

Page 1 of 82

Master of Science

<<Artificial Intelligence and Visual Computing>>

UNIVERSITY OF WEST ATTICA

& UNIVERSITY OF LIMOGES

FACULTY OF ENGINEERING

DEPARTMENT OF INFORMATICS AND

COMPUTER ENGINEERING

Master Thesis

Real-Time Fraud Detection Using Big Data and ML Techniques

Student: Kastrinos Theodoros (aivc22006)

Supervisors: Prof. Tsolakidis Anastasios, Prof. Andritsos Periklis

Athens, February 2025

Page 2 of 82

Members of the Examination Committee, including the Supervisor

The thesis was successfully examined by the following Examination Committee.

S/N NAME RANK/ROLE
DIGITAL

SIGNATURE

1 Mastorocostas Paris Professor

2 Kesidis Anastasios Professor

3 Tsolakidis Anastasios Assistant Professor

Page 3 of 82

Abstract

Fraud detection in financial transactions finds great importance in the fight against financial crime. In

this thesis, two models are developed: CatBoost and Light Gradient Boosting Machine for classifying

transactions into "Fraud," "No Fraud," or "Suspicious." Later, the suspicious transactions will be

relabeled after investigation and reintegrated into the training data, which will enhance the model

performance. Apache Kafka allows doing real-time processing of data to efficiently handle live

transactions. Challenges regarding dataset imbalance were addressed by employing class weights

proportional to the inverse of class frequencies, further adjusted by a scaling factor to ensure optimal

balance during training. In developing the adaptive accurate detection of frauds, this work designed a

real-time pipeline, using a feedback loop iteratively in model refinements. Both the models are yielding

good results; LGBM gave the best regarding precision and recall. The reintegration of relabeled data

greatly increased accuracy, and the optimization performed with a focus on loss ensured that detection

was better compared to traditional metrics. This thesis aims to contribute to the domain of fraud

detection by presenting an adaptive and scalable framework in combination with real-time processing

and continuous learning coupled with machine learning models. It addresses the challenges related to

handling imbalanced datasets and evolving fraud patterns in real-world scenarios.

Keywords: Fraud detection, financial transactions, machine learning, Catboost, LightGBM, imbalanced datasets,

real-time processing, Apache Kafka, continuous learning, Apache Superset, Optuna

Page 4 of 82

Acknowledgments

First, I would like to express my deepest gratitude to my advisor, Professor Periklis Andritsos, for his

exceptional guidance, support, and mentorship throughout my research journey. Professor Andritsos

has been an invaluable mentor, consistently encouraging me to explore new academic disciplines and

pushing me to unlock my full potential. His profound expertise and insightful advice have not only

guided me through the complexities of this thesis but also shaped my approach to research and critical

thinking. His unwavering support and motivation played an instrumental role in the successful

completion of this work, and for that, I am deeply appreciative.

I would also like to extend my sincere thanks to Professor Anastasios Tsolakidis, whose assistance and

encouragement were pivotal in helping me finalize this thesis. His constructive feedback and

invaluable guidance throughout the final stages of my work have been immensely helpful. I deeply

appreciate his willingness to provide insights and direction when I needed it most, contributing

significantly to the successful completion of this research.

In addition, I extend my heartfelt thanks to my family, whose constant support and understanding have

been a cornerstone of this journey. Their belief in my abilities, coupled with their encouragement

during moments of difficulty, provided me with the strength to persevere and continue striving toward

my goals. The countless sacrifices they made to support me in this endeavor have not gone unnoticed,

and I am profoundly grateful for their presence and unconditional love throughout this process.

Without their encouragement and belief in me, this achievement would not have been possible.

Page 5 of 82

Table of Contents

Table of Contents ... 5

List of Figures .. 7

List of Tables ... 9

Introduction .. 11

1 Literature Overview ... 12

1.1 Overview of Existing Fraud Detection Methods ... 12

1.1.1 Rule Based ... 12

1.1.2 Anomaly Detection Techniques ... 12

1.1.3 Machine Learning-Based Approaches ... 13

1.1.4 Hybrid Methods ... 13

1.1.5 Challenges in Fraud Detection ... 13

1.2 Review of CatBoost in Fraud Detection .. 14

1.3 Review of LightGBM in Fraud Detection ... 15

1.4 Real-Time Data Processing and Kafka .. 16

1.5 Related Work in Big Data Analytics for Fraud Detection ... 17

2 Methodology .. 18

2.1 Tools and System ... 18

2.2 Data Collection and Preprocessing .. 20

2.3 Optuna Framework .. 20

2.4 High Level Pipeline ... 22

3 Implementation .. 24

3.1 Overview of the Repository Structure ... 24

3.2 Preprocessing Phase ... 25

3.2.1 Data Logging ... 26

3.2.2 Handling Missing Values and High Repetitive ... 32

3.2.3 Device Information Transformation .. 34

3.2.4 Transforming Email Domains and Temporal Features .. 35

3.2.5 Feature Engineering ... 35

3.2.6 Handling Categorical Features: Label Encoding ... 37

Page 6 of 82

3.2.7 Split Dataset - Pipeline... 38

3.2.8 Handling Imbalanced Data .. 39

3.2.9 Features Scaling ... 41

3.2.10 Pipeline .. 42

3.3 Plotting Training Results ... 44

3.4 Save Metrics... 46

3.5 Kafka Production Script ... 46

3.6 Labeling Suspicious Data .. 48

4 Challenges and Limitations.. 50

4.1 Memory Management .. 50

4.2 LGBM GPU Support ... 50

5 Results .. 51

5.1 Performance Evaluation Main Training ... 51

5.1.1 LGBM .. 51

5.1.2 CatBoost ... 54

5.2 Retraining impact on model performance .. 58

5.2.1 LGBM .. 58

5.2.2 CatBoost ... 65

5.3 Co2 emissions and Electricity usage .. 73

5.3.1 LGBM .. 73

5.3.2 CatBoost ... 74

5.4 Evaluation of Pipelines .. 75

6 Visualizing Insights with Apache Superset ... 77

6.1 LGBM .. 77

6.2 CatBoost ... 78

7 Conclusion ... 79

8 References .. 81

Page 7 of 82

List of Figures

Figure 1 - Optuna-dashboard ... 22
Figure 2 – High Level Flow ... 23
Figure 3 – Project Structure ... 24
Figure 4 - Number of Features by Group ... 27
Figure 5 - Distribution of Feature Types in Dataset .. 27
Figure 6 - Distribution of addr1 ... 28
Figure 7 - Distribution of addr2 ... 28
Figure 8 - Distribution of transactionamt... 29
Figure 9 - Distribution of dist2 .. 29
Figure 10 - Distribution of dist1 .. 30
Figure 11 - Distribution of card5 ... 30
Figure 12 - Distribution of card3 ... 31
Figure 13 - Distribution of card2 ... 31
Figure 14 - Distribution of card1 ... 32
Figure 15 - Distribution of transactiondt ... 32
Figure 16 – Percentage of Missing Values by Feature .. 33
Figure 17 - Transaction Amount by Device Brand .. 35
Figure 18 - Transaction Pattern by Hour of Day ... 36
Figure 19 - Top 10 Email Domain Providers... 37
Figure 20 - Distribution of Transaction Amounts (Log-transformed) ... 37
Figure 21 - Class Distribution (1/2) ... 40
Figure 22 - Class Distribution (2/2) ... 41
Figure 23 - CatBoost GPU Utilization ... 43
Figure 24 - Precision-Recall Curve Main training - LightGBM.. 51
Figure 25 - Receiver Operating Characteristic (ROC) Curve Main training -LightGBM 52
Figure 26 - Confusion Matrix Main Training– LightGBM ... 52
Figure 27 - Confusion Matrix - Random Forest (LightGBM Main Training) 54
Figure 28 - Precision-Recall Curve Main training - CatBoost .. 55
Figure 29 - Precision-Recall Curve Main training - CatBoost .. 55
Figure 30 - Confusion Matrix Main Training– CatBoost .. 56
Figure 31 - Confusion Matrix - Random Forest (CatBoost Main Training) .. 57
Figure 32 - Precision-Recall Curve Retraining (LightGBM First Run) .. 59
Figure 33 - Receiver Operating Characteristic (ROC) Curve Retraining (LightGBM First Run) 59
Figure 34 - Confusion Matrix - Retraining (LightGBM First Run)... 60
Figure 35 - Confusion Matrix - Random Forest (LightGBM First Run) ... 61
Figure 36 - Precision-Recall Curve Retraining (LightGBM Second Run) .. 62
Figure 37 - Receiver Operating Characteristic (ROC) Curve Retraining (LightGBM Second Run) .. 63
Figure 38 - Confusion Matrix - Retraining (LightGBM Second Run) .. 63

Page 8 of 82

Figure 39 - Confusion Matrix - Random Forest (LightGBM Second Run) .. 64
Figure 40 - Precision-Recall Curve Retraining (CatBoost First Run) ... 66
Figure 41 - Receiver Operating Characteristic (ROC) Curve Retraining (CatBoost First Run) 66
Figure 42 - Confusion Matrix - Retraining (CatBoost First Run) ... 67
Figure 43 - Confusion Matrix - Random Forest (CatBoost First Run) .. 68
Figure 44 - Precision-Recall Curve Retraining (CatBoost Second Run) ... 69
Figure 45 - Receiver Operating Characteristic (ROC) Curve Retraining (CatBoost Second Run) 70
Figure 46 - Confusion Matrix - Retraining (CatBoost Second Run) ... 71
Figure 47 - Confusion Matrix - Random Forest (CatBoost Second Run) ... 72
Figure 48 – Energy Consumption/ Emissions Rate/ Duration (LightGBM) 73
Figure 49 – Energy Consumption/ Emissions Rate/ Duration (CatBoost) .. 74
Figure 50 - LightGBM Superset Metrics ... 77
Figure 51 - CatBoost Superset Metrics .. 78
Figure 52 - Web user interface ... 80

Page 9 of 82

List of Tables

Table 1 – Hardware Specifications .. 18
Table 2 - Docker configuration .. 19
Table 3 – Optuna Initialization .. 21
Table 4 - The Confusion Matrix .. 45
Table 5 – Kafka script configuration parameters ... 47
Table 6 – Transactions’ labels ... 48
Table 7 – Transactions’ tables ... 48
Table 8 - Memory Management .. 50
Table 9 - Main Training Metrics - LightGBM ... 51
Table 10 - Tree Structure Parameters (LightGBM Main Training) ... 53
Table 11 - Learning Parameters (LightGBM Main Training) ... 53
Table 12 - Regularization Parameters (LightGBM Main Training) .. 53
Table 13 - System settings (LightGBM Main Training) ... 53
Table 14 - Production predictions (LightGBM Main Training) .. 53
Table 15 - Random Forest Labeling Metrics (LightGBM Main Training) ... 53
Table 16 - Random Forest Predictions (LightGBM Main Training) ... 53
Table 17 - Main Training Metrics - CatBoost ... 54
Table 18 - Tree Structure Parameters (CatBoost Main Training).. 56
Table 19 - Learning Parameters (CatBoost Main Training) .. 56
Table 20 - Regularization Parameters (CatBoost Main Training) ... 56
Table 21 - System settings (CatBoost Main Training) .. 56
Table 22 - Production predictions (CatBoost Main Training) ... 57
Table 23 - Random Forest Labeling Metrics (CatBoost Main Training) .. 57
Table 24 - Random Forest Predictions (CatBoost Main Training) .. 57
Table 25 - Retraining Metrics (LightGBM First Run) ... 58
Table 26 - Tree Structure Parameters Retraining (LightGBM First Run) ... 58
Table 27 - Learning Parameters Retraining (LightGBM First Run).. 58
Table 28 - Regularization Parameters Retraining (LightGBM First Run) .. 58
Table 29 - System settings Retraining (LightGBM First Run) .. 58
Table 30 - Production predictions (LightGBM First Run) .. 60
Table 31 - Random Forest Labeling Metrics (LightGBM First Run) .. 60
Table 32 - Random Forest Predictions (LightGBM First Run) ... 60
Table 33 - Retraining Metrics (LightGBM Second Run) .. 61
Table 34 - Tree Structure Parameters Retraining (LightGBM Second Run)....................................... 62
Table 35 - Learning Parameters Retraining (LightGBM Second Run) ... 62
Table 36 - Regularization Parameters Retraining (LightGBM Second Run) 62
Table 37 - System settings Retraining (LightGBM Second Run) ... 62
Table 38 - Production predictions (LightGBM Second Run) .. 64

