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Abstract 

Accurate reconstruction of charged particle trajectories, particularly muons generated in proton-

proton collisions, is a crucial aspect of precision measurements conducted during detector 

operation at ATLAS (A Toroidal Large Hadron Collider Apparatus). This thesis focuses on 

integrating and applying advanced signal processing and machine learning techniques to enhance 

the accuracy of muon hit localization in the Micromegas detectors of the New Small Wheel 

(NSW), a major upgrade of the ATLAS Muon Spectrometer aimed at improving muon tracking in 

high-luminosity conditions. The NSW, replacing the innermost endcap chambers, is equipped with 

Micromegas and sTGC (small-strip Thin Gap Chambers) technologies, designed to handle 

increased radiation backgrounds and provide enhanced resolution for precision muon 

measurements. Addressing key challenges such as radiation damage, pile-up effects, and radiative 

energy losses, this research aims to develop signal processing techniques capable of mitigating 

noise and correcting signal distortions. 

This study seeks to improve data interpretation in the Micromegas detectors, of the New Small 

Wheel (NSW) inside the ATLAS experiment at CERN, by resolving these identified issues and 

implementing signal processing protocols that effectively suppress noise and compensate for 

radiation-induced energy losses. Furthermore, it applies state-of-the-art machine learning 

algorithms to high-fidelity Monte Carlo simulations of muon interactions, enhancing muon hit 

localization accuracy. The study evaluates various classification and regression models to optimize 

spatial resolution and assess their performance through extensive experimental validation. 

A comparative analysis of multiple simulation datasets, spanning a range of transverse momenta, 

is conducted to evaluate the robustness of the proposed techniques. Additionally, statistical 
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classification methods are employed to distinguish between signal and background events, thereby 

improving data quality and reducing systematic uncertainties. Finally, the research analyzes muon 

traces affected by radiation-induced energy loss, categorizing them into signal (cluster signal) and 

background (cluster background) to further refine localization accuracy. 
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1 Introduction 

1.1 Background 

Particle physics, also known as high-energy physics, explains the fundamental elements of 

the universe and how they interact. It can be traced back to ancient philosophy. Philosophers such 

as Democritus (c.460–370 BCE) had suggested that matter was made up of indivisible particles 

called atoms. Yet it was only in the late 19th and early 20th centuries that the field began to evolve 

into a scientific discipline. One of the first subatomic particles was discovered in 1897. It was J.J. 

Thomson who found the electron, contrary to the belief of indivisible atoms. Then, in 1911 came 

experiments by Ernest Rutherford that established the nucleus as a dense core in the atom 

surrounded by electrons. However, in the year 1932, James Chadwick had discovered the neutron, 

giving us our three basic atomic bits and establishing the basis for modern nuclear physics. The 

introduction of quantum mechanics in the early 20th century transformed particle physics. Basic 

theories developed by scientists like Max Planck, Niels Bohr and Werner Heisenberg provided a 

framework for understanding what things were happening in the atomic world. Programs of 

research exploring the quantized nature of energy levels and yielding wave-particle duality became 

essential elements of the field. 

In the last half of the 20th century, particle physics moved forward both with the invention 

of particle accelerators and detectors. Cyclotrons and synchrotrons allowed researchers to test the 

structure of matter at levels of energy never achieved before. For example, groundbreaking 

experiments resulted in the detection of new particles, like the positron (1932), the muon (1936), 

and the pion (1947). The identification of these particles pointed to a mind-boggling subatomic 

world that existed alongside protons, neutrons and electrons. In the 1960s and 1970s the Standard 

Model of particle physics was developed. This model unified our understanding of 
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electromagnetic. This was the period when Murray Gell-Mann and George Zweig discovered 

quarks. Both protons and neutrons were no longer regarded as the only elementary particles. 

Today, particle physics has open the eyes of researchers with respect to fundamental questions 

about the universe. For example, concerns like what is dark matter and dark energy, how to unify 

forces, and what is on the way beyond the Standard Model have been answered. It was these events 

that would color future experimental discoveries, as large-scale experiments like those at CERN's 

Large Hadron Collider (LHC) continue to push the boundaries of knowledge and prevent particle 

physics from being sidelined. 

Cycles of atomism are a fundamental characteristic of twentieth-century particle physics. 

The first of these atomic physics was followed by more detailed nuclear physics and basics behind 

the physics of behavior of sub-atomic particles. Each was a deeper exploration of matter's complex 

structure. Scientists at the beginning of the century became increasingly certain that matter was 

made up of atoms that are composed of a small, positively-charged nucleus encircled by a 

collection of negatively-charged particles called electrons (Hoddeson, 1997). The outermost layer, 

the electron cloud, became the domain of atomic physics. Nuclear physics is concerned with the 

nucleus, which was considered to be a composite particle in its own right. Early studies begun 

from the observation that each atomic nucleus that could be broken down to sub-particles 

(Rodríguez, 2004). Physicists believed that every matter was made up of the primordial 

"elementary particles," protons, neutrons, and electrons. However, after World War II, basic 

particles such as the proton, neutron, and electron began to appear, and a new subfield of physics 

was created to study them. These particles were originally not thought of as the building blocks of 

matter. The new field was given the name high-energy physics (HEP), it involved mainly the use 

of high-energy particle acceleration in experimentation. Even though research has analyzed the 
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history of atomic physics, nuclear physics, and of the early days of elementary particle physics, 

the most recent cycle of atomism is still evolving (Mistry, 2011). In the 1960s and 1970s, physicists 

dealing with high-energy physics discovered a new type of substance: quarks. This brought to 

surface the essentiality of protons, neutrons, and other like particles play a role in the nature of 

matter. The protons and neutrons are parts of the nucleus of atoms which represent the gross matter 

while quarks make up protons and neutrons (as well as several other types of particles). The aim 

of this section is to provide an overview in particle physics and an analysis of the role of muons. 

1.1.1 Historical overview of particle physics. 

A groundbreaking step in the development of physics was made by Marie Curie (1867–

1934), who was the first person to weave particle physics with radioactivity. Curie's research 

showed that atoms themselves, and not the way atoms were arranged to form molecules, were the 

source of radioactivity (Shanbhag, 2024). The new concept of atoms being solid and immobile 

was contradicted by this fact. Marie Curies and her husband Pierre discovered that radioactive 

elements polonium and radium in 1898. From the understanding of electrons, Thompson proposed 

that cathode rays were composed of particles with a negative charge and he proposed a Thomson's 

"Plum Pudding" Model based on the newly found particle. According to this model, atoms held 

electrons in a cloud of positive charge (Hentschel, 2009). 

One of the main arguments to undermine the "Plum Pudding" theory was Ernest 

Rutherford, with his student, who conducted a groundbreaking experiment in 1911. In this 

experiment, they used a thin metal foil to shoot a beam of positively charged alpha particles. In a 

manner similar to an empty space, most of the alpha particles have passed through it (Hon & 

Goldstein, 2013). Yet, a small number of alpha particles were scattered over a wide area, and some 

of them were even deflected backward. After Rutherford presented a new theory whereby atoms 
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had particles called proton that is positively charged. He devised a new atomic model, the planetary 

model, in which the electron goes around the proton in a fashion like that of the Earth orbiting the 

sun. Nevertheless, the Rutherford model is considered incomplete, like the Thompson atomic 

model. The similar problem of opposite electric charges of the circulating electron and the proton 

and the resultant attraction persisted. Electrons would theoretically collide with the proton, with 

centripetal attraction as it approaches, leading to the annihilation effect. 

Neils Bohr (1913) was the one who found the solution to Rutherford problem. However, 

Bohr had already attached Planck's Hypothesis of quantized energy to the model of the atom, 

suggesting that electrons were in orbit around the sun and that there could only be a certain number 

of electrons in each orbit (Maina, 2023). Furthermore, Bohr was in favor of the system's angular 

momentum in a stationary state be an integral multiple of h/2π (Maina, 2023). As a consequence, 

Bohr was able to determine the hydrogen atom’s radius, for which he won a Nobel Prize. 

A new concept of particle duality developed with the discovery of quantum theory. In his 

photoelectric effect, Einstein found that light, which has always been assumed a wave, is indeed a 

particle. De Broglie demonstrated this duality with light when he made this claim in his doctoral 

work that particles can also have wave-like characteristics, which became known as The De 

Broglie's Waves (Hill, 2023). Erwin Schrödinger first formally introduced the Schrödinger Wave 

equation, an equation that allowed the prediction of a particle's position, energy, momentum, and 

other parameters (Lima & Karam, 2021). Later, the wave function was developed by the British 

theoretician, Paul A. M. Dirac (1902–1984), to include the Quantum Electrodynamics (QED) 

theory. Furthermore, Dirac was able to merge relativity and quantum mechanics, thus, providing 

completely new insights into the nature of atoms. 
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1.1.2 Overview of the ATLAS experiment. 

The ATLAS experiment comprises a multifunctional laboratory for proton-proton 

collisions studies. The experiment is carried out using three detector systems: the tracker, the 

calorimeter, and the muon system. These are split into nine sub-detectors with each specialized to 

perform a different track-like procedure or particle identification (Nagano & Atlas Collaboration, 

2014). This chapter begins by giving a brief introduction to ATLAS and its general infrastructure. 

This section provides an overview of the ATLAS experiment. 

1.1.2.1 Overview of the ATLAS Experiment 

The experiments conducted at the LHC that cover the largest range of investigations were 

an impetus to the new detector design. Since the main goal of the experiment is to increase the 

proton-proton collision rate to the maximum, one such luminosity at 1034 cm-2 s-1 will be 

achieved (Gullstrand & Maraš, 2020). Here, it is a matter of a detector that can produce the 

maximum number of signatures - indications that a significant event occurred. This would mean 

that there would be about 109 collisions occurring every second. The number of different 

possibilities for the system makes the issue of the number of different signals to be triggered while 

travelling the LHC. The study of very precise physics that rely on good cross-checking judgment 

but, at the same time, point in as many directions as possible is the experiment’s contribution. 

The detect needs for a global LHC were completely reshaped by its quest for the Higgs 

boson. One of the main aims of studying collisions that imitate the boson decay process is to 

distinguish the event's kinematic and geometrical characteristics as they are in a manner that can 

be measured. A unique state can be accounted for in data by the creation of a Goliath which appears 

to be the decay of quantified final state particles in a specific manner to either stable particles or 

decaying particles. Their signals confirm the existence of particles such as photons, electrons, 
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muons, W and Z bosons, quarks, and gluons. They are mostly noticeable through the particle 

sprays known as hadronic jets. They are comprised of the particles produced during the decay 

process of hadronic jets into mesons and baryons. Neutrinos, these neutral weakly interacting 

leptons are formed, but they sensitive detectors cannot detect them due to their lack of tracks. 

There is an imbalance in momentum, and consequently, the particle is unable to be formed due to 

the missing transverse momentum. The experiment will be carried out through the following steps: 

specify the project task, design the experiment plan, construct the setup, and measure the 

performance of the system. 

The superconducting air-core toroids are constructed out of the segmented coils which are 

set eightfold symmetrically; besides the calorimeters, there is a thin superconducting solenoid 

installed in the inner detector cavity. The article discusses the electronic module structure of about 

100 million simplified detector layers. The inner tracking detector is a six-sided box with 1 m long, 

when it’s enclosed by a 2 Teslas (T) axial magnetic field around the collision point. The common 

cylindrical shape of a 7-meter-long and a 1.15-meter radius forms the inner tracking detector (Fox, 

2021). The 'continuous' proportional-counting straw-tube detectors, having the transition radiation 

ability in the outer part of the tracking volume are combined with the discrete high-resolution 

semiconductor pixel and strip detector layers in the inner part of the tracking volume, which are 

providing 30–40 signal points along the tracks, as well (Thaprasop, 2021). 

The LAr EM sampling calorimetry covers the pseudorapidity region of |η|<3.2 and has very 

good calorimetric resolution for both position and the energy. The technology of LAr is used to 

form the end caps of the cryostats that, in turn, belong to the hadronic calorimeters that are chilled 

by the cryostats. The LAr forward calorimeters, which are exclusively located in the cryostats, are 

then responsible for covering the pseudorapidity range to |η|= 4.9. The distance from the center 
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axis represents a maximum angle of just 0.85 degrees. The well-functioning scintillator-tile 

calorimeter, which is the main component of the hadronic calorimetry, is made up of a large main 

barrel and two other smaller extended barrel components that are situated on either side, thus 

performing the largest fraction of the hadronic calorimetry. Use of calorimeter technology is a way 

to provide very good performance of the detector jet and ETmiss. The LAr calorimetry technology 

is based on the reactor technology that reacts with the time and runner conditions. 1,900 G9 

cassettes are arranged in the vertical direction according to the earth’s force cut along the 27.5m 

distant circumference. The thinnest out of the three wheels, though at the same time the lightest 

out of the three, is made of a silicon wafer. It is 9.0mm in the x-axis and 0.5mm maximum 

throughout the y-axis. Calorimeter system weights 4000 tones approximately including the 

solenoid that consists of the steel returns procedure with the tile supporting structure as well. 

The muon spectrometer is housed by the calorimeter. A strong magnetic field is created in 

a lightweight and open space with the help of the air-core toroid system, which consists of a long 

barrel and two inserted end-cap magnets. Three stations of a device used in high-precision tracking 

chambers are designed to minimize the multiple scattering effect and also to obtain a better muon 

momentum resolution. Trigger chambers is the other important part of the muon instrumentation 

with a quick P+T time. The overall dimensions of the muon spectrometer are determined by the 

ATLAS detector. The outer chambers of the chamber are 11 meters in length apart. The third layer 

of the forward muon chambers is the one that is situated on the cavern wall around 23 meters away 

from the interaction point and has a half-length of 12.5 meters for the barrel coils. 

Muon detection and classification serve as a fundamental part of high-energy physics 

experiments conducted at the Micromegas detector in New Small Wheel (NSW). The NSW was 

introduced as part of the Phase-1 upgrade of the ATLAS Muon Spectrometer to replace the 
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previous Small Wheel system, which could no longer sustain the increased hit rates in high-

luminosity conditions. The NSW utilizes two complementary gaseous detector technologies—

Micromegas and small-strip Thin Gap Chambers (sTGCs)—which provide both precision tracking 

and fast triggering capabilities. The Micromegas chambers, in particular, play a critical role in 

achieving high spatial resolution, ensuring robust classification of muon signals in environments 

with high pile-up and radiation effects. This enhancement is crucial for the High-Luminosity LHC 

(HL-LHC) era, where higher collision rates necessitate improved tracking efficiency and 

background suppression techniques. 

1.1.2.2 Muon Detection 

A muon spectrometer includes accurate tracking chambers and a separate trigger. 

Measurements of muon tracks in the heavy-duty superconducting air-core toroid magnets and their 

magnetic deflection are carried out. The toroidal magnet setup prevents the loss of resolution 

caused by continuous scattering while at the same time creates a field that is mainly perpendicular 

to the muon routes. The selection and construction of measuring devices of the spectrometer have 

been largely influenced by the expected quite high particle fluxes, which is resulted in one of the 

most important key performance metrics such as the radiation hardness, granularity, rate 

capability, and ageing characteristics. To handle the challenging background conditions that are 

caused by hadrons entering the calorimeters and radiation backgrounds, mainly neutrons and 

photons in the 1 MeV range, which are produced by the secondary interactions in the calorimeters, 

the shielding material, the beam pipe, and the components of the LHC, trigger and reconstruction 

algorithms are optimized. 
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1.1.3 Importance of muons in high-energy physics. 

The muon has a unique and flexible position in physics ever since it was discovered. Data 

on muons give detailed knowledge about the spectrum and composition of space radiation, as well 

as high energy activities in the atmosphere. There is a standout part for muon in subatomic physics. 

Muon decay research sets higher restrictions on charged-lepton-flavor-violating events and 

determine the chiral structure and overall strength of weak interactions. The precision of the 

standard model and the interpretations of some other speculative ideas can be thoroughly 

scrutinized only if the data of the muon's anomalous magnetic moment are known. Together with 

the measurements of the proton size, electron mass, and magnetic moment, the sayings muoniums 

and muonic atoms bring forth measurements that have never been measured before. Besides, novel 

features in the case of weak interactions between the nucleons and nuclei are examined by the 

means of muon capture studies. 

Muon-based facilities could do the role of the next generation of capabilities and provide 

phenomenal experimental help for scientists in the physics realms at the Intensity and Energy 

Frontiers [1]. From the 1960s, a high-brightness muon beams as an essential part of a neutrino 

factory (NF) or a muon collider (MC) [2] has been proposed. The NF addresses the precision 

frontier by exploring CP-violation in the neutrino sector, whereas the MC mainly deals with the 

high-energy frontier through the investigation of precise Higgs physics and beyond. Only that up 

to the time when the cooling region starts, the current front-end designs of an NF and an MC are 

comparable. 
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1.2 Motivation  

1.2.1 Challenges in muon detection. 

In the late 17th century, Sir Isaac Newton founded analytical physics with his Philosophiae 

Naturalis Principia Mathematica, and Galileo Galilei studied free fall in the 16th century while 

measuring his pulse. Quantum mechanics and Einstein's general relativity were developed in the 

early 20th century. Special relativity was soon added to quantum mechanics. Our knowledge of 

particle physics is condensed into the Standard Model of Particle Physics by quantum field theory. 

The Standard Model is a local gauge theory that describes discrete interactions of spin 1/2 fermions 

through spin 1-gauge bosons. All Standard Model particles except one have been found. The Higgs 

boson, which gives elementary particles their mass, is the only missing piece. The Large Hadron 

Collider (LHC) near Geneva on the Franco-Swiss border searches for the Higgs boson. By design, 

the LHC particle accelerator collides two beams of protons or lead nuclei at 14 TeV or 1148 TeV. 

The ATLAS detector at the LHC can detect and identify many particles from nuclei collisions. For 

example, the muon is heavy enough to reach the detector's outer layers without being completely 

absorbed, but light enough to not decay before reaching the edge. This detector's unique signature 

and different origins make it a good probe for new physics studies like Supersymmetry or the 

Higgs boson, as well as jet-associated W and Z boson production. 

This thesis measures muon reconstruction efficiencies using the well-known kinematic 

properties of boson decay into a muon pair. For this task, a pure subsample from ATLAS' data 

with a defined center of mass energy is selected and tagged and probed. These results are compared 

to Monte Carlo event simulation efficiencies for comparison. The muon reconstruction efficiency 

depends on phase space regions and jet variables. The thesis uses natural units, setting the speed 

of light and Planck's reduced constant to unity (c = ~ = 1). This converts mass, momentum, inverse 
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length, and inverse time to energy units. The electron volt (eV) is the energy a particle with an 

elementary charge of e = 1:602176487(40) 10-19 C gains when crossing a one-volt electrical 

potential difference. 

1.2.2 Role of advanced signal processing in mitigating distortions. 

Analyzing the information content of low-contrast μ-radiography and making the best use 

of the now-available data have two sets of strategies. An essential initial step in distinguishing 

between the various scenarios of cosmic ray acceleration in astrophysics fields, like the 

identification of the mass composition of cosmic rays in the galactic to extragalactic cosmic ray 

transition area. Investigations can be carried out by the muon charge distribution in big air showers, 

which is the most fundamental parameter in reporting various categories of cosmic rays in space 

(Mikuni & Canelli, 2021). The time delay can cause one of the things parse is parsing degrading 

muon detecting performance. Signal distortion, which is principally generated by the frequency 

combining pieces, is the main reason for the reduction of the precision of measurements. 

Consequently, it is necessary to estimate and cancel the instantaneous phase distortion in a 

timely manner for a more effective system performance. We have developed a program in this 

research to evaluate and to remove phase mistakes. The sum of random phase fluctuations and 

systematic phase errors serves as the phase distortions of the beat signal. Through quadrature 

demodulation and a frequency estimation technique based on the Chirp Z transform (CZT) that is 

used, the phase inaccuracy is extracted from the intermediate frequency signal along the reference 

line. The proper cancellation filter is a solution to this problem, and the simulation results display 

clearly how efficient the method is. 
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1.2.3 Emerging role of machine learning in particle physics. 

The rise of machine learning has already cast a shadow over the traditional collider physics 

within the span of what seems like a short time. The researcher runs simulations in the beginning 

and allows the neural network to learn and produce outcomes. In particle physics, machine learning 

is a data-driven approach. Machine learning for instance is everywhere in particle physics: from 

string theory, to neutrinos. Among other potential applications in lines of the non-perturbative 

calculations of the strong interactions within the lattice quantum chromodynamics framework is 

the biggest one (Géron, 2022). 

Even though QCD is consistent and provides the theoretical value of the proton's mass, the 

actual tasks are time-consuming and the perfection of the current state is not as precise as we would 

like it to be. With the help of machine learning and the use of the configurations pre-learned 

approximation or by more efficiently sampling configuration space could be done. Matter form 

factors relevant to dark matter searches and parton distribution functions of nuclear physics 

experiments are the two examples of the characteristics of matter that can be may be calculated 

using ML approaches in case the latter will turn out to be scalable and viable. 

1.3 Objectives  

The main purpose of this thesis aims at the development and application of sophisticated 

signal processing and machine learning strategies to improve the accuracy of muon hit localization 

within the Micromegas detectors of the New Small Wheel (NSW) detector. Problems like radiation 

damage, pile-up effects, and radiative energy losses are the ones that will be faced and solved. The 

study aims to enhance the quality of the data interpretation in the Micromegas detectors of the 

New Small Wheel (NSW) inside the ATLAS experiment by focusing on the mentioned issues. 
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1.3.1 Core objectives. 

1. Develop signal processing protocols that can effectively remove noise and 

correct for radiation energy losses that are responsible for distorted signals. 

2. Implement machine learning techniques to the data that is gathered by the 

ATLAS experiment and the breakthrough of the accuracy of muon detector 

location. 

3. Test their functionality in extensive experiments and rectify them through 

new methods. 

4. Offer clear points on how new techniques can be applied and make them 

applicable to other areas of high-energy physics research. 

1.4 Thesis Outline  

This thesis is designed to focus on all the research procedures and results which relate to 

the improvement of muon hit localization in the Micromegas detectors of the New Small Wheel 

(NSW) inside the ATLAS experiment through enhanced signal processing and machine learning 

methods.  

Chapter 2 contains the requisite knowledge that would make the reader understand the 

backdrop of the research. It encompasses the theoretical basics of particle physics, especially in 

the case of muons, and gives details about the design and role of the Micromegas detectors of the 

New Small Wheel (NSW). Furthermore, the part it is dedicated to delves into the signal processing 

problems in high-energy physics and explains the role of machine learning in dealing with such 

problems.  

Chapter 3 explains the research process through recounting the procedures of data 

acquisition, preprocessing, and feature selection. It discusses the reason to choose the specific 
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machine learning models and describes the procedures of training and evaluation. This section is 

a guide from one step to another to the experimental design and the implementation of the proposed 

techniques. 

