. In addition to mimicking the shapes and geometry of objects, the model is supposed to 

determine how they should be painted and textured. Even more layers here allow the model to extract 

detailed and complex color patterns and thus enhance the realism of the represented scenes, but 

impose more computational burden 

The SDF field parameter is "pipeline.model.sdf-field.use-appearance-embedding", which, 

when set to true, indicates that the model has an "appearance embedding" - something similar to 

memory that enhances the model's understanding of how objects appear under different lighting and 

viewing conditions. The fact that appearance embedding is used allows for flexibility in object 

illumination and can successfully produce an output that is reasonable even from different angles or 

under different conditions. (Chen, Wu, Li, Li, & Liu, 2024) 

The “pipeline.model.sdf-field.geometric-init” parameter specifies whether the model starts 

with a geometric principle on which it is based. A good geometric initialization means that the model 

can start closer to the correct solution and therefore learn better. Geometric initialization helps the 

model in that it introduces the rudimentary ideas of geometry and scene structures before the data. 

(Esposito, et al., 2024) 
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The term bias in a neural network refers to an enhancement term, which aids the model to 

fine tune it. This parameter specifies the level of the intrinsic bias within the training process. bias 

enables the model of making more appropriate adjustments within a situation to make more accurate 

predictions if the input parameters don’t match the prior trained patterns precisely. (Effect of Bias in 

Neural Network, 2018) 

The parameter of “pipeline.model.sdf-field.beta-init” defines the starting value of “beta” 

which defines the boundaries in the model’s prediction. Appropriate initialization of beta is critical to 

achieving the best performance in the model and especially in discriminating objects within a scene 

and empty space areas. Beta controls how sensitive the model is to changes in the space it models. 

(Carnegie Mellon University, 2022) 

 The number of steps defined in the evaluation image determines how often the model will 

inspect the images in order to monitor its progress. One important thing for the model is to be able 

to frequently evaluate its performance and adjust learning accordingly. But if the model evaluates too 

often then training can take a long time, and if evaluations are performed too infrequently then the 

model's performance can be significantly affected. 

 To regulate the weight of the depth predictions from sensors, there is a control of the L1 loss 

parameter for such. L1 loss measures the distance between the model's predictions and the actual 

depth values. Adjusting the weight of this loss controls the model's focus on the accuracy of depth 

predictions from sensor data. A higher weight prioritizes depth accuracy during training. 

 The SDF loss parameter of sensor depth determines how much the model should attempt to 

minimize the error between the model’s predictions on signed distance field and the actual depth 

values from the sensor. When modifying this parameter, the model is able to improve the alignment 

of the perceived object shapes with their distances from the camera thus improving on depth and 

shape estimations. (Alake, 2023) 

 Sensor depth free space loss parameter that determines the degree of emphasis the model 

places on free space, the regions of the scene where there are no objects. Modifying this loss enables 

the model to distinguish between the objects and the background which is very important in building 

the 3D scene representation. (Wang, Wang, & Agapito, 2023) 

 The parameter for the number of rays per batch defines how many rays going from camera 

through the scene. Rays are applied to obtain the view of the scene and to gain data regarding the 

objects and their location. Increasing the number of rays per batch provides the model with more data 

to learn from at each training step but requires more computational power. 

 

9.1. Comparison of Training Results and Reconstruction Quality of MonoSDF and 

UniSurf for the Selection of Number of Iterations 
The choice of Neus-facto was made to achieve optimal results, following the proposed model 

of SDFStudio. The other two models were selected due to their different methodologies, allowing for 

a comparison both between the models using the same parameters and for each model individually 

with varying parameter changes. Besides the recommended parameters, each model/method 

includes an additional number of parameters with different values depending on the requirements of 

each application. 
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An important parameter that affected the training time for MonoSDF and UniSurf was the 

number of iterations. Specifically, for MonoSDF and UniSurf, the number of iterations was 200,000 

and 100,000 respectively, while for Neus-facto, it was only 20,000. The number of iterations refers to 

how many times the model updates its parameters during training. In the context of machine learning, 

an iteration typically occurs when the model processes a batch of training data and adjusts its internal 

parameters based on the resulting error (loss). (Epochs, Batch Size, Iterations - How are They 

Important to Training AI and Deep Learning Models, 2024) 

The results of each model were compared both with the initial number of iterations and with 

50,000 iterations. The comparison was based on the final 3D reconstruction, training time, PSNR (Peak 

Signal-to-Noise Ratio), the accuracy of depth and color predictions, as well as parameters such as 

Eikonal Loss, Freespace Loss, and SDF Loss. These parameters play a crucial role in the quality of the 

reconstruction. The data was collected through wandb with the aim of evaluating whether increasing 

the number of iterations provides a significant improvement in reconstruction quality or if the model 

has already been sufficiently trained with fewer iterations. 

The learning rate is one of the most important parameters in training neural networks. It 

determines the size of the adjustments the model makes to its parameters, such as weights, to reduce 

the loss. A high learning rate can speed up learning but may cause instability. On the other hand, a 

low learning rate allows for more precise adjustments but increases training time. Often, a learning 

rate decay is applied, where it starts high for fast learning and gradually decreases for more precise 

adjustments. (geeksforgeeks, 2023) 

The Peak Signal-to-Noise Ratio (PSNR) is a metric used to evaluate the quality of reconstructed 

images produced by a neural network. It is calculated as being inversely proportional to the logarithm 

of the Mean Square Error (MSE) between the real image (ground truth) and the generated high-

resolution (HR) image. This means that a lower MSE corresponds to a higher PSNR, which indicates 

better quality in the reconstruction. A high PSNR value signifies a closer resemblance of the 

reconstructed image to the original, reflecting the effectiveness of the reconstruction algorithm. 

Acceptable PSNR values typically range from 30 to 50 dB for high-quality images, while values below 

20 dB are considered poor quality. In this context, the PSNR value is computed across all images in the 

dataset, including both RGB images and depth images, ensuring a comprehensive evaluation of the 

reconstruction quality across different modalities. (Iesalnieks, 2022) 

 

9.1.1. MonoSDF num iteration comparison 
 Specifically, MonoSDF, in addition to the values for time, PSNR, and learning rate, the Eikonal 

Loss was compared between 200,000 and 50,000 iterations to evaluate the accuracy of surface 

normalization. Additionally, the Monocular Depth Consistency (depth loss) was compared to assess 

the stability of depth predictions. Color accuracy was examined through the RGB Loss to evaluate the 

quality of the color representation in the reconstructions, while PSNR was used to assess the overall 

image quality produced by the model after each number of iterations. (Yu, Chen, Antic, Peng, & 

Bhattacharyya, Supervision, 2022) 

Table 2: MonoSDF training metrics presented for 200,000 and 50,000 iterations 

Iterations number 200,000 50,000 
Duration 6h 39m 1h 17m 

Learning Rate 0.000049 0.00028 

Eikonal Loss 0.0013 0.0017 
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PNSR 17.98 18.92 

RGB Loss 0.030 0.036 

  

 According to the values yielded by each training and Table 2, combined with the final Meshes 

(Figure 70Figure 1), it can be concluded that the training time for 200,000 iterations is significantly 

longer, reaching 6 hours and 39 minutes, compared to just 1 hour and 17 minutes for 50,000 iterations. 

The learning rate in the 200,000-iteration model is much lower, at 0.000049, compared to 

0.00028 in the 50,000-iteration model. A lower learning rate towards the end of training allows the 

model to optimize its parameters more carefully. 

The Eikonal Loss is lower in the 200,000-iteration model, at 0.0013 compared to 0.0017, which 

suggests better surface smoothness and accuracy in the surface normalizations. This loss directly 

affects the quality of geometry and surface in the 3D reconstruction, so the lower value in the 200,000-

iteration model indicates a better overall geometric representation. Surprisingly, the 50,000-iteration 

model has a higher PSNR, at 18.92 compared to 17.98 in the 200,000-iteration model. A higher PSNR 

typically indicates better image quality, suggesting that the 50,000-iteration model may produce 

cleaner or less noisy images. 

The RGB Loss is lower in the 200,000-iteration model (0.030 versus 0.036 for the 50,000-

iteration model), indicating better color fidelity in the generated images. This means that the 200,000-

iteration model performs better at capturing the color details of the scene, which is important for 

evaluating the realism of the final 3D reconstructions. 

 

 

 Initially, it should be noted that all meshes have undergone perimeter noise removal to ensure 

the area of interest appears clearer and more directly. The geometry of the top mesh appears cleaner 

and overall less noisy. In contrast, the bottom mesh, with fewer iterations, shows more noise. 

Specifically, the top mesh exhibits less noise in open areas, while there is no significant differentiation 

in the geometry along the edges and corners. Regarding shape consistency, the differences in walls, 

windows, and other elements are minimal, especially in terms of edge sharpness. 

Based on the above data and the analysis of the results, it is concluded that despite the 

improved performance of the training with 200,000 iterations, particularly in terms of surface and 

color accuracy, the difference in geometry quality and color rendering is not significant enough to 

justify the substantially longer training time. In fact, the PSNR value is higher for the 50,000 iterations, 

indicating that the resulting image is cleaner or has less noise. Given the importance of time for 

Figure 70: MonoSDF meshes after 200,000 iter. (up) & Mesh after 50,000 iter. (down) 
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conducting the tests, it was decided that the MonoSDF tests would be performed with 50,000 

iterations. 