Page 10 of 82

Table 39 - Random Forest Labeling Metrics (LightGBM Second Run) ... 64
Table 40 - Random Forest Predictions (LightGBM Second Run) ... 64
Table 41 - Retraining Metrics (CatBoost First Run) ... 65
Table 42 - Tree Structure Parameters Retraining (CatBoost First Run) .. 65
Table 43 - Learning Parameters Retraining (CatBoost First Run) .. 65
Table 44 - Regularization Parameters Retraining (CatBoost First Run) ... 65
Table 45 - System settings Retraining (CatBoost First Run) ... 65
Table 46 - Production predictions (CatBoost First Run) ... 67
Table 47 - Random Forest Labeling Metrics (CatBoost First Run)... 67
Table 48 - Random Forest Predictions (CatBoost First Run) .. 67
Table 49 - Retraining Metrics (CatBoost Second Run) ... 68
Table 50 - Tree Structure Parameters Retraining (CatBoost Second Run) ... 69
Table 51 - Learning Parameters Retraining (CatBoost Second Run) .. 69
Table 52 - Regularization Parameters Retraining (CatBoost Second Run) ... 69
Table 53 - System settings Retraining (CatBoost Second Run) .. 69
Table 54 - Production predictions (CatBoost Second Run) ... 71
Table 55 - Random Forest Labeling Metrics (CatBoost Second Run) .. 71
Table 56 - Random Forest Predictions (CatBoost Second Run).. 72

Page 11 of 82

Introduction

The increasing adoption of e-commerce, online and mobile banking, and other digital financial services

has resulted in a manifold increase in electronic transactions and digital payments. While this growth

has increased convenience and reach for consumers, it has also seen a corresponding rise in fraudulent

activities. These frauds cause immense economic loss to businesses and individuals, which erodes

consumer confidence and the integrity of the financial system.

The dynamic and sophisticated nature of modern fraud schemes makes traditional methods

increasingly ineffective in fraud detection. Traditional approaches generally rely on a static, rules-

based system, which is by design rigid and bound to predefined rules and thresholds, thus being very

prone to false positives and false negatives and unable to adapt to fast-changing fraudster tactics.

Therefore, there is a huge need for far superior, adaptable approaches that are data-driven towards

timely and effective fraud detection and mitigation.

More advanced and proactive methods for detecting fraud must be adopted by organizations, with

fraudulent tactics constantly evolving, making real-time fraud detection crucial in allowing the prompt

detection and addressing of suspicious activities and minimizing potential risks and financial losses.

There is an increasing potential to create systems that can learn from historical data, adapt to new fraud

patterns, and provide continuous monitoring because of the growing prevalence of artificial

intelligence (AI) and machine learning (ML), with this process being essential for organizations that

wish to protect their financial transactions and preserve consumer confidence.

Various industries have been transformed by the inclusion of fraud detection systems by the emergence

of machine learning and big data technologies, with big data enabling the gathering and examination

of large volumes of information from multiple sources, providing a comprehensive dataset to detect

patterns and identify anomalies. Machine learning algorithms, like LightGBM and CatBoost, provide

powerful tools for analyzing this data, possibly enhancing the accuracy and efficiency of fraud

detection systems by uncovering intricate relationships and patterns that conventional statistical

methods may miss, being able to process and analyze data streams in real-time applications, enabling

the immediate identification of suspicious transactions.

The objectives of this research are presented below.

• Develop a real-time fraud detection pipeline using a CatBoost-based approach by

designing and implementing a CatBoost model capable of analyzing transaction data in real-

time and detecting potential fraud.

• Develop a LightGBM model to establish a real-time fraud detection pipeline, by

employing the LightGBM algorithm, which is renowned for its robustness and capacity to

handle various datasets, classify transactions, and detect fraudulent activities.

• Evaluate the metrics of these two pipelines by examining them by testing the CatBoost and

LightGBM models to see which performs best based on their recall, processing speed, and

ability to handle increasing amounts of data.

Page 12 of 82

• Evaluate the environmental impact of the training processes regarding CO2 emissions

and electricity consumption, evaluating the environmental impact of the training processes

by assessing CO2 emissions and electricity consumption, ensuring the sustainability of the

machine learning models in light of their computational requirements.

1 Literature Overview

1.1 Overview of Existing Fraud Detection Methods

Enormous evolution in fraud detection has been caused by the complexity and sophistication of

fraudulent actions with rule-based systems intended to identify transactions based on predetermined

conditions, including anomalous transaction amounts or suspect geographic areas, being a significant

component of traditional techniques and, although initially successful, the ever-evolving strategies

used by fraudsters posed a challenge to these approaches. Traditional systems revealed flaws as fraud

grew more dynamic, especially their inability to adjust to novel and unexpected patterns. (Ngai et al.,

2011).

1.1.1 Rule Based

Rule-based systems have been a critical aspect of fraud detection since the early days of digital

financial transactions, by applying static rules established by subject-matter experts to prevent

transactions from coming from specific regions or exceeding a predetermined threshold and despite

being simple to understand and comprehend, frequently leading to significant false-positive rates—

incorrectly marking everyday transactions as fraudulent. Moreover, (Phua et al., 2010) there is severe

non-scalability and requirement of continual human updates in order to handle novel fraud techniques

of rule-based systems as they lack the flexibility needed for ongoing learning and improvement, they

cannot handle more complex and nuanced forms of fraud.

1.1.2 Anomaly Detection Techniques

Anomaly detection techniques aim to spot changes in regular transaction patterns that might indicate

fraud, being divided into two categories: supervised and unsupervised, with models like decision trees,

logistic regression, and support vector machines (SVMs) being examples of supervised techniques that

operate on labeled data, which have already been used to identify fraudulent and non-fraudulent

transactions (Bolton & Hand, 2002), relying however significantly on the availability of labeled

datasets, which are frequently lacking or insufficient in fraud detection scenarios.

On the other hand, unsupervised techniques look for outliers in the dataset rather than requiring labeled

data with unsupervised anomaly detection often using autoencoders, isolation forests, and k-means

clustering, being more flexible and adaptive than rule-based systems since they identify novel,

Page 13 of 82

previously undiscovered fraud patterns. (Zhang et al., 2017). However, their interpretability issues

often make it challenging for companies to understand the logic behind flagged transactions.

1.1.3 Machine Learning-Based Approaches

Machine learning (ML) has become a potent tool for fraud detection in recent years as it can learn

from enormous volumes of data and eventually adapt to new fraud trends with labeled transaction data

being readily available, making supervised learning the most widely utilized strategy in fraud detection

in machine learning models. (Bahnsen et al., 2015). Unsupervised learning models are classified into

two categories that have all been used in fraud detection with differing degrees of effectiveness based

on algorithms like decision trees, random forests, gradient boosting, and neural networks. Supervised

models usually perform well when accessing copious amounts of labeled data, being able to apply the

lessons from past fraud cases to new information with class imbalance issues frequently impeding

them however, as the quantity of legal transactions greatly outweigh the fraudulent ones.

Fraud detection also uses unsupervised machine learning models, especially when labeled data is few

or nonexistent, by identifying patterns in the data that deviate from the norm and may indicate

fraudulent activity with autoencoders, being an unsupervised neural network, compress and reconstruct

input data to detect such anomalies. A transaction might be reported as fraudulent if it differs

noticeably from the anticipated reconstruction (Hawkins et al., 2002), with unsupervised models

possibly having difficulty with accuracy, unlike supervised models trained on large datasets, still being

accommodating for identifying new fraud schemes.

1.1.4 Hybrid Methods

Hybrid approaches are used by many companies in an effort to overcome the drawbacks of rule-based

and machine-learning approaches, as they combine the interpretability of rule-based techniques with

the flexibility of machine learning models with a hybrid system for example using a machine learning

model to handle more subtle, complicated fraud patterns, while a rule-based system handles simpler,

well-known patterns (Zheng et al., 2020), making it possible to detect fraud more thoroughly, lowering

the number of false positives and improving the system's capacity to identify new kinds of fraud.

1.1.5 Challenges in Fraud Detection

Despite the advancements in fraud detection techniques, there are still a few issues with the quick

development of fraud techniques being one significant problem that calls for constant model updating

and retraining and the data privacy problem moreover making collecting enough labeled data for

machine learning model training difficult, and fraud detection systems lastly being required to process

data in real time, deciding quickly and accurately without interfering with valid transactions.

Page 14 of 82

The field of fraud detection has changed throughout time, moving from more static rule-based systems

to more dynamic machine learning techniques, with machine learning models being more flexible and

accurate than traditional methods when identifying complex fraud patterns, offering transparency and

simplicity. At the same time there is a trend toward hybrid approaches, including both techniques, and

is expected to become more prevalent as fraud becomes more sophisticated in the upcoming years.

1.2 Review of CatBoost in Fraud Detection

CatBoost has grown in popularity for fraud detection because it is a gradient boosting framework

designed for categorical data; it can handle complex nonlinear relationships in data while providing

robust performance even in the case of an imbalanced dataset. Unlike traditional methods, which rely

on predefined rules or linear models. It excels in adaptive learning, making it well-suited for the

dynamic nature of fraud detection in financial systems, where fraudsters constantly evolve their tactics

to evade existing detection mechanisms (Prokhorenkova et al., 2018).

A great advantage of CatBoost comes from how naturally it can use categorical features without

aggressively preprocessing or manually encoding them. Banking systems generate hundreds of

millions of transactions with timestamps, merchant identifiers, customer demographics, among many

other variables. The CatBoost approach robustly processes such high-dimensional data at train time by

converting the categorical variables to numerical representations such that critical relationships are

preserved and complex patterns indicative of fraud can be detected. This native ability to manage

categorical data is especially important in the financial domain, where often the interaction of features

drives fraudulent behavior.

CatBoost is very suitable for real-time fraud detection because of the efficiency of model training and

prediction. Unlike neural networks, which often require high computational resources, the optimized

training of CatBoost minimizes overfitting while keeping speeds high, even on very large datasets. Its

applicability to real-time systems is enhanced by its built-in mechanisms for handling missing data

and its ability to adapt to evolving fraud patterns with minimal latency, ensuring that financial

institutions can quickly identify and respond to suspicious transactions (Dorogush et al., 2018

Besides that, CatBoost incorporates state-of-the-art techniques for handling the class imbalance

problem typical in fraud detection, where actual fraudulent transactions constitute a small fraction of

the total volume. CatBoost reduces bias towards the majority class by employing custom loss functions

and dynamic class weight to achieve a better balance between precision and recall. This means there

will be fewer false negatives; hence, probable fraudulent transactions are flagged for further

investigation with minimal disruption to legitimate transactions.

Another important advantage of CatBoost over complex models like neural networks is that it is

interpretable; it contains feature importance scores, including SHAP values for clear model insights

into its decisions. In banking systems, this interpretability becomes important due to regulatory

requirements that will soon put pressure on explaining, for example, flagged transactions or denied

Page 15 of 82

approvals. This makes CatBoost balanced regarding both demands: performance and transparency of

the model.

While CatBoost has a number of strengths, it also has certain drawbacks, such as sensitivity to

hyperparameter tuning and possible high computational demands in the case of really large datasets.

These disadvantages are partly compensated for by the efficiency of CatBoost in categorical data

processing and the reduced need for feature engineering. Besides that, CatBoost is scalable

architecture-wise, thus allowing fitting into distributed systems, enabling it to process millions of

transactions with minimal latency in real-time environments.

Overall, CatBoost presents a compelling solution for fraud detection in financial systems, combining

high accuracy, interpretability, and efficiency. Its ability to process categorical data natively, address

data imbalance, and operate effectively in real-time systems positions it as a leading choice for adaptive

fraud detection in dynamic and high-stakes environments (Prokhorenkova et al., 2018; Dorogush et

al., 2018).

1.3 Review of LightGBM in Fraud Detection

LightGBM (Light Gradient Boosting Machine) is a gradient boosting framework known for its

exceptional efficiency and speed, mainly when dealing with large datasets, and as a result has garnered

significant attention in machine learning, giving it an edge over its competitors regarding performance

and memory use, making it the best choice for demanding tasks like finding fraud, by utilizing it’s

unique decision tree learning method, in which trees grow leaf-wise instead of level-wise,. (Ke et al.,

2017).