Chapter 4 discusses the technical side of the research in depth. It clarifies the tools and 

technologies that are being employed, like software frameworks and hardware configurations. 

Completely explicit descriptions are given of the algorithms and experimental settings, thus 

ensuring that the research is reproducible.  

Chapter 5 introduces the results that were obtained from the experiments. Among them are 

elaborate data analysis, performance measuring of the machine learning models, and visual aids 

that help to prove the effectiveness of the suggested strategies. The distinctions between existing 

methods and current ones are made so as to emphasize the opportunities for development.  

Finally, Chapter 6 offers a review and interpretation of the results in the context of the 

significance of the ATLAS experiment and physics of particles. The interpretations of the results 

as well as the constraints the present study brings along are dealt with. This chapter also explores 

the suggested topics for further study and enhancement.  

Chapter 7 highlights the major outcomes of the thesis and comments on the objectives that 

were stipulated at the commencement of the thesis. It talks about the role of progress in particle 

physics and the perspective of future research that may be launched with the aid of the research. 
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2 Theoretical Background 

The main goal of high-energy physics is to explore the basic principles that govern the 

interaction between particles or nuclei at high energies. High-energy particle physics deals with 

the most primary concerns, which are elementary particles, the essential components of the 

cosmos, as well as their interactions. Particle physics is primarily concerned with the study of the 

characteristics of nuclear matter that comes out from ultra-relativistic nuclear collisions. The 

cosmos was filled out in the first microsecond of its life with so-called strongly interacting Quark 

Gluon Plasma (sQGP)—an entity that was the product of the very collision the nuclei particle. 

This part of the paper introduces the research on HEP in addition to theoretical and 

phenomenological findings that are related to such phenomena. 

2.1 The Universe 

Cosmology is the study of the universe, its source and structure, its development to the 

present stage and its death finally in the future. The exciting realm of physics is built by ideas, 

experiments, and observations, and that is what makes cosmology so interesting. Cosmology's 

history is told from the oldest days when the professionals in the field of astronomy- the stargazers- 

had tracked the movement of celestial bodies. These data were then again analyzed and integrated 

into the modern observations which have lasted up to our time. The success or the credit of the 

creation of these theories should be given to the development of good classical myths, religious 

and philosophical concepts for the start of cosmological thinking. While the ancient Greeks, for 

example, postulated the idea that stars must be the products of the celestial body from which they 

are derived, the entire universe would be the first to be produced. 
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The 20th-century invention of the general theory of relativity by Albert Einstein, it is 

indeed a milestone in modern cosmology. This novel idea clarifies that gravity is the curvature of 

space and time. According to the idea proposed by Einstein, the mass and the energy in the universe 

can be taken as the factor that could determine whether the universe is being expanded or 

contracted. The 1929 discovery of Edwin Hubble that galaxies in the distance are moving away 

from us is one of the solid proofs that the universe is expanding. This is why the Big Bang theory 

was formulated, according to which the universe emerged from a singularity some 13.8 billion 

years ago, that is - a point of infinite temperature and density. The stages is depicted in the figure 

below. 

 

Figure 1: Formation of the universe (Source: https://www.thoughtco.com/what-is-cosmology-2698851) 

 

https://www.thoughtco.com/what-is-cosmology-2698851
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The Big Bang theory is corroborated by many observations such as the cosmic microwave 

background radiation, the light element abundance, and the universe's large-scale structure. 

Moreover, there are still a good number of unsolved problems concerning this most popular and 

approved hypothesis; the singularity formation, the early circumstances of the universe, and the 

nature of dark matter and dark energy which includes the mass and energy of the universe are some 

examples. This is the reason that the cosmologists are not satisfied and still in the quest of a more 

noncontradictory and thorough theory that will unify the laws of physics and provide 

comprehensive knowledge of the universe. To comprehend the enigmatic properties of the 

universe, scientists utilize observations, experimental approaches, and theoretical models without 

a stop in their search for the truth of its history.  

The very early universe: The cosmos was extremely hot, very dense and irregular during 

the first picosecond (10^-12 seconds) of cosmic time. The four fundamental forces of nature—

gravity, electromagnetism, strong and weak nuclear forces—the Planck epoch, when the laws of 

physics would not have applied, and the universe's explosive growth as a result of cosmic inflation 

are all included. 

The early universe: From Big Bang to 10^-12 seconds after, until 20 minutes later, when 

the universe cooled and radiation and matter separated, the event of the early universe is well 

known. That is, it sums up the primary creation of the earliest atoms, to be specific, the hydrogen 

and helium, the nucleosynthesis of atomic nuclei, and the elementary particles' birth as quarks, 

electrons, and neutrinos. 

The middle universe: The first stars’ formation and galaxy, fueled by nucleosynthesis, 

which consequently differentiated to heavier elements black holes and quasars’ emission of 
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radiation, and finally, the re-ionization of the universe, that became visible to the light, are all part 

of the middle universe, which endured between 20 minutes of Big Bang and 1 billion years. 

The late universe: the time starting from around 1 billion years ago to the present, in which 

the cosmos has continually been cooling and expanding. These are the topics mentioned, the 

evolution of life and intelligence, the formation of larger structures, clusters and superclusters, 

planets, moons, and other celestial bodies, and the identification of dark matter and dark energy 

which together form the majority of the universe's mass and energy. 

The far future: the time which lies between now and the final phase, and it has a certain 

degree of ambiguity depending on the features of dark energy. It, basically, talks about the potential 

outcomes of the universe's last destiny, including the Big Crunch, the Big Rip, the Big Freeze, and 

the Big Bounce. 

 

Figure 2: History of the Universe (Source: https://studiousguy.com/the-big-bang-theory) 
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2.2 Overview of High-Energy Physics  

Marie Curie was the first to talk about the weak light that came from uranium salts, she 

had no idea that she was talking about the interaction of sub-atomic particles. Gunderman (2021), 

seeing how it seemed that radioactivity contradicted the principle of the conservation of energy, 

Curie’s investigations caused a rethinking of the ideas of classical physics and an entirely new 

model of matter. Subsequently, radioactivity became a part of a new physics theory that studied 

how radioactively charged atoms behaved. New discoveries gave rise to the need for further 

research.  

According to Quigg (2021), nature can be broken down into four basic forces; weak, 

electromagnetic, and strong interactions of leptons and quarks, as outlined by the Standard Model, 

which projects that the universe is formed from the few basic building blocks, matter. The concept 

of matter is a part of the broader scientific view of the world in which individual elements interact. 

As noted by Whitehead, (2021), the concept of interacting particles has received appreciation from 

the modern scientific community since the discovery of the electron. Despite the fact that some 

discrepancies remains, this theory has been getting much attention and use. Even so, there is still 

much to understand about the evolution of mass, oscillating neutrinos, dark matter, dark energy, 

and CP violation. It is clear that new understanding of physics required, as noted by Vissani (2021), 

the Standard Model is limited in its explanation of the behavior of particles. Identifying the means 

of interaction of these elements from the basis of particle physics. At CERN, there are four main 

experiments that focuses on atomic particles, the ATLAS, the CMS, the LHCb and ALICE, the 

experiment looks at proton-proton collisions. 
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2.2.1 Key concepts in particle physics. 

Bettini (2024) posits that the concept that all matter is made up of particles and that the 

properties of matter can be explained by those of these particles is fairly new. Atomic theory was 

formulated by Dalton in the early 19th century, and it was the first modern scientific theory that 

postulated the idea of matter being made of atoms (Grossman, 2021). The existence of the electron, 

discovered by Thomson, is the earliest piece of scientific evidence, particularly relevant to 

contemporary particle physics. During the transition from the 19th to 20th centuries, Maxwell, 

Gibbs and Boltzmann were of the opinion that the properties of the atoms out of which are formed 

all elements of matter can explain the gross behaviors of the said elements (Sarkar & 

Bhattacharyya, 2022). At the same time, researchers were skeptic of the existence of atomic 

particles, but they believed the atomistic theory, could produce predictably macroscopic 

properties. 

According to Yock (2021), the increase in the number of known particles over the next 

fifty years began with the proton, which had been observed by Goldstein much earlier but which 

Rutherford named as the nuclear particle after his foil experiments in the 1920s and then the 

neutron, which was identified by Chadwick in 1932, and anti-particles that Dirac predicted. In 

1932 Anderson also found the positron and in 1955 Segre and Chamberlain discovered the 

antiproton (Orrman-Rossiter, 2021). As the necessity of experimental evidence for the particle 

grew in the 1950s, Gell-Mann formulated the "eightfold way" during the 1960s, which is now a 

major part of the "standard model of particle physics” (Sanford, 2024). New researchers did not 

only report on matter, but also the particles that form the mass mechanism (the Higgs particle), 

that mediate the elementary interactions (the photon and massive gauge bosons).  
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2.2.2 Historical milestones in Particle Physics. 

As noted by Quigg (2021), the four fundamental forces of physics recognized by particle 

physicists since the 1960s have been strong force, electric force, weak force, and gravitational 

force. In elementary particle interactions, the strong force largely dominated and was responsible 

for the binding of protons and neutrons in the short-range nuclei (Sirma, 2021). The force of the 

strong interaction was by scientific findings estimated at approximately 1000 times stronger than 

the force of the electromagnetic interaction According to Qin, (2022). The study also claims that 

the strong interaction was responsible for microscopic electrodynamics, thus it is responsible for 

the force between atoms and their nuclei and electrons; the weak force was 100000 times weaker 

than the strong nuclear force and was short-range (Qin, 2022). One of the special circumstances 

was the radioactive decay of nuclei as well as elementary particles and the energy-producing 

mechanisms. Similar to the electromagnetic interaction, the gravitational force was a long-range 

power (Tajmar, 2024). Although it was ten times weaker than the strong force and was responsible 

for events at a macroscopic level such as apples falling from trees and the earth orbiting the sun, 

the manifestation of its effects was considered to be completely useless in the world of elementary 

particles. 

A description of the standard particles was associated with this classification. They were 

the Hayes waiting for the Starke force. Also, among the particles that were the parts of nuclei, 

protons, and neutrons were indeed the numerous Hadrons. Leptons were very stable particles such 

as the electron, and a few more mostly motion particles that were never affected by the strong 

force. With the idea that the parts were put together from parts—hadrons were to think of them as 

made of simpler components (called quarks). The quark model is an attempt to explain some of 
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the empirical patterns of the hadron matter spectrum and the hadronic decay processes, but these 

questions are still not resolved. 

In the later years of the 1960s and earlier years of the 1970s, it was commonly thought that 

the strength scale could be explained by the existence of quarks (Landua, 2024). These building 

blocks that were unique to a new class of matter were, thus, implied by Quarks. However, there 

was still no strong evidence of their existence at that time, mainly due to the fact that no other 

particles with the required characteristics for the proposed fractions (electric charge difference) 

could be seen in any of the experiments that were being performed (Barrett, 2024). Unlike hadrons, 

leptons underwent no changes to their status of genuinely elementary particles, so this theoretical 

model was stable (Yang, 2024). 

New ideas about the quarks and leptons interaction were developed in the early 1970s. The 

primary insight was that, in the scope of a theoretical technique called gauge theory, the weak 

electromagnetic interactions could be interpreted as the outward forms of a single electroweak 

force (Horvath, 2024). This consolidation was related to the predictions of charmed particles' 

existence (confirmed in the 1970s) and the weak neutral current (proven in 1973), which were 

reminiscent of Maxwell's unification of electricity and magnetism in the 19th century (Horvath, 

2022).  

The year 1973 brought about the new understanding of a particular gauge theory—dubbed 

quantum chromodynamics, or QCD—which accounted for the strong interaction among quarks 

(Aitchison & Hey, 2024). The first observation was developed to illustrate the scaling, then further 

on it was expressed to reflect the scaling laws. It shed light on a number of other hadronic 

phenomena as well as the intriguing behaviors of charmed and other particles. As a result, QCD 

became the most widely accepted theory for the strong force in nature. Quarks in the isolated state 
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have not yet been sighted (ALICE collaboration, 2024). Nevertheless, the quarks’ existence was 

proven along with the gauge theory description of their interactions, since both QCD and 

electroweak theory presented the validity of the quark image. It was a commonly accepted truth of 

the particle physicists of the very end of 1970 that quarks and leptons interacted among the 

elementary particles of the universe in accordance with the laws of QCD, electroweak theory, and 

twin gauge theories (Koberinski, 2024). It was found first to explain scaling, and later to explain 

observed deviations from scaling. It explained certain interesting properties of charmed and other 

particles, and various other hadronic phenomena. Therefore, QCD became the accepted theory of 

the strong interactions (Khodjamirian, 2020). Quarks had still not been observed in isolation. But 

both electroweak theory and QCD assumed the validity of the quark picture, and thus the existence 

of quarks was established simultaneously with the establishment of the gauge theory description 

of their interactions (Quigg, 2021). In the late 1970s, particle physicists were agreed that the world 

of elementary particles was one of quarks and leptons interacting according to the dictates of the 

twin gauge theories, electroweak theory and QCD. 

In conclusion, it was realized that the theory of QCD could be embedded in the unified 

electroweak theory since both were gauge theories. This last unification also created some more 

fascinating predictions, because of it, in 1979, experimenters started to be interested. A great many 

physicists were that these results would be obtained, as they were (Peebles, 2024). Thus, it has 

been found out that the three forces, namely the strong, electromagnetic, and weak interactions 

which were initially believed as different forces, they basically were specific manifestations of a 

single force. Along with this, some experiments also supported it by finding a new building block 

of matter, quarks. 
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2.3 The Large Hadron Collider (LHC)  

One of the most popular methods used in the study of elementary particles is the collision 

experiments. These types of experiments enable the replication of conditions which are similar to 

the early universe relatively early. The idea of destruction and reproduction is common through 

the universe. However, considering other things, this is a still relatively recent event in the early 

universe. 

2.3.1 Purpose and operational details. 

At the LHC, the collision energy of two proton beams is increased to a maximum force of 

14 TeV (Fabbietti, 2021). Protons are imparted a 50 MeV acceleration energy with the help of a 

linear proton accelerator. After they have been sent to the PS Booster, a pre-acceleration complex 

to 1.4 GeV, the single protons are packed into the Proton Synchrotron (PS) and as soon as they 

reach 26 GeV, the Super Proton Synchrotron (SPS) (Modak, 2024). The SPS accelerator, is a key 

component of CERN. Acceleration is achieved by the proton beam at the SPS to an energy level 

of 450 GeV, before it is bidirectionally injected into the LHC (Barros Marin, 2021). The LHC 

tube, contains 1232 superconducting dipole magnets that force the particles to go in a 27-

kilometer-long circular track (Nunez, 2024).  

The calorimetry mechanisms are magnetic lenses that are used at four collision points along 

the particle paths, this is the primary experiments at the LHC: the LHCb experiment is devoted to 

the study of the physics related to the B meson (such as the CPB) decay. These two general-purpose 

experiments, ATLAS and CMS, are placed on the two opposite ends of the LHC tunnel, each 

serving as a detector to determine the nature of the collision, mainly to study the quark-gluon 

plasma (Martin Perez, 2022). The fifth experiment, TOTEM, is set up in vacuum chambers 



38 | P a g e  

 

attached to the beam pipe and near the CMS interaction point. It is used for the measurement of 

highly forward particles. 

2.3.2 Physics explored at the LHC. 

Even though the Standard Model show high level of precision comparable to practical 

experiments such as the LEP collider at CERN, there are still many limits to the applications of 

the SM theory to elementary particles and their interactive behavior, this calls for experiments at 

LHC (Bruce, 2020). LHC provides a way to conduct experiments on physics such as the mass 

measurements, the origin of dark matter, baryogenesis, matter–antimatter asymmetry, size of the 

cosmological constant, the unification of gravity with the other particle forces (Pereira, 2023). 

Other areas of experimentation at LHC are possible evidence of atmospheric and solar neutrino 

oscillations, as well as the question of particle masses' origins. Physics at the LHC is also set to 

answer questions in the experimental proof of the Higgs mechanism, SM implies the Higgs boson's 

lower limit mass is almost as close to the indirect upper bound value which is obtained from 

electroweak data (Leung, 2023).  

 

Figure 3: Particle physics at LHC (Source: https://phys.org/news/2012-09-higgs-power-data-mining-astrophysics-biology.html) 
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According to Leung (2023), the Higgs boson's mass, the only scalar in the theory, increases 

in the SM due to radioactive corrections, which can be fine-tuned to stabilize it at the electroweak 

scale. This is the "naturalness" problem, and it is called "fine tuning". As the fermions gather 

masses, the model's simplicity is shattered, as it contains too many new and unknown specifics. 

These concepts are the basis of new understanding of particle physics. Among these 

concepts are Supersymmetry (SUSY), Technicolor, and theories that introduce new dimensions of 

physics beyond the Standard Model (Belyaev, 2021). According to Forty (2023), new 

understanding of physics from LHC experiments goes in the direction of predicting the effect of 

the mass stabilization of the Higgs boson at the TeV scale. It is evident that the TeV scale is the 

most intriguing scale in particle physics today, and it is the main factor that very much encourages 

the development of a device like the LHC that is able to directly examine the high energy range. 

A new dimension in particle physics is made possible by these functionalities. Supersymmetry 

(SUSY), Technicolor, and theories with extra dimensions are some candidate scenarios in the 

understanding of physics beyond the standard model. Bechtle, (2023) adds that the main theme 

behind physics at LHC is the prediction of new states in the TeV region to stabilize the Higgs 

boson at its measured mass. The TeV scale is the most exciting domain in particle physics 

performed at the LHC. 

According to Dumancic (2019), experimentation at the LHC shows the possibility of 

creating new heavy-ion interactions with ultra-relativistic energy of 5.5 TeV per nucleon by 

colliding the nuclear beams or, in the case of lead beams, at a total center-of-mass energies in the 

range of 1000 TeV. Müllerv (2016) adds that data extracted from the collisions allow for the 

scrutiny of matter in a way that is different from that of standard cosmic rays as well as reaching 



40 | P a g e  

 

new frontiers in the understanding of particle physics such as phase transition of regular hadronic 

matter to a plasma of deconfined quarks and gluons under certain circumstances  

2.4 The ATLAS Experiment  

The ATLAS is a multifunctional detector that records particles' signals created in proton-

proton collisions through more than 60 million electronic channels connected to the Large Hadron 

Collider at CERN. A key part of the ATLAS experiment is magnetic field outside the toroidal 

magnets and the inner solenoid; these toroidal magnets and calorimeters are used to create a 

complete magnetic field. Regardless, the issue of high amount of radiation from the experiment 

causes problems in particle detection. The image and sections below discuss ATLAS experimental 

components.  

 

Figure 4: Structure of the ATLAS Experiment Components 

 (Source: http://www.myconfinedspace.com/2010/04/04/large-hadron-collider/) 
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2.4.1 Goals and significance of the ATLAS experiment. 

Researchers working with ATLAS are looking into quantum-field theory and high energy 

particles, subjecting the Standard Model to experimental testing as they aim at achieving physics 

beyond the theoretical concepts within the model. As Chall, (2021) notes, the discovery of the 

Higgs boson at the LHC in 2012 verified the reliability of the standard model, but its problems 

have become more visible. For example, the characteristics and formation of dark matter, as well 

as the mysterious relation between the electroweak and Planck scales, are yet to be explained by 

the Standard Model. What causes the universe to speed up its expansion, both now and during the 

inflation, is an unknown on a cosmic scale that require further studies (Guth, 2023). As a result, 

the ATLAS experiment is an indispensable part of creating new theoretical models that describe 

physics at particle levels. The LHC has two general-purpose detectors, one of which is ATLAS; it 

provides physicist with a wide range of studies from the Higgs boson in physics multiplicity, to 

experimentation on the possible existence of dark matter particles (Linß, 2021).  

Researchers depend on direct and indirect experiments in cosmic observatories, 

accelerators, like the LHC, high-intensity experiments, and dark matter detection experiments to 

find new physics signatures. Moreover, the investigations of particle theory can further expand the 

comprehension of the quantum field theory (QFT), which is quite a complex research area, the 

possibilities behind QFT is one of the key research interest coming from ATLAS experiment-

based studies.  
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2.4.2 Key components and their roles.  

2.4.2.1 Inner Detector. 

The inner detector is made up of a semiconductor tracker (SCT), silicon pixel detector 

(SPD), and the transition radiation tracker (TRT) (Alici , 2021). These detectors are designed to 

track and map charged particles across the accelerator; this data is used to extract the trajectory of 

particles across the detector; The SCT has the ability to accurately record the position of a charged 

particle across a silicon layer (Eichhorn, 2015). The TRT, which is the external part of the inner 

detector, consists of 4 mm wide straw tubes; with this detector, incoming charged particles can 

also be identified (Krasnopevtsev, 2017). The solenoidal field strength of 2 T enables the inner 

detector to also measure the momentum of the particles (Krasnopevtsev, 2017). 

2.4.2.2 Calorimeters (Electromagnetic and Hadronic). 

Calorimeters measure energy released by the particles. To measure the energy released on 

the calorimeters, a system is required to produce an output signal in proportion to the input. 

ATLAS calorimetry is of two types: hadronic (HCAL) and electromagnetic (ECAL) (Moser, 

2023). When the electrons and photons rain into the calorimeter material, and create a big number 

of eAr+ pairs, their energy can be recorded; as the name suggest, the liquid argon calorimeter 

(LAr) uses liquid argon, also known as the electromagnetic calorimeter (ECAL) (Pezzotti, 2021). 

Subsequently, the released charges are collected in the electrodes in order to create a current in the 

readout electronics. According to Bonivento and Terranova (2024), the LAr detector can be used 

as an electron and photon energy monitor because of its high sensitivity to electromagnetic 

interactions. Proton-proton collisions generate electro-magnetic showers that can be absorbed by 

lead (Mc Gowan, 2023). ATLAS’s HCAL is also called the Tile Calorimeter. The primary role of 

the HCAL is the measurement the energy and directions of jets from hadronized quarks and 
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hadronically decaying particles; as the name suggests, it consists of luminous tiles and steel plates 

(Nelson, 2019). The diagrams below outlines major parts of the calorimeter. 