 

9.1.2. UniSurf num iteration comparison 
 For UniSurf, in contrast to MonoSDF, iterations of 100,000 and 50,000 were compared based 

on Smoothness Loss, which controls the smoothness of surfaces. At the same time, performance in 

free spaces was compared through Freespace Loss to assess accuracy in predicting empty spaces and 

managing the geometric features of the scene. Additionally, RGB Loss was evaluated to examine the 

quality of the model's color rendering. (Yu, Chen, Antic, Peng, & Bhattacharyya, Supervision, 2022) 

Table 3: UniSurf training metrics presented for 200,000 and 50,000 iterations 

Iterations number 200,000 50,000 
Duration 2h 9m 1h 27m 

Learning Rate 0.00038 0.00047 

Smoothness Loss 0.00061 0.00062 

Freespace Loss 0.000064 0.000056 

PNSR 13.69 23.18 

RGB Loss 0.034 0.036 

 

 According to the values yielded by each training in Table 3 combined with the final Meshes 

(Figure 71) the training time for 200,000 iterations is longer, with a duration of 2 hours and 9 minutes, 

compared to 1 hour and 27 minutes for 50,000 iterations, which is expected, as more iterations 

require more time for optimization. The learning rate is slightly lower in the 50,000-iteration model 

(0.00047 vs. 0.00038). The Smoothness Loss is almost identical in both models, with values of 0.00061 

and 0.00062, showing that both models perform similarly in generating smooth surfaces. The 

Freespace Loss is slightly better in the 50,000-iteration model (0.000056) compared to the 200,000-

iteration model (0.000064). 

The PSNR (Peak Signal-to-Noise Ratio) presents the biggest difference. The 50,000-iteration 

model has a higher PSNR (23.18) compared to the 200,000-iteration model (13.69), suggesting that 

the 50,000-iteration model produces sharper and less noisy images, possibly due to overfitting in the 

200,000-iteration model. The RGB Loss is similar, with 0.034 for the 200,000-iteration model and 0.036 

for the 50,000-iteration model, indicating a slight improvement in color reproduction in the former. 

 

 

Figure 71: UniSurf meshes after 200,000 iter. (up) & Mesh after 50,000 iter. (down) 
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Regarding surface details, although the Freespace Loss had a better value in the 50,000-

iteration model, the meshes show that this model presents more noise compared to the 200,000-

iteration model. Additionally, the 200,000-iteration mesh displays fewer visible artifacts, especially in 

complex areas like benches. However, in certain surfaces, such as the phone booths and the corner of 

the wall on the right side of the scan, there are slight distortions or less accurate reconstructions. In 

terms of edge sharpness, the 200,000-iteration mesh captures more precise details, with sharper 

edges along the folds of the wall due to the columns. 

In conclusion, each mesh has its advantages and disadvantages, with small differences overall. 

Since the differences are not particularly significant and because this thesis focuses on comparing the 

models as well as how the parameters affect the result, the iteration count will be maintained at 

50,000 for this case, as well. 

 

9.2. Selection of Parameter Values for Comparative Model Analysis 
The selection of the parameters to be modified during training was made with the aim of 

examining the impact of each parameter on the final training process and the resulting mesh. In the 

Table 4, the parameter values that deviate from the default values are highlighted in red. These values 

were chosen to present significant deviations from the recommended ones, to make their effect on 

the training and the result more apparent. 

Table 4: Parameter values for default settings, example cases and selected values for comparison in the training process 

 

 

 Specifically, by changing values such as hidden-dim from 256 to 64 or steps-per-eval-image 

from 500 to 25, the goal is to assess how these parameters influence training time, geometry accuracy, 

and the overall quality of the mesh. Parameters like beta-init, sensor-depth-freespace-loss-mult, and 

others were also selected to be tested through variations ranging from small to drastic, aiming to 

highlight their interactions with the model. Using both the default and modified values will allow for 

a comparative analysis that will show how each parameter affects the model's performance in 3D 

scene reconstruction, depth consistency, and surface smoothness. The tests were conducted on a 

computer with 16 physical and 24 logical cores, an NVIDIA GeForce RTX 3070 Ti graphics card, 62 GB 

of RAM, and 2 GB of swap memory (of which 1.3 GB was used and 711 MB was available), while 

available memory was 50 GB. These factors set the limits for training, especially for parameters that 

impact memory and storage, influencing the selection of parameter values for the models. 
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10. Experiments 
 Τhis chapter, present the results from training the three models using 417 images of color and 

depth data. Of these, all were used for training, while 14 were used for evaluation. First, the results of 

all models for each modified parameter will be presented. Then, we will focus on each model 

individually and analyze how it is affected by the adjustment of each parameter, and finally an 

evaluation of the best mesh for each model in terms of ground truth will be applied. It is important to 

note that for the first part of the comparison the learning rate graph will only be presented once, as 

the flow of values remains essentially constant across all models and parameter tests and will only be 

discussed if the final value of the learning rate changes. 

 The evaluation and comparison of results for all models across different parameter 

adjustments will focus on the following criteria: 

- Eval Images/img 
- Eval Images/sensor_depth 
- Duration 
- PSNRS 
- Learning Rate 
- Sensor_l1_loss 
- Sensor_freespace_loss 
- Sensor_sdf_loss 
- RGB_loss 

 For PSNR and RGB loss, the evaluation values (Eval Loss Dict/rgb_loss and Eval Metrics 

Dict/psnr) will be used, as they are considered the best metrics for assessing generalization and 

determining how well a model performs on new data. The “Eval Loss Dict/rgb_loss” reflects the loss 

incurred when reconstructing RGB images during model evaluation using unseen data (test or 

validation set), providing insight into the model's ability to generalize to new images. However, the so 

called “Eval Metrics Dict/psnr” is often used as the primary and comprehensive measure for 

comparison with other models or settings. It provides a much enhanced measure using many pictures 

giving a better estimate of the loss function as a measure of the model at reconstructing images. For 

example, while judging two models in terms of PSNR for an entire scene, the scores signify the relative 

degree of the average image quality of models. Based on these criteria, the performance of the 

models will be analyzed both at an overall level and for each modified parameter. 

 It is important to mention that all meshes have been roughly cleaned to give a preliminary 

view of how well each model differentiates details and reconstructs the scene without generating 

noise in free areas or challenging spots. All models can be further optimized to improve clarity by 

removing noise that doesn’t belong to object regions. 

 

10.1. Models Comparison and Results for Each Parameter Adjustment 
 Keeping the parameter values as proposed by the SDFStudio team, the three models Neus-

Facto, MonoSDF and UniSurf show different behaviors and performances during the 3D scene 

reconstruction process. The training time differs significantly between them. Neus-Facto completes 

the process in only 12 minutes and 42 seconds, which makes it the fastest. MonoSDF takes much 

longer, about 1 hour, 17 minutes and 5 seconds, while UniSurf requires 1 hour, 27 minutes and 16 

seconds, making it the slowest. However, it should be noted that the number of iterations for the 

Neus-Facto is 20,000, while for the other two models it is 50,000. 
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Table 5: Training metrics for suggested parameter values across Neus-Facto, MonoSDF, and UniSurf 

models 

Parameter: Suggested values 

Model Neus-Facto MonoSDF UniSurf 

Duration 12m 42s 1h 17m 5s 1h 27m 16s 

PNSR 16.23 18.92 13.64 

Learning Rate 0.000025 0.00028 0.00047 

Sensor_l1_loss 0.004559 0.005400 0.022068 

Sensor_freespace_loss 0.000064 0.000111 0.000056 

Sensor_sdf_loss 0.007961 0.009285 0.010082 

RGB_loss 0.108155 0.079607 0.149631 

  

 According to Keeping the parameter values as proposed by the SDFStudio team, the three 

models Neus-Facto, MonoSDF and UniSurf show different behaviors and performances during the 3D 

scene reconstruction process. The training time differs significantly between them. Neus-Facto 

completes the process in only 12 minutes and 42 seconds, which makes it the fastest. MonoSDF takes 

much longer, about 1 hour, 17 minutes and 5 seconds, while UniSurf requires 1 hour, 27 minutes and 

16 seconds, making it the slowest. However, it should be noted that the number of iterations for the 

Neus-Facto is 20,000, while for the other two models it is 50,000. 

 

Table 5 regarding the losses, there is a clear distinction between the models. The L1 sensor loss for 

Neus-Facto and MonoSDF is almost identical, approximately 0.004559 and 0.005400, respectively. In 

contrast, UniSurf L1 sensor loss amounts to a much higher value of 0.022068, implying that its depth 

predictions are more far from reality, which corroborates with its lower PSNR. On the other hand, 

UniSurf has the least sensor freespace loss of 0.000056, while MonoSDF has the highest at 0.000111. 

Despite this, the SDF sensor loss is higher for UniSurf at 0.010082, followed by MonoSDF and Neus-

Facto. This then reveals the weakness of UniSurf for correct surface geometry representation in a 

scene. 