LightGBM's ability to manage extensive transaction data, including high-dimensional features such as

transaction quantities, timestamps, locations, and customer details is highly respected by the banking

sector, valuing it for its ability to efficiently handle large-scale transaction data, including high-

dimensional features such as transaction amounts, timestamps, locations, and customer details,

especially in fraud detection. The capability of natively managing missing values common in

transaction data and handling categorical variables makes LightGBM highly effective, simplifying the

data preprocessing pipeline, facilitating the handling of complex banking datasets that contain

numerical and categorical features, unlike many machine learning models that require extensive

preprocessing.

The scalability and rapidity is one of LightGBM's most noteworthy benefits in fraud detection, by

achieving superior accuracy and quicker training times by growing trees leaf-wise and concentrating

on the nodes with the highest loss reduction when being compared to conventional methods such as

Random Forests or XGBoost, which is crucial in fraud detection scenarios, enabling prompt decision-

making on potentially fraudulent transactions and flagging or blocking suspicious activities before

they inflict significant damage.

Page 16 of 82

Another advantage is its capacity to manage imbalanced datasets, a prevalent fraud detection problem

with fraudulent transactions comprising only a minor proportion of the data and LightGBM resolving

this through various mechanisms, including a "weighted" metric prioritizing the minority class

(fraudulent transactions). The adaptation of the loss function to balance precision and recall or

assigning a higher weight for the minority class to enhance the model's sensitivity to fraud without

compromising accuracy for the majority class (non-fraudulent transactions), along with other

parameters are also provided by the LightGBM algorithm.

Finally, LightGBM excels is feature significance by offering financial institutions valuable insights

into the features that are most influential in predicting fraud, thereby assisting them in identifying

critical indicators of fraudulent behavior, with LightGBM's feature importance metrics possibly

emphasizing specific transaction patterns or client behaviors that may consistently indicate fraud,

being especially beneficial in the banking industry, where regulatory requirements frequently require

explicit explanations for decisions regarding whether to approve, deny, or mark a transaction for

further investigation.

The detection of fraud using LightGBM, despite having numerous benefits, also presents some

obstacles, with the need for fine tuning of the model's many hyperparameters, including the learning

rate, number of leaves, and feature fraction, in an effort to guarantee optimal performance. While

LightGBM can train rapidly, the optimal balance of precision and recall frequently necessitates

meticulous hyperparameter tuning, which can be both computationally costly and time-consuming,

with another obstacle being the potential for overfitting, mainly when dealing with high-dimensional

datasets and although LightGBM's leaf-wise growth strategy enhances accuracy, it may also result in

overfitting if not adequately regularized. Lastly, another critical factor in LightGBM's efficacy is data

quality, with inconsistent or biased data possibly adversely affecting its predictions, even though the

model can accommodate absent values, potentially disrupting legitimate transactions or allow fraud to

go undetected, making it imperative to maintain high-quality, well-represented training data.

1.4 Real-Time Data Processing and Kafka

Real-time data processing has become essential in fraud detection, where quick choices are critical,

with conventional batch processing techniques working well for analyzing historical data, but falling

short for applications that need to analyze data instantly and take immediate action and real-time data

processing making continuous analysis of incoming data streams possible, enabling systems to react

swiftly to dynamic events and make timely choices.

Designed to handle high-throughput, low-latency data streams, Apache Kafka is a distributed

streaming platform and one of the leading real-time data processing platforms with Kafka being the

first software LinkedIn created, being evolved into a standard for processing data in real-time in a

variety of businesses. Because of the distributed commit log at the center of its architecture, producers

can transmit data to topics, and consumers can subscribe to these topics to access and process data

Page 17 of 82

with large volumes of streaming data being handled by Kafka with efficiency thanks to its ability to

grow horizontally over several brokers (Kreps et al., 2011).

Kafka is essential to fraud detection because transaction data can be continuously ingested and

processed in real-time, enhancing fraud detection systems, which must evaluate transactions almost

instantly to prevent fraudulent activity from escalating, ensuring low-latency data streaming, allowing

machine learning models to categorize transactions as suspicious, fraudulent, or non-fraudulent

quickly.

Fault tolerance and durability are further benefits of Kafka's distributed architecture, being essential

for mission-critical applications like fraud detection, with the risk of data loss being reduced via data

replication over numerous brokers in the event of hardware failures, enabling companies to set up

retention policies maximizing storage and maintain responsiveness (Narkhede et al., 2017). The

integration of Apache Spark and Flink which are data processing frameworks interfacing easily with

Kafka, is frequently used by organizations, as a more sophisticated real-time analytics pipeline, with

real-time fraud detection models depending on ongoing data processing and decision-making often

requiring these frameworks' extensive stream processing characteristics, such as windowing and

stateful computations. (Zaharia et al., 2016).

1.5 Related Work in Big Data Analytics for Fraud Detection

Big data analytics have emerged as an essential tool in the struggle against fraud with traditional fraud

detection methods, frequently dependent on rule-based systems or basic statistical models, being

unable to keep up with the escalating scope and complexity of fraudulent activities, facilitating a

substantial transition to the utilization of big data analytics, enabling the processing and analysis of

extensive datasets to detect patterns, anomalies, and trends that suggest fraudulent behavior.

One of the most significant developments in the field of fraud detection is the incorporation of machine

learning algorithms with big data platforms, including Apache Hadoop and Apache Spark, facilitating

large-scale datasets being processed across distributed computing environments. This solution enables

the application of complex models such as Random Forests, LightGBM, Neural Networks, and

Support Vector Machines (SVMs) with Aggarwal (2016) demonstrating that applying machine

learning models to big data, potentially enhancing the accuracy and speed of fraud detection systems,

identifying subtle patterns that conventional methods may overlook.

Page 18 of 82

2 Methodology

2.1 Tools and System

The project is using Ubuntu 24.04 with the specifications listed below:

CPU Model on constant consumption mode AMD Ryzen 7 5800H with Radeon Graphics

Platform system Linux-6.8.0-39-generic-x86_64-with-glibc2.39

Python version 3.12.3

CodeCarbon version 2.5.0

Available RAM 30 GB

CPU count 16

GPU model 1 x NVIDIA GeForce RTX 3070 Laptop GPU

Table 1 – Hardware Specifications

Python is the main programming language used to create the algorithms for this project; it is the best

option for this task because of its many libraries and frameworks. With libraries like TensorFlow,

Scikit-learn, and Pandas, among others, this language offers strong tools for creating and improving

machine learning models, making it ideal for data science, machine learning, and deep learning

applications. The above- mentioned packages give Python its adaptability and extensive ecosystem,

making it perfect for complex projects including evaluation, model training, data preprocessing, and

real-time decision-making.

By encapsulating the code, libraries, and environment configurations required for various phases of

the machine learning pipeline, from training to real-time evaluation, a Docker is used, ensuring a

streamlined and consistent deployment process, potentially preventing problems caused by disparities

between environments and enabling seamless transitions from development to production. In

classifying transaction data into three groups, suspicious, no fraud, and fraud, the likely alternatives of

the model evaluations, Docker containers supervise a PostgreSQL database that houses the outcomes

of the training processes.

Container ID Image Command Created Status Ports Names

2958a8ebf44b redis
“docker-

entrypoint.s…”

3 months

ago

Up 3

minutes

0.0.0.0:6379/tcp,

:::6379->6379/tcp

redis-

container

8d099417a3d7
dpage/pga

dmin4
“/entrypoint.sh”

3 months

ago

Up 3

minutes

443/tcp,

0.0.0.0:8081-

>80/tcp, [::]:8081-

>80/tcp

pgadmin-

container

11fbf147ece3 postgres
“docker-

entrypoint.s…”

3 months

ago

Up 3

minutes

0.0.0.0:5432/tcp,

:::5432->5432/tcp

postgres-

container

Page 19 of 82

bb8074cf52e3

confluenti

c/cp-

kafka:late

st

“/etc/confluent/d

ock…”

3 months

ago

Up 10

seconds

0.0.0.0:9092/tcp,

:::9092->9092/tcp
kafka

bce2736d55e3
zookeeper

:latest

“docker-

entrypoint.…”

3 months

ago

Up 3

minutes

2181/tcp, 2888/tcp,

3888/tcp, 8080/tcp

zookeepe

r

15d65433a286
apache/su

perset

"/usr/bin/run-

server…"

40 hours

ago

Up 40

hours

0.0.0.0:8088-

>8088/tcp, :::8088-

>8088/tcp

superset-

container

Table 2 - Docker configuration

Because of the requirement for real-time data processing, Apache Kafka was chosen, facilitating

smooth read, train, and write operations, making it possible to handle large volumes of data with low

latency and high throughput. The aforementioned is essential in fraud detection systems where quick

decisions are needed to reduce risks as they appear with Redis, an in-memory data structure store,

being one of Kafka's two main component structures, involving managing Kafka offsets and tracks the

status of data processing, guaranteeing dependable and scalable processing, with Redis, being a high-

speed storage layer serving as the system's backbone and ensuring fault-tolerant and real-time

performance.

In addition to providing robust, interactive dashboards that offer profound insights into transaction

data and the effectiveness of machine learning models, Apache Superset is used for data visualization

and performance monitoring of fraud detection models, being essential for monitoring the real-time

flow of data, identifying trends, and identifying anomalies. Furthermore, it facilitates the analysis of

model performance over time, enabling for adjustments and improvements based on the processed

data, allowing scientists and decision-makers to access important metrics and insights in an interactive,

user-friendly way.

Each container needed to be part of the same network for proper service communications. The

arrangement that was adopted for running all the containers on the same network, here referred to as

pgnetwork, forms the basis for ensuring that the connections are effective for smooth transactions of

data among different parts with least hindrance possible in the overall system.

Two primary machine learning pipelines, one dedicated to CatBoost and the other to LightGBM

models are used in the proposed system, with each pipeline being responsible for a distinct aspect of

the fraud detection system, working together to cover various transaction patterns. Managing the entire

process for each step, from the data ingestion and preprocessing step to the model training step, real-

time evaluation, and retraining when necessary is a series of scripts, integrating Random Forest to

investigate further and refine suspicious data classification enhances model accuracy and fine-tunes

the overall classification process, leading to more precise detection of fraudulent activities.

Page 20 of 82

2.2 Data Collection and Preprocessing

A significant part of the data collected came from the IEEE-CIS Fraud Detection competition dataset,

available on Kaggle (Kaggle, 2019), containing a wide range of features, such as transaction amounts,

timestamps, product codes, device information, numerical features for identity, etc, with the diversity

and richness of this dataset being crucial in the effective identification of potentially fraudulent

activities. The rest of the data were sourced by various sources, including transaction records from

financial institutions, e-commerce platforms, and public datasets.

Data Preprocessing with various preprocessing techniques being implemented to guarantee the

integrity and consistency of the data.

Data Cleaning, ensuring consistent data quality by standardizing formats and addressing

inconsistencies and missing values.

Feature Engineering was used for the improvement of prediction accuracy with new features being

developed, such as simplifying device information and extracting specific details from existing data.

For both algorithms scale_pos_weight was dynamically set as a function of the inverse class

frequencies with a multiplier to give more emphasis on the minority class.

Normalization and Scaling with continuous features being normalized and scaled, guaranteeing

practical model training and uniformity.

Categorical Encoding was achieved by converting the machine learning models to numerical formats,

facilitating the processing of categorical variables.

Feature Selection was achieved by using a correlation heatmap as the sole method for feature selection,

analyzing the relationships between features for the identification and the removal of highly correlated

variables, preventing multicollinearity, at the same time allowing the retention of the most informative

and independent features, ensuring that redundant data did not influence the model, streamlining the

feature selection process while improving the model's performance with a single move.

The aforementioned steps set the foundation for an accurate and reliable fraud detection, ensuring the

dataset is well-prepared for model training and evaluation, with the implementation section providing

a more detailed explanation of the specific implementation details of these phases.

2.3 Optuna Framework

Optimizing the hyper-patameters in our system is Optuna, a robust hyperparameter optimization

library, optimizing the efficacy of the catboost and LightGBM models. The whole process works by

trial and error, being particularly well-suited for tasks that necessitate the efficient exploration of

extensive hyperparameter spaces. (Akiba et al., 2019), being employed in autonomous search of the

Page 21 of 82

optimal combination of hyperparameters, maximizing the AUC, thereby enhancing the model's

generalization to new, unseen data.