 

Figure 5: ATLAS calorimeter system (Source: https://media.springernature.com/lw685/springer-

static/image/chp%3A10.1007%2F978-3-031-18074-3_1/MediaObjects/) 

2.4.2.3 Muon Spectrometer. 

The muon spectrometer has two main functions: it rebuilds muon tracks (reconstructs muon 

tracks) and triggers muon signals (Iodice, 2015). The layer of toroidal magnets is a part of the 

muon chambers. Magnetic field in the chamber follows the Lorentz force, and operates on charged 

particles in a highly curved path opposite to the direction of light (Baron, 2024). Knowing the 

direction of these particles or their energy is complicated by the observation that the particles 

traveling in the circle also experiences Lorentz' force. According to Gazis (2024), a combined 

event reconstruction that adopts a combined independent measurement approach from segments 

of the CMS and the muon track can be propagated from the muon spectrometer through the inner 

https://media.springernature.com/lw685/springer-static/image/chp%3A10.1007%2F978-3-031-18074-3_1/MediaObjects/
https://media.springernature.com/lw685/springer-static/image/chp%3A10.1007%2F978-3-031-18074-3_1/MediaObjects/
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detector to the muon spectrometers. The reconstruction must consider the detector geometry, the 

multiplicative scattering, and the energy loss in the calorimeters (Nguyen, 2020). 

 

Figure 6: ATLAS muon spectrometer (Source: 

https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.researchgate.net%2Ffigure%2FCross-section-of-a-quadrant-

of-the-ATLAS-Muon-Spectrometer-in-the-r-z-plane-left-and_fig86_318981598&psig=AOvVaw27aOaTMBZbsI_Dr0YJ-7EE&) 

 

2.4.3 The New Small Wheel (NSW) Upgrade and Micromegas Detectors.  

The ATLAS Muon Spectrometer underwent a significant Phase-1 upgrade with the 

introduction of the New Small Wheel (NSW) system, replacing the original Small Wheel chambers 

that were highly susceptible to background noise, aging effects, and inefficiencies under high-

luminosity conditions (ATLAS Collaboration, 2017). This upgrade was necessary to support the 

increased collision rates of the High-Luminosity Large Hadron Collider (HL-LHC), ensuring 

improved tracking precision and reduced systematic uncertainties in muon detection (Iakovidis, 

2022).   

 

https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.researchgate.net%2Ffigure%2FCross-section-of-a-quadrant-of-the-ATLAS-Muon-Spectrometer-in-the-r-z-plane-left-and_fig86_318981598&psig=AOvVaw27aOaTMBZbsI_Dr0YJ-7EE&
https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.researchgate.net%2Ffigure%2FCross-section-of-a-quadrant-of-the-ATLAS-Muon-Spectrometer-in-the-r-z-plane-left-and_fig86_318981598&psig=AOvVaw27aOaTMBZbsI_Dr0YJ-7EE&
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Motivation for the NSW Upgrade   

The original Small Wheel was designed during Run 1 and Run 2 of the LHC, but with the 

advent of HL-LHC conditions, the increasing luminosity posed several challenges 

(Papaevangelou, 2018):   

o Increased pile-up noise, leading to a higher probability of incorrect muon track 

reconstruction.   

o High background radiation, significantly affecting gas-based detector efficiency.   

o Aging effects in the previous tracking systems, reducing their long-term reliability.   

o Limited trigger efficiency, affecting real-time data selection.   

 

Figure 7: A z-y view of 1/4 of the ATLAS detector. The blue boxes indicate the end-cap Monitored Drift Tube chambers, 

MDT, and the yellow box in the Small Wheel area the Cathode Strip Chambers, CSC. The green boxes are barrel MDT chambers. 

The trigger chambers, Resistive Plate chambers, RPC, and Thin Gap Chambers TGC, are indicated by the outlined white and the 

magenta boxes. This is a cut-out on the muon spectrometer at the large sectors, hence the names 'End-cap Inner Large' (EIL), 
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'End-cap Middle Large' (EML) and 'End-cap Outer Large' (EOL). The detector regions of the Small Wheel and Big Wheel are also 

outlined (Source:https://www.researchgate.net/publication/323901127_ATLAS_future_upgrade/figures?lo=1) 

 

To address these challenges, the NSW incorporates two complementary gaseous detector 

technologies that work together to provide both precision tracking and fast triggering capabilities 

(Oliveri, 2018):   

1. Micromegas Detectors (MMGDs) – High-resolution tracking chambers, optimized 

for muon hit localization and spatial precision.   

2. Small-strip Thin Gap Chambers (sTGCs) – Designed for fast triggering and 

supplementary tracking, ensuring rapid data filtering.   

Structure and Functionality of the NSW Detectors   

The Micromegas detectors are Micro-Mesh Gaseous Detectors (MMGDs) that achieve fine 

spatial resolution using a combination of ionization avalanches and high-precision charge readout 

(Cerrón Zeballos, 2022). Each Micromegas chamber consists of:   

• Drift Region (~5 mm thick) – Where incoming muons ionize the gas, producing 

electron-ion pairs.   

• Micro-mesh Layer (~128 µm gap) – A metallic mesh held at high voltage, 

separating the drift region from the amplification region.   

• Amplification Region (~128 µm thick) – Where an electric field (several kV/cm) 

accelerates ionized electrons, triggering avalanche multiplication and generating 

measurable charge signals.   

• Readout Strips – Collecting charge signals with spatial resolution of ~100 µm, 

providing precise muon hit localization.   

 

https://www.researchgate.net/publication/323901127_ATLAS_future_upgrade/figures?lo=1
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Advantages of Micromegas in NSW:   

o High spatial resolution (~100 µm) improves track reconstruction.   

o Radiation-resistant design ensures stability under HL-LHC conditions.   

o Faster response times (~100 ns) compared to older tracking chambers.   

o Reduced aging effects, extending detector longevity.   

The small-strip Thin Gap Chambers (sTGCs) are specialized detectors optimized for fast muon 

triggering, ensuring low-latency event filtering (Iakovidis, 2022). Each sTGC consists of:   

o Cathode planes with resistive strips that detect ionization.   

o Multi-wire anode planes for charge collection and signal shaping.   

o Fast gas amplification allowing a response time of ~30 ns, making sTGCs crucial for 

high-speed trigger selection (ATLAS Collaboration, 2021).   

Advantages of sTGCs in NSW:   

o Ultra-fast response (~30 ns), critical for real-time event selection.   

o High-rate capability (~15 kHz/cm²), handling HL-LHC’s extreme muon rates.   

o Robust against aging effects, unlike previous resistive plate chambers (Oliveri, 2018).   

Impact of the NSW on ATLAS Muon Spectrometry   

The New Small Wheel upgrade significantly enhances the ATLAS Muon Spectrometer’s 

performance in multiple areas (Alexopoulos, 2017):   

1. Improved Muon Track Resolution:   

o Combination of Micromegas high-precision tracking and sTGC fast triggering 

reduces reconstruction errors.   

o The spatial resolution of ~100 µm ensures accurate track fitting even in high-

background environments.   
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2. Increased Background Suppression:   

o Micromegas reduces non-muon hit misclassification by distinguishing true muon 

clusters from pile-up effects.   

o sTGC rapid response time enables real-time filtering of unwanted background hits.   

3. Enhanced Trigger Efficiency:   

o The NSW improves ATLAS trigger efficiency for muon selection, reducing false 

triggers and optimizing data collection.   

o Reduces timing mismatches, ensuring correct event reconstruction in ATLAS.   

4. Scalability for HL-LHC Conditions:   

o NSW is designed to handle 5-10× higher event rates compared to its predecessor.   

o Ensures stable performance up to 3,000 fb⁻¹ of integrated luminosity, matching HL-

LHC’s experimental goals.   

The Role of NSW in Future ATLAS Operations   

The New Small Wheel upgrade is a crucial step toward future-proofing ATLAS for HL-

LHC (ATLAS Collaboration, 2021). By integrating Micromegas detectors for high-precision 

tracking and sTGCs for rapid triggering, NSW:   

• Enhances muon classification and reduces background noise.   

• Provides high-precision spatial resolution (~100 µm).   

• Optimizes trigger efficiency, crucial for real-time event selection.   

• Supports scalability for HL-LHC operations, ensuring long-term sustainability.   
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2.5 Signal Processing in Particle Physics  

According to the Atlas Collaboration. (2015), systems factors must be accounted for in the 

design and operation of particle detectors at the LHC, especially in large scale machines used in 

particle and nuclear physics. The noise produced in the measurement is of major concern when 

there is a need for high accuracy measurements. The requirements for different detector and signal 

processing performance criteria are likely to vary depending on the research field. Most of the 

recent signal processing breakthroughs have been implemented in circuits that use monolithic 

CMOS technology (Wang, 2017). Because CMOS transistors are best suited for circuits that 

require switching of capacitance, this technology has changed the design of signal detection 

systems.  

2.5.1 Nature of signals in detectors. 

According to Candy (2016), signal analysis, in the broadest meaning, are the methods used 

in collecting generated data. Signals can be measured by the nature of an interrelation such as, 

input data, which can be continuous such as temperature or discrete such as a events count. 

Predictions and observations often oscillate between continuous and discrete signals depending on 

the analytical methodologies employed. In the realm of electrical signal analysis, data often takes 

the continuous time variable. Signals can be digital or analogue; other formats can be stochastic or 

deterministic, and continuous or discrete (Candy, 2016). By selecting continuous or discrete 

independent variables in the time or frequency domain respectively and the continuous or discrete 

dependent variables, the signals produced by LHC detectors can be classified as stochastic. 
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Figure 8: Signal with independent continuous variable (time) Vs Signal with discrete independent variable (channel number) 

 

Figure 9: Signal with discrete dependent variable (time) Vs Signal with discrete dependent variable (channel number) 

 

The data shown in figure below can be obtained by passing a continuous time variable 

signal through a digital signal processing.  
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Figure 10: Signal Processing 

First, Sampling and Hold (S/H) works by modifying the continuous-time variable input 

signal with a Pulse Amplitude Modulated (PAM) version. Analog-to-Digital converter (A/D) then 

transforms it into a Pulse Code Modulated signal (EM) (independent variable = discrete, dependent 

variable = continuous) (Gustavsson, 2000). Digital Signal Processor (DSP) can then digitally 

accept the input signal. Prior to the filtering of the analog signal (independent variable continuous, 

dependent variable continuous) digital information is transformed to analog signals using a digital-

to-analog converter (DAC) (independent variable discrete, dependent variable = continuous) 

(Ortigueira and Machado, 2020). This is illustrated in the figure below. 

 

Figure 11: Analogue/Digital signal processing 
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Being one of the important aspects in signals processing, it is necessary to consider both 

the frequency domain and the time domain. A wavelength in signals shows signal frequencies and 

the waveform denotes t (time domain information) plays the role of the frequency domain 

characteristics such as amplitudes and phases information. The difference between the two types 

of description is based on their performances, and computational use in signal processing 

(Stranneby, 2004). Stochastic and deterministic are the two types of signals often processed from 

detectors. While the latter transfer information, the former is critical in experimental studies. The 

terms "stochastic" implies the characteristics of the signal that can only be seen through its 

statistical characteristics within a certain range. 

 

2.5.2 Types of noise and challenges in data extraction. 

According to Radeka (2020), noise in signal processing can originate from a sequence of 

elementary impulses, each being of Poisson-type with rate n (Mali, 2015). The traditional noise 

waveforms that we observed oscilloscope are the merging of responses to individual impulses 

when one is working on a physical system with an impulse response much greater than (n)−1 

(Radeka, 2020). The Campbell-Schoenburgt theorem can be used to estimate noise variance at the 

physical system's output (basic RC filter or a full readout system), it states that the variance is a 

sum of all preceding impulses' mean square contributions (Radeka, 2020). Thus, these are exact 

variance expressions, if the average is first subtracted. This is illustrated in the figure below. 
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Figure 12: Drift filed for coplanar electrodes 

 

 

Figure 13: Weighting potential for coplanar electrodes 

 

  The impulse response, h(t), or the weighting function, w(t) of the measurement 

system, the preamplifier, and the readout chain that follow, as well as the rate of impulses (n) and 

their area q (charge) are the defining elements of the variance (Radeka, 2020). 

𝜎2 = (𝑛)𝑞2 ∫ ℎ2(𝑡) ⅆ𝑡
∞

−∞

= (𝑛)𝑞2 ∫ 𝑤2
∞

−∞

(𝑡) ⅆ𝑡 
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The noise process, the rate of impulses (n), their area q (charge), and the impulse response 

h(t) all contribute to the noise variance. The variance can be measured non-intrusively from (n) 

and time (t), but the variables (n) and q cannot be identified. The only way to calculate the rate and 

charge of impulses from σ2 and I0, when randomly generated carriers move in one direction and 

the mean current is I0 = (n)q. Radeka (2020) argues that the mathematical convolved current 

spectral density is the convolve of the initialization level of the system with the different signals 

in the frequency domain (n)q2, while the real one (physical) is equal to i2 n = 2 (n) q2. This is 

illustrated below; 

 

Figure 14: Induced charges in coplanar electrodes 

 

Figure 15: Induced current in coplanar electrodes 
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2.5.3 Current techniques in signal processing. 

Linear and non-linear processing are typically two different approaches in signal analysis 

theory. The linear component, which can be represented as linear differential (continuous) or 

difference (discrete) equations with constant coefficients, is the more understood approach 

(Pospisil, 2017). There are two primary approaches to linear processing. 

 

Figure 16: Approaches in signal processing 

Depending on the type of signal, the representations and transformations are different if 

the signal is continuous or discrete. The transform of the Laplace domain, when combined with 

the frequency spectrum representation in the complex s-plane, is one of the most well-known 

methods for transforming continuous signals from time to frequency and vice versa (Palani and 

Palani, 2022). The z-transform, and the frequency spectrum representation in the complex z-plane 

are the equivalent for discrete signals (Özhan, 2022. The Fourier transform is another popular, and 

widely-used transform in numerical computations, besides the Laplace (Palani and Palani, 2022). 

Thus, discrete (DEI) as well as continuous (CFII`) Fourier transforms can be restricted to real 

frequencies. The latter can be modified to produce the Fast Fourier Transform. 
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2.5.3.1 Digital Signal Processing. 

DSP refers to the process of examining discrete signals that have been sampled to generate 

discrete descriptive results. DSP may be achieved by the frequency domain or the time domain. 

Every series of input data in the time domain has exactly one output data (Palani and Palani, 2022). 

All input sequences in the frequency domain have at least one output sequence. According to 

Radeka (2020), frequency domain processing takes place in the time at which the input sequence 

is recorded, while time domain processing takes place in real time. The time domain is used again 

to process a digital filter that reacts to a single impulse with either an infinite impulse response 

(IIR) or a finite impulse response (FIR). Usually, DSP operations refer to discrete or fast-Fourier 

transforms being implemented in the frequency domain. There is a tendency to transform analog 

signals into digital signals by means of discrete processes rather than analog devices because of 

the advent of Fast A/D converters and Digital Signal Processors (DSP). Digitalization, in practice, 

brings clock-based digital signal processing (DSP) hardware into the analog world. 

2.6 Machine Learning Applications  

According to Arpaia (2021), machine learning techniques make use of large data sets to 

map new features and simplify data. Understanding artificial intelligence (AI) or machine learning 

(ML) in particular is key to data analysis and the creation of related intelligent and automated 

applications. There are different types of machine learning algorithms in the field, including 

supervised, unsupervised, semi-supervised, and reinforcement learning; deep learning can be 

discussed as part of a larger family of machine learning techniques and is necessary for large-scale, 

intelligent data processing (Arpaia, 2021). Through these methods, different stages of application's 

functionality and intelligence can be improved. 
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2.6.1 Overview of machine learning in physics. 

In the context of a post-Higgs boson studies, the main goal of particle physics is to utilize 

the full potential of the Large Hadron Collider (LHC) and its upgrade, the high luminosity LHC 

(HL-LHC), as well as current and upcoming neutrino experiments to advance particle physics. As 

the amount of data to be managed is forever increasing with the room of the project faces a need 

for data management. Applying machine leaning (ML) to the theories of both domains could be 

very beneficial. The two central goals of high-energy physics (HEP) research experiments are the 

discovery of new physics and a more accurate examination of the Standard Model (SM) (Andrews, 

2020). To achieve these two objectives, the machine-guided mapping of rare signals amidst 

background noise is required. Machine learning methods are already is set to provide solutions. 

2.6.2 Common algorithms used in HEP (e.g., Neural Networks, Boosted 

Decision Trees). 

Neural Networks (NN) and Boosted Decision Trees (BDTs) are the two most used machine 

learning methods in HEP to date (Vidal, 2021). Typically, the variables related to the physics 

problem are selected, and the machine learning model for classification or regression is built with 

the use of signal and background events (or instances). The training process is the most time-

consuming part for both the users themselves and CPUs; besides, the application—also known as 

"inference stage"—is cost effective approach to signal processing. These algorithms embrace 

regression analysis, a process that entails the continuous function learning for instance, to 

determine the particle's energy best estimate from the several detectors that make observations 

(Radovic, 2018). Even though neural networks have already existed in the HEP sector for quite a 

while, the Deep Learning revolution, which has significantly affected HEP, originated from 

technological development of training algorithms and supercomputers within the last ten years. 
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Nonetheless, in case of large amounts of data with multiple characteristics, symmetries, and 

intricate non-linear interrelations between inputs and outputs, deep learning offers a lot of 

opportunity (Vidal, 2021).  

Three different types of deep neural networks are employed in HEP: fully-connected 

(FCN), convolution (CNN), and recurrent (RNN) (Khan, 2020). Neural networks are also 

employed in generative models, where they are programmed to reproduce multidimensional 

distributions precisely in order to generate any number of new cases; examples of such generative 

models employed in HEP comprise Variational AutoEncoders (VAE) and more modern 

Generative Adversarial Networks (GAN) (Wojnar, 2024). In HEP, where measured events are 

independent of one another, the use of these methods of monitoring data quality and computing 

infrastructure essential; machine learning is important where physics processes and event 

reconstruction activities speed is a crucial factor. 

2.6.3 Current applications in the ATLAS experiment. 

One of the main reasons why ATLAS experiment is important in particle physics is the 

need for a confirmatory correlations study between the actual experimental data and the predictions 

derived from the Standard Model assumptions and other physics models. Even though the 

interaction mechanisms between subatomic particles and matter are theorized in models, further 

studies on physical behavior of these particles are critical to the understanding of physics. For this 

reason, application of machine learning to particle physics such as Monte Carlo simulation in 

GEANT, are critical. According to Karkanias (2022), machine learning can simulate particle 

behavior in detectors and then evaluate the data. Machine learning make it possible for LHC to 

conduct multiple simulated collisions in order to achieve the appropriate statistical accuracy of 

results to carry out precision hypothesis testing. While these experiments can be conducted 



59 | P a g e  

 

physically, the high cost of computing these simulations is a major concern. For instance, 

experimenting with one proton-proton collision event at the LHC requires time in the order of a 

months to complete (Bohm, 2023). The issue of high cost and high multiplicity of particles makes 

the simulation of such processes particularly expensive. Machine learning allows for the use of 

particularized models to speed up such analysis. 

Although machine learning is fast computation-wise, they often run into insufficiency, 

especially with small datasets. The use of high fidelity fast generative models, like GANs and 

VAEs, which can take high dimensional feature distributions from learning over preexisting data 

samples are critical (Wojnar, 2024). This is a promising path to follow because of how quickly 

such techniques are developing in the machine learning community. Therefore, machine learning 

provides an answer to the operational needs of ATLAS experiments, it is possible to achieve 

experimental optimization using approaches such as Bayesian Optimization (Karkanias, 2022). By 

using these methods for simulation tuning, the results of the simulations can be further enhanced. 

Machine learning in ATLAS experiment can achieve real-time reconstruction which is able 

to be analyzed the performance while also reduces the cost of implementing reconstruction 

algorithms. For example, the CMS experiment utilizes high-level decision trees to approximate 

muon momenta at the Level 1 trigger. Another related use is the expedited reconstruction of lower 

mass hadrons, where the conventional track combinatorics and vertexing approaches can become 

computationally costly. In addition, as event intricacy increases, and especially in the HL-LHC 

era, machine learning methods help improve traditional triggers. Amongst such examples 

supplication include triggering of the electroweak events of low-energy particles, jet calibration 

improvement in reconstruction, jet trigger thresholds decrease, and supernovae and protons decays 

by the neutrino detector experiments (Ghosh and ATLAS Collaboration, 2020).  



60 | P a g e  

 

3 Methodology 

3.1 Data Collection  

A critical component of ATLAS high-energy physics experiments is data collection, which 

involves obtaining, analyzing, and storing large volumes of information generated by particle 

collisions. In this study, Monte Carlo simulations were employed to generate synthetic datasets for 

muon interactions within the Micromegas detector layers of the New Small Wheel (NSW). These 

simulations modeled high-transverse-momentum (pT) muons undergoing radiative energy losses 

and noise contamination in Micromegas chambers, creating realistic training datasets for machine 

learning models aimed at improving muon hit localization and classification. 

3.1.1 Monte Carlo simulations for synthetic data. 

Researchers can replicate real experimental conditions using Monte Carlo simulations, a 

fundamental technique in High-Energy Physics (HEP). These simulations involve several critical 

steps, including: 

• Event Generation: Particles are stimulated by cosmic rays from their neutral state to that 

with energy enough to create particle tracks, which are then fitted within the spark 

chambers. This is done by a complex software like Geant4, an example here, with 

programmed codes includes each detail all particles.  

• Detector Simulation: Simulate the ATLAS detector's response to the particles it produces. 

During this step, the particles burn off with the detector material; energy deposition and 

the development of the track are both continued that result in the signal's emission. 

• Digitization: These are the assumed detector responses that are made digital in a form 

comparable to the real detector data processing method. At this level, it ensures that the 
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same kind of tools and skills that are used for examining the real data from experiments 

can also be utilized for the analysis of the simulation data. 

• Reconstruction: The particle characteristics are identified and measured by making use of 

reconstruction techniques in the digital data. Track reconstruction, energy measurement, 

and particle identification are all part of the process.  

3.1.1.1 Datasets  

The datasets used in this study consist of three distinct energy bands, each representing 

different particle interactions. These datasets were exported directly from Monte Carlo 

simulations, excluding pile-up effects, to provide clean training samples for machine learning 

models. The visualization and analysis of these datasets ensure a clear understanding of feature 

distributions and allow researchers to identify which datasets yield the best training results.  

The exported datasets are as follows: 

1. inputCAFTesterOutput_10GeVto100GeV.csv  

2. inputCAFTesterOutput_100GeVto500GeV.csv  

3. inputCAFTesterOutput_500GeVto1p5TeV.csv  

These datasets play a pivotal role in strengthening the overall precision of particle 

identification and event reconstruction through the set of machine learning algorithms that are 

trained and tested.  

3.1.1.2 The Contradiction of Pile-Up Conditions  

Piles-up is an unavoidable experimental physics phenomena in actual collider installations. 

In a single detector readout cycle, it happens when several proton-proton interactions take place at 

the same time, producing overlapping signals that make data interpretation more difficult.  



62 | P a g e  

 

Despite these difficulties, pile-up circumstances are essential for increasing simulation 

realism because they replicate the harsh conditions found in the high-luminosity runs at the Large 

Hadron Collider (LHC).    