 The RGB loss, with the highest value for UniSurf at 0.149631, indicates that the model 

struggles to align synthetic images with real ones. MonoSDF has a corresponding RGB loss of 0.079607, 

whereas Neus-Facto had a loss of 0.108155. Obviously, MonoSDF is in the lead. From the point of view 

of image quality, regarding PSNR (Figure 72), MonoSDF can be highlighted for its high PSNR. This can 

be interpreted to mean that MonoSDF provides high-quality images with low noise. For Neus-Facto, 

the PSNR is 16.23, which is still quite a decent number, reflecting good image quality. The lowest value 

of PSNR is for UniSurf among all three models, which indicates that their reconstructions have more 

noise and lower quality. 
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Figure 72: PSNR Evaluation Metrics Across Models (Suggested Parameter Values) 

 

 Learning rate (Figure 73) plays a crucial role in how these models adapt during training. Neus-

Facto converges to the lowest learning rate, after a rapid decrease, as shown in the graphs. After 

approximately 20,000 steps, the learning rate stabilizes, indicating a cautious approach to parameter 

adjustment. This rapid decrease suggests that Neus-Facto aims to stabilize early in training, avoiding 

overfitting or drastic changes as training progresses. In contrast, MonoSDF converges to a higher 

learning rate, which decreases more gradually over time. This gradual decrease allows MonoSDF to 

continue learning at a measured pace throughout training, which may explain why it achieves the 

highest PSNR. It continues refining details for a longer period, enabling it to produce higher-quality 

reconstructions. UniSurf, with the highest final learning rate of 0.000047, maintains a more steady 

and consistent learning rate throughout training. However, this relatively high and stable rate may 

lead to less precise parameter updates, contributing to the lower PSNR and less accurate 

reconstructions. 

 

Figure 73: Learning Rate Progression Across Models (Suggested Parameter Values) 

 

 The quality assessment of the depth sensor and image (Figure 74) shows that both Neus-Facto 

and MonoSDF have much sharper and more detailed depth maps and images, while UniSurf creates a 

much darker and less detailed depth map, and that can be one of the reasons for its higher sensor 
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losses. Visually, MonoSDF and Neus-Facto perform better than UniSurf in generating sharper and finer 

detailed images.  

 

Figure 74: Sensor Depth and Image Evaluation Results (Suggested Parameter Values) 

 

 According to the meshes (Figure 75) MonoSDF stands out as the best model in terms of image 

quality and reconstruction accuracy, although it requires more training time. This is evident from its 

precise representation of the scene, particularly in challenging areas such as built-in benches, corner 

folds in the walls, and objects like doors and windows. The model manages to capture these details 

due to its gradually decreasing learning rate, which allows it to keep improving over time. Neus-Facto 

offers a faster alternative with decent performance, thanks to its rapidly decreasing learning rate, 

which stabilizes the model early on. While it doesn’t reach the same level of detail as MonoSDF, it 

provides a good balance between speed and performance. In contrast, UniSurf struggles with both 

accuracy and image quality due to its relatively high and steady learning rate, which may hinder the 

model's effective convergence. Although its reconstruction is less detailed and noisier, it performs 

better in certain clearer areas, such as the telephone booths and regions with sparse information, like 

the right sides of the two columns located on the right side of the scene. Finally, noise is observed in 

the empty areas across all models, with the most significant amount appearing in UniSurf. 

 

Figure 75: 3D reconstruction results for Neus-Facto (top), MonoSDF (middle), and UniSurf (bottom) using suggested 
parameter values. 

 

 With the parameter pipeline.model.sdf-field.use-grid-feature set to False, significant 

performance changes are observed in the three models Neus-Facto, MonoSDF, and UniSurf, as shown 
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in Table 6: Training metrics with pipeline.model.sdf-field.use-grid-feature set to False. These changes 

affect various aspects of the models' behavior and accuracy, highlighting the impact of this parameter 

on the quality of the 3D reconstructions and overall performance. 

Table 6: Training metrics with pipeline.model.sdf-field.use-grid-feature set to False 

Parameter: pipeline.model.sdf-field.use-grid-feature False 

Model Neus-Facto MonoSDF UniSurf 

Duration 10m 22s 1h 17m 27s 12m 42s 

PNSR 18.30 17.74 15.71 

Learning Rate 0.000025 0.00028 0.00047 

Sensor_l1_loss 0.003225 0.003524 0.022065 

Sensor_freespace_loss 0.000112 0.000251 0.000030 

Sensor_sdf_loss 0.009417 0.009345 0.011510 

RGB_loss 0.085408 0.090455 0.121937 

 

 Initially, the training time differs, with Neus-Facto remaining the fastest and UniSurf having a 

similar completion time, while MonoSDF continues to require more time. The increased speed in both 

Neus-Facto and UniSurf compared to previous results suggests that not using the grid feature to 

represent the 3D space can accelerate training, particularly in UniSurf. 

 According to the PSNR values, Neus-Facto takes the lead this time, with MonoSDF following 

closely at 17.74. This difference indicates that Neus-Facto manages to improve image quality when 

the grid-feature parameter is disabled, while UniSurf continues to struggle with the quality of its 

results. The sensor L1 loss remains comparable between Neus-Facto and MonoSDF, while UniSurf 

once again lags in accurately predicting depth values. 

 The sensor freespace loss is low across all three models, with MonoSDF and Neus-Facto 

showing slightly higher values compared to UniSurf, which has the lowest. For sensor SDF loss, UniSurf 

reports the highest value, indicating more difficulties in surface modeling compared to Neus-Facto 

and MonoSDF. The RGB loss remains significantly higher for UniSurf, while Neus-Facto and MonoSDF 

have lower values. In terms of depth map and image reconstruction evaluation (Figure 76), Neus-Facto 

and MonoSDF produce more reliable depth maps and RGB images, though they exhibit more 

blurriness and reduced accuracy. On the other hand, while UniSurf still struggles with depth map 

generation, in this case, it produces better results in the RGB images. 

 

Figure 76: Sensor Depth and Image Evaluation Results with pipeline.model.sdf-field.use-grid-feature set to False 
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 Disabling the grid feature has interesting effects on the final reconstruction of the scene 

(Figure 77). Specifically, it appears to negatively impact all models, as although the noise in the empty 

areas has been almost entirely reduced, this comes at the cost of significant detail loss in the 

reconstructions. One positive outcome is the clearer representation around the benches, but the 

meshes overall show less sharpness and a more generalized depiction of the scene's geometry. Instead 

of the detailed and clear surfaces observed previously, disabling the grid feature results in a smoother, 

but less accurate representation of the scene. 

 

Figure 77: 3D reconstruction results for Neus-Facto (top), MonoSDF (middle), and UniSurf (bottom) with pipeline.model.sdf-
field.use-grid-feature set to False 

 

 By setting the number of neurons per layer to 64 instead of the initial 256, initial changes are 

observed in the performance of the three models Neus-Facto, MonoSDF and UniSurf both in terms of 

training time and reconstruction quality. This alteration in the hidden layer dimension impacts the 

computational complexity, consequently affecting the training time and the accuracy of the results 

(Table 7). Notably, the training duration is significantly reduced across all models compared to 

previous settings. As expected, the reduction in hidden layer size appears to accelerate the training 

process. 

Table 7: Training metrics for models with pipeline.model.sdf-field.hidden-dim set to 64 

Parameter: pipeline.model.sdf-field.hidden-dim 64 

Model Neus-Facto MonoSDF UniSurf 

Duration 9m 47s 41m 5s 44m 1s 

PNSR 18.37 18.55 13.45 

Learning Rate 0.000025 0.00028 0.00047 

Sensor_l1_loss 0.004980 0.006291 0.022566 

Sensor_freespace_loss 0.000045 0.000031 0.000052 

Sensor_sdf_loss 0.007499 0.007195 0.009873 

RGB_loss 0.086908 0.084299 0.156266 
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 Ιmage quality, as measured by PSNR, Neus-Facto and MonoSDF show fairly good values 

compared to UniSurf, which continues to lag behind. The learning rate follows the same trend as in 

previous experiments, along with the other performance indicators. 

 The visual comparison of depth maps and reconstructed images shows similar results to those 

where the parameters were kept as initially proposed (Figure 78). The reconstructed images from 

Neus-Facto and MonoSDF retain more detail and clarity, with MonoSDF producing sharper images, 

while UniSurf remains blurry and of much lower quality. 

 

Figure 78: Sensor Depth and Image Evaluation Results with pipeline.model.sdf-field.hidden-dim set to 64 

 

 In the 3D reconstruction, all models exhibit considerable scattered noise on almost all surfaces 

of the scene (Figure 79). However, UniSurf defines the geometry of the object on the walls more 

effectively, despite the values discussed earlier. It is important to note that in the area on the right 

side of the object, where light incidence was stronger and the other two models struggled to 

accurately represent the geometry, UniSurf performed significantly better. 