The ability of asynchronous optimization, enabling the evaluation of multiple trials in parallel,

expediting the hyperparameter search procedure and mitigating potential bottlenecks, is probably

Optuna’s most noteworthy advantage. Optuna was used in this study, monitoring multiple trials, each

of which investigated distinct configurations for hyperparameters, including the learning rate, dropout

rate, and number of layers in the neural network, as well as the number of leaves, maximum depth,

and feature fraction in LightGBM, with the dashboard being incorporated in tracking the advancement

of the hyperparameter optimization process. The user-friendly interface offered by this tool worked

flawlessly in assessing the performance of each trial and visualizing the optimization results,

facilitating the identification of the most suitable configurations for subsequent training and observing

the impact of various hyperparameters on the model's loss function.

The subsequent examples were used as a demonstration of Optuna’s ability in generating studies for

both the CatBoost and LightGBM models:

study = optuna.create_study(storage=storage,study_name=f"catboost_prd_{CU_DT}",direction=maximize)

study = optuna.create_study(storage=storage, study_name=f"lgbm_prd_{CU_DT}", direction= maximize)

Table 3 – Optuna Initialization

The hyperparameter tuning process was streamlined, enabling optimal configurations for both models

to be identified with greater efficiency and precision. (Akiba et al., 2019) by the use of the Optuna’s

dashboard, contributing in a significant manner to the improved performance of the fraud detection

pipeline, as being presented in the subsequent sections.

Optuna provides an intuitively understandable interactive dashboard with comprehensive insights into

the process of hyperparameter optimization. Such a tool enables researchers and practitioners to

present important aspects of their studies intuitively, which may be interpreted more easily and used

for model refinement in a far more effective manner.

Hyperparameter Importance: The dashboard visualizes the relative importance of each hyperparameter

regarding the optimization process. Thus, it is easy to obtain an idea of which parameter will play a

most decisive role in the performance of the model to tune those first.

Optimization Timeline: The timeline plot shows how trials develop with time. That provides a good

overview of the optimization process' development and, on that basis, lets the user know how efficient

the process is, or whether enough trials have been done to get something meaningful from them.

Best Trial Information: The dashboard then highlights the best trial that occurred during the study,

including the performance metric it achieved (objective value), along with the hyperparameter

Page 22 of 82

configuration used. This makes it easier to pick out the best parameters for use or further

experimentation.

User-Defined Attributes: The dashboard contains study-specific attributes where users can define

and record metadata or, in other words, information related to the studies. This would further help and

facilitate the better management and documentation of experiments, usually in complex and

collaborative projects.

Figure 1 - Optuna-dashboard

2.4 High Level Pipeline

First, the pre-processing of raw transactional data is prepared for model training by cleaning, handling

missing values, feature engineering, and encoding of categorical variables. In the case of CatBoost, it

natively supports categorical features; hence, no special treatment is required. LightGBM uses

encoding methods suitable for its structure. Fine-tuning of both models is performed with Optuna for

hyperparameter optimization.

The training process encompasses techniques for dealing with imbalanced datasets, such as

dynamically computed class weights, to ensure the balance of fraudulent and non-fraudulent

transactions in the model. Performance metrics like AUC, recall, precision, and confusion matrices are

recorded in PostgreSQL tables: experiment_results_cb for CatBoost and experiment_results_lg for

LightGBM. These tables allow tracking the performance of each model through their training.

Page 23 of 82

In production, Kafka facilitates the real-time processing of incoming transaction data. Raw data is

ingested by Kafka producers, where preprocessing steps are applied before the data is passed to the

models. LightGBM and CatBoost operate simultaneously to classify transactions into three categories.

These models identify suspicious transactions and then send them for further refinement in the labeling

phase using a Random Forest algorithm. This adds to the analysis, hence bringing nuanced patterns in

suspicious data that might not have been powerfully captured at the time of initial classification. Newly

labeled fraudulent transactions are fed back into the training datasets for both models, allowing them

to adapt to emerging fraud trends and maintain high detection accuracy.

The last stage of the pipeline is visualization of the results and insights through Apache Superset. This

provides an intuitive dashboard for stakeholders to monitor key performance metrics, analyze

classification trends, and gain actionable insights from the data. Superset is connected directly to the

PostgreSQL database, thus allowing dynamic and real-time visualizations of the outcomes from the

pipeline.

Figure 2 – High Level Flow

Page 24 of 82

3 Implementation

For a more comprehensive management and support of CatBoost and LightGBM streams, a

comprehensive repository established, containing numerous critical folders, each with a distinct role

in the development, training, and deployment processes.

3.1 Overview of the Repository Structure

Figure 3 – Project Structure

• Configs containing configuration files that contain critical parameters such as the number of

Optuna trials, data paths for training and production, bulk sizes, and so on, enabling effortless

modifications to various configurations.

• Data includes the training datasets used to construct and train machine learning models,

guaranteeing that all training data is conveniently located and readily accessible.

• Model_Nec_Info, storing essential outputs from the training process, including model

visualizations, summaries, lists of features used, etc, aiding in model evaluation and

documentation.

Page 25 of 82

• Models with the best-performing models are saved after training, making future deployment

and further analysis easy.

• Plots, containing visual outputs, such as precision-recall curves and confusion matrices, help

in the assessment of the model's performance and understanding the data.

• Scripts, including utility scripts for maintenance tasks, such as cleaning Kafka offsets in Redis

and clearing PostgreSQL tables, to keep the database optimized.

• Source with the models processing production data from this folder in real-time, ensuring their

evaluation of new, unseen data.

• Finally, Utils, including reusable functions and utilities that support tasks like data

preprocessing, model training, and evaluation, fostering code reuse and enhancing

maintainability across the project.

3.2 Preprocessing Phase

The first step of the implementation process was importing the paths and parameters from a JSON

configuration file (config_cb.json / config_lg.json), which contained key parameters such as the data

path (DATA_PATH), the number of optimization trials (N_TRIALS), batch size (BATCH_SIZE) and

the number of folds for stratified folding (NFOLDS). These parameters ensured a structured and

efficient training process. Python libraries such as NumPy, Pandas, Seaborn, and Matplotlib were

utilized for handling and visualizing the data, providing a comprehensive toolkit for the

implementation.

The CodeCarbon library was integrated as an efficient way of tracking CO2 emissions during the

training process, keeping in line with the project's emphasis on sustainability, and the monitor and

mitigation of the environmental impact was deemed essential, after considering the high computational

demands of training deep learning and tree-based models, aligning with the broader goal of promoting

environmentally responsible AI development.

The training dataset was imported using a csv file, while extracting the isFraud column as the target

variable and the remaining columns as features or inputs, both the CatBoost and LightGBM

algorithms, aiming to build a comparable methodology regarding data preprocessing, with column

names being standardized by converting them to lowercase after the data is loaded, guaranteeing

consistency throughout the procedure, while at the same time recording metadata, including column

names and data types, into a database for future reference and easy tracking, facilitating the

documentation of the features employed during model training and ensures consistency in dataset

analysis by both approaches. Several essential preprocessing steps are incorporated by the

preprocess_data function, standardizing, cleaning, and enhancing the dataset, ensuring the data fed

into the models is robust and reflecting the underlying patterns necessary for effective fraud detection.

Page 26 of 82

3.2.1 Data Logging

In this study, an Excel workbook is generated to compile key insights about the dataset at various

stages of preprocessing. This report serves as a summary of the dataset’s characteristics and

transformations, rather than a comprehensive log of all data modifications. It provides a high-level

overview to enhance understanding and transparency of the dataset's key attributes. The report includes

the following sections:

Dataset Shapes: Record the initial and post-processing dimensions (number of rows and columns) of

the dataset, for reference. This section captures a picture of the progress of the dataset throughout the

course of preprocessing.

Prevalence of Devices: Among the set, the distribution of devices is summarized, depicting the counts

of each device in their raw state. It gives a great idea of the presence of different devices within the

dataset.

Overview of Missing Data: Missing values are summarized for each feature in terms of percent. This

provides an understanding of which features have a large amount of missing data that might need

special handling.

Removed Features: Features removed during preprocessing, because they were redundant or

irrelevant, are listed. This section identifies columns not included and ensures clarity on changes made

to the dataset structure.

Email Domain Insights: A split is given of the most frequent domains occurring in the email data set.

This part provides an overview of the most common domains linked with transactions, which may give

a trend or pattern.

Transaction Amount Summary: Descriptive statistics for transaction amount is provided, detailing

mean, median, and range. This gives the numerical nature of the actual features of the data set.

The naming convention for this Excel workbook is dynamic to allow immediate identification of the

date and time of processing. This summary report provides a quick and accessible overview of the

important insights in the dataset, supporting transparency and data-driven decision-making.

Page 27 of 82

Figure 4 - Number of Features by Group

Figure 5 - Distribution of Feature Types in Dataset

Page 28 of 82

Figure 6 - Distribution of addr1

Figure 7 - Distribution of addr2

Page 29 of 82

Figure 8 - Distribution of transactionamt

Figure 9 - Distribution of dist2

Page 30 of 82

Figure 10 - Distribution of dist1

Figure 11 - Distribution of card5

Page 31 of 82

Figure 12 - Distribution of card3

Figure 13 - Distribution of card2

Page 32 of 82

Figure 14 - Distribution of card1

Figure 15 - Distribution of transactiondt

3.2.2 Handling Missing Values and High Repetitive

This is a very fundamental step in the preprocessing pipeline, since poor handling of missing values

might lead to biased or incomplete models. The count and percentage of missing values for each feature

are calculated and logged for transparency in the quality of the dataset. Features with a high proportion

Page 33 of 82

of missing values (above 90%) are flagged as candidates for removal. This threshold ensures that

features contributing minimal information due to excessive missing values are excluded, hence

reducing noise in the dataset.

When working in training mode (MODE='TRN'), a bar plot is created to visualize the percentage of

missing values across features. This visualization is saved for easy interpretation and serves as a

diagnostic tool for assessing the completeness of the dataset.

It also identifies columns that demonstrate very low variability, usually those dominated by a single

value. For example, features where more than 90% of the values consist of the same value—features

that are considered here as adding little informational value to the model—are removed. These

columns, very commonly known as "redundant features," are excluded to ensure the dataset remains

compact, efficient, and focused on informative predictors.

The pipeline then proceeds to handle missing data in the retained features through imputation strategies

specific to each feature type. Numerical features will be imputed with their medians, and categorical

ones with their most frequent value. These imputation methods preserve the integrity of the dataset

and ensure compatibility with downstream machine learning models.

The preprocessing pipeline ensures the quality of the used dataset, optimizes it for training by the

systematic handling of missing values and redundant features. This reduces the possibility of bias and

inefficiency in the model.

Figure 16 – Percentage of Missing Values by Feature

Page 34 of 82

3.2.3 Device Information Transformation

The raw device data are usually very noisy, coming from various heterogeneous sources. If not

properly handled, this noise will mask the meaningful patterns in the data, which increases the risk of

overfitting and reduces the predictive accuracy of the model. Therefore, in this pipeline, a special care

has been taken in using the mapping dictionary that helps to normalize the different representations of

device manufacturers into consistent categories.

The mapping dictionary is also applied to the deviceinfo column in order to harmonize the

representation of manufacturers of devices. For example, "SAMSUNG,","SM,", and "GT-" are

mapped to "Samsung." This way, the model may treat these variants as one and retain their predictive

value while not adding too much complexity. Devices with fewer than 200 occurrences are replaced

by "Others," reducing the impact of rare categories that may otherwise contribute to noise and reduce

model generalization. This threshold ensures that the dataset focuses on dominant patterns while

managing data sparsity.

Moreover, the pipeline transforms information related to a device into general categories by grouping

the devices under major brands—for example, Samsung, Apple, and Motorola. Such transformation

captures trends that surround specific manufacturers, generally indicative of user behavior—for

example, some device types may have a special spending pattern or relate to transactions with

anomalies in them, hence making this an important transformation while detecting fraud.

If the pipeline is in training mode (MODE='TRN'), it creates visualizations of boxplots to analyze the

relationship between device brands and transaction amounts. These boxplots give valuable insight into

how transaction behavior varies across device categories, adding another layer of interpretability.

Such cleaning and standardization of the device-related data only serve to increase their quality, but

the transformation also helps the model learn meaningful patterns. Simplifying input data while

retaining its predictive value reduces complexity, ultimately leading to improved model performance

and generalization.