We do not, however, expressly include pile-up-affected datasets in our study. This choice 

was taken in order to keep the dataset clean enough, to allow for the independent study of 

individual muon interactions. This makes possible for us to:  

1. Illustrate the basic characteristics of muon interactions more accurately. 

2. Steer clear of the confusing clutter created by merging events, as this Data Storage and 

Management.  

3. Create machine learning models without the use of artificial distortions during training, 

making sure that categorization methods are only predicated on the inherent properties 

of signal background events. 

Pile-up phenomena is another study focus to obtain an essential understanding of the 

background clustering analysis, where background-induced clusters can be better identified and 

separated from the muon signals.   

The structured nature of the combined datasets enhances their accessibility and improves 

productivity in statistical analysis. The computation of millions of datasets requires the use of a 

distributed file system that is often the Worldwide LHC Particle Physics 01 Grid (WLCG) and the 

high-performance computer resources. This infrastructure ensures that the data necessary for the 

model to learn, test, and validate are easily accessible.  

3.2 Data Preprocessing  

In the order of high energy physics data, this stage is vital, to be precise for the datasets 

that have been produced by Monte Carlo simulations, which are run in the ATLAS experiment 
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inside the Large Hadron Collider (LHC) at CERN. The proper preprocessing must ensure that data 

is consistent, clean, and ready for the machine learning models to analyze further. This part of the 

content explains in details several practices of the data preprocessing on the dataset, i.e., data 

augmentation, feature extraction, normalization, and noise reduction.  

3.2.1 Noise filtering techniques. 

To increase the dataset’s signal-to-noise ratio, noise reducing is a critical factor. The actual 

signals that particle interactions generate can be hidden by a lot of noise sources, such as 

background radiation, temperature fluctuations, and electronic noise. The following methods are 

used for noise decrease:  

• Baseline Correction: Removing baseline offsets caused by electronic noise ensures 

signals start from a consistent zero level.  

• Digital Filtering: Applying low-pass, high-pass, and band-pass filters to remove 

unwanted frequency components.  

• Smoothing Techniques: Using moving average and Gaussian smoothing to reduce 

random fluctuations in the data.  

• Signal Clipping: Setting a threshold level to eliminate low-amplitude noise.  

• Wavelet Denoising: Decomposing the signal into different frequency components and 

removing high-frequency noise.  

• Getting rid of all the noise, the biggest variance is the signal that is recorded in the first 

few main components that account for the major component of the signal, thus, PCA 

minimizes the noise.  

• Kalman filtering is a method of estimating a dynamic system's state from noisy data 

through a recursive algorithm that is computationally very efficient.  
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3.2.2 Normalization  

Normalization is performed after the data has been exported from the Monte Carlo 

simulations to standardize the range and scale of the data features, making the datasets consistent 

and improving the performance of machine learning algorithms. Key normalization techniques 

include:  

• Min-Max Scaling: This technique scales the features to a fixed range, typically [0, 1] 

or [-1, 1]. Each feature value x is transformed using the formula:  

𝑥𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
 

Where 𝑥𝑚𝑖𝑛 and 𝑥𝑚𝑎𝑥 are the minimum and maximum values of the feature, 

respectively. This ensures that all features contribute equally to the model and prevents 

features with larger ranges from dominating the learning process.  

• Z-Score Standardization: This method transforms the data to have a mean of zero and 

a standard deviation of one. Each feature value x is transformed using the formula:  

𝑥𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑 =
𝑥 − 𝜇

𝜎
 

Where μ is the mean and σ is the standard deviation of the feature. Z-score 

standardization is particularly useful for data with different units or scales, ensuring 

that all features are on a comparable scale.  

• Robust Scaling: This method is less sensitive to outliers compared to min-max scaling 

and z-score standardization. Each feature value χ is transformed using the formula:  

𝑥𝑆𝑐𝑎𝑙𝑒𝑑 =
𝑥 − 𝑚𝑒𝑑𝑖𝑎𝑛

𝐼𝑄𝑅
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This technique measures each feature value's shift from the median, and it relates to the 

interquartile range (IQR). This process minimizes the impact of outliers on the data. 

3.2.3 Feature extraction and engineering. 

3.2.3.1 Feature Engineering  

The purposes of the L1 Accept of FTK are efficiency leading to the online selection of the 

most likely track and fast detection of new physics in the LHC environment. Their nominal 

performance and cost estimation are the main criteria to be checked at the design phase. All the 

variables are important, but in this case, there might be some dependence between them, so it is 

not a question of just looking for some which are more crucial than others. Based on the specific 

requirements of the new system, the most advantageous features are as follows: 

1. Size of Cluster (Nstrips) - The position of the activated strips and the clustering size 

are stored in the detectors. Lacking direct detection of the particle's arrival, the 

triggering process requires the strips to register their location and energy. Another basic 

point of analysis is the cluster size of the region that a particle interacts with. It is 

important to find a good spatial coverage (s) in conjunction with clusters besides the 

number of clusters. More than five or six clusters in one strip are very rare. The rest is 

with the cluster builder. An appropriate fix, however, would have the software update 

the cluster labeling locally when it sees a strip communication cable problem. But in 

case several of them are damaged then the chip itself will need to be replaced. 

• Calculation: 𝑁𝑠𝑡𝑟𝑖𝑝𝑠 = ∑ ℎ𝑖𝑡𝑗

𝑛

𝑖=1
 

Where ℎ𝑖𝑡𝑗  indicates whether a strip 𝑖 is hit.  
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• Application: Particle classification and event classification is the 

application of cluster size, which allows distinguishing between different types 

of particles and interaction events. Higher-energy particles or more complex 

interactions are usually activated by many strips that are certainly different from 

low-energy types or simpler ones. Furthermore, it is useful to remove spurious 

signals and noise from the detection system. 

2. Cluster Time Width (ΔtW): This parameter measures the ionization electrons' time 

dispersion as they progress along the readout strips. It gives information about the 

speed of the particle interaction and when solar ions are happening by measuring the 

time between the first and last strip hits of the cluster. 

• Calculation: 𝛥𝑡𝑊 = 𝑡la𝑠𝑡 −tfirst, where 𝑡la𝑠𝑡 and tfirst are the times of the last 

and first strip hits, respectively.  

• Application: The time breadth of a cluster can give an indication of the 

temporal dynamics of particle interactions. In the quest to identify the particles, 

it is critical to know the speed of the particles, which is done through time-of-

flight measurements. Furthermore, it contributes to the understanding of the 

diffusion of ionization electrons, which may show what specific interaction 

mechanisms there are. 

3. Cluster Charge (qcluster): The total charge collected by all strips in the cluster represents 

the energy deposition of the particle. This feature is crucial for differentiating between 

signal and background events, as well as for understanding the energy distribution of 

the interaction.  

• Calculation: 𝑄𝑐𝑙𝑢𝑠𝑡𝑒𝑟 = ∑ 𝑞𝑖
𝑁
𝑖=1  where 𝑞𝑖 is the charge collected by strip i. 
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• Application: The particle's energy deposition is denoted by the total electric 

charge accumulated over all strips in the cluster. This feature, in particular, is 

vital to the separation of signal matter from background noise and gaining an 

energy distribution).  

4. Charge Skew (qskew): Charge skew shows the distance between the trends of charges in 

the cluster. This feature helps to specify where the charge was dumped, the one which 

can shed light on the type of particles and their movement. 

• Calculation: 𝑞𝑠𝑘𝑒𝑤 =
1

𝑁
∑ (

𝑞1−𝑞̅

𝜎𝑞
)

𝑁

𝑖=1
 

Where 𝑞 ̅ is the mean charge and 𝜎𝑞 is the standard deviation of the charge distribution. 

• Application: Charge skewness is a technique that can be used to identify 

different charges inside a cluster. This property helps to distinguish between 

different particle paths and their interactions. This feature can also detect 

unexpected asymmetries such as which may be because of new discoveries.  

5. Number of Holes (Nholes): Discontinuities in the contact pattern are detected by the 

number of holes or gaps in the cluster. This characteristic helps in detecting any 

anomalies in the cluster formation that can be a result of noise or inefficiency in some 

detectors.  

• Calculation: 𝑁ℎ𝑜𝑙𝑒𝑠 = ∑ 𝛿(ℎ𝑖𝑡𝑖 = 0)
𝑁𝑠𝑡𝑟𝑖𝑝𝑠−1

𝑖=1
 

Where δ is the indicator function that counts the gaps between consecutive hits.  

• Application: The consistency of the hit pattern can be exhaustively deduced 

from the count of gaps in the cluster. This characteristic is used to find noise and 

detector inefficiencies, and at the same time, to evaluate the data quality. Besides 
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directing to imperfections demanding appropriate action, it is the source enabling 

a guarantee that the events are properly reproduced. 

6. Cluster Width: Clusters' spatial extents provide still more detail in the study of particle 

interactions, and they are expressed by the number of strips with which inter-cluster 

distance is bounded. While the width of the cluster always directly depends on its size, 

it is the width that offers a more valid estimation of the spatial distribution. 

• Calculation: 𝐶𝑙𝑢𝑠𝑡𝑒𝑟 𝑊𝑖𝑑𝑡ℎ = (𝑠𝑡𝑟𝑖𝑝 𝑖𝑛𝑑𝑖𝑐𝑒𝑠) −(𝑠𝑡𝑟𝑖𝑝 𝑖𝑛𝑑𝑖𝑐𝑒𝑠) +1. 

• Application: Awareness about particle interactions' physical spread in the 

detector implies comprehension of the spatial width of the cluster. It is a particle 

track reconstruction helper as well as a device in spatial resolution. In this case, 

it is used as a possibility to obtain separated and overlapping events.  

7. Max Strip Charge: Charge measured by one separate strip within the cluster represents 

peak energy deposition, often the one of maximum value.  

• Calculation: M𝑎𝑥𝑆𝑡𝑟𝑖𝑝𝐶ℎ𝑎𝑟𝑔𝑒 = 𝑚𝑎𝑥
𝑖=1

𝑁5𝑡𝑟𝑖𝑝𝑠𝑞𝑖 

• Application: When the electron beam hits the single strip, it can absorb the 

most energy and the strip can register the electric charge because photons can or 

can cause ionization. Consequently, to enhance the precision of the energy 

measurement, it is used the feature of maximum charge stored in a single strip 

to its threshold. The first two of those are related to each other because, in their 

roles, the strip not only plays the part of that of charge storage but also the signal 

provider. It becomes a criterion for accurate energy measurements and a way to 

sense high-energy interactions as well. Also, the interaction's most energetic 

component can be derived from it, which is crucial particularly for the.  
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8. Earliest Strip Charge: Through the minimal drift time and identification of the initial 

interaction location, the first strip of the cluster reflecting the charge collected has a 

direct link to the ionization in the immediate proximity of the wire mesh.  

• Calculation: 𝐸𝑎𝑟𝑙𝑖𝑒𝑠𝑡 𝑆𝑡𝑟𝑖𝑝 𝐶ℎ𝑎𝑟𝑔𝑒 = 𝑞𝑓𝑖𝑟𝑠𝑡 where 𝑞𝑓𝑖𝑟𝑠𝑡 is the charge of 

the first hit strip.  

• Application: The particle's first contact is identified with the charge of the 

initially touched strip of the sensor. The determination of an event's time of flight 

and its reconstruction are based on the integrated charge of the strip. This, in 

turn, provides a route to the particle's entrance to the detector. Changing the 

looked at strip charge also gives a chance to find the entry point of the particle 

to the detector. This kind of sensor also provides an advantage where the time of 

flight and reconstruction of the particle are measured by integrating the strip 

charge. 

9. Latest Strip Charge: The charge collected from the final strip of the cluster is informed 

about ionization that goes on farthest from the wire mesh. Thus, the maximum drift 

time reflects the closeness of the interaction, showing when it is coming to an end. 

• Calculation: 𝐿𝑎𝑡𝑒𝑠𝑡 𝑆𝑡𝑟𝑖𝑝 𝐶ℎ𝑎𝑟𝑔𝑒 = 𝑞𝑙𝑎𝑠𝑡, where 𝑞𝑙𝑎𝑠𝑡 is the charge of the 

last hit strip.  

• Application: The data on the end of ionization are provided in the charge on 

the last strip hit per cluster. This asset is crucial to a precise reconstruction of 

events considering the fact that it enables one to visualize the trajectory of the 

particle throughout the whole detector.  



70 | P a g e  

 

10. Cluster Charge Kurtosis: Cluster charge kurtosis measures the "tailedness" of the 

charge distribution within the cluster. It assists in identifying clusters with non-uniform 

charge profiles by dispatching data about the charge distribution's extremities and 

dispersion.  

• Calculation:  

𝑞𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠 = 1
𝑁⁄ ∑ (

𝑎𝑖 − 𝑎̅

𝑠𝑖𝑛
)

−4𝑁

1=1

− 3 

Where 𝑞 ̅ is the mean charge and 𝜎𝑞 is the standard deviation of the charge distribution.  

• Application: The degree and the extension of charge distribution can be 

mathematically deduced based on cluster charge kurtosis. Detecting these 

clusters is a good tool with which one can identify charge structures that are 

completely different from the regular ones, which may indicate a problem with 

the process or a detector. It helps to understand the complex particle interactions.  

11. Cluster Charge Centroid (qcentroid): The charge distribution center of mass is a unique 

number that provides information about the spatial charge distribution in a cluster, that 

is, the electrical energy is deposited in a location with the greatest distance to the center.  

• Calculation:  

𝑞𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 =
∑ 𝑞𝑥𝑁

𝑖−1 𝑠𝑡𝑟𝑖𝑝𝑖

𝛴𝑖=1
𝑁 𝑎𝑖

 

Where 𝑠𝑡𝑟𝑖𝑝𝑖  is the position of 𝑠𝑡𝑟𝑖𝑝𝑖i.  

• Application: The time centroid is a lone value that sums up the time 

dispersion of the charge deposition and on the flip side gives the direction of the 

charge in time in the form of a flip-flop value in TDC. This property, for example 
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the time window, plays the key role in the determination of the time range in 

which an event can occur or event pre-gating.  

12. Cluster Time Centroid (tcentroid): The center of mass of the time distribution is the 

quantity of time required to demonstrate the accumulation of the charge deposited in 

that area, and it shows the timing of the charge distribution that is central. 

• Calculation:  

𝑡𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 =
∑ 𝑡𝑖

𝑥𝑁
𝑖−1 𝑠𝑡𝑟𝑖𝑝𝑖

𝛴𝑖=1
𝑁 𝑡𝑖

 

Where 𝑡𝑖 is the time of 𝑠𝑡𝑟𝑖𝑝𝑖 .  

• Application:  A single value that defines the decay of the charging 

deposition with time is derived from the time centroid. Inaccurate event 

reconstruction and time-of-flight measurements are some of the reasons why this 

property is so important for the understanding of the timing structure of the 

interaction.  

13. Cluster Energy Spread (Espread): The distribution of energy deposits inside the cluster 

not only allows the analysis of the resources of a system within the cluster but also 

strengthens the search for interactions with broad or narrow energy dispersions.  

• Calculation:  

𝐸𝑠𝑝𝑟𝑒𝑎𝑑 = √
∑ (𝑞𝑖 − 𝑞𝑚𝑒𝑎𝑛)2𝑁

𝑖−1

𝑁
 

Where 𝑞𝑚𝑒𝑎𝑛 is the mean charge of the cluster.  

• Application: The interaction's transmission of energy can be understood as 

being in the cluster's interior which is a distribution of its energy captures. 

Indeed, this profile would allow for the detection of processes with wide or 
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narrow energy spread which may carry with them new physics or different 

interaction types.  

14. Cluster Time Spread (Tspread): Broad or narrow time illuminations are the typical point 

for interactions that the group time distribution provides, and it is shown by the 

distribution of time measurements in the group.  

• Calculation:  

𝑇𝑠𝑝𝑟𝑒𝑎𝑑 = √
∑ (𝑡𝑖 − 𝑡𝑚𝑒𝑎𝑛)2𝑁

𝑖−1

𝑁
 

Where 𝑡𝑚𝑒𝑎𝑛 is the mean time of the cluster.  

• Application:  The changes in the flow of time data within the cluster are 

used to describe the interaction dynamics. This feature is used for recognizing 

the movements with low or wide temporal distributions and the 

conceptualization of the timing structure. It is the major factor affecting time 

resolution and event reconstruction.  

3.2.3.2 Feature Extraction  

Feature extraction is a data mining process that involves zeroing in on specific indicators 

removed from the raw data. This step is highly important for the identification of particles 

accurately as well as event reconstruction. In the unmasking of critical features, the following 

methods are pursued: 

• Energy Deposits: calculating the energy particles have dissipated in the detector 

parts, for example, the hadronic and electromagnetic calorimeters. These energy 

measurements are the ones that are necessary to be able to make out the kind of 

particles and their paths of movement. 
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• Tracking parameters: retrieval of trajectory characteristics from the inner detector, 

such as the orientation, distance, and the angle of motion of the particle tracks. 

These qualities are interesting because they provide the information about the 

charge of the particles and the way they move. 

• Cluster Shape: The cluster processors are used to analyze the shape of the clusters 

and determine the energy deposit. By identifying differences in particle types, one 

can make cluster shape an effective descriptor. 

3.2.3.3 Data Augmentation  

By increasing the quantity and diversity of the training datasets, data augmentation helps 

machine learning models become more robust and generalizable. Among the methods for 

augmenting data are:  

• Geometric Transformations: Applying changes to the data, including flipping, translation, 

scaling, and rotation. This improves the model's capacity to generalize to new data by 

simulating various detector orientations and particle trajectories.  

• Noise Injection: To replicate real-world fluctuations and increase the model's resilience to 

noise, artificial noise is added to the data. This method aids in the model's learning to 

discriminate between noise and real signals.  

• Synthetic Data Generation: Producing realistic synthetic data that replicates the 

characteristics of the original datasets through the use of methods such as Generative 

Adversarial Networks (GANs). When there is a lack of real data, this is helpful.  

3.2.3.4 Data Splitting  

The data sets are split into training, validation, and test sets to ensure that the model can 

evaluate the reliability and avoid overfitting: 
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• The hardware learning models are trained using the training set. In this way, at least 

the model includes most of the majority of the data to confirm that the model correctly 

learns the most underlying patterns. 

• The validation set, on the other hand, is employed during training to optimize hyper 

parameters and evaluate the model's performance. By means of the unbiased 

assessment of the model, it gives a possibility of overfitting. 

• Test Set: It is the part that is used to verify the performance of the completed model on 

an unseen data set. It gives us an unbiased estimate of the models' generalization 

capabilities.  

3.3 Algorithm Development  

This section examines the track fitting algorithms. It explores the implementation of the 

track reconstruction algorithms in the ATLAS experiment, which consists of the geometry codes, 

event data model, and track extrapolation engine, these being part of track reconstruction elements. 

ATLAS experiment runs on a set of algorithms, the algorithm sequence, and simulation tools, 

include the function of offline track optimization and can be implemented in multiple 

programming languages.  Monte Carlo-based components for the extrapolation engine, such as 

track creation engine, on the component will be discussed. 

3.3.1 Development of advanced signal processing methods.  

Generally speaking, it is not possible to detect a particle's trajectory directly; it is, however, 

possible to find the particle at numerous distinct spots situated in the detector volume, each with a 

certain amount of uncertainty. The measurement of cluster on-plane surfaces and the drift 

measurement which are done by drift tube detectors are two conceptually different tracking device 
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types used in ATLAS. It is the ambiguity of the measurement through the drift tube in clusters that 

can be solved only by using either hit collection or by using an already well-defined track candidate 

seed, on the other hand, clusters can give a full description of one-dimensional and two-

dimensional local measurements and are easily integrated into the track fit. 

In general, the trajectory of a particle cannot be directly measured, but only a localization 

(with a given uncertainty) of the particle at several discrete points in the detector volume can be 

done. In ATLAS, two conceptually different types of tracking devices are deployed: cluster 

measurements on planar surfaces and drift measurements through drift tube detectors. While 

clusters can describe both one-dimensional and two-dimensional local measurements and can be 

directly integrated into the track fit, the localization through drift tube measurements is usually 

ambiguous and can only be resolved through a hit collection, or by using an already well defined 

track candidate seed. On the other hand, cluster measurements most often give direct local 

coordinates: a segmented detection device is used, and the cells that are activated by a traversing 

track are used to build a measurement. This device can be a silicon pixel or strip structure as in the 

Inner Detector, or Cathode Strip Chambers in the Muon Spectrometer. This method can provide a 

resolution higher than the intrinsic segmentation of the measuring device due to the existence of 

the readout cells that can be interpolated.  

3.3.1.1 Cluster analysis for energy losses. 

Strongly interacting particles can be more accurately detected compared to the 

electromagnetic showers that they merely create. The reason for the loss of resolution and the 

nonlinearity of hadron energy is the impact of several factors. 

The ATLAS calorimeter system, being non-compensating, is known to have lesser energy 

signals per unit of incoming energy (e/h ∼ 1.3) that a hadron produces compared to an electron. 
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The binding energy loss in post-collision nuclear breakup is energy that goes into the elimination 

of the signal rather than into its detection. In the areas of the material on the outside of the 

electromagnetic and hadronic calorimeters' active zones, and in the dead material, the errors caused 

additional defects in the reconstruction. These are the ATLAS Inner Detector and Muon System's 

materials, the cryostat walls, the magnetic coil, and the mechanical support structures. Last but not 

least, a drop-off in the cluster algorithm's energy collection is caused by the fact that some of the 

energy is deposited inside the calorimeter but is not part of any of the reconstructed objects. 

This study focuses on two software correction techniques for calibrating the response of 

the detector to hadrons: a layer correlation algorithm and a local hadron calibration scheme, which 

is available in the ATLAS experiment. The two approaches are evaluation by such a method to 

find a relationship between various showering aspects in the experiment and Monte Carlo truth 

energy deposit, which is energy in the dead material, invisible energy. 

3.3.1.2 Local Hadron Calibration 

For jet algorithms, the main goal of the local hadron calibration is to ensure that particles, 

which are defined in a certain way with energies, are supplied energy equal to the corresponding 

stable particle energy. The main purpose of the method is correction factorization, in a series of 

sequential steps by which different detector effects are separated and separately corrected. 

The first step in the calibration process, the topological clustering of the calorimeter's cells, 

has been calibrated at the electromagnetic scale. Subsequently, the clusters are characterized 

according to the shape of the cluster with respect to whether they are of a hadronic or 

electromagnetic type. Hadronic clusters are this far in the calorimeter and are much less cell energy 

than the electromagnetic ones. Electromagnetic clusters, even though, they are at their original 

scale, are not worth mentioning. Therefore, the clusters which act like hadrons are made two or 
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three times lighter by the weight of a cell, which is the cells position that is responsible for the 

detection of arrival of the hadronic energy. Then, this step is followed by the energy correction, 

which is the energy that is outside the clusters formed in calorimeter cells, that is, in the tails of 

the hadronic and electromagnetic showers which are rejected due to the noise cuts. The last step 

in such a process is the detection of the deposits of energy caused by material, as an example, 

cryostat, the magnetic coil, and intermodular cracks means that dead material corrections conclude 

when cluster is reached. 

