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Abstract 

Fraud detection in financial transactions finds great importance in the fight against financial crime. In 

this thesis, two models are developed: CatBoost and Light Gradient Boosting Machine for classifying 

transactions into "Fraud," "No Fraud," or "Suspicious." Later, the suspicious transactions will be 

relabeled after investigation and reintegrated into the training data, which will enhance the model 

performance. Apache Kafka allows doing real-time processing of data to efficiently handle live 

transactions. Challenges regarding dataset imbalance were addressed by employing class weights 

proportional to the inverse of class frequencies, further adjusted by a scaling factor to ensure optimal 

balance during training. In developing the adaptive accurate detection of frauds, this work designed a 

real-time pipeline, using a feedback loop iteratively in model refinements. Both the models are yielding 

good results; LGBM gave the best regarding precision and recall. The reintegration of relabeled data 

greatly increased accuracy, and the optimization performed with a focus on loss ensured that detection 

was better compared to traditional metrics. This thesis aims to contribute to the domain of fraud 

detection by presenting an adaptive and scalable framework in combination with real-time processing 

and continuous learning coupled with machine learning models. It addresses the challenges related to 

handling imbalanced datasets and evolving fraud patterns in real-world scenarios. 

 

Keywords: Fraud detection, financial transactions, machine learning, Catboost, LightGBM, imbalanced datasets, 

real-time processing, Apache Kafka, continuous learning, Apache Superset, Optuna 
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Introduction 

The increasing adoption of e-commerce, online and mobile banking, and other digital financial services 

has resulted in a manifold increase in electronic transactions and digital payments. While this growth 

has increased convenience and reach for consumers, it has also seen a corresponding rise in fraudulent 

activities. These frauds cause immense economic loss to businesses and individuals, which erodes 

consumer confidence and the integrity of the financial system. 

The dynamic and sophisticated nature of modern fraud schemes makes traditional methods 

increasingly ineffective in fraud detection. Traditional approaches generally rely on a static, rules-

based system, which is by design rigid and bound to predefined rules and thresholds, thus being very 

prone to false positives and false negatives and unable to adapt to fast-changing fraudster tactics. 

Therefore, there is a huge need for far superior, adaptable approaches that are data-driven towards 

timely and effective fraud detection and mitigation. 

More advanced and proactive methods for detecting fraud must be adopted by organizations, with 

fraudulent tactics constantly evolving, making real-time fraud detection crucial in allowing the prompt 

detection and addressing of suspicious activities and minimizing potential risks and financial losses. 

There is an increasing potential to create systems that can learn from historical data, adapt to new fraud 

patterns, and provide continuous monitoring because of the growing prevalence of artificial 

intelligence (AI) and machine learning (ML), with this process being essential for organizations that 

wish to protect their financial transactions and preserve consumer confidence. 

Various industries have been transformed by the inclusion of fraud detection systems by the emergence 

of machine learning and big data technologies, with big data enabling the gathering and examination 

of large volumes of information from multiple sources, providing a comprehensive dataset to detect 

patterns and identify anomalies. Machine learning algorithms, like LightGBM and CatBoost, provide 

powerful tools for analyzing this data, possibly enhancing the accuracy and efficiency of fraud 

detection systems by uncovering intricate relationships and patterns that conventional statistical 

methods may miss, being able to process and analyze data streams in real-time applications, enabling 

the immediate identification of suspicious transactions. 

The objectives of this research are presented below.  

• Develop a real-time fraud detection pipeline using a CatBoost-based approach by 

designing and implementing a CatBoost model capable of analyzing transaction data in real-

time and detecting potential fraud. 

• Develop a LightGBM model to establish a real-time fraud detection pipeline, by 

employing the LightGBM algorithm, which is renowned for its robustness and capacity to 

handle various datasets, classify transactions, and detect fraudulent activities. 

• Evaluate the metrics of these two pipelines by examining them by testing the CatBoost and 

LightGBM models to see which performs best based on their recall, processing speed, and 

ability to handle increasing amounts of data. 
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• Evaluate the environmental impact of the training processes regarding CO2 emissions 

and electricity consumption, evaluating the environmental impact of the training processes 

by assessing CO2 emissions and electricity consumption, ensuring the sustainability of the 

machine learning models in light of their computational requirements. 