 

Figure 79: 3D reconstruction results for Neus-Facto (top), MonoSDF (middle), and UniSurf (bottom) with pipeline.model.sdf-
field.hidden-dim set to 64 

  

  With the number of layers increased to 8 from 2, it's important to note that UniSurf encountered a 

memory issue (CUDA out of memory), indicating it was unable to complete the training due to system resource 

constraints.  
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Table 8: Training metrics for models with pipeline.model.sdf-field.num-layers set to 8 

Parameter: pipeline.model.sdf-field.num-layers 8 

Model Neus-Facto MonoSDF UniSurf 

Duration 23m 4s 2h 25m 17s CUDA out of 
memory PNSR 17.19 18.59 

Learning Rate 0.000025 0.000281 

Sensor_l1_loss 0.006033 0.005068 

Sensor_freespace_loss 0.000095 0.000049 

Sensor_sdf_loss 0.008570 0.008855 

RGB_loss 0.098429 0.081279 

 

 According to Table 8 the training duration nearly doubled for the two models that completed training. 

In terms of image quality, MonoSDF maintains its lead with PSNR, though the trend in the graph shows a decline 

in both models during training (Figure 80). The sensor L1 loss remains low for both models, as does the sensor 

freespace loss. Both models exhibit similar performance in surface modelling and color rendering, according to 

the sensor SDF loss and RGB loss values, respectively. 

 

Figure 80: PSNR Evaluation Metrics Across Models with pipeline.model.sdf-field.num-layers set to 8 

 

 The depth maps and reconstructed images (Figure 81) show that Neus-Facto produces slightly more 

accurate depth maps, as well as less blurry RGB images with better precision. 

 

Figure 81: Sensor Depth and Image Evaluation Results with pipeline.model.sdf-field.num-layers set to 8 

 

 In the 3D reconstruction, both Neus-Facto and MonoSDF produce well-structured surfaces (Figure 82). 

However, MonoSDF delivers clearer surfaces with better detail and smoothness, while Neus-Facto shows slightly 

lower detail. 
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Figure 82: 3D reconstruction results for Neus-Facto (top), MonoSDF (middle), and UniSurf (bottom) with pipeline.model.sdf-
field.num-layers set to 8 

 

 With the increase in the number of hidden layers from 2 to 8, the performance changes in the 

Neus-Facto, MonoSDF, and UniSurf models do not show significant differences, except for the “sensor 

freespace loss” value in MonoSDF, as shown in Table 9. This value is nearly half compared to the 

corresponding value when the parameter was set to 2. 

Table 9: Training metrics for models with pipeline.model.sdf-field.num-layers-color set to 8 

Parameter: pipeline.model.sdf-field.num-layers-color 8 

Model Neus-Facto MonoSDF UniSurf 

Duration 15m 41s 1h 30m 44s 1h 25m 57s 

PNSR 16.35 18.00 14.71 

Learning Rate 0.000025 0.00028 0.00047 

Sensor_l1_loss 0.004599 0.005965 0.023176 

Sensor_freespace_loss 0.000053 0.000059 0.000053 

Sensor_sdf_loss 0.009171 0.009152 0.010658 

RGB_loss 0.103656 0.082842 0.131047 

  

 Although increasing the number of color layers was theoretically expected to improve the 

detail and accuracy of the color reconstructions, the reconstructed images (Figure 83) for each model 

did not show the anticipated improvements. Specifically, having more hidden layers in the color 

network was supposed to allow the neural network to better "understand" the nuances of lighting, 

color shading, and material properties in the reconstructed images. This includes more accurately 

capturing subtle changes in color that depend on different viewing angles or scene lighting. 

 

Figure 83: Sensor Depth and Image Evaluation Results with pipeline.model.sdf-field.num-layers-color set to 8 
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 The results of MonoSDF and UniSurf are a little bit lower in quality in the case of the 3D 

reconstruction compared to the previous tests (Figure 84). Because, in a theoretical way, increasing 

the number of color layers could improve model performance by allowing more realistic, more 

detailed, visually accurate color representation capturing fine changes in surface appearance, it was 

not reflected in these results. Contrary to expectations, the models did not present any significant 

improvements, probable due either to overtraining or difficulties in learning from these complex 

patterns. Increased aggregate gain by the number of color layers did nothing to significantly enhance 

the level of detail and quality, often giving rise to more noise, especially in more complex areas of a 

scene. 

 

Figure 84: 3D reconstruction results for Neus-Facto (top), MonoSDF (middle), and UniSurf (bottom) with pipeline.model.sdf-
field.num-layers-color set to 8 

 

 By disabling the appearance embedding parameter, the model relies primarily on spatial 

information, making it incapable of accurately capturing color variations caused by different viewing 

angles or lighting conditions. As with the other training metrics, the final PSNR values for all models 

remain almost unchanged (Table 10), with MonoSDF exceeding a value of 20, demonstrating its 

superior performance. 

Table 10: Training metrics for models with pipeline.model.sdf-field.use-appearance-embedding set to False 

Parameter: pipeline.model.sdf-field.use-appearance-embedding False 

Model Neus-Facto MonoSDF UniSurf 

Duration 12m 22s 1h 7m 38s 1h 4m 51s 

PNSR 17.44 21.74 14.29 

Learning Rate 0.000025 0.00028 0.00047 

Sensor_l1_loss 0.005658 0.006866 0.022067 

Sensor_freespace_loss 0.000084 0.000086 0.000070 

Sensor_sdf_loss 0.007077 0.007635 0.008215 

RGB_loss 0.084078 0.052206 0.138686 

 

 It is also noteworthy that the PSNR values stay consistent throughout training, without 

significant fluctuations, indicating a stable and predictable learning process across the models (Figure 
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85). Depth and color reconstructions remain consistent with the results obtained from the 

recommended parameters, with UniSurf still failing to produce clear results. 

 

Figure 85: PSNR Evaluation Metrics Across Models with pipeline.model.sdf-field.use-appearance-embedding set to False 

 

 In the 3D reconstructions, MonoSDF remains the top-performing model, delivering cleaner 

and more detailed surfaces. Neus-Facto shows more noise and less accuracy in certain areas, while 

UniSurf, despite reduced noise, struggles to capture details and exhibits issues in many regions (Figure 

86). Overall, MonoSDF provides better geometry and clearer results, while UniSurf maintains reduced 

noise in areas where the other models face difficulties. 

 Disabling appearance embedding negatively affects the quality of color reconstruction and 

detail in all models, with MonoSDF being the least affected and retaining its superiority in both quality 

and geometry. 

 

Figure 86: 3D reconstruction results for Neus-Facto (top), MonoSDF (middle), and UniSurf (bottom) with pipeline.model.sdf-
field.use-appearance-embedding set to False 

 

 The geometric initialization parameter helps the model start with an initial geometric 

approximation, improving performance in the early stages of training and ensuring better 
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convergence in complex geometries. When it is disabled (set to False), the models rely more on 

random initial values, which can lead to difficulties in representing fine details. 

 A significantly reduced RGB loss value is observed for UniSurf (Table 11), while the 

reconstructed depth and color images show results like previous trials. The 3D reconstructions display 

significant noise in UniSurf, particularly in areas where geometric initialization had previously 

produced better results. Noise is also present in empty spaces, further deteriorating reconstruction 

quality. 

Table 11: Training metrics for models with pipeline.model.sdf-field.geometric-init set to False 

Parameter: pipeline.model.sdf-field.geometric-init False 

Model Neus-Facto MonoSDF UniSurf 

Duration 12m 20s 1h 22m 39s 1h 4m 58s 

PNSR 17.81 18.82 14.29 

Learning Rate 0.000025 0.00028 0.00047 

Sensor_l1_loss 0.003910 0.003344 0.023506 

Sensor_freespace_loss 0.000063 0.000072 0.000100 

Sensor_sdf_loss 0.008228 0.008220 0.009263 

RGB_loss 0.087998 0.071867 0.000473 

 

 However, it is noteworthy that the 3D reconstructions of the other two models show better 

results compared to when geometry initialization was enabled (Figure 87). The improvement is 

evident both in reducing noise in complex object areas and in minimizing noise in empty regions. Once 

again, the mesh produced by MonoSDF stands out with the best results, offering superior detail and 

clarity in the reconstruction. 

 

Figure 87: 3D reconstruction results for Neus-Facto (top), MonoSDF (middle), and UniSurf (bottom) with pipeline.model.sdf-
field.geometric-init set to False 

  

 The decrease of the bias parameter from 0.8 to 0.05 decreased SDF loss in all three models 

(Table 12). This controls the initial bias of the model for the computed distance from surfaces. With a 

low bias, the model tends to more aggressively approach surfaces. This behavior might contribute 
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toward improving performance with respect to SDF loss but also increases the chances that some 

areas will produce errors or noise.  

Table 12: Training metrics for models with pipeline.model.sdf-field.bias  set to 0.05 

Parameter: pipeline.model.sdf-field.bias  0.05 

Model Neus-Facto MonoSDF UniSurf 

Duration 12m 23s 1h 10m 6s 1h 5m 11s 

PNSR 18.38 19.12 12.98 

Learning Rate 0.000025 0.00028 0.00047 

Sensor_l1_loss 0.006976 0.006126 0.022078 

Sensor_freespace_loss 0.000066 0.000056 0.000094 

Sensor_sdf_loss 0.005277 0.008455 0.007574 

RGB_loss 0.088918 0.077923 0.165009 

 

 

Figure 88: PSNR Evaluation Metrics Across Models with pipeline.model.sdf-field.bias  set to 0.05 

 

 While the PSNR values remain in a steady state, it also indicates good overall learning across 

models (Figure 88). The reconstructions of depth and color do not exhibit major changes from previous 

trials, thereby indicating stability in results. In some cases, the 3D reconstructions may even seem to 

have surface outlines that are a little sharper owing to the adjustment in the bias parameter. Despite 

this, reduced accuracy with increased noise is observed in the 3D reconstructions across all models 

(Figure 89). 
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Figure 89: 3D reconstruction results for Neus-Facto (top), MonoSDF (middle), and UniSurf (bottom) with pipeline.model.sdf-
field.bias  set to 0.05 

 

  The beta initialization parameter controls the initial value of beta in the surface smoothing 

mechanism used by the model to converge surfaces based on the calculated distance from them (SDF).  