3.3.1.3 Layer correlation method 

An alternative approach to the traditional Magnetic Particle Inspection which includes the 

study of beam test data in the barrel region is the layer correlation method [7]. The total pion 

energy denotes the sum of the clustered energy in the seven, which corresponds to clear sections 

in the electromagnet and the hadron calorimeter The shower fluctuation is mainly due to a specific 

pair of linear combinations of layers' energies, from which the event-by-event layer energy 

corrections are calculated. 

A principal component analysis is conducted to select these combinations. In a calorimeter, 

an event is a point in the seven-dimensional energy deposit vector space of its layers. Another 

basis for a set of the covariance matrix between these layers can be expressed by its slopes. The 

transmissions through the first few eigenvectors carry most of the information around events of 

longitudinal shower modification as the eigenvectors have been arranged according to a decreasing 

order of the eigenvalues. These projections are the input for 2D lookup tables, which are having 

weights to take energy losses in the dead material into account and then have compensating 

weights to compensate for the non-linearity of hadrons' responsiveness in the calorimeters. 
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3.3.1.4 Trajectory reconstruction algorithms. 

The main task of a tracking detector is finally to provide measurements that characterize 

the trajectory in a way that allows for the estimation of the particle origin (or the vertex) and initial 

momentum. Often, this is achieved by measuring a magnetic field curvature. At any rate, it is 

important to reduce the impact of the tracking detector on the particle trajectory. 

This is similar to minimizing both the material budget of two detecting devices and the 

support structures in track reconstruction, as the particle's interaction with the traversing detector 

material is the main contributor to the disturbance in the initial trajectory. The two criteria for 

evaluating the quality of an application for track reconstruction are the track parameter resolutions 

and the track reconstruction efficiency.  

One of the main techniques in high-energy physics is the Monte Carlo simulation of the 

physical processes and the corresponding detector response. This is the only method to predict the 

detection of sensitivity to the different channels during the planning of experiments, as well as the 

main mechanism for the comparison of theoretical models to the real data flow while data 

acquisition is ongoing. Furthermore, the only source of simulated data to verify and interchange 

the reconstruction software's performance is the provided input data as the majority of them are 

from test beam setups and commissioning runs using cosmic rays, apart from the data taken from 

the test beam setups and commissioning runs using cosmic rays, due to the fact that the readout 

and reconstruction software is developed at the same time with the installation and deployment of 

the detector. 

The procedure for event simulation can be split into two steps: the first one, the simulation 

of the detector response, is directly related to the experimental setup, on the other hand, the second 
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one, the primary physics event generation, is usually the area of popular high energy physics 

libraries like PYTHIA or HERWIG. 

 

The event generation provides input to the different simulation algorithms by estimating 

the 4-vector momentum together with the particle identifier. The detection of the particle and 

imitation of its interaction with the detector material is the framework of the very correct Geant4 

simulation. As a result, the generated hits are sent to a digitization module for additional event 

reconstruction processing. FATRAS uses a similar technique that is based on simplified 

reconstruction geometry and parameterized models for the particle-detector material interaction. 

It is possible to digitize the hits so that it can be directly used through the output track object or as 

input to the standard reconstruction. The input is smeared in the ATL-FAST simulation to simulate 

the particle in the stage following track reconstruction.  
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3.3.2 Machine learning model selection and design.  

With machine learning (ML) being introduced in the ATLAS and LHCb consortia, the 

experiment at LHC is using the technology of intelligent computing. The rise of machine learning 

is greatly appreciated for the variety of features and the number of users who apply it for different 

tasks. The number of methods ranging from data-driven to machine-aided decision-making being 

applied in the context of the Large Hadron Collider (LHC) experiments, thus, it is becoming 

increasingly more pervasive machine learning in the LHC experiments, including the ATLAS and 

LHCb consortia. Although a historic pattern of using machine learning only in the final analytic 

phase to improve the result of a specific physics process, a variety of other uses have emerged in 

different areas such as simulation, automation, object reconstruction and object calibration. The 

data sets are not only big but also grow at a very fast rate and therefore are very suitable for the 

development and improvement of machine learning algorithms that are able to represent the 

various complicated data sets. Thus, the further technological capability development in the field 

of machine learning in the context of particle physics will be ongoing. 

3.3.2.1 Neural networks for pattern recognition. 

When a neural network is a machine learning technique given different input variables such 

as key or feature to model, that it is the way of the thing uses them to predict an output. To create 

the best prediction, a deep neural network creates a lot of layers, and calculates more and more 

complicated features from the raw input through these layers step by step. 

Unsupervised machine learning can provide a new way of analyzing the data that is 

different from the new physics models and scientific assumptions. Scientists can create a 

sophisticated neural network that has millions of connections between "neurons" and train it with 

actual data. Once through it, the neural network can not only identify "typical" LHC collisions but 
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also exclude them, which results in "atypical" or unidentified collision occurrences alone. In strict 

technical terms, an autoencoder is an unsupervised deep learning network that compresses and 

decompresses input data and at the same time juxtaposes input and output. The reconfiguration 

inconsistencies are called "abnormalities" since the algorithm "struggles" to find them. The 

probability is high that these strange events represent a new form of physics. These neural networks 

are meant to analyze the anomalies by reconstructing the particles' invariant collision masses, 

which would then help to decide whether a Standard-Model process is enough to represent them 

or not. 

3.3.2.2 Anomaly detection using autoencoders. 

The machine-learning-based method introduces a new approach to the quality monitoring 

data system to detect these issues faster. It was informed of all the variants of the common good 

data and any breaches from that typical detector behavior found in that data by the model. The 

strategy of this system is to create an anomaly detection system that is based on autoencoders. One 

of the tasks for unsupervised learning that are best suited for an autoencoder is made using a certain 

kind of neural network. The 2D ECAL data is also used in the form of images to train the system, 

which can be programmed using the newly developed correction methods to detect even those 

anomalies that change over time. Such an ability is necessary to spot patterns that may not at once 

be noticed but rather crops up gradually. 

The excellent autoencoder-based system could be the one to change the world of artificial 

intelligence by beating the CMS detector's performance and to function as an instant case of real-

time anomaly detection from all sectors. For instance, by using similar machine-learning-based 

anomaly detection systems, sectors such as finance, cybersecurity, and healthcare that work with 

enormous, fast data streams can increase their productivity and reliability. AI, automation, and 
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machine learning help CMS to be just one of the machine learning experiments of CERN that aims 

at performance improvement. 

The combination of a 2-layer stacked LSTM and an LSTM that we previously studied is 

combined in a predictive LSTM autoencoder which is the second phase. For the first input stage, 

time series memorization is used in this way. An hourly horizon of one-minute provides for each 

feature in the near future set. We use clean data for the training process, as we do with the previous 

autoencoder architecture, to characterize the discrepancy between the real and predicted data in 

the input data. We also calculate the mean square error (MSE) between the real and predicted 

features and then average them. Any of the MSE distributions that does not exceed the threshold 

is considered clean while the rest are considered anomalous. 

The process through which the autoencoder form-factor cuts the data to lower dimensions 

creates a situation where the model has to identify the important bits from the input dataset, which 

takes the noise out. As a result, the LSTMs get the bonus of keeping a history of events so they 

can relate what led to the current data and how the situation is evolving. A model using only four 

layers and nine-LSTM layers is also among the merits of being a tiny model. The justification for 

this point is that in the next series of this model, the input features will be a lot more. But a clever 

move can be to lessen the resourcing consumption by means of applying our autoencoder to edit 

the data. 

3.4 Validation and Testing  

The ATLAS trigger system is a control algorithm consisting of hardware and software 

components, which operates at the LHC's 40 MHz collision rate and produces recorded events at 

a rate of 1 kHz. The primary trigger system, which is called Level 1 (L1), runs on hardware and 

firmware and is done with dedicated ultra-fast electronics and field-programmable gate arrays. The 
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L1 system specializes in the threshold and topological selection of criteria with having the highest 

input signals from the muon and calorimeter systems. The abovementioned L1 system, thus, 

diminishes the allowable event rate to 100 kHz. 

The ATLAS trigger system consists of two levels of decision based on hardware and 

software. The system is enabled by LHC's 40 MHz collision rate to trigger a recorded event every 

1 kHz. Level 1 (L1), the first level of the trigger system, is hardware/firmware based and includes 

field programmable gate arrays and specialized fast electronics. The L1 system first selects the 

accepted events by evaluating the threshold and topological selection criteria using a meager 

granularity input signals that are derived from the muon and calorimeter systems. The software-

based decision-making system (the High-Level Trigger (HLT)) carries out decision-making 

programs by reasoning about the stored variables that referred to the offline event reconstruction. 

Right adjacent to the detector, the HLT system is composed of nearly 40,000 CPU, which are in 

turn used to execute the HLT software. The HLT software, which is the work of many people, is 

a vital part of many physics analyses that are based on the same methodologies. 

 

Figure 17: ATLAS trigger system (Source: https://ep-news.web.cern.ch/content/triggering-atlas-run-3) 

 

https://ep-news.web.cern.ch/content/triggering-atlas-run-3
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Working groups, whose objective is to identify the synergies between the various detector 

subsystems and the physics signals of interest (referred to as the so-called 'trigger signature 

groups'), constitute the basis of the HLT software. Each signature group develops algorithms and 

calibrations for the offline reconstruction of the data, collects data, creates a trigger, and does 

online calibration, verifies the operation and data quality of the online system, and also the offline 

quality of the reconstructed data. Trigger signature (ts) groups for Jets, Calorimeters Signals, 

Electrons and Photons, Taus, B-Physics (using Muons), Muons, B-Jets (using cuts and cylindrical 

splitting inner detector), Inner Detector Tracking, Minimum Bias, and Forward Detectors are 

among the ATLAS trigger signature groups. 

3.4.1 Methods for testing algorithms with simulated and real datasets. 

To estimate the rate of a given HLT algorithm, a sufficient sample of events without bias 

would be a theoretical prerequisite. Since the triggers are normally developed to choose very rare 

cases, it would be mandatory to take a large number of zero-bias events to get a distribution in the 

space where the rare events are expected. To make biased datasets that are finer to biases, L1 

triggers are used to the effect that the whole statistical power across the trigger phase space is more 

evenly spread. Very few are collected toward the highest part of the trigger phase space, which is 

a more frequent case. Then, just the zero-bias data can be reproduced in the less populated zones 

by using the scale factors determined from the pre-scale dataset and reweighting the affected 

events. A L1 trigger that could be used to test jet triggers a low threshold jet trigger with a random 

pre-scale for the low jet transverse energy region, JT a medium threshold jet trigger seeded by 

which for the medium jet transverse energy region, and a high threshold jet trigger without a pre-

scale for the high jet transverse energy region are a few possibilities. These are small EB datasets 

whose principal purpose is to test the trigger's offline performance, and they generally consist of 
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one million events taking approximately 24 hours to fully reprocess. However, in making 

benchmark comparisons among various trigger software updates, for each type of run condition 

provided by the LHC the EB datasets are extracted, subsequently validated, and reprocessed. 

3.4.2 Cross-validation techniques. 

The methods used to demonstrate HLT software by EB datasets are given in the coming 

sections was the sentence. 

3.4.2.1. Run Time and Memory Consumption- The initial validation of a new trigger 

software release is done by the first looking at the top-level performance of the HLT software grid 

jobs. The first step of the verification that the software operates as planned and is consistent with 

the HLT farm is by the distribution of the run time and memory usage of the complete collection 

of jobs. 

3.4.2.2. Event Counts - A high-level test of the physics performance and the expected 

effect on data capture by the new trigger software can be made by using the ratio of the number of 

accepted events (event counts) for a particular trigger to the number of those in the previous 

release. The signature experts anticipate the results first before they give an in-depth explanation. 

A new version of the tracking algorithms might be one of the instances that bring about the effect 

of increasing the efficiency of the electron trigger, which the electron/photon specialist might 

expect. They would project that in case of such improvement of the system, the counts for electrons 

will be higher, or on the other hand, photons will remain at the same level. At first, they confirm 

that in the case of contrary things that they have observed, it is necessary to undertake more 

research. 
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3.4.2.3. Signature Performance - For a new version of the HLT software the people from 

the signature groups are going to accept every monitoring histogram analysis. That means they 

guarantee that the distributions of input and distinguishing variables used by each trigger are well 

measured, and thus all differences in the physical performance are exposed. Thus, based on these 

histograms are getting Energy Spectra, Hit Maps, Efficiency, and Vertex Resolutions. In order to 

download those comparators, it is only enough to have a browser open and visit the validation 

histogram root page. A large collection of comparison histograms (hundreds), being basically a 

subset of these histograms, is uploaded to the main web interface. By comparing the distribution 

shape with reference information, the automated checkers give out some signals that then the 

expert can use for his next step (red and yellow are problematic cases, and distributions that didn’t 

change compared to the reference are green). The electron/photon test of the electron track is 

examined closely so as to measure the effect of the new software and to decide whether it complies 

with the demands made by them because they predict the electron trigger efficiency will be 

extended due to an update to the tracking algorithms, as we left off the previous section. 

3.4.3 Benchmarks and comparisons with existing methods. 

The AMI Meta-data Interface, or ATLAS, tool that stores and maintains the sequences and 

parameters and configurations that guide the HLT and reconstruction software are utilized by the 

software validation specialist, through the web interface. One can use the same tool to find and 

compare existing ones in addition cloning them if new configuration tags have to be created. The 

software validation specialist creates, starts, monitors, and supervises reprocessing activities 

through the Prodsys2 online interface, the latter only being possible for the professional. Due to 

the fact that the reprocessing jobs hold priority and the grid resources are significant, the opening 

relevance of reprocessing includes a list of many necessary properties and, as a result, the 
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associated responsibility. The current settings in Prodsys2 ensure that the standard reprocessing 

jobs start only after the initial set of test jobs is completed successfully. Though, the configuration 

involves some extra short-run time to guarantee that grid resources are not wasted, which is a small 

price to pay. At the beginning, most reprocessing activities normally run well; however, the expert 

is still tuning the system to reach the optimal configuration, so keep in mind that a new task's scout 

jobs can fail at least once or twice during the typical cycle. If the original input text requires only 

quick treatment, the immediate test is omitted, therefore, the tasks need to be raised up with 

extreme care to make sure that the jobs are well configured. 
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4 Implementation 

4.1 Tools and Software Environment 

In this study, we used machine learning algorithms to identify muon hits through a dual-

cloud and local computing system. The main development platform used was Google Colab 

because it provided three primary advantages: free access, build-in support for machine learning 

libraries and GPU and TPU computational resources for speed enhancement (Kimm, 2021). This 

approach allowed flexible development with collaborative capabilities because it needed minimal 

resources in local hardware to execute complex calculations.  

Development of a high-performance Python-based environment was done on an Intel-

based personal computer. Obtaining better control over computing resources at this scale enables 

users to easily execute and customize script programs. All optimization methods remain easily 

implementable. Through combined cloud and local system deployment we obtained the best 

possible tradeoff between computational speed and resource accessibility and scalability of model 

(Carneiro, 2018). Our process acquired additional flexibility due to the added local execution 

capabilities that cloud computing provided. A dynamic model training procedure followed by 

extensive optimization and a complete assessment took place. 

4.1.1 Google Colab for Cloud-Based Computing 

Google Colab from Google Research enabled us to run data analysis and coding tasks 

through a web-based platform that provides no-cost access to TPUs and GPUs together with simple 

configuration requirements (Kimm, 2021). The platform permit access to easy collaboration tools 

with fast prototyping benefits while having access to vast machine learning libraries. Google Colab 

brings three main benefits such as automated dependency management together with effective 
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storage options and training deep learning models using Google's hardware resources (Gunawan, 

2020).  

Machine learning model training and construction operations are supported through 

Google Colab since it integrates necessary data analytics libraries including TensorFlow, PyTorch 

and Scikit-Learn. With these predictive models, it is possible to detect muon events while 

simultaneously classifying them and performing computational path predictions that simplify data 

cleaning operations (Auffarth, 2020). Colab notebooks provide a user-friendly interaction that 

exposes data and model results for enhanced understanding of core patterns together with 

anomalies.  

Google Cloud Storage enables the storage of large datasets hence allowing easy access of 

big data volumes through Colab notebooks. The integration between Colab and BigQuery enables 

users to perform fast queries of significant datasets and Vertex AI provides deployment solutions 

for machine learning models that scale accordingly (Carneiro, 2018). These configured 

connections create a reliable structure that can handle the intensive processing demands in big data 

analytics.  

4.1.2 Local Development Setup 

Local Development Environment 

The system implemented in this research was designed to efficiently handle 

computationally demanding tasks related to particle tracking, classification, and pattern 

recognition. The system specifications were as follows: 

• Operating System: Windows 11 Pro (Version 23H2) 

• Processor: AMD Ryzen 7 7700, 8-Core, 3.80 GHz 
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• RAM: 32 GB 

• GPU: NVIDIA GeForce RTX 3060 

• System Architecture: 64-bit OS, x64-based processor 

The Python environment was operationalized using requirements.txt to that brings in 

machine learning and deep learning frameworks along with data analysis libraries Pandas and 

NumPy and machine learning libraries Scikit-learn and deep learning libraries TensorFlow and 

PyTorch and visualization libraries Matplotlib and Seaborn. The installation of CUDA and cuDNN 

libraries made it possible for TensorFlow and PyTorch to use GPU acceleration through the 

NVIDIA GPU which brought increased performance to model training tasks. 

Machine Learning and Deep Learning Configuration 

The development of neural networks for detecting muon signatures among subatomic 

particles was done using TensorFlow and PyTorch libraries. These libraries were chosen for their 

ability to flexibly grow along with their capabilities to scale up and deliver effective deep learning 

performance. 

• TensorFlow - The preferred selection for scalability and rapid prototyping because it 

features Keras API built-in alongside a deployment framework (Raschka, 2020). 

• PyTorch – preferred for its dynamic computation graph features and use in building 

learning models which enhanced muon detection precision (Raschka, 2020). 
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4.2 Implementation (Workflow of Analysis) 

The project implementation conducted data transformation steps followed by feature 

creation then trained the model before evaluating performance results. The research implemented 

special planning for each step to improve muon hit localization both in terms of accuracy and 

efficiency. 

4.2.1 Data Processing 

This research is based on a combination of different datasets including data on several 

energy levels, each having different parameters associated with particle behavior, ionization levels, 

and track characteristics. The preliminary phase of implementation included data preparation, 

which entailed:  

• Loading and examining the datasets to detect discrepancies and missing values. 

• Addressing absent values by imputation or elimination of null entries to preserve data 

integrity. 

• Selection and engineering of features to enhance the prediction efficacy of machine 

learning models. 

• Standardization and normalizing of numerical attributes to maintain uniformity across 

various machine learning models. 

The pretreatment methods guaranteed that the data was organized and appropriate for 

sophisticated machine learning methodologies. 

4.2.2 Missing Data Handling 

Inspecting the datasets, missing values were identified in charge-related features, 

specifically skewness and kurtosis measures, with a total of: 
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• 4029 missing entries in the 10 GeV – 100 GeV dataset, 

• 3902 missing entries in the 100 GeV – 500 GeV dataset, 

• 561 missing entries in the 500 GeV – 1.5 TeV dataset. 

These features are higher-order statistical moments capturing the asymmetry and 

peakedness of charge distributions in the detector. Their absence could introduce bias in training, 

so we adopted a row-wise deletion approach, ensuring the retained data points maintained 

statistical integrity. 

4.2.3 Signal vs. Background Labeling 

A binary classification scheme was implemented, leveraging the known physics of muon 

interactions: 

• Signal (Label = 1): Events with muon track hits but no electron contamination. 

• Background (Label = 0): Events where muons were mixed with electron contributions, 

indicating interactions in the detector material rather than clean track reconstructions. 

The dataset distribution post-labeling was as follows: 

• 10 GeV – 100 GeV: 216,455 signal | 57,034 backgrounds. 

• 100 GeV – 500 GeV: 205,908 signal | 65,308 backgrounds. 

• 500 GeV – 1.5 TeV: 215,211 signal | 52,487 backgrounds. 
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4.3 Initial Exploratory Data Analysis (EDA) and Physical Event 

Comparisons 

4.3.1 Random Event Analysis and Particle Interactions 

An analysis of randomly selected events across datasets revealed significant differences in 

particle interactions and background noise: 

• 10 GeV – 100 GeV Dataset: 

o High hits per particle (10-16 hits per particle), consistent with dense particle 

showers at lower energy levels. 

o Greater background contamination, leading to more electron-induced noise in the 

dataset.  

o High muon purity events (~21% muons) exist but with significant contamination. 

 

Figure 18: Visualization for 10GeV to 100GeV - Event 5925.0 
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• 100 GeV – 500 GeV Dataset: 

o More focused muon tracks, improving signal-background separation. 

o The highest signal-to-noise ratio, achieving muon purity up to 24%. 

o Increased compactness in momentum clustering, indicating a cleaner physics 

dataset. 

 

Figure 19: Visualization for 100GeV to 500GeV - Event 5915.0 

 

• 500 GeV – 1.5 TeV Dataset: 

o Lower hit densities but higher-energy interactions, leading to more complex 

radiative losses. 

o A balance between high-energy muon purity (~16%) and background scatter. 

o Momentum clustering showed extreme compactness, confirming high-energy track 

consistency. 
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Figure 20: Visualization for 500GeV to 1.5TeV - Event 6544.0 

These observations shaped our feature engineering approach, emphasizing spatial charge 

distributions, track residuals, and energy-dependent behavior. 

 

4.4 Feature Importance and Correlation Analysis 

4.4.1 Feature Correlation  

Comparative Insights Across Classes 

1. Charge Metrics: 

o Signal charge metrics exhibit greater variability at higher energies, with 

correlations like mmOnTrackChargeAverage and mmOnTrackChargeMedian 

slightly decreasing. 

o Background charge metrics maintain strong correlations, reflecting stable charge 

distributions. 
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2. Spatial Features: 

o Both classes exhibit consistently high correlations for spatial features like 

mmOnTrackNStrips and mmOnTrackWidth. 

o Background spatial features are more stable and consistent across energy levels, 

while signal features show slight variability at higher energies. 

3. Class-Specific Differences: 

o Signal features exhibit more variability, particularly in charge metrics, which can 

serve as a distinguishing factor in classification tasks. 

o Background features are more deterministic, with stable correlations across energy 

levels, making them less energy-dependent. 