1 Literature Overview 

1.1 Overview of Existing Fraud Detection Methods 

Enormous evolution in fraud detection has been caused by the complexity and sophistication of 

fraudulent actions with rule-based systems intended to identify transactions based on predetermined 

conditions, including anomalous transaction amounts or suspect geographic areas, being a significant 

component of traditional techniques and, although initially successful, the ever-evolving strategies 

used by fraudsters posed a challenge to these approaches. Traditional systems revealed flaws as fraud 

grew more dynamic, especially their inability to adjust to novel and unexpected patterns. (Ngai et al., 

2011). 

 

1.1.1 Rule Based 

Rule-based systems have been a critical aspect of fraud detection since the early days of digital 

financial transactions, by applying static rules established by subject-matter experts to prevent 

transactions from coming from specific regions or exceeding a predetermined threshold and despite 

being simple to understand and comprehend, frequently leading to significant false-positive rates—

incorrectly marking everyday transactions as fraudulent. Moreover, (Phua et al., 2010) there is severe 

non-scalability and requirement of continual human updates in order to handle novel fraud techniques 

of rule-based systems as they lack the flexibility needed for ongoing learning and improvement, they 

cannot handle more complex and nuanced forms of fraud. 

 

1.1.2 Anomaly Detection Techniques 

Anomaly detection techniques aim to spot changes in regular transaction patterns that might indicate 

fraud, being divided into two categories: supervised and unsupervised, with models like decision trees, 

logistic regression, and support vector machines (SVMs) being examples of supervised techniques that 

operate on labeled data, which have already been used to identify fraudulent and non-fraudulent 

transactions (Bolton & Hand, 2002), relying however significantly on the availability of labeled 

datasets, which are frequently lacking or insufficient in fraud detection scenarios. 

On the other hand, unsupervised techniques look for outliers in the dataset rather than requiring labeled 

data with unsupervised anomaly detection often using autoencoders, isolation forests, and k-means 

clustering, being more flexible and adaptive than rule-based systems since they identify novel, 
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previously undiscovered fraud patterns. (Zhang et al., 2017). However, their interpretability issues 

often make it challenging for companies to understand the logic behind flagged transactions. 

1.1.3 Machine Learning-Based Approaches 

Machine learning (ML) has become a potent tool for fraud detection in recent years as it can learn 

from enormous volumes of data and eventually adapt to new fraud trends with labeled transaction data 

being readily available, making supervised learning the most widely utilized strategy in fraud detection 

in machine learning models. (Bahnsen et al., 2015). Unsupervised learning models are classified into 

two categories that have all been used in fraud detection with differing degrees of effectiveness based 

on algorithms like decision trees, random forests, gradient boosting, and neural networks. Supervised 

models usually perform well when accessing copious amounts of labeled data, being able to apply the 

lessons from past fraud cases to new information with class imbalance issues frequently impeding 

them however, as the quantity of legal transactions greatly outweigh the fraudulent ones. 

Fraud detection also uses unsupervised machine learning models, especially when labeled data is few 

or nonexistent, by identifying patterns in the data that deviate from the norm and may indicate 

fraudulent activity with autoencoders, being an unsupervised neural network, compress and reconstruct 

input data to detect such anomalies. A transaction might be reported as fraudulent if it differs 

noticeably from the anticipated reconstruction (Hawkins et al., 2002), with unsupervised models 

possibly having difficulty with accuracy, unlike supervised models trained on large datasets, still being 

accommodating for identifying new fraud schemes. 

 

1.1.4 Hybrid Methods 

Hybrid approaches are used by many companies in an effort to overcome the drawbacks of rule-based 

and machine-learning approaches, as they combine the interpretability of rule-based techniques with 

the flexibility of machine learning models with a hybrid system for example using a machine learning 

model to handle more subtle, complicated fraud patterns, while a rule-based system handles simpler, 

well-known patterns (Zheng et al., 2020), making it possible to detect fraud more thoroughly, lowering 

the number of false positives and improving the system's capacity to identify new kinds of fraud. 