Page 35 of 82

Figure 17 - Transaction Amount by Device Brand

3.2.4 Transforming Email Domains and Temporal Features

Email domain features, such as p_emaildomain and r_emaildomain, are transformed by mapping them

according to a predefined mapping that groups the domains into bigger categories: google, yahoo, and

microsoft. Suffixes are also extracted to distinguish U.S.-based from international domains, adding

contextual information that is often very indicative of user identity.

Temporal features derived from transaction timestamps capture important time-based behavioral

patterns. The pipeline calculates actual transaction dates relative to START_DATE and extracts

components such as month, week, and day of the year. Such features allow for the identification of

fraudulent patterns that evolve over specific time intervals.

3.2.5 Feature Engineering

Feature engineering enriches the dataset by creating new, informative features. Composite features,

such as userinfo, derived from card1, card2, and card3, and full_address, derived from addr1 and addr2,

are created to capture potential correlations between related features. The engineered features provide

Page 36 of 82

more context for fraud detection algorithms. By combining related attributes, these engineered features

help the model uncover complex interactions that might be indicative of fraudulent behavior (Heaton,

2016).

Some of the categorical features are also encoded with frequency encoding, replacing values by their

frequency in the dataset. This would help bring out the patterns related to rare or frequent occurrences

of features. The transaction amounts in the dataset (transactionamt) are transformed with a natural

logarithm (log1p) to reduce skew and normalize their distribution, generally reducing the effect of

extremely large outliers.

Figure 18 - Transaction Pattern by Hour of Day

Page 37 of 82

Figure 19 - Top 10 Email Domain Providers

Figure 20 - Distribution of Transaction Amounts (Log-transformed)

3.2.6 Handling Categorical Features: Label Encoding

Categorical features, such as deviceinfo and others, must be converted into numerical formats for

models like LightGBM, which require numerical inputs for training. This conversion process is

Page 38 of 82

commonly achieved through label encoding, where a mapping function transforms unique categories

into distinct numerical values. Formally, the label encoding process can be represented as:

f(x):C1,C2,…,Cn⟶ {0,1,2,…,n−1}

with C1, C2,…, Cn being the unique categories in the categorical feature xx, and nn is the total number

of unique categories with the function f(x)f(x) assigning an integer to each category.

For example, having a column like deviceinfo with categories such as "Samsung," "Motorola," and

"Apple," they will be mapped to a unique integer, such as the following example:

f(deviceinfo)={"Samsung":0,"Motorola":1,"Apple":2,… }

This step is essential because machine learning algorithms cannot process textual data and rely on

numerical representations to learn patterns. Label encoding is particularly advantageous for ordinal

features, where categories have a natural order (e.g., "Low," "Medium," "High"), as the numerical

mapping aligns with their inherent ranking.

However, when applied to nominal features, which lack an intrinsic order, label encoding can

inadvertently introduce arbitrary numerical relationships. While this may pose challenges for certain

models, such as linear regression, tree-based models like LightGBM are inherently robust to such

numerical ordering. These models split data based on thresholds rather than interpreting numerical

relationships, allowing them to handle encoded categorical data effectively without bias.

CatBoost, in contrast, eliminates the need for label encoding entirely by offering built-in support for

categorical features. Instead of assigning arbitrary numerical values, CatBoost employs advanced

statistical techniques and combinations of categorical values to create meaningful representations. This

approach reduces the risk of bias and enhances the model's ability to generalize, particularly when

dealing with high-cardinality categorical features (Prokhorenkova et al., 2018). As a result, CatBoost's

method not only simplifies preprocessing but also boosts performance on datasets with diverse and

complex categorical attributes.

3.2.7 Split Dataset - Pipeline

Numerical and categorical features are passed through separate pipelines, each designed for the

particular needs of that type of feature:

Numerical Pipeline:

The numerical pipeline begins with a FeatureExtractor that identifies and selects the numerical

attributes in the dataset. It imputes missing values for these attributes using the median strategy—a

robust approach that minimizes the influence of outliers, ensuring the imputed values don't skew the

data distribution. After imputation, numerical features are standardized using StandardScaler, which

removes the mean and scales features to unit variance. Standardization ensures that all numerical

Page 39 of 82

features are on a comparable scale, which avoids the domination of the learning process by any single

feature with a larger range. This step improves the stability of the model and allows it to converge

faster during training.

Categorical Pipeline:

The categorical pipeline begins with a FeatureExtractor that will select only categorical attributes; it

replaces missing values of these features using the strategy of using the most frequent value—imputes

missing values with the mode of the column. Together, these steps preserve data integrity and ensure

that imputed values make sense in context for the categorical columns.

The transform_features function consolidates these pipelines, which are then applied to the dataset.

The pre-processing framework stays adaptive to a variety of datasets and preprocessing requirements

while applying transformations consistently by modularizing the pipelines.

To deal with large datasets, the preprocessing pipeline uses a chunked processing approach. Instead of

trying to process the whole dataset at once, which might even cause system memory to run out, the

dataset is broken down into manageable chunks. Each chunk is then independently passed through the

numerical and categorical transformation pipelines using the transform_features function.

Such chunked processing has a few benefits for large datasets. In general, by breaking a dataset into

smaller subsets, the pipeline avoids memory bottlenecks, thus the algorithm is compatible with systems

having limited memory capacity. These are applied uniformly to the whole dataset, while being

processed in chunks, to maintain consistency and integrity of the final recombined data. This ensures

that the resultant dataset is cohesive and ready for downstream machine learning tasks.

After transformation of all chunks, they are concatenated together into a single dataset. This last step

is performed to make sure that the data is ready for downstream machine learning tasks and that all

features are scaled, imputed, and standardized accordingly.

3.2.8 Handling Imbalanced Data

Class imbalance was the most crucial step of the entire process, considering the huge amount of

variation in the number of instances between the legitimate and fraudulent transactions. This would

amount to a severe problem since models could easily get biased towards predicting the majority class,

leading to overfitting or a low recall for the minority class. This, in banking, is very risky, especially

when a model fails to give a higher recall, as misclassifying a fraudulent transaction as genuine might

cause great financial and reputational loss. Therefore, ensuring the model's ability to effectively

identify fraudulent transactions was of paramount importance.

The dataset, by default, is imbalanced, with a significantly higher number of legitimate transactions

compared to fraudulent ones. This imbalance poses a challenge for machine learning models, as they

tend to become biased toward predicting the majority class (legitimate transactions). Such bias can

Page 40 of 82

result in poor performance in detecting the minority class (fraudulent transactions). Addressing this

issue is crucial to ensure the model can effectively differentiate between fraudulent and non-fraudulent

transactions.

For both models, the imbalance was addressed by calculating weights for the classes based on their

relative frequencies in the dataset. Fraudulent transactions, being fewer in number, were given

proportionally higher importance. These class weights were incorporated into the model's training

process using the scale_pos_weight parameter. This ensured that errors in predicting fraudulent

transactions were penalized more heavily than errors for legitimate transactions, improving the model's

ability to identify fraud.

Both implementations emphasized the recall metric, which measures the proportion of actual

fraudulent transactions that the model correctly identifies. In fraud detection, maximizing recall is

crucial because missing fraudulent transactions (false negatives) can lead to significant financial or

reputational losses. By prioritizing the minority class, the models were optimized to reduce false

negatives and improve recall.

Figure 21 - Class Distribution (1/2)

Page 41 of 82

Figure 22 - Class Distribution (2/2)

3.2.9 Features Scaling

The last step in the chain of the preprocessing pipeline is scaling numerical features using the

StandardScaler. This utility removes the mean of each feature and scales those features to a standard

range, in order to make all numerical features more equal, preventing overpowering features with

large-value ranges from dominating the learning process. This further reduces the possibility of any

bias in the model or giving partiality to one of the input features.

Page 42 of 82

Application of StandardScaler standardizes the preprocessing, considering all these models would be

blended with other models, and features in large numerical difference may make some impacts to

model interpretability. Standardizing features also provides better optimization stability and promises

faster convergence when training, especially for numerical features that highly vary in scale.

This is standardized preprocessing that prepares the data for machine learning models quite nicely, as

observed in James et al. (2013). It may not be strictly necessary when dealing with tree-based models,

such as LightGBM or CatBoost, but this makes the data cleaner and easier to understand, and it also

better connects with other preprocessing.

3.2.10 Pipeline

LightGBM and CatBoost preprocessing pipeline takes raw data as input, making it ready for training.

It takes as an argument the preprocess_data function processing the data and splits the categorical and

numerical variables. In CatBoost, this uses native support for categorical variables without any

encoding from other libraries, hence maintaining the relationship between such features. For

LightGBM, the categorical features are encoded to make them compatible with the model's training

process.

Stratified splitting ensures that the class distribution will be well captured across the subsets for a

balanced distribution in both fraudulent and no-fraud transactions. The stratified split splits the data

into training, validation, and testing subsets.

Because the target variable isfraud is highly imbalanced, class weights are computed dynamically

depending on the frequency of each class in the training data. These weights have been added to both

models during training so that the predictions are not biased toward the majority class. In fact, this

approach gives a great boost in improving recall for the minority fraudulent class, which is so critical

when it comes to fraud detection.

Memory control in the above processes involves deleting any intermediate dataset once it is no longer

useful and a call to gc.collect() to make sure the garbage collector runs, so big memory allocations can

be accommodated. For example, the data objects which could be temporary splits or/and folds are

deleted instantly after usage for freeing the occupied resources.

The final models, with the hyperparameters tuned to the best, were trained on combined training and

validation sets.

3.2.10.1 CatBoost Hyperparameters

Iterations: It defines the number of boosting rounds. Range: 500 to 1000.

Learning Rate: Logarithmic scale search from 0.01 to 0.2 to balance training speed and accuracy.

Page 43 of 82

Depth: Defines the depth of a tree. Values explored: from 4 to 8 to avoid overfitting but capture the

complexity.

L2 Leaf Regularization: Controls overfitting, values optimized from 0.1 to 10.

Bagging Temperature: Regulates randomness of subsampling, values searched from 0.0 to 1.0.

Random Strength: Regularizes noise in split thresholds, optimized between 1e−71e−7 and 10.0.

Scale Pos Weight: Scales the loss function to account for class imbalance, calculated using class

frequencies dynamically.

Border Count: The number of splits for numeric features, fixed at 128 for regular granularity.

The model has been trained on a GPU, which will significantly speed up training and optimization,

especially for larger datasets or wide hyperparameter search spaces.

This setup will make sure that the powerful capabilities of CatBoost in handling categorical data and

complex feature interactions are unleashed to their full potential, while being optimized for

performance by means of a strong hyperparameter tuning process.

Figure 23 - CatBoost GPU Utilization

3.2.10.2 LightGBM Hyperparameters

Learning Rate: Step size in every optimization.

Page 44 of 82

Search Space: Logarithmic scale from 0.03 to 0.1 because it offers a great trade-off between

convergence speed and stability.

Number of Leaves: To define the complexity of every tree.

Range: 100 to 200.

Feature Fraction: Fraction of features used for each tree. Range: 0.3 to 0.8.

Bagging Fraction: Fraction of data samples used for each tree. Range: 0.3 to 1.0.

Minimum Data in Leaf: This ensures that leaves have at least this number of samples, thereby acting

as a prevention against overfitting.

Range: 10 to 50.

reg_alpha: L1 regularization.

reg_lambda: L2 regularization.

Range: Both optimized between 0.01 and 10 in order to reduce overfitting.

Scale Pos Weight: Scales the contribution of the minority class to the loss function.

Value: Computed dynamically as a ratio of class frequencies.

Max Depth: Maximum depth of trees to prevent overfitting. Range: 8 – 15

Max Bin: It computes a number of bins for a continuous feature.

Range: 60 - 125.

The model has been trained with n_jobs=5. LightGBM can use full parallel processing on multiple

CPU cores. This config greatly speeds up both training and evaluation by dividing the work in an

efficient way and is particularly useful when working with big datasets or compute-heavy pipelines.

This parallelism is very useful for hyperparameter optimization, where different combinations of

parameters can be tested at the same time, saving a lot of time in finding the best model configuration.

Besides that, multi-threading ensures that all computational resources of the system are utilized with

minimal idle time, which increases overall efficiency.