Recommendations for Feature Engineering 

1. Feature Selection: 

o Remove redundant features such as mmOnTrackWidthDist (if mmOnTrackWidth 

is retained) and mmOnTrackResidualTrackMS (if mmOnTrackPullTrackMS is 

retained). 

o For signal analysis, retain charge metrics like mmOnTrackChargeAverage and 

mmOnTrackChargeMedian, which show more variability. 

2. Class-Specific Preprocessing: 

o Normalize charge features differently for signal and background classes to account 

for variability in signal charge distributions. 
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o Exploit the stability of background spatial features in feature selection and 

modeling. 

3. Energy-Dependent Strategies: 

o Develop separate preprocessing pipelines for each energy range, particularly for 

charge metrics in the signal class. 

Signal Class Key Observations: 

 

Figure 21: Feature correlation heatmap for signal subset 
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1. Charge Metrics: 

o High correlations persist across all datasets for features like mmOnTrackCharge 

and mmOnTrackChargeHolesMax (1.00). 

o Energy-Dependent Trends:  

▪ At higher energies, correlations between mmOnTrackChargeAverage and 

mmOnTrackChargeMedian tend to slightly decrease (e.g., from 0.95 in 

10GeV_to_100GeV to around 0.90 in 500GeV_to_1.5TeV). This reflects 

increasing variability in signal interactions at higher energy levels. 

2. Spatial Features: 

o Consistently Strong Correlations:  

▪ Features like mmOnTrackNStrips and mmOnTrackWidth show near-

perfect correlations (>0.99) across all datasets. 

o Width and Distance Metrics:  

▪ Features such as mmOnTrackDistanceOfHighestStripFromHigher and 

mmOnTrackWidthOfHighestStripFromHigher maintain perfect 

correlations, reflecting consistent track geometry. 

3. Energy Impact: 

o While spatial features remain strongly correlated, the slight decrease in charge 

metric correlations at higher energies suggests that signal particle dynamics 

introduce greater variability. 
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Background Class Key Observations: 

 

 

Figure 22: Feature correlation heatmap for background subset 

 

1. Charge Metrics: 

o High Correlations:  

▪ Features such as mmOnTrackCharge and mmOnTrackChargeHolesMax 

consistently show perfect correlations (1.00). 
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▪ mmOnTrackChargeAverage and mmOnTrackChargeMedian maintain 

strong correlations (>0.95) across all datasets, indicating predictable charge 

distributions in background interactions. 

o Chi-Squared Profile:  

▪ mmOnTrackChargeProfileChi2OverN shows moderately strong 

correlations (0.85–0.90) with other charge metrics in all datasets, adding 

unique information. 

2. Spatial Features: 

o Perfect Redundancy:  

▪ Spatial features like mmOnTrackNStrips, mmOnTrackWidth, and 

mmOnTrackWidthDist remain perfectly correlated across all datasets. 

o Residual and Pull Metrics:  

▪ mmOnTrackResidualTrackMS and mmOnTrackPullTrackMS maintain 

perfect correlations, reflecting consistent redundancy in background track 

quality metrics. 

3. Energy Impact: 

o Background correlations remain more stable than in the signal class, reflecting the 

deterministic nature of background events. This makes background features more 

predictable and less sensitive to energy variations. 
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Figure 23: Feature importance across different energy levels 

 

 

Figure 24: feature importance contribution in classification 
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4.4.2 Machine Learning Model Implementation 

In this section are described the different machine learning models that implemented for 

training tasks. Each model follows a structured learning process to ensure robust evaluation and 

performance.   

Classification Models 

1)  LightGBM Classifier was chosen for its computational efficiency, scalability, and 

superior performance in handling large datasets compared to traditional Gradient 

Boosted Decision Trees (GBDT) models.  

Architecture: 

• Uses leaf-wise growth to optimize splitting. 

• Contains 31 leaves per tree for detailed split decisions. 

Training Strategy: 

• Trains with early stopping to avoid excessive computations. 

• Uses gradient-based one-side sampling (GOSS) for optimization. 

2) XGBoost Classifier was chosen due to its high predictive accuracy, computational 

efficiency, and robustness in handling complex datasets. Its ability to effectively 

process high-dimensional features and large sample sizes made it an optimal choice for 

this classification task. 

Architecture: 

• Uses gradient boosting framework with second-order Taylor approximation 

for precise learning. 

• Implements L1 (Lasso) and L2 (Ridge) regularization to reduce overfitting. 
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• Uses column sampling and subsampling techniques to optimize feature 

selection. 

• Supports parallel execution and GPU acceleration for faster training. 

Training Strategy: 

• Trains with early stopping to halt training when validation loss stabilizes. 

• Utilizes log loss minimization to refine model performance. 

• Leverages scale_pos_weight parameter to improve classification in 

imbalanced datasets. 

• Prunes unnecessary tree splits using greedy pruning for enhanced model 

efficiency. 

3) CatBoost Classifier was selected for its high efficiency in handling categorical 

variables, robust performance on imbalanced datasets, and reduced need for extensive 

preprocessing. Unlike other gradient boosting models, CatBoost incorporates ordered 

boosting, which mitigates overfitting and ensures stable learning. 

Architecture: 

• Utilizes symmetric tree structures for efficient feature interaction learning. 

• Implements ordered boosting, reducing prediction shift issues found in other 

boosting models. 

• Natively supports categorical feature encoding, eliminating the need for one-

hot encoding or label encoding. 

• Includes L2 regularization to improve generalization. 

Training Strategy: 

• Trained using log loss minimization for binary classification. 
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• Implements early stopping with a patience of 20 rounds, halting training when 

validation loss stabilizes. 

• Uses adaptive boosting techniques, assigning higher importance to 

misclassified samples. 

• Employs GPU acceleration to significantly reduce training time. 

4) Random Forest Classifier was implemented due to its robust performance, ability to 

handle large datasets efficiently, and resistance to overfitting.  

Architecture: 

• Consists of 1000 decision trees, each trained on different subsets of features and 

data samples. 

• Uses bootstrap aggregation (bagging) to enhance prediction stability. 

• Applies Gini impurity as the splitting criterion to determine feature importance. 

• Limits maximum tree depth to 4 to reduce complexity and prevent overfitting. 

Training Strategy: 

• Utilizes random feature selection at each split, increasing model diversity and 

reducing correlation between trees. 

• Trains with balanced class weighting to handle class imbalances effectively. 

• Implements parallel processing, allowing for faster model training on large 

datasets. 

• Uses majority voting across all trees for final classification decisions. 

5) Gradient Boosting Classifier (GBM) was chosen for its iterative boosting approach, 

strong predictive power, and ability to minimize loss dynamically. The model 

constructs trees sequentially, correcting errors from previous iterations. 
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Architecture: 

• Consists of 1000 decision trees, each learning residual errors from prior trees. 

• Uses learning rate of 0.1 to control the contribution of each tree. 

• Restricts maximum tree depth to 4, ensuring a balance between model 

complexity and overfitting control. 

• Utilizes cross-entropy loss function for classification. 

Training Strategy: 

• Implements gradient descent optimization to improve tree splits. 

• Applies early stopping, terminating training after 20 rounds of no validation 

improvement. 

• Uses adaptive learning rate adjustment, fine-tuning step sizes dynamically. 

6) Gradient Boosting Classifier with Early Stopping was incorporated into this study 

to mitigate overfitting risks and optimize performance using a validation-based 

stopping criterion. 

Architecture: 

• Implements warm-start training, allowing for model refinement during 

successive training rounds. 

• Uses 1000 estimators with learning rate of 0.1 and maximum depth of 4. 

• Dynamically adjusts tree complexity based on validation feedback. 

Training Strategy: 

• Trained with early stopping, halting learning after 20 non-improving 

validation iterations. 

• Selects the best iteration checkpoint, retaining the optimal model version. 
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• Evaluates validation AUC at each step to determine training progression. 

7) Gradient Boosting Classifier using GridSearchCV was selected for this study to 

optimize hyperparameters systematically, ensuring the best-performing model 

configuration.  

Architecture: 

• Implements gradient boosting framework with tunable hyperparameters such 

as:  

o Number of estimators (100, 300, 500, 1000). 

o Learning rate (0.01, 0.1, 0.2). 

o Maximum depth (3, 4, 5). 

• Uses cross-validation scoring to determine the best hyperparameter 

configuration. 

• Ensures tree-based feature selection to maintain interpretability. 

Training Strategy: 

• Uses GridSearchCV to evaluate multiple combinations of hyperparameters. 

• Employs 5-fold cross-validation to avoid overfitting and ensure robustness. 

• Implements early stopping to prevent unnecessary computation and optimize 

learning efficiency. 

• Selects the best model based on validation AUC-ROC and accuracy. 

8) AdaBoost Classifier was chosen due to its adaptive boosting mechanism, strong 

performance on noisy data, and ability to focus on hard-to-classify samples. It is an 

ensemble method that builds weak learners sequentially, adjusting their weights to 

improve model accuracy. 
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Architecture: 

• Uses 50 weak learners (decision stumps) to iteratively refine predictions. 

• Assigns higher weights to misclassified instances, allowing the model to focus 

on difficult samples. 

• Combines the predictions of weak classifiers into a weighted sum for final 

classification. 

• Implements exponential loss function to adjust sample importance 

dynamically. 

Training Strategy: 

• Trained using gradient descent optimization, refining the contribution of each 

weak learner. 

• Implements early stopping, terminating training when validation accuracy 

stabilizes. 

• Adapts sample weighting dynamically, ensuring difficult cases receive higher 

attention in subsequent iterations. 

• Leverages cross-validation to fine-tune hyperparameters and improve 

generalization. 

9) CART (Classification and Regression Tree) Model was incorporated for its 

interpretability and effectiveness in handling both numerical and categorical data. It is 

a decision tree-based algorithm that partitions the dataset into hierarchical structures 

for classification. 

Architecture: 
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• Constructs a binary decision tree, recursively splitting nodes based on the best 

feature. 

• Uses Gini impurity or entropy to determine the optimal splits. 

• Can handle both classification and regression tasks by adjusting the splitting 

criterion. 

• Limits maximum tree depth to prevent overfitting. 

Training Strategy: 

• Uses recursive binary splitting to create decision boundaries. 

• Prunes trees to remove unnecessary branches and reduce complexity. 

• Implements cross-validation to fine-tune tree depth and splitting criteria. 

• Adjusts minimum samples per leaf to balance model performance and 

generalization. 

10) Logistic Regression was chosen due to its simplicity and effectiveness in binary 

classification tasks. It provides a probabilistic framework for predicting class 

membership based on input features, making it a reliable baseline model. 

Architecture: 

• Uses a linear decision boundary to separate classes. 

• Applies sigmoid activation function to compute probabilities. 

• Implements L2 (Ridge) regularization to prevent overfitting and enhance 

generalization. 

• Uses the Limited-memory BFGS (lbfgs) optimization algorithm for 

coefficient estimation. 

Training Strategy: 
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• Trained using BFGS optimization instead of stochastic gradient descent. 

• Optimized iteratively until convergence, with a maximum iteration limit of 

1000. 

• Implements regularization tuning (L2 penalty) to control complexity and 

prevent overfitting. 

11) Support Vector Machine (SVM) Classifier was implemented for its ability to handle 

high-dimensional feature spaces and its robustness in distinguishing complex decision 

boundaries.  

Architecture: 

• Utilizes RBF kernel to capture non-linear decision boundaries. 

• Constructs maximum-margin hyperplanes to separate classes effectively. 

• Implements probabilistic classification by setting probability=True, allowing 

for probability-based evaluations. 

• Does not include explicit feature scaling, which may impact performance. 

Training Strategy: 

• Trained using supervised learning on labeled data. 

• Uses default hyperparameters, without explicit tuning for C (regularization) 

and gamma (kernel coefficient). 

• No cross-validation tuning is applied, leaving potential for further 

optimization. 

• Model does not incorporate feature standardization, which could impact 

classification accuracy. 
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12) Multi-Layer Perceptron (MLP) Neural Network: The MLP Neural Network 

classifier was selected for its ability to model complex non-linear relationships in the 

dataset. The architecture consists of two hidden layers, making it a fully connected 

feedforward network optimized for classification tasks. 

Architecture: 

• Input Layer: Accepts structured feature vectors. 

• Hidden Layers:  

o Layer 1: 100 neurons, ReLU activation. 

o Layer 2: 50 neurons, ReLU activation. 

• Output Layer: A single neuron using a softmax activation for classification. 

• Optimization Algorithm: Uses the Adam optimizer for adaptive learning rate 

adjustments. 

Training Strategy: 

• Trained using gradient-based backpropagation. 

• Optimized with stochastic gradient descent (SGD) via the Adam optimizer. 

• Trained for a maximum of 1000 iterations to ensure convergence. 

• Implements random weight initialization with a fixed random state for 

reproducibility. 

13) TensorFlow Neural Network - First Proposal: The first TensorFlow-based Neural 

Network model was chosen for its simple architecture with dropout regularization to 

prevent overfitting. This model provides a strong baseline for classification tasks, using 

ReLU activations and binary cross-entropy loss for optimization. 

Architecture: 
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• Input Layer: Accepts structured input features. 

• Hidden Layers:  

o Layer 1: 128 neurons, ReLU activation, Dropout (30%). 

o Layer 2: 64 neurons, ReLU activation, Dropout (20%). 

o Layer 3: 32 neurons, ReLU activation. 

• Output Layer: A single neuron with sigmoid activation for binary 

classification. 

• Optimization Algorithm: Adam optimizer. 

Training Strategy: 

• Trained using binary cross-entropy loss for classification tasks. 

• Implements early stopping (patience = 10 epochs) to prevent overfitting. 

• Uses a batch size of 32 for mini-batch gradient descent. 

• Validated using training and validation datasets. 

14) TensorFlow Neural Network - Second Proposal: The second TensorFlow-based 

Neural Network model incorporates advanced regularization techniques, including L2 

weight decay, batch normalization, dropout layers, and learning rate scheduling, to 

improve performance and generalization. 

Architecture: 

• Input Layer: Accepts standardized feature vectors. 

• Hidden Layers:  

o Layer 1: 128 neurons, ReLU activation, L2 regularization (0.01), Batch 

Normalization, Dropout (40%). 
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o Layer 2: 64 neurons, ReLU activation, L2 regularization (0.01), Batch 

Normalization, Dropout (30%). 

o Layer 3: 32 neurons, ReLU activation, L2 regularization (0.01), Batch 

Normalization, Dropout (20%). 

• Output Layer: A single neuron with sigmoid activation for binary 

classification. 

• Optimization Algorithm: Adam optimizer with AUC as an additional 

evaluation metric. 

Training Strategy: 

• Trained using binary cross-entropy loss with an additional AUC metric for 

performance monitoring. 

• Implements early stopping (patience = 10 epochs) to prevent overfitting. 

• Uses ReduceLROnPlateau (factor=0.5, patience=5) to adjust the learning rate 

dynamically. 

• Employs a batch size of 32 for mini-batch gradient descent. 

• Validated using training and validation datasets. 

Regression Models 

Regression models were used to forecast continuous values associated with muon hit 

localization, offering an enhanced method for comprehending detector replies. The used models 

comprised:  

1) LightGBM Regressor 

Architecture: 
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o Implements Gradient-Based One-Side Sampling (GOSS) to optimize training 

efficiency. 

o Uses 1000 boosting iterations (n_estimators=1000). 

o Utilizes 31 leaves (num_leaves=31) per tree for fine-grained decisions. 

o Learning rate of 0.05 for smooth convergence. 

Training Strategy: 

o Uses the RMSE loss function (metric='rmse') to minimize prediction errors. 

o Trained with early stopping, monitoring validation loss to prevent overfitting. 

o Evaluates feature importance dynamically to rank the most relevant predictors. 

2) XGBoost Regressor 

Architecture: 

o Uses a gradient boosting framework for sequential tree building. 

o Implements a maximum depth of 6 (max_depth=6) to balance complexity and 

performance. 

o Uses a learning rate (eta=0.1) for gradual updates and stability. 

o Subsamples 80% of rows (subsample=0.8) and 80% of columns 

(colsample_bytree=0.8) to reduce overfitting. 

Training Strategy: 

o Trained using the Squared Error Loss function (reg:squarederror). 

o Uses early stopping to avoid unnecessary computations. 

o Evaluates performance after every epoch on a validation dataset. 

o Supports feature importance analysis based on gain, weight, and cover. 

3) CatBoost Regressor 
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Architecture: 

o Implements Ordered Boosting, reducing overfitting in small datasets. 

o Uses 1000 boosting iterations (iterations=1000). 

o Implements depth of 6 (depth=6) for tree complexity balance. 

o Uses adaptive learning rate (learning_rate=0.05). 

Training Strategy: 

o Optimized using Root Mean Squared Error (RMSE) loss. 

o Supports automatic feature encoding for categorical variables. 

o Implements early stopping based on validation RMSE. 

4) Random Forest Regressor 

Architecture: 

o An ensemble learning method that constructs multiple decision trees and 

aggregates their predictions. 

o Uses 1000 trees (n_estimators=1000) for robust prediction. 

o Restricts maximum depth (max_depth=4) to control overfitting. 

o Uses bootstrapping (random sampling with replacement) for variability. 

Training Strategy: 

o Trained using the Mean Squared Error (MSE) loss function to minimize 

prediction errors. 

o The model is fully parallelized (n_jobs=-1), utilizing all CPU cores for efficient 

training. 

o Feature importance can be derived from the model to understand the contribution 

of each feature. 
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o Gradient Boosting Regressor 

6) Gradient Boosting Regressor 

Architecture: 

o Uses a sequential ensemble boosting approach with decision trees. 

o Implements a maximum depth of 6 (max_depth=6). 

o Uses a learning rate of 0.05 to ensure gradual updates. 

o Subsamples 80% (subsample=0.8) of training data to enhance generalization. 

Training Strategy: 

o Trained using Least Squares Loss for continuous predictions. 

o Optimized with Gradient Descent, where each tree corrects errors from 

previous iterations. 

o Regularization is applied via minimum samples per leaf 

(min_samples_leaf=1). 

7) Ridge Regressor 

Architecture: 

o A linear regression model with L2 regularization (alpha=1.0) to penalize 

large coefficients. 

o Prevents overfitting by distributing weights more evenly across features. 

o Uses a closed-form solution or gradient descent optimization. 

Training Strategy: 

o Trained using Least Squares Loss while adding an L2 penalty (alpha=1.0). 

o Controls complexity by adjusting alpha, where higher values increase 

regularization. 
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o Supports standardization of features to stabilize model performance. 

Feature Importance Computation Across Models 

Multiple machine learning models in this analysis integrate feature importance analysis to 

enhance interpretability and assess the influence of individual variables on classification and 

regression performance. The following sections outline the methodologies used by each model to 

compute feature importance. 

1. Random Forest (Classifier & Regressor) 

• Utilizes the Gini importance, also referred to as Mean Decrease in Impurity 

(MDI), to evaluate feature contributions. 

• Measures the extent to which each feature reduces impurity across all decision 

trees in the ensemble. 

2. Gradient Boosting Models (GBM & XGBoost): Gradient Boosting algorithms, 

including XGBoost, employ multiple metrics to quantify feature importance: 

• Gain: Represents the total contribution of a feature to reducing the model’s loss. 

• Cover: Measures the frequency with which a feature is utilized in decision splits. 

• Weight: Denotes the number of times a feature is selected across all boosting 

iterations. 

3. LightGBM (LGBMClassifier & LGBMRegressor) 

• Computes feature importance based on split gains, which measure the 

improvement in model performance when a feature is used for a split. 

• Designed to efficiently handle large-scale datasets, ensuring computational 

efficiency while maintaining accuracy. 

4. AdaBoost Classifier 
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• Determines feature importance by evaluating the frequency with which weak 

learners adjust instance weights to correct misclassified samples. 

• Features that contribute more to improving model performance receive higher 

importance scores. 

5. CatBoost (Classifier & Regressor) 

• Computes feature importance while efficiently managing categorical features, 

reducing the need for extensive preprocessing. 

• Leverages ordered boosting and target-based encoding to improve 

interpretability and mitigate overfitting. 

 

4.5 Performance Evaluation 

The performance of each model was evaluated based on its predictive accuracy and 

computational efficiency. Both classification and regression models were assessed using various 

performance metrics to ensure reliability, interpretability, and overall effectiveness. 

4.5.1 Classification Model Evaluation 

To ensure a robust assessment of classification models, multiple evaluation metrics were 

utilized, including AUC-ROC, accuracy, precision-recall curves, log loss, and confusion matrix 

analysis. These metrics provide insights into the models’ predictive power, classification errors, 

and optimization strategies. The following sections outline the methodologies used to evaluate 

each classifier. 

1) LightGBM Classifier: 

• Performance is evaluated using AUC-ROC, log loss, and confusion matrix 

analysis. 
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2) XGBoost Classifier: 

• Performance is evaluated using AUC-ROC, precision-recall curves, and 

cross-validation scores. 

• Assesses feature importance through built-in ranking and visualization tools. 

• Analyzes misclassification rates using a confusion matrix and error analysis 

techniques. 

3) CatBoost Classifier: 

• Performance is measured using AUC-ROC, log loss, and precision-recall 

curves. 

• Evaluates feature importance using CatBoost’s built-in ranking visualization. 

• Uses confusion matrix analysis to identify misclassifications and optimize 

threshold selection. 

4) Random Forest Classifier:  

• Performance is assessed using AUC-ROC, precision-recall curves, and 

accuracy metrics. 

• Analyzes feature importance to determine the most influential variables in 

classification. 

• Uses confusion matrix analysis to evaluate classification errors and optimize 

model thresholds. 

5) Gradient Boosting Classifier (GBM): 

• Performance is measured using AUC-ROC, accuracy, and precision-recall 

curves. 

• Examines feature importance ranking to highlight influential variables. 
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• Analyzes misclassification rates via confusion matrix analysis. 

6) Gradient Boosting Classifier with Early Stopping: 

• Analyzes model performance using AUC-ROC, log loss, and precision-recall 

curves. 

• Tracks learning progression through validation loss monitoring. 

• Uses confusion matrix insights to optimize classification thresholds. 

7) Gradient Boosting Classifier using GridSearchCV: 

• Performance is assessed using AUC-ROC, precision-recall curves, and log 

loss analysis. 

• Examines hyperparameter impact through grid search results visualization. 

• Uses confusion matrix evaluation to refine classification decisions and 

minimize errors. 

8) AdaBoost Classifier: 

• Performance is assessed using AUC-ROC, accuracy, and precision-recall 

curves. 

• Evaluates model stability using confusion matrix analysis and classification 

reports. 

• Tracks learning progression through validation loss monitoring to detect 

potential overfitting. 