Table 13: Training metrics for models with pipeline.model.sdf-field.beta-init set to  0.8 

Parameter: pipeline.model.sdf-field.beta-init  0.8 

Model Neus-Facto MonoSDF UniSurf 

Duration 12m 11s 1h 14m 32s 1h 4m 57s 

PNSR 18.51 19.049 13.90 

Learning Rate 0.000025 0.00028 0.00047 

Sensor_l1_loss 0.003129 0.005422 0.022069 

Sensor_freespace_loss 0.000098 0.000099 0.000066 

Sensor_sdf_loss 0.007734 0.009323 0.008645 

RGB_loss 0.083095 0.080265 0.148282 

 

 By increasing the value from 0.3 to 0.8, the model tends to enforce stricter surface smoothing, 

resulting in clearer and more accurate surfaces. This adjustment helps reduce noise and enhances 

detail in surface areas, as beta controls how "sharp" or "smooth" the reconstructed surfaces are. With 

a higher beta-init value, the model becomes more efficient at producing well-defined surfaces and 

maintaining precise geometric representation. The results of the reconstruction confirm this 

improvement. The reconstructed depth and color images of Neus-Fact are the most accurate so far 

among all models (Figure 90). In the color images, even small details such as the letters on a sign are 

clearly visible, demonstrating a significant enhancement in the quality of the visual representation. 
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Figure 90: Sensor Depth and Image Evaluation Results with pipeline.model.sdf-field.beta-init set to  0.8 

 

 The 3D reconstruction of Neus-Facto also shows excellent results (Figure 91), with minimal 

noise and well-defined areas. Although it loses some accuracy and information in regions with 

changing depth, the overall outcome is impressive, providing an outstanding representation with very 

few issues. 

 

Figure 91: 3D reconstruction results for Neus-Facto (top), MonoSDF (middle), and UniSurf (bottom) with pipeline.model.sdf-
field.beta-init set to  0.8 

 

 By changing the image evaluation step parameter from 5000 to 25, the model evaluates its 

performance much more frequently, every 25 steps instead of every 5000. This adjustment provides 

quicker feedback during training, allowing for faster detection of potential issues such as overfitting 

or underfitting. It also allows for more detailed monitoring of the model's progress, although this 

increases computational cost, significantly slowing down the overall training speed across all three 

models (Table 14). 

Table 14: Training metrics for models with trainer.steps-per-eval-image set to 25 

Parameter: trainer.steps-per-eval-image 25 

Model Neus-Facto MonoSDF UniSurf 

Duration 55m 36s 6h 36m 30s 6h 6m 12s 
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PNSR 15.93 18.78 14.04 

Learning Rate 0.000025 0.00028 0.00047 

Sensor_l1_loss 0.004573 0.005588 0.022066 

Sensor_freespace_loss 0.000066 0.000148 0.000053 

Sensor_sdf_loss 0.007881 0.008639 0.010623 

RGB_loss 0.110600 0.077244 0.144039 

 

 Despite the increased monitoring, this change did not significantly improve the results for the 

reconstructed depth and color images, nor did it enhance the final meshes of the models in a 

satisfactory or meaningful way. Therefore, while more frequent evaluation provides greater control, 

it did not lead to the expected improvements in the quality of the final reconstructions (Figure 92). 

 

Figure 92: 3D reconstruction results for Neus-Facto (top), MonoSDF (middle), and UniSurf (bottom) with trainer.steps-per-
eval-image set to 25 

  

 Increasing the depth l1 loss parameter from 0.1 to 0.8 significantly affects the model’s 

performance. This change emphasizes depth accuracy by increasing the weight of L1 loss for depth 

(Table 15), which leads to more precise depth reconstructions (Figure 94). 

Table 15: Training metrics for models with pipeline. model. sensor-depth-l1-loss-mult set to 0.8 

Parameter: pipeline. model. sensor-depth-l1-loss-mult 0.8 

Model Neus-Facto MonoSDF UniSurf 

Duration 12m 13s 1h 26m 15s 1h 5m 14s 

PNSR 18.33 18.22 17.00 

Learning Rate 0.000025 0.00028 0.00047 

Sensor_l1_loss 0.022290 0.025789 0.055985 

Sensor_freespace_loss 0.000074 0.000186 0.000037 

Sensor_sdf_loss 0.007171 0.006597 0.009859 

RGB_loss 0.084911 0.084470 0.090278 

 



   

 

92 
 

 As a result, UniSurf, which typically starts with lower PSNR values, experiences a noticeable 

improvement after the 25,000th iteration (Figure 93). 

 

Figure 93: PSNR Evaluation Metrics Across Models with pipeline. model. sensor-depth-l1-loss-mult set to 0.8 

 

 Both Neus-Facto and MonoSDF exhibit superior depth and color reconstructions, with minimal 

noise in the final 3D reconstructions (Figure 95). 

 

 

  

 The final mesh from Neus-Facto captures the scene's geometry more accurately, despite some 

minor discrepancies. This increased focus on depth accuracy results in clearer surfaces and a more 

detailed overall reconstruction. 

Figure 94: Sensor Depth and Image Evaluation Results with pipeline. model. sensor-depth-l1-loss-mult set to 0.8 
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Figure 95: 3D reconstruction results for Neus-Facto (top), MonoSDF (middle), and UniSurf (bottom) with pipeline. model. 
sensor-depth-l1-loss-mult set to 0.8 

 

 With the depth freespace loss parameter set to 0 instead of 10, huge changes in model 

performance are expected, particularly in how the models handle free space. The Sensor Freespace 

Loss has been eliminated, meaning that the model no longer considers free space information during 

training. 

Table 16: Training metrics for models with pipeline.model.sensor-depth-freespace-loss-mult  0 

Parameter: pipeline.model.sensor-depth-freespace-loss-mult  0 

Model Neus-Facto MonoSDF UniSurf 

Duration 12m 23s 1h 16m 28s 1h 5m 26s 

PNSR 15.44 18.86 13.37 

Learning Rate 0.000025 0.00028 0.00047 

Sensor_l1_loss 0.004730 0.005571 0.022100 

Sensor_freespace_loss 0 0 0 

Sensor_sdf_loss 0.007803 0.009499 0.002546 

RGB_loss 0.114227 0.080006 0.157978 

 

 

 Despite the absence of freespace loss for all models, the final PSNR values remain at similar 

levels to previous tests, with a stable trend throughout training (Figure 96).  
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Figure 96: PSNR Evaluation Metrics Across Models with pipeline.model.sensor-depth-freespace-loss-mult  0 

  

 The reconstructions for Neus-Facto and MonoSDF are still satisfactorily good, although some 

regions exhibit more noise. In contrast, UniSurf shows significant noise in the 3D reconstruction, 

especially in areas that should typically be empty (Figure 97). The zero value for this parameter leads 

to less accurate reconstructions in free space areas, particularly for UniSurf. While models like 

MonoSDF and Neus-Facto maintain satisfactory performance, UniSurf struggles more without the 

freespace loss guiding its reconstructions. 

 

Figure 97: 3D reconstruction results for Neus-Facto (top), MonoSDF (middle), and UniSurf (bottom) with 
pipeline.model.sensor-depth-freespace-loss-mult  0 
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With the depth SDF loss parameter set to 0 instead of 6000, we observe some noteworthy changes in 

model performance. This parameter controls how important the SDF loss is for depth accuracy, so 

reducing it to zero means the model no longer accounts for distance error during training, potentially 

leading to less accurate surface representation. 

 

Table 17: Training metrics for models with pipeline.model.sensor-depth-sdf-loss-mult set to  0 

Parameter: pipeline.model.sensor-depth-sdf-loss-mult  0 

Model Neus-Facto MonoSDF UniSurf 

Duration 12m 20s 1h 21m 25s 1h 5m 33s 

PNSR 19.19 18.75 19.00 

Learning Rate 0.000025 0.00028 0.00047 

Sensor_l1_loss 0.003898 0.004943 0.003641 

Sensor_freespace_loss 0.000068 0.000070 0.000009 

Sensor_sdf_loss 0 0 0 

RGB_loss 0.077764 0.081114 0.075109 

 

 For the first time in these parameter trials, all models show similar PSNR values, with UniSurf 

exhibiting significant improvements in depth and color reconstructions (Figure 98), even surpassing 

Neus-Facto and MonoSDF in some areas. 