3.3 Plotting Training Results

In the CatBoost and LightGBM scripts, the evaluate_model function is executed to start the evaluation

phase following the training phase.

Page 45 of 82

The confusion matrix (conf_matrix), a useful tool for visualizing a classification model's performance,

is one of the important performance metrics that the evaluate_model function returns, with the

summary of the important metrics being presented below.

1. The Confusion Matrix is a 2x2 matrix that provides a detailed breakdown of the classification

results by showing the counts of:

True Positives (TP) the number of correctly predicted fraud transactions.

True Negatives (TN) the number of correctly predicted non-fraud transactions

False Positives (FP)
the number of non-fraud transactions incorrectly predicted as fraud (Type

I error)

False Negatives (FN)
which is the number of fraud transactions incorrectly predicted as non-

fraud (Type II error)

Table 4 - The Confusion Matrix

2. Precision is the determining factor of accurate positive predictions to all of the model's positive

predictions. i.e., the proportion of predicted fraud cases that actually occurred.

3. Recall is the ratio of real fraud cases that the model correctly identified, or the number of real

fraud cases that were correctly predicted to be fraud to the total cases.

4. F1 Score uses the precision and recall harmonic means, offering an impartial assessment of

the model's performance, being helpful in situations where the dataset is unbalanced (like in

fraud detection).

5. Area Under the Receiver Operating Characteristic Curve, or AUC-ROC, measures how

well the model can differentiate between fraud and non-fraud across a range of thresholds with

a higher AUC score indicating model performing better.

6. AUC-PR (Area Under the Precision-Recall Curve) is another threshold-based metric useful

for imbalanced datasets, focusing on the trade-off between precision and recall.

CatBoost and LightGBM generate their predictions with the predict method. Then, probabilities of the

fraud class are thresholded at 0.2 to differentiate between classes; that will be done with all models for

consistency because this dataset is quite imbalanced. This ensures a standardized evaluation

framework across models, aligning with best practices for handling imbalanced datasets (He and

Garcia, 2009).

Then, it also presents in an interesting form what are the hyperparameters generated after the

optimization using the pipelines and Table from the Rich library. These are both printed to the console

for immediate review and outputted to a text file (e.g., lgbm_parameters_<date>.txt) in the model_info

directory using PrettyTable. The mentioned practices ensure that both pipelines keep parameters and

configurations accessible, thereby facilitating reproducibility, comparison, and documentation.

In both pipelines, the format_elapsed_time function is used to document the total training time in a

human-readable format, helping assess computational efficiency and resource usage. The final models

Page 46 of 82

are saved with save_model() function, ensuring they can be reused for future predictions or analysis

without retraining. These steps collectively emphasize transparency, reproducibility, and clarity in

documenting the training and configuration processes for both machine learning pipelines.

3.4 Save Metrics

Both models’ training scripts incorporate a dedicated function, insert_results_into_db, that is executed

at the conclusion of the training process. This function is accountable for the storage of critical

performance metrics in a PostgreSQL database. By enabling the systematic recording of evaluation

metrics, this function facilitates future analyses, comparisons, and audits of the models' performance,

a practice widely recognized as essential in machine learning workflows (Amershi et al., 2019).

The insert_results_into_db function records numerous critical metrics, including precision, recall, F1

score, ROC AUC, and precision-recall AUC. These metrics are indispensable for assessing the efficacy

of the fraud detection algorithms, as they offer valuable insights into their capacity to differentiate

between legitimate and fraudulent transactions. Furthermore, the function records the values of the

confusion matrix (true negatives, false positives, false negatives, and true positives), which provide a

more detailed understanding of the model's classification accuracy. The CodeCarbon library monitors

the model's total execution time and the environmental impact in terms of CO2 emissions,

supplementing these metrics.

The function initially establishes a connection with the database in accordance with the configuration

file (config.ini). It either constructs the table if it does not exist or inserts the results into the appropriate

columns after confirming that the table for the respective algorithm exists (e.g., experiment_results_cb

for the CatBoost or experiment_results_lgbm for LightGBM). This guarantees that the system is

capable of managing numerous experiments and preserving the results for future reference. After

inserting the data, the system securely terminates the database connection.

This automated logging process offers a methodical approach to monitoring performance metrics

across multiple experiments, thereby simplifying the evaluation and optimization of models over time

for data scientists and engineers. Such practices are increasingly crucial in scalable AI systems, as they

provide transparency, reproducibility, and opportunities for continual improvement (Mitchell et al.,

2019).

3.5 Kafka Production Script

Real-time fraud detection is made possible by this production script, which is made to implement

CatBoost and LightGBM models in a live setting, aiming to process transaction data in real-time,

categorizing transactions as fraudulent, non-fraudulent, or suspicious, and store the results in the

relevant databases for additional analysis, the system makes use of TensorFlow for model inference

and Kafka for message streaming, with an enhanced and thorough breakdown of the main elements

Page 47 of 82

and features of the script presented below. First, the script loads a configuration file (config_cb.json /

config_lg.json) which includes important parameters that control the system's behavior:

DATA_PATH Specifies the location of the data to be processed

CHUNK_SIZE Defines the batch size for processing data in manageable chunks

OFFSET
Sets the threshold for the number of suspicious transactions after which the

processing halts

DIR
Specifies the directory where the trained CatBoost / LightGBM models are

stored

Table 5 – Kafka script configuration parameters

These settings enable the script to be easily and adaptably adapted to a range of environments and data

sources, making it suitable for a variety of use cases, controlling the flow of transaction data using a

Kafka producer and a consumer, with preprocessed data being sent to the Kafka topic raw_data_cb /

raw_data_lg implemented by KafkaProducer for processing in real time, and KafkaConsumer

retrieving batches of messages from the same topic.

The most recent iteration of the CB/LG models are used, then loaded using TensorFlow's load_model

function, enabling the system to quickly classify transactions thanks to this Kafka-based configuration,

guaranteeing the seamless transfer of real-time data with the model path being dynamically chosen to

guarantee that the most accurate and recent model is used, keeping the fraud detection system current

with changing fraud patterns.

The script simulates live transactions by reading real-time transaction data from a CSV file and sending

each row as a message to Kafka via the producer with the Pandas read_csv function reading the data

in chunks, making the handling of large datasets effectively a possibility, with the messages being

transmitted to the Kafka topic after each chunk is processed row by row.

The process of loading metadata from a configuration file guarantees that data types and column names

are consistent across various data sources with Data Cleaning aiding in ensuring consistency. Column

names are also converted to lowercase and hyphens are swapped out for underscores and at the same

time using Scaling features ensures that numerical values fall within a steady range, with the

scale_features function normalizing the data, allowing the models to process the data efficiently

because scaling avoids problems like skewed predictions brought on by large numerical differences.

Following preprocessing and scaling, the data is fed into the trained models to make predictions with

the configured CHUNK_SIZE determining the batch size for the script's processing of Kafka batch

data. For every batch data is scaled and preprocessed to conform to the model's required format,

following the model forecasts each transaction's probability of fraud with each transaction being given

a label by the model using a threshold-based classification approach:

0 Assigned to transactions with a prediction probability below 0.2

-1 Assigned to transactions with probabilities between 0.2 and 0.7, indicating uncertainty

1 Assigned to transactions with probabilities above 0.7

Page 48 of 82

Table 6 – Transactions’ labels

The detection of clear fraud cases flagging of suspicious activities is ensured through the classification

mechanism, warranting further investigation. The results are sent to separate Kafka topics and stored

in corresponding PostgreSQL tables after the classification of the transactions.

fraud_cb / fraud_lg Stores transactions identified as fraudulent

no_fraud_cb / fraud_lg Stores legitimate transactions

suspicious_cb / suspicious_lg Stores transactions marked as suspicious, requiring further review

Table 7 – Transactions’ tables

Effective analysis and monitoring are made possible by this data segregation, with each transaction

category being handled correctly with targeted reactions to fraud and suspicious activity being possible

by arranging the classified data in separate tables.

This tracking of dubious transactions is one of the script's most crucial functions with the save_offset

function being used to update the offset value each time a batch is processed, guaranteeing that the

script can continue processing from the most recent transaction without having to reprocess data that

has already been handled in the event that it is interrupted.

The quantity of highly dubious transactions is continuously tracked by initiating a stopping condition

when the quantity of suspicious transactions surpasses the pre-established OFFSET, enabling the

system to restrict the volume of data processed prior to subsequent operations, an action similar to

retraining the model.

To guarantee seamless execution and offer insights into its operations, the script incorporates thorough

logging throughout the processing pipeline, with important occurrences, like preprocessing, batch

processing, and scaling completion. All the above are being recorded to provide operators with insight

into the script's development, as in the event of an error, the script records it and offers a thorough

stack trace for troubleshooting, guaranteeing that any problems are found and fixed right away, while

at the same time, the script is built to withstand errors, with the fraud detection process being

minimized by recovering and starting from the most recently saved offset if an error or even a failure

happens.

3.6 Labeling Suspicious Data

Labeling begins with loading the necessary configurations from a JSON file, config_rf.json, which

provides dynamic and reusable settings for the pipeline. It utilizes the RandomForestClassifier, a

reliable and interpretable machine learning algorithm, to classify suspicious cases. Training is

conducted using stratified cross-validation to ensure balanced evaluation of fraud and non-fraud

Page 49 of 82

classes (Breiman, 2001). To further improve detection performance, class weights address the

imbalance in the dataset effectively.

Data preparation involves merging two main datasets, fraud_df and no_fraud_df, into a single dataset

while keeping their labels in separate variables to form the target variable. This consolidated dataset

serves as the basis for training and validation of the Random Forest model. Meanwhile, suspicious_df

undergoes preprocessing to match the processed training dataset, ensuring consistent features and

compatibility with the model’s input.

Evaluation is performed using Stratified K-Folds Cross-Validation with five folds. Stratification

ensures consistent class distribution across splits, which is vital for fraud detection due to the intrinsic

class imbalance (Kohavi, 1995). Performance metrics, including precision, recall, F1-score, and AUC,

are calculated for each fold, and the results are reviewed. Average metrics, along with their standard

deviations, are computed to assess the reliability and robustness of the model.

Once evaluated, the model predicts labels for the suspicious dataset. These predictions are integrated

into the dataset under a new column, isfraud, with fraudulent cases extracted for further analysis.

Newly labeled fraudulent cases are appended to the training dataset, selectively enriching the model's

learning. This process is critical for continuous adaptation, allowing the model to identify emerging

fraud patterns effectively.

Efficient data retrieval is managed through the fetch_data function, which interfaces with a

PostgreSQL database. This function is designed to handle large datasets by implementing an offset

mechanism for tables exceeding a predefined threshold. The mechanism divides the dataset into

manageable chunks using SQL's LIMIT and OFFSET clauses, optimizing data retrieval (Rowe &

Stonebraker, 1987). This approach minimizes memory overload, reduces server load, and ensures rapid

processing.

Fraudulent data is appended to the training dataset in the final step, allowing the model to learn from

new fraud cases during subsequent training iterations. By focusing on new fraudulent patterns, the

model's predictive accuracy and robustness against evolving schemes are improved. This iterative

update process is integral to maintaining the pipeline's effectiveness over time, ensuring reliable

detection of sophisticated fraud patterns.

Page 50 of 82

4 Challenges and Limitations

4.1 Memory Management

One of the biggest limitations faced during the development process was memory management. A

system with 16 GB RAM was used, which for most of the operations is more than enough. In some

operations, though, such as rebalancing and handling large datasets, complications related to memory

appeared. This especially happened when the system required more memory than what was available;

this caused performance bottlenecks and increased the possibility of the system crashing.

These challenges were overcome by configuring the system to utilize disk space as additional memory

by increasing swap memory to 30 GB. With this, the system can easily handle higher workloads

without compromising on performance. In addition, managing the memory effectively also involved

the reconfiguration of the models and their respective hyperparameters so that the experiments

smoothly ran on the development machine.

For example, the setting of n_jobs = -1 in the hyperparameters of the model and in Optuna trials caused

system crashes in the LightGBM pipeline due to excessive consumption of the available resources.

This has been tuned to using a limited number of threads as the n_jobs parameter to allow efficient

computation without system crashes. Many such adjustments have been done with other parts of the

workflow for better utilization of resources without the experiments being cut off.

These changes highlight the importance of aligning model configurations with system constraints,

especially for large-scale machine learning pipelines. By carefully managing memory and adapting

model settings, the development process maintained stability while achieving the desired experimental

outcomes.