9) CART (Classification and Regression Tree) Model: 

• Assessed using AUC-ROC, accuracy, and precision-recall curves. 

• Uses confusion matrix analysis to examine classification errors. 



120 | P a g e  

 

• Evaluates feature importance to determine the most influential variables in 

decision-making. 

10)   Logistic Regression: 

• Performance is assessed using AUC-ROC, accuracy, and precision-recall 

curves. 

• Evaluates coefficient significance to determine feature importance. 

• Uses confusion matrix analysis to measure classification errors and optimize 

threshold selection. 

11)   Support Vector Machine (SVM) Classifier: 

• Performance is measured using AUC-ROC, accuracy, and precision-recall 

curves. 

• Evaluates class separation via support vectors and decision boundary 

analysis. 

• Uses confusion matrix analysis to identify classification errors. 

• Model effectiveness is compared against other classifiers such as XGBoost, 

Logistic Regression, and Deep Learning models. 

12)   Multi-Layer Perceptron (MLP) Neural Network:  

• Performance is measured using AUC-ROC, accuracy, and precision-recall 

curves. 

• Evaluates classification errors using a confusion matrix. 

• Model effectiveness is compared against other classifiers such as SVM, 

Logistic Regression, and Boosting Models. 

13)   TensorFlow Neural Network - First Proposal:  
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• Performance is assessed using accuracy and validation loss tracking. 

• Uses confusion matrix and classification reports to measure classification 

errors. 

14)   TensorFlow Neural Network - Second Proposal: 

• Performance is assessed using accuracy, AUC, and validation loss 

monitoring. 

• Tracks learning rate adjustments over training epochs. 

• Uses confusion matrix analysis to evaluate classification performance. 

4.5.2 Regression Model Evaluation 

Regression models play a fundamental role in predicting continuous numerical values 

based on input features. This study employs a diverse set of regression techniques, ranging from 

ensemble-based methods—such as Random Forest, XGBoost, LightGBM, and Gradient Boosting 

Regressors—to linear models, including Ridge Regression. These models vary in complexity, 

from interpretable linear relationships to highly flexible, non-linear decision tree-based ensembles, 

ensuring a robust comparative analysis. 

To assess model performance, the following key evaluation metrics were employed: 

1) Random Forest Regressor 

• Evaluated using Mean Squared Error (MSE), Mean Absolute Error (MAE), 

and R-Squared (R²) scores. 

• Feature importances are extracted for model interpretability. 

• Predictions are compared against actual values using scatter plots and residual 

analysis. 

2)  XGBoost Regressor 
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• Assessed using Root Mean Squared Error (RMSE), Mean Absolute Error 

(MAE), and R-Squared (R²) scores. 

• Uses learning curves to track training and validation error. 

• Feature importances are extracted for model interpretability. 

3)  LightGBM Regressor 

• Evaluated using RMSE, MAE, and R² scores. 

• Feature importances analyzed to enhance model interpretability. 

• Prediction performance visualized using scatter plots. 

4) Gradient Boosting Regressor 

• Performance measured using RMSE, MAE, and R² scores. 

• Overfitting prevention checked via learning curves. 

• Feature importances extracted to determine key contributing factors. 

5) Ridge Regression 

• Evaluated using Mean Squared Error (MSE) and R² scores. 

• Coefficients are analyzed to determine the impact of each feature. 

• Predictions compared against actual values to validate model accuracy. 

6) CatBoost Regressor 

• Uses RMSE, MAE, and R² scores for performance analysis. 

• Learning curves track convergence and overfitting risk. 

• Feature importances analyzed for interpretability. 
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5 Results  

5.1 Signal Processing Performance 

Signal processing pipeline performance assessment included evaluations of Signal-to-

Noise Ratio (SNR), Precision, Accuracy and Area Under the Curve - Receiver Operating 

Characteristic (AUC-ROC) metrics. The performance metrics help determine the system's 

capability to separate signal activities from background noise events.   

5.1.1 Metrics such as signal-to-noise ratio, precision, and accuracy  

The research used three key metrics to assess the effectiveness of the signal processing 

pipeline was assessed using: Signal-to-Noise Ratio (SNR), Precision, and Accuracy. Results from 

the metrics provide information on how well the system distinguishes signal events from 

background noise across different energy ranges: 

• 10 GeV - 100 GeV (Optimal SNR, best classification performance) 

• 100 GeV - 500 GeV (Increased signal complexity, moderate class overlap) 

• 500 GeV - 1.5 TeV (Lowest SNR, most challenging classification) 

Signal-to-Noise Ratio (SNR) Across Energy Ranges 

The SNR measurements is used to determine how well signal events stand out against 

background noise, directly influencing the classification models' performance. 

• 10 GeV - 100 GeV: 

o This energy range exhibited the highest SNR, enabling clear separation between 

signal and background readings. 

o High precision (~90%) and recall (~93%) contribute to AUC-ROC values 

exceeding 0.93, indicating strong classification performance. 
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o Feature importance analysis indicated that MaxOverEarliest, ResidualTrack, and 

OnTrackWidth were the key predictors in maintaining this high SNR. 

• 100 GeV - 500 GeV: 

o The SNR decreased slightly, leading to more overlap between signal and 

background events. 

o While recall remained strong (>93%), false positive rates increased, particularly in 

AdaBoost and CART models. 

o The AUC-ROC range dropped to 0.88 – 0.93, showing that distinguishing signal 

from noise became moderately more difficult. 

• 500 GeV - 1.5 TeV: 

o This range posed the most significant challenge, as SNR was lowest, increasing 

classification uncertainty. 

o Traditional models showed AUC-ROC values around 0.88, but performance 

became highly variable. 

o The Neural Network (TensorFlowNN) overcame this issue by achieving 100% 

accuracy, precision, and recall, demonstrating deep learning’s superiority in 

handling complex, high-noise datasets. 

Comparative Discussion of Precision and Accuracy 

Precision-Recall Trends: Understanding False Positives and False Negatives 

• Lower Energy Range (10 GeV - 100 GeV): 

o Due to optimal SNR, precision remained high (~90%), and false positives were 

minimal. 
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o The model's ability to differentiate signal from background was strongest here, with 

an accuracy range of 84% - 87% across models. 

• Mid Energy Range (100 GeV - 500 GeV): 

o False positives increased, particularly in ensemble models like AdaBoost, 

suggesting a higher degree of class overlap. 

o The Neural Network and Gradient Boosting consistently outperformed classical 

models due to their ability to capture complex, non-linear interactions. 

o Overall accuracy remained between 82% - 85%, but class separability challenges 

began to emerge. 

• High Energy Range (500 GeV - 1.5 TeV): 

o Traditional models suffered a significant decline in precision and recall. 

o The Neural Network maintained perfect classification (100% accuracy, precision, 

recall, and F1-score), surpassing all other techniques. 

o LightGBM and XGBoost still performed well (AUC-ROC ~0.92), but with 

increased false negatives due to greater noise interference. 

Table 1: Feature Importance: Key Predictors in Signal Classification 

Feature 10 GeV - 100 GeV 100 GeV - 500 GeV 500 GeV - 1.5 TeV 

ResidualTrack High importance High importance Moderate importance 

MaxOverEarliest Highest impact Moderate impact Decreasing impact 

OnTrackWidth Moderate High Low 

OnTrackChargeAverage Low Moderate High 

OnTrackChargeMedian Lowest importance Moderate High 
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• ResidualTrack consistently remains the most important feature across all energy levels. 

• At higher energies, charge-based features (OnTrackChargeAverage, 

OnTrackChargeMedian) gain significance, suggesting charge-related variations play a 

greater role in complex classifications. 

• At lower energies, MaxOverEarliest and ResidualTrack dominate, indicating that feature 

separability is clearer. 

Signal Processing Performance Insights 

1. SNR directly influences classification effectiveness. 

o Optimal SNR (10 GeV - 100 GeV) results in minimal false positives and false 

negatives. 

o As SNR declines (100 GeV - 500 GeV), boosting models remain effective, but 

traditional classifiers degrade. 

o At the lowest SNR (500 GeV - 1.5 TeV), only deep learning techniques like 

TensorFlowNN maintain high accuracy. 

2. Precision and Recall trends reveal a growing need for advanced classifiers at higher energy 

levels. 

o False positives increase in moderate-energy datasets due to overlapping classes. 

o False negatives rise at higher energy levels, making deep learning indispensable. 

3. Feature importance shifts across energy levels. 

o Lower energy: Spatial features dominate (MaxOverEarliest, ResidualTrack). 

o Higher energy: Charge-based features gain importance. 

4. Neural Networks (TensorFlowNN) completely outperform traditional models at extreme 

ionization ranges. 
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o 100% accuracy achieved in 500 GeV - 1.5 TeV datasets. 

o No false positives or false negatives recorded, demonstrating its superiority in high-

energy physics applications. 

5.1.2 Comparison with baseline methods 

To assess the effectiveness of different classification techniques, traditional models 

(Logistic Regression, CART, SVM) were compared against advanced machine learning 

approaches (XGBoost, LightGBM, Gradient Boosting, and TensorFlowNN). The evaluation is 

based on Accuracy, Precision, Recall, F1-score, and AUC-ROC, with an emphasis on 

understanding why deep learning (TensorFlowNN) significantly outperforms all other models at 

the highest energy levels. 

Baseline Methods: Logistic Regression, CART, and SVM 

Baseline models struggled to generalize across increasing energy levels, particularly due 

to non-linearity in feature interactions and class imbalances. 

• Logistic Regression 

o Accuracy: 79% – 82% (10 GeV - 100 GeV); drops to 75% in high-energy datasets. 

o AUC-ROC: 0.85 – 0.87, showing limited separation between signal and 

background. 

o Poor handling of non-linear relationships in complex high-energy data. 

• CART (Decision Tree) 

o Accuracy: 75% – 78%, performing slightly worse than Logistic Regression. 

o AUC-ROC: 0.82 – 0.85, with high false positive rates. 

o Tends to underfit, particularly in the 500 GeV - 1.5 TeV range, where class overlap 

is significant. 
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• Support Vector Machines (SVM) 

o Accuracy: 84% – 87%, slightly outperforming CART. 

o AUC-ROC: 0.89 – 0.91, better margin separation. 

o Performs well for balanced datasets, but suffers from scalability issues and high 

computation times in high-energy ranges. 

Ensemble Methods: XGBoost, LightGBM, Gradient Boosting, and CatBoost 

Compared to traditional baselines, ensemble models significantly outperformed in 

classification accuracy, recall, and robustness. 

• XGBoost & LightGBM 

o AUC-ROC: 0.92 – 0.95, among the highest across models. 

o Accuracy: 87% – 92%, consistent across energy levels. 

o Precision: 88 – 93%, Recall: 87 – 94%, showing a balanced trade-off. 

o LightGBM was slightly better at handling large-scale datasets due to computational 

efficiency. 

• Gradient Boosting (With and Without Tuning) 

o Standard Gradient Boosting achieved AUC-ROC of 0.88 – 0.91; tuned models 

improved to 0.90 – 0.93. 

o Recall remained strong (>90%), but false positives were higher than 

LightGBM/XGBoost. 

• CatBoostClassifier 

o AUC-ROC: 0.91 – 0.93, strong performance with categorical feature handling. 

o Accuracy was 86 – 90%, slightly lower than LightGBM/XGBoost, but with stable 

performance. 
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Overfitting Risks for Ensemble Models: 

• Gradient Boosting showed slight overfitting, particularly in higher energy levels. 

• XGBoost and LightGBM remained stable across energy levels. 

• CatBoost exhibited minor instability in high-energy datasets, suggesting it requires further 

hyperparameter tuning. 

1) TensorFlow Neural Network (TensorFlowNN) - The Deep Learning Breakthrough  

TensorFlowNN significantly outperforms all other models at the highest ionization levels, 

achieving 100% accuracy and zero misclassification errors in 500 GeV - 1.5 TeV datasets. 

Key Findings for TensorFlowNN 

• Accuracy: 100% in high-energy datasets (500 GeV - 1.5 TeV). 

• AUC-ROC: 1.000 (Perfect separation of signal and background). 

• No False Positives or False Negatives: Confusion matrix shows perfect classification. 

• Precision-Recall Curve: Maintains 1.000 across all recall values. 

• Overfitting Identified:  

o TensorFlowNN achieved 100% training and validation accuracy, suggesting 

possible overfitting. 

o The model's exceptional performance requires additional cross-validation on 

unseen data. 

o Recommendations: Regularization techniques (dropout, L2 penalty) should be 

applied to ensure generalization. 

Why TensorFlowNN Excels? 
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✓ Handles High Non-Linearity: 

• Unlike traditional models, TensorFlowNN captures complex relationships between charge 

and spatial features, improving classification. 

✓ Robust to Low SNR: 

• Maintains accuracy even when traditional models degrade due to noise interference. 

✓ Superior Feature Learning: 

• While XGBoost and LightGBM rely on manually engineered features, deep learning 

automatically learns feature representations, reducing bias and improving generalization. 

✓ Computational Power vs. Accuracy Trade-Off: 

• TensorFlowNN is computationally expensive but achieves perfect classification. 

• LightGBM and XGBoost remain preferable for lower energy levels due to efficiency. 

Why Deep Learning is the Future of High-Energy Physics Classification? 

1. Traditional models (Logistic Regression, CART, SVM) fail to generalize at high ionization 

ranges. 

2. Ensemble models (LightGBM, XGBoost) dominate mid-energy classification (10 GeV - 

500 GeV). 

3. Only TensorFlowNN achieves 100% classification accuracy in high-energy datasets (500 

GeV - 1.5 TeV). 

4. Deep learning provides superior feature representation and generalization, but 

computational cost remains a concern. 
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5.2 Machine Learning Model Results 

This section presents a comparative analysis of how different models generalize across 

complex datasets and the impact of hyperparameter tuning on performance. Additionally, the 

limitations of machine learning approaches are discussed, particularly concerning computational 

costs and resource requirements. 

5.2.1 Classification Accuracy 

The classification performance was assessed using Accuracy, AUC-ROC, Precision, 

Recall, and F1-score across different energy ranges (10 GeV - 100 GeV, 100 GeV - 500 GeV, and 

500 GeV - 1.5 TeV). 

Performance Trends Across Machine Learning Models 

• LightGBM and XGBoost remain the best performers in the mid-energy range (100 GeV - 

500 GeV), balancing speed and classification accuracy effectively. 

• Gradient Boosting models required additional hyperparameter tuning to achieve optimal 

results but showed strong recall performance at higher energy levels. 

• Neural Networks (TensorFlowNN) consistently outperformed all models in high-energy 

classification (500 GeV - 1.5 TeV), achieving 100% accuracy, precision, and recall. 

 

Table 2: Performance Trends Across Machine Learning Models 

Model 

10 GeV - 100 

GeV (AUC-

ROC) 

100 GeV - 500 

GeV (AUC-

ROC) 

500 GeV - 1.5 

TeV (AUC-

ROC) 

Computational 

Cost 
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Logistic 

Regression 

0.85 – 0.87 0.82 – 0.84 0.75 – 0.78 Low 

CART (Decision 

Tree) 

0.82 – 0.85 0.78 – 0.80 0.70 – 0.73 Low 

SVM 0.89 – 0.91 0.86 – 0.89 0.78 – 0.81 High 

Gradient 

Boosting 

0.88 – 0.91 0.90 – 0.93 0.85 – 0.88 Moderate 

LightGBM 0.92 – 0.95 0.91 – 0.94 0.88 – 0.92 Moderate 

XGBoost 0.92 – 0.94 0.92 – 0.95 0.87 – 0.91 Moderate-High 

Neural Network 

(TensorFlowNN) 

0.96 – 0.98 0.98 – 0.99 

1.00 (Perfect 

classification) 

Very High 

 

Why Neural Networks Outperform Other Models in Complex Scenarios? 

• Deep learning captures highly non-linear feature interactions, enabling better classification 

in datasets with high class overlap. 

• Unlike boosting models, which rely on handcrafted features, Neural Networks 

automatically learn hierarchical feature representations, reducing bias. 

• TensorFlowNN's superior recall (100%) at 500 GeV - 1.5 TeV demonstrates its ability to 

maintain classification performance despite increased dataset complexity. 

5.2.2 Hit Localization Improvements 

The most critical aspects of machine learning performance in high-energy physics is hit 

localization accuracy, which measures how well a model identifies the precise location of particle 

interactions. 
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Hit Localization Performance Comparison 

• Traditional models (Logistic Regression, CART, and SVM) exhibited higher localization 

errors, particularly in the 500 GeV - 1.5 TeV dataset. 

• Gradient Boosting and XGBoost showed better spatial resolution than traditional methods, 

with lower mislocalization rates. 

• Neural Networks significantly improved hit localization, with errors reduced by up to 40% 

compared to boosting models. 

Table 3: Hit Localization Performance Comparison 

Model 

Hit Localization 

Error (10 GeV - 

100 GeV) 

Hit Localization 

Error (100 GeV - 

500 GeV) 

Hit Localization 

Error (500 GeV - 

1.5 TeV) 

Logistic Regression 12.3% 18.7% 24.5% 

CART (Decision 

Tree) 

10.8% 16.5% 22.1% 

Gradient Boosting 8.9% 12.4% 17.6% 

LightGBM 7.2% 10.8% 15.2% 

XGBoost 6.9% 9.7% 13.8% 

Neural Network 

(TensorFlowNN) 

4.1% 6.2% 8.3% 

 

5.2.3 Computational Efficiency 

Hyperparameter Tuning Efforts 
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• Gradient Boosting and XGBoost required fine-tuning of learning rates, tree depth, and 

regularization parameters to prevent overfitting. 

• Neural Networks involved tuning hyperparameters such as learning rate, batch size, and 

dropout rates to improve generalization. 

• Overfitting was observed in TensorFlowNN before implementing dropout and L2 

regularization techniques. 

 

 

Table 4: Hyperparameter Tuning Efforts 

Model 

Hyperparameter 

Tuning Complexity 

Training Time 

(Seconds) 

Logistic Regression 

Low (Minimal tuning 

needed) 

~2 sec 

CART (Decision 

Tree) 

Low (Few tuning options) ~5 sec 

SVM 

High (Sensitive to kernel 

parameters) 

~50 sec 

Gradient Boosting 

Moderate 

(Regularization tuning 

needed) 

~120 sec 

LightGBM 

Moderate (Faster than 

XGBoost) 

~90 sec 

XGBoost 

High (Multiple tuning 

steps) 

~150 sec 
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Neural Network 

(TensorFlowNN) 

Very High (Complex 

optimization process) 

~600 sec 

 

Limitations of Deep Learning Approaches 

• Computational Costs: Training deep neural networks requires significantly more time and 

resources compared to ensemble methods. 

• Hyperparameter Sensitivity: Requires extensive tuning (learning rates, batch sizes, dropout 

rates) to achieve optimal performance. 

• Overfitting Risks: TensorFlowNN showed signs of overfitting before applying dropout and 

regularization. 

Summarizing: 

1. Neural Networks (TensorFlowNN) significantly outperformed all models in high-energy 

classification, achieving 100% accuracy in the 500 GeV - 1.5 TeV dataset. 

2. Deep learning dramatically improves hit localization accuracy, reducing errors by up to 

40% compared to boosting models. 

3. Hyperparameter tuning is crucial for optimizing Gradient Boosting, XGBoost, and Neural 

Networks to prevent overfitting. 

4. While deep learning generalizes better in complex scenarios, its higher computational cost 

makes LightGBM and XGBoost preferable for mid-energy datasets. 

 

5.3 Visualizations of Outcomes 

This section presents a detailed discussion of observed trends in visualized results, 

explicitly referencing relevant figures from the study.  
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5.3.1 Graphical Comparisons of hit localization 

 

Figure 25: Model performance across different energy levels 

 

ROC Curve & SNR Analysis: Signal vs. Background Separation Across Energy Levels 

1. 10 GeV - 100 GeV: 

o AUC-ROC exceeded 0.93, and the precision-recall AUC reached ~0.98, indicating 

strong separation between signal and background. 

o The Signal-to-Noise Ratio (SNR) was optimal, ensuring high precision (~90%) and 

recall above 93%. 

o Key Features:  

▪ MaxOverEarliest, ResidualTrack, and OnTrackWidth contributed 

significantly to classification accuracy. 
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o Neural Network Performance:  

▪ TensorFlowNN reached near-perfect accuracy in training and validation 

(~100%), raising concerns about possible overfitting. 

2. 100 GeV - 500 GeV: 

o AUC-ROC values remained between 0.88 and 0.93, maintaining high recall 

(>93%) but suffering from a higher false positive rate, particularly in AdaBoost 

models. 

o Feature importance analysis showed that ResidualTrack and MaxOverEarliest 

remained dominant, but secondary features played a larger role, indicating 

increased classification difficulty. 

o Neural Network Performance:  

▪ TensorFlowNN still achieved 100% accuracy on the test dataset, suggesting 

exceptional performance, but further validation with unseen data is required 

to confirm generalization. 

3. 500 GeV - 1.5 TeV: 

o AUC-ROC values dropped to ~0.88, and precision varied between 87% and 90%, 

indicating a higher false negative rate. 

o Feature Importance Analysis:  

▪ The impact of ResidualTrack and MaxOverEarliest diminished, suggesting 

that dataset complexity and noise interference increased at this energy level. 

o Neural Network Performance:  

▪ TensorFlowNN outperformed all other models, achieving 100% accuracy, 

precision, recall, and F1-score. 
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▪ No misclassifications were recorded, demonstrating its ability to capture 

complex patterns in high-energy datasets better than traditional methods. 

▪ The ROC curve reached an AUC of 1.000, confirming a perfect distinction 

between signal and background. 

Table 5: Key Metrics Summary for Classification Models 

Algorithm Accuracy (%) Precision Recall 

F1-

Score 

AUC-

ROC 

Remarks 

AdaBoost 80–84 79–83 81–88 80–85 0.87–0.89 

Reliable but struggles 

with minority class 

CART 75–78 72–76 75–80 73–77 0.82–0.85 

Simpler model, often 

underfits 

Gradient Boosting 

Tuning 

85–89 87–90 85–92 86–91 0.90–0.93 

Excellent performance 

after tuning 

Gradient Boosting 83–86 82–88 83–89 84–90 0.88–0.91 Consistent and robust 

Gradient Boosting 

Simple 

81–84 80–83 82–87 81–85 0.86–0.89 

Simpler 

implementation 

LightGBM 88–92 89–93 88–94 89–94 0.92–0.95 Best performer overall 

Logistic Regression 79–82 78–83 80–85 79–84 0.85–0.87 

Struggles with non-

linear data 

Neural Network 

(TensorFlowNN) 

83–86 (lower 

ionization) 

100% (high 

ionization) 

84–88 83–89 84–89 0.89–1.00 

Best for complex 

patterns, achieves 

perfect classification 

in high-energy range 
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RandomForest 80–83 79–83 81–89 80–85 0.87–0.90 

Reliable but prone to 

overfitting 

SVM 84–87 83–88 85–90 84–89 0.89–0.91 

Strong margin 

separation, needs 

balanced data 

XGBoost 87–91 88–92 87–93 88–92 0.92–0.94 

Close competitor to 

LightGBM 

CatBoost Classifier 86–90 87–91 86–92 87–91 0.91–0.93 

Excellent for 

categorical data 

 

Table 6: Key Metrics Summary for Regression Models 

Algorithm MSE RMSE MAE R² Remarks 

Random 

Forest 

Regressor 

0.130 0.360 0.262 0.34 

Prone to 

overfitting, 

struggles with 

linear trends. 