 

Figure 98: Sensor Depth and Image Evaluation Results with pipeline.model.sensor-depth-sdf-loss-mult set to  0 

 

 Despite these improved results in 2D depth and color images, this does not translate to better 

quality in the meshes, as all models produced extremely low accuracy meshes. While UniSurf performs 

well with 2D data, it fails to represent the scene adequately in 3D reconstructions, resulting inaccurate 

and noisy outputs (Figure 99). The reduced mesh accuracy is directly related to the deactivation of the 

sensor-depth-sdf-loss-mult parameter. This parameter helps each model emphasize the correct 

representation of surfaces via SDF distances, improving the estimation of the distance between points 

and surfaces. 
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Figure 99: 3D reconstruction results for Neus-Facto (top), MonoSDF (middle), and UniSurf (bottom) with 
pipeline.model.sensor-depth-sdf-loss-mult set to  0 

 

When the rays number per batch parameter is increased from 1024 to 2048, we expect a longer 

training time due to the increased number of rays processed in each batch. This change requires more 

computational resources, which leads to slower completion of training (Table 18). 

Table 18: Training metrics for models with pipeline.datamanager.train-num-rays-per-batch set to 2048 

Parameter: pipeline.datamanager.train-num-rays-per-batch  
2048 

Model Neus-Facto MonoSDF UniSurf 

Duration 21m 35s 2h 5m 33s 1h 58m 16s 

PNSR 15.72 18.24 13.537 

Learning Rate 0.000025 0.00028 0.00047 

Sensor_l1_loss 0.004199 0.005552 0.023152 

Sensor_freespace_loss 0.000100 0.000041 0.000069 

Sensor_sdf_loss 0.007406 0.007728 0.008874 

RGB_loss 0.114496 0.087055 0.155125 

 

 In the results, the increased number of rays does not cause significant changes in other 

metrics, such as PSNR or sensor losses, while the reconstructed depth and color images, as well as the 

meshes, remain consistent with previous trials. Once again, MonoSDF stands out by representing the 

scene's geometry with greater accuracy, providing a clearer and more precise reconstruction 

compared to the other models (Figure 100). 
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Figure 100: 3D reconstruction results for Neus-Facto (top), MonoSDF (middle), and UniSurf (bottom) with 
pipeline.datamanager.train-num-rays-per-batch set to 2048 

 

10.2. Individual Model Evaluation for Each Parameter Adjustment 
 The evaluation of each model's results based on parameter adjustments will be carried out 

using multiple criteria. First, the training completion time will be considered, as it is a key factor in the 

efficiency of each model. Next, the final PSNR value will be assessed. Additionally, the accuracy of 

optical depth and color image reproduction will be examined, along with the performance in the final 

3D scene reconstruction (mesh reconstruction). These criteria will allow for a comprehensive 

assessment of each model’s performance and help identify the parameters that most influence result 

quality. 

 Regarding the Neus-Facto model, which was trained for 20,000 iterations, the average 

completion time was around 15 minutes, as recorded in the table. However, exceptions were 

observed when specific parameter changes affected the training process. These changes primarily 

included the evaluation frequency and the number of hidden layers in the neural network, which 

resulted in longer training times. 

Table 19: Training Time and PSNR for Neus-Facto Across Different Parameter Configurations 

 

Test ID Parameter Duration PNSR
2024-09-10_130404 Suggested values 12m 42s 16,23

2024-09-10_132019 pipeline.model.sdf-field.use-grid-feature  False 10m 22s 18,30

2024-09-10_133129 pipeline.model.sdf-field.hidden-dim  64 9m 47s 18,37

2024-09-10_134144 pipeline.model.sdf-field.num-layers  8 23m 4s 17,19

2024-09-10_141154 pipeline.model.sdf-field.num-layers-color  8 15m 41s 16,35

2024-09-10_142827 pipeline.model.sdf-field.use-appearance-embedding  False 12m 22s 17,44

2024-09-10_144139 pipeline.model.sdf-field.geometric-init  False 12m 20s 17,81

2024-09-10_145740 pipeline.model.sdf-field.bias  0,05 12m 23s 18,38

2024-09-10_161946 pipeline.model.sdf-field.beta-init  0,8 12m 11s 15,93

2024-09-10_152340 trainer.steps-per-eval-image  25 55m 36s 18,51

2024-09-11_091608 pipeline.model.sensor-depth-l1-loss-mult  0,8 12m 13s 18,33

2024-09-11_093426 pipeline.model.sensor-depth-freespace-loss-mult  0 12m 23s 15,44

2024-09-11_094702 pipeline.model.sensor-depth-sdf-loss-mult  0 12m 20s 19,19

2024-09-17_121649 pipeline.datamanager.train-num-rays-per-batch  2048 21m 35s 15,72
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 Regarding result accuracy, PSNR values ranged between 15 and 18, with some fluctuations 

depending on the parameterization, indicating that the geometric accuracy of the reconstruction is 

somewhat limited. Nevertheless, the overall performance of depth and color image reconstruction 

shows a satisfactory approximation to the original data, with certain parameter adjustments 

significantly improving the results.  

 Specifically, depth image reconstruction (Figure 101) was positively affected by specific 

configurations. First, disabling the Grid Feature seems to help the model simplify the learning process 

and focus on the essential information of the scene, avoiding unnecessary details that could introduce 

noise. Additionally, increasing the beta-init value provided the model with a more stable initial 

variance, allowing it to explore more potential solutions for accurate depth reconstruction. Finally, 

increasing the depth-l1-loss value improved accuracy in depth reproduction by penalizing incorrect 

predictions more strongly, resulting in cleaner and smoother surfaces in the reconstructions. 

 The process of reproducing color images (Figure 102) was also significantly influenced by 

specific parameter adjustments. Increasing the depth-l1-loss helped the model maintain stability and 

improve the clarity of the color reconstructions. On the other hand, setting the depth-sdf-loss to zero 

allowed the model to eliminate unnecessary geometric constraints, which in some cases may have 

negatively impacted the accurate color representation. Additionally, disabling geometric initialization 

gave the network the freedom to discover more complex geometric forms, which improved the overall 

quality of the color reproductions, as the model was not restricted by predefined geometric 

assumptions. 

 However, the bias parameter produced the worst results, both for the depth and color images. 

In the depth reconstruction, there were no discernible details of the object, and the image was 

significantly degraded. Similarly, for color images, the bias setting led to unclear representations. 

Additionally, while the Grid Feature provided a smooth and reliable depth map, it struggled with the 

color image reproduction, introducing a significant amount of noise in the final output, leading to a 

less accurate color reconstruction. This highlights the importance of balancing certain parameters for 

achieving the best results in both depth and color reconstructions. 

Regarding the final meshes from the experiments (Figure 103), it is observed that the most 

optimal mesh for this algorithm is achieved by changing the depth L1 loss parameter from 0.3 to 0.8. 

The L1 loss parameter for depth predictions from sensor data controls the weight given to the accuracy 

of the depth predictions. L1 loss measures the distance between the model's predictions and the 

actual depth values. Adjusting the weight of this loss determines how much the model focuses on the 

accuracy of the depth predictions during training. A higher weight prioritizes the accuracy of depth 

predictions. 

The final result shows significantly less noise across the entire surface of the object compared 

to other configurations, along with greater geometric accuracy in complex surfaces. Additionally, it 

demonstrates better prediction of depth changes, improving the representation of details and smaller 

objects. 
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Figure 101: Neus-facto depth reconstruction of each test 
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Figure 102: Neus-facto RGB reconstruction of each test 

 



   

 

101 
 

 

Figure 103: Neus-facto 3D reconstruction of each test 
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 Regarding the MonoSDF model, which was trained for 50,000 iterations, the average 

completion time ranged from 41 minutes to over 6 hours, as recorded in the table. The completion 

time was influenced by specific parameter adjustments, such as the depth-l1-loss value and the bias 

parameter. These changes had a noticeable effect on both the training duration and the overall 

accuracy of the results. 

Table 20: Training Time and PSNR for MonoSDF Across Different Parameter Configurations 

 

  

In terms of result accuracy, PSNR values fluctuated between 18 and 21, suggesting varying 

degrees of fidelity in the geometric reconstructions. Despite these fluctuations, the depth image 

reconstructions (Figure 104) achieved remarkable improvements with certain parameter adjustments. 

Specifically, increasing the depth-l1-loss value significantly enhanced the accuracy of the depth maps 

by penalizing incorrect depth predictions more strongly. This resulted in smoother surfaces and clearer 

object boundaries. For color image reconstructions (Figure 105), the depth-l1-loss parameter once 

again played a crucial role, helping the model to maintain clarity and reduce noise in the color outputs. 

However, when the bias parameter was reduced from 0.8 to 0.05, the overall performance in both 

depth and color reconstructions saw improvements, indicating that a lower bias helps the model to 

focus on finer details without introducing unnecessary artifacts. On the contrary, using a higher bias 

tended to degrade the quality of the images, leading to less accurate representations and increased 

noise, especially in the color outputs. 

 Overall, the adjustments made to the depth-l1-loss and bias parameters proved critical in 

improving the quality of the depth and color reconstructions. The performance of the model shows 

that careful tuning of these parameters allows for more accurate and noise-free reconstructions, 

highlighting the importance of parameter optimization for achieving the best results. 