 Total Used Free Shared Buff/Cache Available

Memory 30 Gi 7.8 Gi 8.0 Gi 118 Mi 4.6 Gi 22 Gi

Swap 29 Gi 0 B 29 Gi

Table 8 - Memory Management

4.2 LGBM GPU Support

Another critical issue encountered was related to using GPU acceleration with LightGBM. While GPU

support is intended to speed up training, errors occurred during the process, such as:

lightgbm.basic.LightGBMError: Check failed: (best_split_info.left_count) > (0)

This error usually occurs due to problems in the GPU-based split calculation, which often relates to

some specific setup of the data or some rare cases present in the dataset. For example, a conversation

on GitHub underlines similar problems that users have when training LightGBM models on GPUs;

this shows that some data features might cause this error.

Page 51 of 82

5 Results

5.1 Performance Evaluation Main Training

5.1.1 LGBM

5.1.1.1 Main Training

CU_DT 20241216

Precision 0.9206

Recall 0.7353

F1_Score 0.8175

ROC_AUC 0.9731

PR_AUC 0.8624

Execution_Time 11 hours, 10 minutes

Emissions 0.2229

Table 9 - Main Training Metrics - LightGBM

Figure 24 - Precision-Recall Curve Main training - LightGBM

Page 52 of 82

Figure 25 - Receiver Operating Characteristic (ROC) Curve Main training -LightGBM

Figure 26 - Confusion Matrix Main Training– LightGBM

Page 53 of 82

Parameter Value

max_depth 15

num_leaves 240

min_data_in_leaf 25

max_bin 187

Table 10 - Tree Structure Parameters (LightGBM Main Training)
Table 11 - Learning Parameters (LightGBM Main Training)

Parameter Value

learning_rate 0.03572380838577693

feature_fraction 0.44315949154615925

bagging_fraction 0.9244814427726744

bagging_freq 8

Parameter Value

min_child_weight 0.00148097144714855

reg_alpha 0.02464267739550402

reg_lambda 0.01563385157285081

Table 12 - Regularization Parameters (LightGBM Main Training) Table 13 - System settings (LightGBM Main Training)

Parameter Value

verbosity -1

n_jobs 1

seed 42

5.1.1.2 Labelling Main Training

Label Value

no_fraud_lg 160209

fraud_lg 2785

suspicious_lg 5006

Table 14 - Production predictions (LightGBM Main Training) Table 15 - Random Forest Labeling Metrics (LightGBM Main

Training)

Metric Value

Precision 0.963

Recall 0.890

F1-Score 0.925

Label Value

0 5006

1 0

Table 16 - Random Forest Predictions (LightGBM Main Training)

Page 54 of 82

Figure 27 - Confusion Matrix - Random Forest (LightGBM Main Training)

5.1.2 CatBoost

5.1.2.1 Main Training

CU_DT 20241229

Precision 0.8621

Recall 0.8047

F1_Score 0.8324

ROC_AUC 0.9733

PR_AUC 0.8764

Execution_Time 7 hours, 24 minutes

Emissions 0.2887

Table 17 - Main Training Metrics - CatBoost

Page 55 of 82

Figure 28 - Precision-Recall Curve Main training - CatBoost

Figure 29 - Precision-Recall Curve Main training - CatBoost

Page 56 of 82

Figure 30 - Confusion Matrix Main Training– CatBoost

Parameter Value

iterations 932

depth 8

Table 18 - Tree Structure Parameters (CatBoost Main Training)
Table 19 - Learning Parameters (CatBoost Main Training)

Parameter Value

learning_rate 0.19253249019700144

bagging_temperature 0.03119132475308568

Parameter Value

l2_leaf_reg 0.1096079848122838

random_strength
4.0090816333290635e-

05

Table 20 - Regularization Parameters (CatBoost Main Training) Table 21 - System settings (CatBoost Main Training)

Parameter Value

verbose 0

task_type GPU

random_seed 42

Page 57 of 82

5.1.2.2 Labelling Main Training

Label Value

no_fraud_lg 3520

fraud_lg 211467

suspicious_lg 5013

Table 22 - Production predictions (CatBoost Main Training) Table 23 - Random Forest Labeling Metrics (CatBoost Main

Training)

Metric Value

Precision 0.931

Recall 0.695

F1-Score 0.796

Label Value

0 5013

1 0

Table 24 - Random Forest Predictions (CatBoost Main Training)

Figure 31 - Confusion Matrix - Random Forest (CatBoost Main Training)

Page 58 of 82

5.2 Retraining impact on model performance

5.2.1 LGBM

5.2.1.1 First Run

5.2.1.1.1 Retraining Phase

CU_DT 20241217

Precision 0.9461

Recall 0.7896

F1_Score 0.8608

ROC_AUC 0.9770

PR_AUC 0.9019

Execution_Time 11 hours, 28 minutes

Emissions 0.2011

Table 25 - Retraining Metrics (LightGBM First Run)

Parameter Value

max_depth 18

num_leaves 209

min_data_in_leaf 67

max_bin 171

 Table 26 - Tree Structure Parameters Retraining (LightGBM First

Run)

 Table 27 - Learning Parameters Retraining (LightGBM First

Run)

Parameter Value

learning_rate 0.0523112513101304

feature_fraction 0.5602917667839747

bagging_fraction 0.991175811839782

bagging_freq 6

Parameter Value

min_child_weight 0.01191905264957574

reg_alpha 0.03124271599931228

reg_lambda 0.12081273980068283

 Table 28 - Regularization Parameters Retraining (LightGBM First

Run)

 Table 29 - System settings Retraining (LightGBM First Run)

Parameter Value

verbosity -1

n_jobs 1

seed 42

Page 59 of 82

Figure 32 - Precision-Recall Curve Retraining (LightGBM First Run)

Figure 33 - Receiver Operating Characteristic (ROC) Curve Retraining (LightGBM First Run)

Page 60 of 82

Figure 34 - Confusion Matrix - Retraining (LightGBM First Run)

5.2.1.1.2 Labelling Phase

Label Value

no_fraud_lg 138112

fraud_lg 2842

suspicious_lg 5045

Table 30 - Production predictions (LightGBM First Run) Table 31 - Random Forest Labeling Metrics (LightGBM First

Run)

Metric Value

Precision 0.961

Recall 0.782

F1-Score 0.862

Label Value

0 4999

1 46

Table 32 - Random Forest Predictions (LightGBM First Run)

Page 61 of 82

Figure 35 - Confusion Matrix - Random Forest (LightGBM First Run)

5.2.1.2 Second Run

5.2.1.2.1 Retraining Phase

CU_DT 20241218

Precision 0.9520

Recall 0.8110

F1_Score 0.8758

ROC_AUC 0.9797

PR_AUC 0.9164

Execution_Time 11 hours, 59 minutes

Emissions 0.2079

Table 33 - Retraining Metrics (LightGBM Second Run)

Page 62 of 82

Parameter Value

max_depth 13

num_leaves 228

min_data_in_leaf 86

max_bin 232
 Table 34 - Tree Structure Parameters Retraining (LightGBM

Second Run)

 Table 35 - Learning Parameters Retraining (LightGBM

Second Run)

Parameter Value

learning_rate 0.0549380670305092

feature_fraction 0.6687257546614209

bagging_fraction 0.946378206358222

bagging_freq 4

Parameter Value

min_child_weight 0.00146217790161635

reg_alpha 0.03958323074861385

reg_lambda 0.01516435533248889
 Table 36 - Regularization Parameters Retraining (LightGBM

Second Run)

 Table 37 - System settings Retraining (LightGBM Second

Run)

Parameter Value

verbosity -1

n_jobs 1

seed 42

Figure 36 - Precision-Recall Curve Retraining (LightGBM Second Run)

Page 63 of 82

Figure 37 - Receiver Operating Characteristic (ROC) Curve Retraining (LightGBM Second Run)

Figure 38 - Confusion Matrix - Retraining (LightGBM Second Run)

Page 64 of 82

5.2.1.2.2 Labelling Phase

Label Value

no_fraud_lg 181155

fraud_lg 2564

suspicious_lg 4281

Table 38 - Production predictions (LightGBM Second Run) Table 39 - Random Forest Labeling Metrics (LightGBM

Second Run)

Metric Value

Precision 0.981

Recall 0.706

F1-Score 0.821

Label Value

0 4280

1 1

Table 40 - Random Forest Predictions (LightGBM Second Run)

Figure 39 - Confusion Matrix - Random Forest (LightGBM Second Run)

Page 65 of 82

5.2.2 CatBoost

5.2.2.1 First Run

5.2.2.1.1 Retraining Phase

CU_DT 20241230

Precision 0.86791

Recall 0.8327

F1_Score 0.8499

ROC_AUC 0.9772

PR_AUC 0.8998

Execution_Time 8 hours, 9 minutes

Emissions 0.3203

Table 41 - Retraining Metrics (CatBoost First Run)

Parameter Value

iterations 788

depth 8
Table 42 - Tree Structure Parameters Retraining (CatBoost First

Run)
Table 43 - Learning Parameters Retraining (CatBoost First Run)

Parameter Value

learning_rate 0.19861699134137997

bagging_temperature 0.15063115230908067

Parameter Value

l2_leaf_reg
0.120891453425621

random_strength 0.002759259413445753
Table 44 - Regularization Parameters Retraining (CatBoost First

Run)

Table 45 - System settings Retraining (CatBoost First Run)

Parameter Value

verbose 0

task_type GPU

random_seed 42

Page 66 of 82

Figure 40 - Precision-Recall Curve Retraining (CatBoost First Run)

Figure 41 - Receiver Operating Characteristic (ROC) Curve Retraining (CatBoost First Run)

Page 67 of 82

Figure 42 - Confusion Matrix - Retraining (CatBoost First Run)

5.2.2.1.2 Labelling Phase

Label Value

no_fraud_lg 84701

fraud_lg 2269

suspicious_lg 5030

Table 46 - Production predictions (CatBoost First Run) Table 47 - Random Forest Labeling Metrics (CatBoost First

Run)

Metric Value

Precision 0.974

Recall 0.496

F1-Score 0.657

Label Value

0 5003

1 27

Table 48 - Random Forest Predictions (CatBoost First Run)

Page 68 of 82

Figure 43 - Confusion Matrix - Random Forest (CatBoost First Run)

5.2.2.2 Second Run

5.2.2.2.1 Retraining Phase

CU_DT 20241231

Precision 0.8828

Recall 0.8440

F1_Score 0.8630

ROC_AUC 0.9789

PR_AUC 0.9091

Execution_Time 8 hours, 57 minutes

Emissions 0.3531

Table 49 - Retraining Metrics (CatBoost Second Run)

Page 69 of 82

Parameter Value

iterations 980

depth 8

Table 50 - Tree Structure Parameters Retraining (CatBoost

Second Run)
Table 51 - Learning Parameters Retraining (CatBoost Second

Run)

Parameter Value

learning_rate 0.19940029466202946

bagging_temperature 0.5547321050988824

Parameter Value

l2_leaf_reg 0.1274298734640127

random_strength 0.05009820908437887

Table 52 - Regularization Parameters Retraining (CatBoost Second

Run) Table 53 - System settings Retraining (CatBoost Second Run)

Parameter Value

verbose 0

task_type GPU

random_seed 42

Figure 44 - Precision-Recall Curve Retraining (CatBoost Second Run)

Page 70 of 82

Figure 45 - Receiver Operating Characteristic (ROC) Curve Retraining (CatBoost Second Run)

Page 71 of 82

Figure 46 - Confusion Matrix - Retraining (CatBoost Second Run)

5.2.2.2.2 Labelling Phase

Label Value

no_fraud_lg 35018

fraud_lg 1975

suspicious_lg 5007

Table 54 - Production predictions (CatBoost Second Run) Table 55 - Random Forest Labeling Metrics (CatBoost Second

Run)

Metric Value

Precision 0.919

Recall 0.289

F1-Score 0.439

Label Value

0 4998

1 9

Page 72 of 82

Table 56 - Random Forest Predictions (CatBoost Second Run)

Figure 47 - Confusion Matrix - Random Forest (CatBoost Second Run)

Page 73 of 82

5.3 Co2 emissions and Electricity usage

5.3.1 LGBM

Figure 48 – Energy Consumption/ Emissions Rate/ Duration (LightGBM)

Training Energy(kWh) Emissions Rate (kg Co2eq/s)

First 0.6473 5.538e-06

Second 0.5842 4.873e-06

Third 0.6038 4.82e-06

Table 33 – LGBM Energy / Emissions

Page 74 of 82

5.3.2 CatBoost

Figure 49 – Energy Consumption/ Emissions Rate/ Duration (CatBoost)

Training Energy(kWh) Emissions Rate (kg Co2eq/s)

First 0.83836 1.083e-05

Second 0.93022 1.091e-05

Third 1.02529 1.096e-05

Table 33 – CatBoost Energy / Emissions

Page 75 of 82

5.4 Evaluation of Pipelines

The evaluation of the LightGBM and CatBoost pipelines by different measures of performance,

computational efficiency, and environmental impact points toward different strengths and limitations

for each model. Similar to both, the models would be trained, followed by categorizing data into fraud,

no_fraud, and suspicious tables. The suspicious category was labeled with the use of Random Forest.