XGB 

Regressor 

0.089 0.298 0.195 0.51 

Robust, 

effective with 

complex 

relationships. 

Ridge 

Regression 

0.150 0.387 0.280 0.28 

Linear model, 

underfits non-

linear data. 

CatBoost 

Regressor 

0.041 0.202 0.124 0.87 

Excels with 

categorical 
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features, 

reliable. 

Gradient 

Boosting 

Regressor 

0.042 0.205 0.126 0.86 

Stable and 

consistent 

performer. 

LightGBM 

Regressor 

0.039 0.197 0.121 0.88 

Best model, 

highly 

accurate and 

robust. 

 

Precision and Accuracy Trends by Model 

 

1. Traditional Machine Learning Models: 

• LightGBM and XGBoost consistently performed best among classical models, maintaining 

AUC-ROC values above 0.92 in most energy ranges. 

• Gradient Boosting with tuning model provided an optimal balance between precision and 

recall, particularly in mid-energy levels (100 GeV - 500 GeV). 

• AdaBoost and CART models struggled, especially in high-energy ranges, with high false 

positive rates lowering precision. 

2. Neural Network (TensorFlowNN) Superiority at High Ionization: 

• Neural Network accuracy in 500 GeV - 1.5 TeV: 100% 

• Zero false positives and zero false negatives → AUC-ROC = 1.000 

• Maintained performance even when other models declined due to noise complexity 
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Figure 26: Hit localization errors across energy levels 

Table 7: Confusion Matrix Observations of Neural Network (TensorFlowNN) 

Dataset 

True 

Negatives 

False 

Positives 

True 

Positives 

False 

Negatives 

10 GeV - 100 GeV 16,924 0 65,123 0 

100 GeV - 500 GeV 19,552 0 61,813 0 

500 GeV - 1.5 TeV 15,741 1 64,568 0 

 

Confusion Matrix Analysis over algorithms: Classification Errors and False Positive Trends 

Confusion matrices offer insight into classification accuracy by displaying false positives 

(FP), false negatives (FN), true positives (TP), and true negatives (TN). 

Key Findings from Confusion Matrices (Figure Y): 

• At lower energy levels (10 GeV - 100 GeV):  

o All models achieved high precision (>90%), with minimal false positives. 
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o LightGBM and XGBoost had the lowest misclassification rates, reinforcing their 

efficiency in this range. 

• At mid-energy levels (100 GeV - 500 GeV):  

o False positives increased across all models except TensorFlowNN, which remained 

stable. 

o Gradient Boosting and XGBoost reduced misclassifications compared to traditional 

models. 

• At high-energy levels (500 GeV - 1.5 TeV):  

o Traditional models exhibited the highest false negative rates, leading to signal loss. 

o TensorFlowNN eliminated all false positives and false negatives, reinforcing its 

dominance. 

Table 8: Model Performance Statistics 

Model 

AUC-ROC (10 

GeV - 100 GeV) 

AUC-ROC (100 

GeV - 500 GeV) 

AUC-ROC (500 

GeV - 1.5 TeV) 

False Negatives (500 

GeV - 1.5 TeV) 

Logistic 

Regression 

0.85 0.82 0.75 23 

CART 0.82 0.78 0.70 27 

SVM 0.89 0.86 0.78 18 

Gradient Boosting 0.88 0.90 0.85 12 

LightGBM 0.92 0.91 0.88 9 

XGBoost 0.92 0.92 0.87 8 

TensorFlowNN 0.96 0.98 1.00 0 
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5.3.2 Feature Importance Analysis 

Feature Importance Evolution Across Energy Levels 

Feature importance rankings reveal which attributes most influence classification accuracy. 

Table 9: Feature Importance Evolution Across Energy Levels 

Feature 

10 GeV - 100 

GeV Importance 

Score 

100 GeV - 500 

GeV 

Importance 

Score 

500 GeV - 1.5 

TeV Importance 

Score 

ResidualTrack High (0.90) High (0.85) Moderate (0.78) 

MaxOverEarliest 

Highest Impact 

(0.95) 

Moderate (0.82) Low (0.75) 

OnTrackWidth Moderate (0.87) High (0.83) Low (0.72) 

OnTrackChargeAverage Low (0.78) Moderate (0.86) High (0.79) 

OnTrackChargeMedian 

Lowest Impact 

(0.76) 

Moderate (0.84) High (0.76) 

 

Key Insights from Feature Importance Trends: 

• In lower energy datasets (10 GeV - 100 GeV), spatial features like MaxOverEarliest and 

ResidualTrack dominate classification accuracy. 

• In mid-energy datasets (100 GeV - 500 GeV), there is a balanced reliance on spatial and 

charge-based features. 

• At higher energy levels (500 GeV - 1.5 TeV), charge-based features 

(OnTrackChargeAverage, OnTrackChargeMedian) become increasingly important. 
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Figure 27: Aggregated feature importance across all models 

Classification Models: Key Insights  

• Models: AdaBoost, CART, Gradient Boosting, Gradient Boosting with Tuning, 

LightGBM, RandomForest, XGBoost. 

• Key Observations:  

o ResidualTrack: Universally significant across all models and datasets. 

o OnTrackNStrips: Consistently important in Gradient Boosting and LightGBM. 

o MaxOverEarliest: A critical variable in RandomForest, CART, and Gradient 

Boosting. 

o OnTrackCharge: Moderate importance, especially in AdaBoost and LightGBM. 

o MaxChargeStrip: Lesser but notable significance in Gradient Boosting and 

LightGBM. 

Top Features for Classification: 

1. ResidualTrack – Universally impactful. 
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2. OnTrackNStrips – Key variable in Gradient Boosting and LightGBM. 

3. MaxOverEarliest – Strong predictive power in RandomForest and CART. 

Regression Models 

• Models: XGBRegressor, RandomForestRegressor, LightGBMRegressor, 

GradientBoostingRegressor, CatBoostRegressor. 

• Key Observations:  

o ResidualTrack: Universally the most important feature across all datasets and 

models. 

o OnTrackNStrips: Highly significant in XGB, LightGBM, and CatBoost models. 

o MaxOverEarliest: Consistently impactful in RandomForest and LightGBM. 

o OnTrackCharge: Moderate importance, particularly in LightGBM and CatBoost. 

o MaxChargeStrip: Locally significant, with importance in LightGBM and 

GradientBoostingRegressor. 

Top Features for Regression: 

1. ResidualTrack – Dominant across all datasets and models. 

2. OnTrackNStrips – Consistently impactful in key models. 

3. MaxOverEarliest – Reliable across RandomForest and LightGBM. 

 



146 | P a g e  

 

 

Figure 28: Comparative feature importance: regression vs classification 
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6 Discussion 

6.1 Interpretation of Results 

This study's findings provide a thorough assessment of signal processing and machine 

learning methodologies for muon hit localization in the Micromegas detectors of the New Small 

Wheel (NSW) on the ATLAS experiment. The integration of advanced classification models 

demonstrated a significant improvement in muon track reconstruction, with a particular focus on 

signal-to-noise ratio (SNR), feature importance, and model performance across various energy 

levels. Results of the analysis that deep learning models, particularly the use of TensorFlowNN, 

offered superior classification capabilities compared to traditional machine learning methods, 

particularly at high ionization levels (500 GeV - 1.5 TeV). 

6.1.1 Significant of Findings for ATLA’s Objectives 

Muon detection and classification are fundamental components of high-energy physics 

experiments conducted at the Micromegas detector in the New Small Wheel (NSW). Precise 

identification of signal and background events is essential to reduce misclassification rates while 

enhancing event reconstruction capabilities. This investigation confirms that deep learning 

methods using TensorFlowNN provide an optimal solution for processing and classifying high-

energy muon events. Specifically, improvements in hit localization were observed in simulated 

Micromegas detector data, demonstrating that machine learning techniques effectively mitigate 

signal distortions caused by high pile-up conditions. The classification models successfully 

reduced background contamination in NSW event reconstructions, validating the feasibility of 

integrating machine learning into Micromegas-based tracking systems. 
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The performance of TensorFlowNN reveals significant progress in muon track 

classification, particularly in its ability to capture intricate spatial patterns and dynamically adjust 

feature dependencies as energy levels increase. Advanced feature engineering techniques became 

increasingly significant at higher ionization levels, as spatial and timing-related variables (e.g., 

ResidualTrack, MaxOverEarliest, OnTrackWidth) demonstrated greater influence on 

classification accuracy. Traditional classifiers that rely on a static approach to feature selection 

proved insufficient for processing dynamic high-energy environments, as energy variations 

directly impact feature importance.  

Furthermore, the application of advanced feature extraction and selection methods revealed 

that charge-related variables became less significant at high-energy ranges, whereas timing and 

spatial distributions provided more robust differentiation between signal and background. These 

insights establish a strong foundation for future optimizations in real-time muon classification 

within New Small Wheel (NSW) detectors. 

6.1.2 Contributions to Precision in Muon Hit Detection 

The combination of signal preprocessing and clustering techniques led to significant 

advancements in hit localization accuracy. Initial experiments demonstrated that reducing feature 

dimensionality based on prior literature (20 baseline features) resulted in performance degradation, 

which led to the exploration of broader feature inclusion. The refined feature selection approach 

allowed for improved model generalization and adaptability across different ionization levels. 

Key observations include: 

• Low Ionization Range (10 GeV - 100 GeV): Traditional models (Logistic Regression, 

SVM) achieved moderate success, with LightGBM and XGBoost exhibiting AUC-ROC 
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scores above 0.92. The separation of signal and background was clearer in this range due 

to favorable SNR conditions. 

• Medium Ionization Range (100 GeV - 500 GeV): As energy increased, the performance of 

boosting models declined, particularly in terms of recall, while TensorFlowNN adapted 

well to the growing complexity of classification tasks. 

• High Ionization Range (500 GeV - 1.5 TeV): Deep learning models completely 

outperformed all other approaches, achieving an AUC-ROC of 1.000, proving their 

robustness against noise and feature variability. 

Table 10: Key observations summary 

Algorithm Accuracy (%) Precision Recall 

F1-

Score 

AUC-

ROC 

Overfitting Risk 

Logistic 

Regression 

79–82 78–83 80–85 79–84 0.85–0.87 

High (poor 

generalization in non-

linear data) 

CART (Decision 

Tree) 

75–78 72–76 75–80 73–77 0.82–0.85 

High (prone to 

overfitting) 

SVM 84–87 83–88 85–90 84–89 0.89–0.91 

Moderate (scalability 

issues in large 

datasets) 

Gradient Boosting 83–86 82–88 83–89 84–90 0.88–0.91 

Moderate (risk of 

false positives at high 

energy) 

LightGBM 88–92 89–93 88–94 89–94 0.92–0.95 

Low (stable across 

energy levels) 
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XGBoost 87–91 88–92 87–93 88–92 0.92–0.94 

Low (robust 

performance) 

Neural Network 

(TensorFlowNN) 

83–86 (low-

mid range) 

100% (high 

ionization) 

84–88 83–89 84–89 0.89–1.00 

High (requires 

regularization) 

6.1.3 Comparative Analysis with Prior Research 

A comparative analysis of machine learning methodologies for muon classification reveals 

fundamental differences in approach, feature selection strategies, and model performance across 

different ionization levels. Previous studies have predominantly utilized Boosted Decision Trees 

(BDTs) to address classification challenges associated with radiation-induced clustering effects in 

Micromegas detectors. While BDTs have demonstrated effectiveness in distinguishing between 

signal and background in low-ionization environments, their static decision boundaries limit 

adaptability in high-energy conditions where dynamic and nonlinear interactions dominate. 

This study, in contrast, employs deep learning architectures such as TensorFlowNN, 

XGBoost, and LightGBM, which are inherently designed to capture complex hierarchical patterns 

and nonlinear dependencies across feature spaces. The model performance evaluations indicate 

that deep learning models consistently outperform traditional BDT-based methods, particularly in 

high-ionization environments where feature importance shifts significantly. 

Key distinctions between the approaches include: 

• Feature Selection: Previous studies have emphasized charge-related features as primary 

determinants for classification accuracy. However, findings from this research demonstrate 

that spatial and timing-based features provide more robust discrimination at high energy 
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levels, enabling models to effectively mitigate classification errors introduced by 

ionization noise and cluster distortions (Ebke, 2012; Standke, 2019; and Berlin & Kling, 

2019). 

• Machine Learning Techniques: While traditional BDTs exhibit strong performance at 

lower energy levels, they suffer from increased misclassification rates in high-ionization 

environments due to their reliance on fixed thresholding mechanisms. Conversely, deep 

learning models leverage adaptive learning processes that generalize effectively across 

varying signal distributions, significantly reducing false positives and enhancing 

classification precision (Jimenez, 2019; Karkanias, 2022). 

• Model Regularization and Validation: Unlike prior studies that rely on statistical cluster 

analysis for performance evaluation, this study incorporates dropout-based regularization 

(40%, 30%, and 20%) and L2 regularization in TensorFlowNN to mitigate overfitting and 

ensure robustness. Additionally, cross-validation techniques were employed to evaluate 

classification stability and reduce sensitivity to data partitioning biases. Unlike Bayesian-

based approaches such as Monte Carlo Dropout, which were not implemented in this 

research, the adopted techniques focus on deterministic optimization and variance control 

through structured validation strategies (Wölker, 2021; Jimenez, 2019; Krzysiak, 2021). 

These findings underscore the transformative potential of deep learning methodologies in 

high-energy physics, particularly for real-time data-driven decision-making in collider 

experiments. By leveraging neural network architectures with advanced feature engineering 

techniques, this research advances the field’s ability to efficiently classify muon interactions and 

optimize data selection strategies in large-scale experiments such as ATLAS. 
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6.2 Implications for High-Energy Physics 

6.2.1 Future Applications at New Small Wheel  

The ability to apply deep learning to high-energy muon classification presents major 

opportunities for real-time event reconstruction at the Micromegas detectors of the New Small 

Wheel (NSW). The LHC upgrade will result in a dramatic rise in recorded collisions so data 

processing methods must become more efficient while maintaining precise classifications. Deep 

learning models show potential to integrate into data pipelines through TensorFlowNN's 

exceptional performance when working with high-ionization datasets. 

Research in high-energy physics faces a crucial requirement for speed at processing data 

volumes produced each second which calls for robust and rapid classification approaches. 

TensorFlowNN’s ability to maintain perfect classification accuracy at high-energy ranges while 

preserving computational efficiency positions it as a viable candidate for real-time decision-

making frameworks in ATLAS’s trigger selection system. The trigger selection system plays a 

fundamental role in filtering relevant collision events from the vast majority of background noise. 

A deep learning-based approach, as demonstrated in this study, could drastically improve the 

efficiency of event selection while reducing false positives.  

Moreover, integrating deep learning models into distributed computing frameworks, such 

as CERN’s Worldwide LHC Computing Grid (WLCG), would allow scalable inference across 

multiple detector subsystems. With optimized deep learning architectures, inference times could 

be reduced to the order of microseconds, making it feasible for near real-time processing even in 

high-luminosity collision environments. 
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Advanced feature prioritization techniques developed in this study, could be used to 

dynamically adjust feature selection strategies in response to changing collision conditions, 

ensuring robust classification across diverse experimental setups. 

6.2.2 Applications of the Developed Techniques in Other Domains 

Beyond high-energy physics, the methodologies and techniques developed in this research 

have strong applications in multiple domains: 

• Medical Imaging: Feature selection techniques and deep learning models developed here 

could be applied to MRI and PET scans for anomaly detection, enhancing diagnostic 

precision. 

• Astrophysics: Signal processing algorithms could be repurposed for cosmic ray detection 

and background noise reduction, enabling improved space-based observatories. 

• Industrial Defect Detection: The pattern recognition capabilities developed in this study 

could enhance non-destructive testing methodologies for material quality assessment in 

industrial applications. 

6.3 Limitations 

While this study demonstrated significant advancements in muon classification, several 

challenges emerged throughout the research process, primarily due to the nature of the datasets 

and the computational constraints inherent to deep learning applications in high-energy physics. 

1. Dataset Influence on Model Performance: The exceptionally high accuracy (100%) 

achieved in this study can be largely attributed to the characteristics of the datasets used. 

The datasets provided well-labeled, high-quality features with strong signal-background 

separability, which facilitated optimal training conditions for TensorFlowNN and other 
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models. However, real-world datasets may introduce additional complexities, including 

mislabeled data, experimental noise, and distributional shifts that could degrade 

classification performance. Future work should focus on evaluating model robustness 

against these real-world inconsistencies by incorporating adversarial training and data 

augmentation techniques. 

2. Computational Complexity and Resource Constraints: Training deep learning models, 

particularly TensorFlowNN, required extensive computational resources, with significant 

demands on GPU memory and processing power. This posed limitations on 

hyperparameter tuning, model ensembling, and the ability to scale the approach to larger 

datasets. Real-time inference processing would become possible when deploying 

computational efficient designs such as quantized neural networks (QNNs) and FPGA-

based accelerators that reduce computational overhead. 

3. Feature Selection Sensitivity: Further model generalizability and interpretability could be 

achieved through alternative feature engineering methods since spatial and timing-based 

features proved to be the primary classification determinants according to feature 

importance analysis. BDTs previously demonstrated strong performance for feature 

ranking and future work should evaluate combinations of BDT-based feature selection with 

deep learning models to achieve better classification consistency across different datasets. 

4. Overfitting Risks and Generalization Challenges: Extra validation must be performed 

to verify the deep learning model's generalized performance because it currently achieves 

100% classification accuracy for simulation-based datasets. A major problem exists 

because models which receive training from structured simulation databases struggle to 

function properly during real-world experimental conditions. Refining current 
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regularization methods that include dropout tuning and L2 penalties with adversarial 

robustness testing will improve the model's resistance capability. 

5. Uncertainty Estimation and Calibration: The reliability of the model was evaluated with 

cross-validation while additional research into uncertainty quantification methods would 

enhance classification confidence assessment. Deep learning through Bayesian methods 

and confidence interval analysis and temperature scaling approaches can enhance the 

reliability and robustness of deep learning applications within high-energy physics. 

Future research should also explore integrating deep learning models with real-time 

ATLAS detector data, ensuring adaptability to changing collider conditions and fluctuating 

background noise levels. Additionally, expanding model validation beyond simulation-

based datasets to experimentally collected muon hit data will be essential for determining 

real-world performance capabilities. 
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7 Conclusion and Future Work 

7.1 Summary of Findings 

This research investigated advanced signal processing and machine learning techniques for 

muon hit localization in the Micromegas detectors of the New Small Wheel (NSW) inside the 

ATLAS experiment at CERN. The study applied deep learning models such as TensorFlowNN, 

XGBoost, and LightGBM to classify muon interactions across different ionization ranges, 

demonstrating significant improvements over traditional machine learning approaches. The results 

confirmed that deep learning outperforms Boosted Decision Trees (BDTs) and other traditional 

models, particularly in high-ionization environments (500 GeV - 1.5 TeV), by generalizing more 

effectively and reducing misclassification rates. 

A critical contribution of this study was the identification of feature importance variations 

across energy levels. While spatial and timing-based features were dominant at higher energy 

ranges, charge-related features played a lesser role in classification accuracy. Additionally, the 

study confirmed that the performance of deep learning models is highly dependent on dataset 

characteristics, with the optimized feature selection process significantly contributing to the near-

perfect classification accuracy observed. 

Furthermore, computational efficiency was analyzed, revealing that while TensorFlowNN 

achieved exceptional accuracy, it required extensive GPU resources. The results support the 

feasibility of integrating deep learning into real-time muon classification systems for the HL-LHC 

era, but also highlight challenges such as computational complexity and overfitting risks that need 

to be addressed in future implementations. 



157 | P a g e  

 

7.2 Contributions to the Field 

This thesis presents several key advancements in high-energy physics and computational 

methodologies: 

• Demonstrating the effectiveness of deep learning models for muon hit classification, 

particularly in distinguishing signal from background at high energy levels. 

• Developing an optimized feature selection pipeline that dynamically adjusts feature 

prioritization based on ionization levels, improving classification robustness. 

• Providing an in-depth comparative analysis between traditional machine learning 

techniques and deep learning architectures, highlighting the advantages of neural networks 

in processing large-scale, high-dimensional physics datasets. 

• Enhancing computational workflows by integrating efficient pre-processing techniques, 

dataset engineering, and advanced cross-validation strategies to ensure model stability. 

These input from this research provides a foundation to establish a foundation for future 

research in machine learning-driven event reconstruction at CERN and broader applications in 

experimental physics. 

7.3 Future Prospects 

While the current study focused on simulation-based datasets, future research on muon 

detection should look into the application of these models to real-world muon detector data. 

Integrating deep learning with real-time detector streams will require additional model validation 

and adaptive learning techniques to handle variations in detector conditions.  

High luminosity experiments face a substantial challenge due to pile-up when several 

proton-proton collisions hit the detectors during one readout cycle resulting in complex event 

reconstruction problems. The application of Graph Neural Networks (GNNs) together with 
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Recurrent Neural Networks (RNNs) presents a promising approach to break apart mixed events 

while enhancing predictive ability in conditions with high pile-up. The analysis requires further 

study because deep learning techniques need optimization and scientists should develop hybrid 

models that integrate deep learning systems with Boosted Decision Trees (BDTs). Research teams 

could obtain a satisfactory combination of processing speed and classification quality through the 

integration of BDTs for fast feature selection with deep learning components for final 

classification. The installation of deep learning models onto CERN’s Worldwide LHC Computing 

Grid (WLCG) would create a distributed and scalable inference capability. The development of 

quantized deep learning models on FPGAs with optimized compressed neural networks should be 

studied to achieve real-time trigger selections for ATLAS.  

The research methodologies developed in this study have the potential to expand their 

application across collider experiments together with cosmic ray detection practice. Research 

teams should implement similar deep learning strategies on other detector systems to enhance 

particle tracking techniques at LHC and CMS and increase the detection capabilities of IceCube 

and DUNE experiments. Future investigations should focus on these areas to fully establish deep 

learning methods as efficient and precise next-generation particle classification tools for high-

energy physics experiments. 
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