Regarding the depth l1 loss parameter set to 0.8, it was observed that this setting led to the 

optimal reconstruction of the scenes, as was also the case with NeusFacto (Figure 103). The depth l1 

loss controls the alignment between the estimated depth produced by the model and the depth data 

that is either provided or predicted by the depth models. This setting helped achieve greater accuracy 

in the reconstructed surfaces, especially in areas of the scene where data was sparse or insufficient. 

This is likely because the model enhances the accuracy of its depth predictions, thus improving the 

overall geometry of the reconstruction. Concerning the meshes for the built benches, the adjustment 

of the num layers parameter had a significant impact on the accuracy of the geometry. Increasing the 

network layers allowed the model to learn more complex relationships and surface details, leading to 

a more accurate representation of the structures. The 8 layers provided the model with greater 

Test ID Parameter Duration PNSR
2024-09-12_134035 Suggested values 1h 17m 5s 18,92

2024-09-13_100910 pipeline.model.sdf-field.use-grid-feature  False 1h 17m 27s 17,74

2024-09-13_092722 pipeline.model.sdf-field.hidden-dim  64 41m 5s 18,55

2024-09-23_151413 pipeline.model.sdf-field.num-layers  8 2h 25m 17s 18,59

2024-09-13_120721 pipeline.model.sdf-field.num-layers-color  8 1h 30m 44s 18,00

2024-09-13_134315 pipeline.model.sdf-field.use-appearance-embedding  False 1h 7m 38s 21,74

2024-09-13_145415 pipeline.model.sdf-field.geometric-init  False 1h 22m 39s 18,82

2024-09-13_175831 pipeline.model.sdf-field.bias  0,05 1h 10m 6s 19,12

2024-09-13_190852 pipeline.model.sdf-field.beta-init  0,8 1h 14m 32s 19,04

2024-09-13_202605 trainer.steps-per-eval-image  25 6h 36m 30s 18,78

2024-09-14_080029 pipeline.model.sensor-depth-l1-loss-mult  0,8 1h 26m 15s 18,22

2024-09-14_092725 pipeline.model.sensor-depth-freespace-loss-mult  0 1h 16m 28s 18,86

2024-09-14_104601 pipeline.model.sensor-depth-sdf-loss-mult  0 1h 21m 25s 18,75

2024-09-17_090950 pipeline.datamanager.train-num-rays-per-batch  2048 2h 5m 33s 18,24
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capacity to capture geometric details of constructed objects, such as built benches, which include 

geometric intricacies and curves that require higher resolution and complexity in learning. The 

comparison of the meshes shows that increasing the layers allowed MonoSDF to maintain accuracy in 

geometry, while the optimization with depth l1 loss enabled accurate representation of areas with 

insufficient data, which would have been difficult with other parameter settings. This indicates that 

MonoSDF is particularly effective when used with the appropriate settings for reconstructing detailed 

and geometrically complex scenes. 

 

Figure 104: MonoSDF depth reconstruction of each test 
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Figure 105: MonoSDF RGB reconstruction of each test 
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Figure 106: MonoSDF 3D reconstruction of each test 
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 The UniSurf model trained across different iterations with different sets of parameters (Table 

21) and the results present significant problems, especially within depth map reconstruction. 

According to times recorded in the table, the completion times varied between roughly 1 hour to over 

6 hours depending on the parameters in question. First, one observation was related to how 

inconsistent the depth image results were, where most reconstructions had a monochromatic look 

and provided little to no valuable information. This issue became more evident during the 

manipulation of some of the important parameters around depth, such as depth-sdf-loss. 

Table 21: Training Time and PSNR for UniSurf Across Different Parameter Configurations 

 

 

 PSNR values ranged between 13 and 19.00, but these variations did not lead to any significant 

improvement in geometric accuracy. Most reconstructions, particularly the depth maps, lacked 

structural information and failed to approximate the original data from the camera. The only notable 

enhancement occurred when the depth-sdf-loss parameter was set to zero, reduced from 6000. In 

this setup, both depth and RGB images were slightly better, but still not adequate for meaningful 

reconstructions. The depth image reconstructions (Figure 107) consistently lacked detailed structure, 

especially in the monochromatic outputs. Removing the depth-sdf-loss constraint helped relax the 

limitations on depth exploration, but the reconstructions still did not achieve a satisfactory level of 

accuracy. Further adjustments, such as changes to the bias and grid feature parameters, worsened 

the results, yielding noisy or incomplete images. Similarly, the RGB image reconstructions (Figure 108) 

followed a similar pattern. The deactivation of depth-sdf-loss improved the clarity to a small degree, 

but the overall results remained blurry, and no distinct structures were identifiable. The failure to 

reproduce color information accurately highlights the limitations in the model's current configuration.  

 The UniSurf model, even with various configurations, largely failed to produce reconstructions 

(Figure 109) that closely resembled the original camera data. The most notable improvement occurred 

when depth-sdf-loss was set to zero, suggesting that excessive geometric constraints may have 

prevented the model from focusing on critical data. However, despite this adjustment, the overall 

quality remained unsatisfactory, indicating the need for further parameter tuning to achieve better 

depth and color reconstruction. Also, as mentioned earlier, struggles to achieve highly accurate 

reconstruction in certain scenarios. However, one of the most successful modifications that improved 

the accuracy was changing the hidden dimension parameter from 256 to 64. This adjustment helped 

the model focus better during training, leading to more precise geometric reconstructions, while also 

reducing the training complexity, making the process more efficient. By using both volume and surface 

rendering techniques, UNISURF achieves continuous scene representation without needing object 

Test ID Parameter Duration PNSR
2024-09-19_111000 Suggested values 1h 27m 16s 13,64

2024-09-14_143523 pipeline.model.sdf-field.use-grid-feature  False 54m 8s 15,71

2024-09-14_154623 pipeline.model.sdf-field.hidden-dim  64 44m 1s 13,45

- pipeline.model.sdf-field.num-layers  8 - -

2024-09-14_193435 pipeline.model.sdf-field.num-layers-color  8 1h 25m 57s 14,71

2024-09-14_210310 pipeline.model.sdf-field.use-appearance-embedding  False 1h 4m 51s 14,29

2024-09-14_221104 pipeline.model.sdf-field.geometric-init  False 1h 4m 58s 14,29

2024-09-15_095630 pipeline.model.sdf-field.bias  0,05 1h 5m 11s 12,98

2024-09-15_192542 pipeline.model.sdf-field.beta-init  0,8 1h 4m 57s 13,90

2024-09-15_203106 trainer.steps-per-eval-image  25 6h 6m 12s 14,04

2024-09-16_092530 pipeline.model.sensor-depth-l1-loss-mult  0,8 1h 5m 14s 17,00

2024-09-16_104519 pipeline.model.sensor-depth-freespace-loss-mult  0 1h 5m 26s 13,37

2024-09-16_121657 pipeline.model.sensor-depth-sdf-loss-mult  0 1h 5m 33s 19,00

2024-09-16_152023 pipeline.datamanager.train-num-rays-per-batch  2048 1h 58m 16s 13,53
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masks. This adjustment made the model lighter and its geometry representation more accurate and 

stable.  

 

Figure 107: UniSurf Depth reconstruction of each test 
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Figure 108: UniSurf RGB reconstruction of each test 
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Figure 109: UniSurf 3D reconstruction of each test             
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10.3. Comparison of Ground Truth with the Best Reconstructed Mesh of each Algorithm 
 This section presents a comparison between the point clouds of a 3D scene generated 

employing NeuSFacto, MonoSDF and UniSurf with the ground truth surface captured by a terrestrial 

laser scanner (Figure 110). The comparison focuses on alignment, absolute distance metrics and 

performance indicators such as accuracy, recall and F-score for narrow distance thresholds (0.25 cm, 

1 cm, 2 cm, 3 cm). Precision measures the quality of the reconstruction, indicating how accurately the 

reconstructed points align with the ground truth which serves as the reference cloud. Recall evaluates 

how comprehensively the reconstructed points represent the ground truth, treating the reconstructed 

points as the reference cloud. These metrics are combined into the F-score, which is calculated as their 

harmonic mean. The comparison was conducted using Cloud Compare, following manual alignment 

and ICP registration to address differences in scale and coordinate systems. 

It is important to note that the ground truth point cloud includes areas with missing or extra 

information, such as the presence of chairs on the left side. These discrepancies should be taken into 

account when comparing it with the point clouds generated by the three models, as they are reliable 

comparable parts of the ground truth. 

 

Figure 110: Ground truth (from Terrestrial Laser Scanner) as reference 

  

 The maximum comparison distance was set to 10 cm, based on the sensor’s specified (2% for 

4 m) and the capture distance, with a slightly extended tolerance to accommodate variations. 
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10.3.1. Neus-facto 
 The discrepancies between the NeuSFacto point cloud (Figure 111) and the ground truth are 

defined by a color scale.  

 

Figure 111: NeuSFacto point cloud 

  

 The blue and green regions are closely aligned with the ground truth, defining deviation 

distances of 0 - 5 cm, while red highlights regions with larger deviations of 10 cm (Figure 112). 

NeuSFacto shows very good alignment over most of its surface. Strong deviations are observed in 

areas where there is no information in the ground truth or there are objects that do not exist in the 

depth camera scan and in areas where the model's reflection did not perform with high accuracy 

(edges) or there was a limitation in the information data (bottom of the bench). 