That newly labeled fraud data appended into the training set could also be used for model retraining.

Therefore, LightGBM is better to go with for the overall framework based on the results. The reasons

with a comparison of the results are described in detail below.

LightGBM has always outperformed for all main metrics and improved iteration after iteration. It

reached 0.9206 in precision for the first run and 0.952 for the third. Recall increased from 0.7353 to

0.811, showing that the model is capable of detecting fraudulent cases while keeping false negatives

low. The F1-score, providing a balance between precision and recall, increased from 0.8175 to 0.8758,

hence very good general performance. The ROC AUC score has also risen from 0.9731 to 0.9797,

showing a high capability of distinguishing between fraud and non-fraud transactions.

By comparison, the CatBoost was competitive but slightly lagged in precision and F1-score. Precision

for CatBoost increased from 0.8621 in the first run to 0.8829 in the third run, while recall increased

from 0.8047 to 0.844. Its F1-score only peaked at 0.8630 in the third run, remaining far below

LightGBM's through iterations. Even though the ROC AUC score was close, at 0.9789 for CatBoost

in the third run, the model will turn out to be less effective for tasks with high predictive accuracy at

minimal false positives due to the lower precision and F1-score.

The superiority of LightGBM is further indicated by the labeling phase, which is based on Random

Forest. While both pipelines employed Random Forest to label suspicious data, LightGBM always

outperformed CatBoost in precision and F1-scores during the labeling phase. In the case of LightGBM,

the Random Forest classifier achieved a precision of 0.981 in the third run, while in the same iteration,

the precision dropped to 0.919 for CatBoost's labeling phase. Similar differences are demonstrated by

LightGBM with higher F1-scores in all runs, meaning a better balance between the identification of

fraud and reduction of false positives during labeling.

CatBoost shows more variance in the outcomes of its labeling, such as with its Random Forest recall

decreasing significantly from 0.695 on the first run to 0.289 on the third. The decline suggests

difficulties in the handling of ambiguous cases from the suspicious category in the course of pipeline

iterations.

Execution time and emission are two important parameters that describe how efficiently and eco-

friendly the performance of the pipelines is. For execution time, CatBoost showed higher speeds, since

it executed its first run in 7 hours and 24 minutes and its third run in 8 hours and 57 minutes, while

LightGBM took 11 hours and 10 minutes and 11 hours and 59 minutes for the same runs, respectively.

This makes CatBoost more time-efficient.

Page 76 of 82

However, LightGBM was very environmentally efficient. Its level of emissions went down from

0.2229 kg CO₂ in the first run to 0.2079 kg CO₂ in the third run, while that of the CatBoost model

started at 0.2887 kg CO₂ and increased to 0.3531 kg CO₂, reflecting how much more it consumed

resources though with the shortest execution time. This trade-off against time and environmental

impact makes LightGBM more sustainable.

The results indicated that LightGBM fits best in the framework for more than one reason, since it

showed higher accuracy. Indeed, LightGBM gave consistently high precision, recall, and F1-scores

across all iterations. These metrics are really critical in fraud detection, as false positives result in

unnecessary disruptions while false negatives lead to undetected fraudulent activity.

Improved Labeling Performance: The Random Forest classifier in LightGBM's pipeline

outperformed CatBoost in labeling the suspicious category with higher precision and F1-scores. This

consistency ensures that high-quality data is integrated into the iterative retraining process, further

improving the model.

Environmental Efficiency: Although LightGBM took more execution time, its less emission makes

it more eco-friendly, tuned to the latest awareness about computational efficiency and environmental

care.

Scalability and Generalization: Robustness with big datasets combined with strong LightGBM's

ROC AUC and precision-recall AUC score guarantees good generalization over unseen data. This

makes it more applicable to real-world situations, as scalability and adaptability are featured here.

Page 77 of 82

6 Visualizing Insights with Apache Superset

The last step of the fraud detection framework is to provide actionable insights to its end users via a

strong Business Intelligence tool. This is an important phase that bridges the gap between the technical

implementation of the framework and its practical utility by ensuring that the stakeholders are able to

use the processed data effectively.

Key metrics will be developed to visualize and interpret an opensource BI platform such as Apache

Superset. Superset allows defining and tracking KPIs on raw or processed data, enabling the teams to

monitor several aspects of the system performance. However, in this particular implementation,

Superset was used to build dashboards that would visualize the model evaluation metrics comprising

Model Precision, Model Recall, and Model AUC (ROC_AUC).

This intuitive, user-facing interface will give a nontechnical end user insight into the performance of

the system and evaluation of its outputs in near real time. Apache Superset serves a fundamental

purpose in practical fraud detection framework deployment by offering the capability to make

informed decisions with well-defined, easily accessible metrics.

6.1 LGBM

Figure 50 - LightGBM Superset Metrics

Page 78 of 82

6.2 CatBoost

Figure 51 - CatBoost Superset Metrics

Page 79 of 82

7 Conclusion

This thesis has explored and compared LightGBM and CatBoost algorithms of advanced machine

learning pipelines used in fraud detection within a financial transaction. In view of this, a framework

is implemented which is built upon iterative training, classification, and labeling suspicious data

dynamically to construct a pretty robust system that could recognize fraudulent activities effectively.

Upon drawing detailed performance analysis, it emerged that LightGBM presents the best model for

the proposed framework due to its good precision, F1-score, and environmental efficiency. In the real-

world application, even though CatBoost executes faster, the overall balance between accuracy,

sustainability, and scalability will lead to choosing LightGBM for deployment.

These results emphasize how effective an iterative retraining approach could be, with the model

learning progressively from the data labeled by Random Forest. This strategy improved the results in

both pipelines across successive iterations and demonstrated how the framework is able to adapt to

changing fraud patterns.

In the future, the scope of data analysis would be extended to deeper insights and refinement of feature

engineering. Extensive explorative data analysis shall be carried out to bring forth many hidden

patterns and trends that may help in enhancing model performance even further. Another critical task

will involve deploying this fraud detection framework as a web application. The application is

designed in such a way that it is data-agnostic and optimized for banking datasets with fraud-related

problems, adaptable to challenges in other sectors.

A web-based user interface allows stakeholders to input data easily and obtain real-time predictions,

thus further enhancing the system's accessibility and ease of use. Furthermore, scalability and

adaptability are designed into the system for increasingly complex and larger data, supported by robust

infrastructure and computing power. It will, therefore, be developed further into a practical, efficient,

and complete fraud case detection solution that will meet the demands of modern financial systems

and related industries.

Page 80 of 82

Figure 52 - Web user interface

This research laid the ground for a scalable and adaptive fraud detection system. The results

emphasized the potential of machine learning and iterative feedback loops in solving complex fraud

detection problems, while future developments will mold this framework into a versatile tool for the

financial industry and beyond.

Page 81 of 82

8 References

1

Ngai, E. W. T., Hu, Y., Wong, Y. H., Chen, Y., & Sun, X. (2011). The application of data

mining techniques in financial fraud detection: A classification framework

and an academic literature review. Decision Support Systems, 50(3), 559-569.

2
Phua, C., Lee, V., Smith, K., & Gayler, R. (2010). A comprehensive survey of data mining-

based fraud detection research. Artificial Intelligence Review, 34(1), 1–14.

3
Bolton, R. J., & Hand, D. J. (2002). Statistical fraud detection: A review. Statistical Science,

17(3), 235–249.

4
Zhang, Y., Yang, J., & Wu, B. (2017). Fraud detection via unsupervised learning. Computers

& Security, pp. 75, 64–74.

5
Bahnsen, A. C., Aouada, D., & Ottersten, B. (2016). Example-dependent cost-sensitive

decision trees. Expert Systems with Applications, 42(19), 6609-6619.

6
Hawkins, D. M., He, H., & Williams, G. J. (2002). Outlier detection using replicator neural

 networks. Machine Learning, 58(1), 143–172.

7
Heaton, J. B. (2016). Creating Features for Machine Learning. Communications of the ACM,

59(11), 64–72.

8

Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., & Liu, T. Y. (2017).

LightGBM: A Highly Efficient Gradient Boosting Decision Tree. Proceedings of the 31st

International Conference on Neural Information Processing Systems.

9

Zaharia, M., Das, T., Li, H., Hunter, T., Shenker, S., & Stoica, I. (2016). Discretized Streams:

An Efficient and Fault-Tolerant Model for Stream Processing on Large Clusters.

Proceedings of the 4th USENIX Conference on Hot Topics in Cloud Computing.

10
Kaggle. (2019). IEEE-CIS Fraud Detection Dataset. Available at:

 https://www.kaggle.com/competitions/ieee-fraud-detection

11

Akiba, T., Sano, S., Yanase, T., Ohta, T., & Koyama, M. (2019). Optuna: A Next-generation

 Hyperparameter Optimization Framework. Proceedings of the 25th ACM

SIGKDD International Conference on Knowledge Discovery & Data Mining.

12
Prokhorenkova, L., Gusev, G., Vorobev, A., Veronika Dorogush, A., & Gulin, A. (2018).

CatBoost: unbiased boosting with categorical features. arXiv preprint arXiv:1810.11363.

13

Dorogush, A. V., Ershov, V., & Gulin, A. (2018). CatBoost: gradient boosting with

categorical features support. Proceedings of the IEEE International Conference on Machine

Learning.

14
Amershi, S., et al. (2019). Software Engineering for Machine Learning: A Case Study.

Proceedings of the 41st International Conference on Software Engineering.

15
Mitchell, M., et al. (2019). Model Cards for Model Reporting. Proceedings of the Conference

on Fairness, Accountability, and Transparency.

16
He, H., & Garcia, E. A. (2009). Learning from Imbalanced Data. IEEE Transactions on

Knowledge and Data Engineering, 21(9), 1263–1284.

https://www.kaggle.com/competitions/ieee-fraud-detection
https://www.kaggle.com/competitions/ieee-fraud-detection
https://www.kaggle.com/competitions/ieee-fraud-detection
https://www.kaggle.com/competitions/ieee-fraud-detection

Page 82 of 82

17

Zheng, Z., Zhang, H., & Han, J. (2020). A hybrid approach for fraud detection using machine

 learning techniques and expert knowledge. IEEE Transactions on Neural

Networks and Learning Systems, 31(1), 1-12.

18

Kreps, J., Narkhede, N., & Rao, J. (2011). Kafka: A Distributed Messaging System for Log

 Processing. Proceedings of the 6th International Workshop on Networking

Meets Databases (NetDB).

19
Narkhede, N., Shapira, G., & Palino, T. (2017). Kafka: The Definitive Guide. O'Reilly

Media.

20 Aggarwal, C. C. (2016). Outlier Analysis (2nd ed.). Springer.

21
James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An Introduction to Statistical

Learning: With Applications in R. Springer.

22
Rowe, L. A., & Stonebraker, M. R. (1987). The POSTGRES Data Model. Proceedings of

the 13th International Conference on Very Large Data Bases (VLDB), 83–96.

23

Kohavi, R. (1995). A Study of Cross-Validation and Bootstrap for Accuracy Estimation and

Model Selection. Proceedings of the 14th International Joint Conference on Artificial

Intelligence, 1137–1145.

24
Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5–32.

https://doi.org/10.1023/A:1010933404324

		2025-02-10T18:04:29+0200
	PARIS MASTOROKOSTAS

		2025-02-10T20:24:24+0200
	ANASTASIOS KESIDIS

		2025-02-11T13:37:49+0200
	ANASTASIOS TSOLAKIDIS