 

Figure 112: Absolute distances between NeuSFacto's pcd and GT's pcd 
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 At the tighter tolerance of 0.25 cm, NeuSFacto’s F-score is relatively low, 9.505, highlighting 

its difficulty in capturing fine details such as edges and small features. However, as the distance 

threshold increases to 3 cm, the F-score improves to 58.387 (Figure 110), indicating that NeuSFacto 

effectively captures wider structural features, even if detailed accuracy remains difficult. 

 

Figure 113: Precision, Recall and F-score values for different distance thresholds 

 

 The histogram of point distances (Figure 114) illustrates the percentage of NeuSFacto's 

reconstruction points falling within specific distance ranges from the ground truth. A significant 

fraction of the points lies within 0.25 to 1 cm, indication a fairly close alignment with the reference 

model for most of the scene. As the distance from ground truth increases, the percentage of points 

decreases, indicating that the deviations of NeuSFacto points from ground truth are less than the high 

precision alignments. 

 

Figure 114: Percentage of NeuSFacto points distances from ground truth 

 

 NeuSFacto shows high performance in the structure of the stage. It is significantly aligned with 

the ground truth, as shown by the improvement in precision, recall and F-score metrics at higher 

tolerances. However, it exhibits challenges in complex regions where the deviations are increased. 
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10.3.2. MonoSDF 
 The distance maps show correspondingly good alignment across large surfaces, effectively 

capturing the general shape of the scene from MonoSDF point cloud (Figure 115).  

 

Figure 115: MonoSDF point cloud 

 

 However, like NeuSFacto, deviations increase where there is no information in the ground truth or 

there are objects that do not exist in the depth camera scan (Figure 116). 

 

Figure 116: Absolute distances between MonoSDF's pcd and GT's pcd 
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 The comparison at different distance thresholds (0.25 cm, 1 cm, 2 cm and 3 cm) demonstrates 

the performance of MonoSDF in terms of broad structural alignment. Similarly to NeuSFacto, at a 

narrow tolerance limit of 0.25 cm, the accuracy, recall and F-score values of MonoSDF are relatively 

low, with an F-score of 11.543 (Figure 117). However, as the distance threshold increases to 3 cm, the 

F-score improves significantly to 63.16, reflecting the ability of MonoSDF to effectively capture wider 

scene features. 

 

Figure 117: Precision, Recall and F-score values for different distance thresholds 

 

 According to the histogram (Figure 118) of the distances between the cloud and ground truth, 

there is a high concentration of points in the range 0.25 to 1 cm with some percentages exceeding 

15%, suggesting better alignment with the reference model for most of the scene, compared to 

NeuSFacto. While as the distance increases, the percentage of points decreases.   

 

Figure 118: Percentage of MonoSDF points distances from ground truth 
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10.3.3. UniSurf 
 The distance visualization maps capture well the general structure of the point cloud and in 

the case of the UniSurf model’s point cloud (Figure 119) with intricate details and edges showing 

strong divergences, especially in areas of high complexity and limited information data.  

 

Figure 119: UniSurf point cloud 

 

 There is also a significant amount of noise at various points in the scene (Figure 120). 

 

Figure 120: Absolute distances between UniSurf's pcd and GT's pcd 
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 Evaluation at various distance thresholds (0.25 cm, 1 cm, 2 cm and 3 cm) provides further 

information on the accuracy of the UniSurf reconstruction, whereby it indicates lower accuracy (Figure 

121) than the previous two models. As for the distance threshold at 3 cm, the F-score reached 55.308. 

This value highlights UniSurf’s ability to effectively capture wider structural elements, although finer 

details remain difficult to achieve with high fidelity. 

 

Figure 121: Precision, Recall and F-score values for different distance thresholds 

 

 The distance histogram (Figure 122) shows that a relatively significant percentage of UniSurf 

reconstruction points fall within the 0.25 to 1 cm range, however, as the distance threshold increases 

and fewer points fall within each subsequent range, no significant pointing is observed. This 

distribution pattern demonstrates a relatively good alignment of the UniSurf-generated scene with 

the ground truth, with some deviations. 

 

Figure 122: Percentage of UniSurf points distances from ground truth 

 

Finally, a summary Table 22 is presented with the evaluations of all methods, with the best 

performances for each distance threshold highlighted in bold. Based on this table, it is evident that 

MonoSDF achieves the best results for each metric. 

Table 22:Evaluations of all methods for each distance threshold 
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11. Conclusions 
Important conclusions about the reliability and efficiency of each model are made based on 

training results and performance as well as the factors affecting the final quality of reconstructed 

scenes. Each model performs exhibited distinct characteristics. Neus-Facto had the shortest training 

time, at 12 minutes and 42 seconds. However, even with its decent reconstruction accuracy, it 

exhibited some inconsistencies for distinct parts of the final mesh and presence of noise. The PSNR 

for Neus-Facto was 16.23, indicating moderate image quality for the novel views (lower than 

MonoSDF). Meanwhile, MonoSDF surpassed other methods in both PSNR (18.92) and structural 

performance. In contrast, MonoSDF required a much longer training time, exceeding one hour. On the 

other hand, UniSurf, despite having lower noise levels, presented a much lower quality for the 

reconstruction (PSNR = 13.64) and was by far the slowest model, needing 1 hour and 27 minutes of 

training which means worse representations using more time. 

It should be noted that using the same data for both training and validation may not yield 

reliable results. For better outcomes, the validation dataset should differ from the training dataset as 

much as possible. By separating the data into two distinct sets, the evaluation of models would be 

more accurate, preventing overfitting. Model performance was heavily influenced by the adjustment 

of parameters. For instance, decreasing the “hidden dim” parameter from 256 to 64 improved all 

models, with UniSurf benefiting the most without a noticeable loss in reconstruction quality. MonoSDF 

exhibited faster training times with only minor reductions in quality. For some models, increasing 

layers up to 8 improved the fit. While MonoSDF maintained its accuracy, its training time increased 

significantly. Neus-Facto adapted well to the changes, while UniSurf reported memory problems 

(CUDA out of memory), showing limitations in handling more complex architectures. 

A comparison of RGB and L1 loss functions shows that MonoSDF had the lowest values, 

indicating the greatest accuracy in pairing sensor data with real image data. Neus-Facto had slightly 

higher loss values, but still close to the original data. UniSurf had the highest L1 loss values, indicating 

a greater deviation from sensor data and suggesting it was the least reliable in terms of reconstruction 

accuracy. 

Each model demonstrated unique strengths. Neus-Facto’s fast training time makes it ideal for 

applications where quick reconstructions are required, and absolute accuracy is not the main concern. 

MonoSDF, with its remarkable geometric and photorealistic reconstruction, is the best choice for 

cases requiring high detail and fidelity. Although less efficient in terms of time and accuracy, UniSurf 

proves useful for reconstructing scenes with incomplete or noisy data, making it ideal for 

environments where full data coverage is not possible. 

 Overall, the current evaluation shows that the model that provides the highest accuracy in 3D 

reconstruction is MonoSDF, albeit with a prolonged training time. Neus-Facto, on the other hand, 

outperforms other methods for efficient model learning with minor accuracy compared to MonoSDF, 

but with excellent integration time. Although UniSurf is less accurate than the other algorithms, it is 

useful in cases of employing geometric reconstruction from noisy data. 

 Finally, based on the results from distance comparisons of Point clouds and ground truth, 

MonoSDF demonstrates, once again, the best overall performance in scene reconstruction. It achieves 

higher accuracy, recall and F-scores at all distance thresholds compared to the next best and 

recommended model, NeuSFacto. For instance, at the 3 cm threshold, MonoSDF yields an F-score of 

63.16, while NeuSFacto reaches 58.387. This higher F-score at close and moderate tolerances suggests 

that MonoSDF has a better balance between detail accuracy and structural alignment. Furthermore, 
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the histogram of distances indicates that MonoSDF has a higher concentration of points within the 

0.25 to 1 cm range, highlighting better alignment with the ground truth at closer distances. 

 

12. Future Works 
 The research conducted in this thesis focused on studying and evaluating the capabilities of 

selected models including Neus-Facto, UniSurf and MonoSDF, within SDFStudio for reconstructing 3D 

scenes from depth camera data. However, several opportunities for further investigation and 

improvement remain. One potential direction involves the optimization of existing neural network 

architectures to exploit depth maps from scratch, without the need to optimize the extracted data. 

This could reduce processing times and improve accuracy. 

 Furthermore, the implementation and testing of various algorithms available in both 

NeRFstudio and SDFStudio could, through experimentation of additional options and parameter 

adjustments, further improve the quality of the reconstruction. 

 Another practical limitation is the time required to train and reconstruct scenes. Developing 

methods for real-time 3D reconstruction, particularly using depth camera data, is a significant 

challenge. 

 Finally, exploring modern methods techniques such as Gaussian Splatting could provide faster 

reconstruction times with high accuracy. Studies have shown that Gaussian Splatting can achieve 

realistic reconstruction of complex scenes efficiently, providing an opportunity for comparisons and 

potential integration with existing models in SDFStudio. 
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