 

1.1.5 Challenges in Fraud Detection 

Despite the advancements in fraud detection techniques, there are still a few issues with the quick 

development of fraud techniques being one significant problem that calls for constant model updating 

and retraining and the data privacy problem moreover making collecting enough labeled data for 

machine learning model training difficult, and fraud detection systems lastly being required to process 

data in real time, deciding quickly and accurately without interfering with valid transactions. 
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The field of fraud detection has changed throughout time, moving from more static rule-based systems 

to more dynamic machine learning techniques, with machine learning models being more flexible and 

accurate than traditional methods when identifying complex fraud patterns, offering transparency and 

simplicity. At the same time there is a trend toward hybrid approaches, including both techniques, and 

is expected to become more prevalent as fraud becomes more sophisticated in the upcoming years. 

 

1.2 Review of CatBoost in Fraud Detection 

CatBoost has grown in popularity for fraud detection because it is a gradient boosting framework 

designed for categorical data; it can handle complex nonlinear relationships in data while providing 

robust performance even in the case of an imbalanced dataset. Unlike traditional methods, which rely 

on predefined rules or linear models. It excels in adaptive learning, making it well-suited for the 

dynamic nature of fraud detection in financial systems, where fraudsters constantly evolve their tactics 

to evade existing detection mechanisms (Prokhorenkova et al., 2018). 

A great advantage of CatBoost comes from how naturally it can use categorical features without 

aggressively preprocessing or manually encoding them. Banking systems generate hundreds of 

millions of transactions with timestamps, merchant identifiers, customer demographics, among many 

other variables. The CatBoost approach robustly processes such high-dimensional data at train time by 

converting the categorical variables to numerical representations such that critical relationships are 

preserved and complex patterns indicative of fraud can be detected. This native ability to manage 

categorical data is especially important in the financial domain, where often the interaction of features 

drives fraudulent behavior. 

CatBoost is very suitable for real-time fraud detection because of the efficiency of model training and 

prediction. Unlike neural networks, which often require high computational resources, the optimized 

training of CatBoost minimizes overfitting while keeping speeds high, even on very large datasets. Its 

applicability to real-time systems is enhanced by its built-in mechanisms for handling missing data 

and its ability to adapt to evolving fraud patterns with minimal latency, ensuring that financial 

institutions can quickly identify and respond to suspicious transactions (Dorogush et al., 2018 

Besides that, CatBoost incorporates state-of-the-art techniques for handling the class imbalance 

problem typical in fraud detection, where actual fraudulent transactions constitute a small fraction of 

the total volume. CatBoost reduces bias towards the majority class by employing custom loss functions 

and dynamic class weight to achieve a better balance between precision and recall. This means there 

will be fewer false negatives; hence, probable fraudulent transactions are flagged for further 

investigation with minimal disruption to legitimate transactions. 

Another important advantage of CatBoost over complex models like neural networks is that it is 

interpretable; it contains feature importance scores, including SHAP values for clear model insights 

into its decisions. In banking systems, this interpretability becomes important due to regulatory 

requirements that will soon put pressure on explaining, for example, flagged transactions or denied 
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approvals. This makes CatBoost balanced regarding both demands: performance and transparency of 

the model. 

While CatBoost has a number of strengths, it also has certain drawbacks, such as sensitivity to 

hyperparameter tuning and possible high computational demands in the case of really large datasets. 

These disadvantages are partly compensated for by the efficiency of CatBoost in categorical data 

processing and the reduced need for feature engineering. Besides that, CatBoost is scalable 

architecture-wise, thus allowing fitting into distributed systems, enabling it to process millions of 

transactions with minimal latency in real-time environments. 

Overall, CatBoost presents a compelling solution for fraud detection in financial systems, combining 

high accuracy, interpretability, and efficiency. Its ability to process categorical data natively, address 

data imbalance, and operate effectively in real-time systems positions it as a leading choice for adaptive 

fraud detection in dynamic and high-stakes environments (Prokhorenkova et al., 2018; Dorogush et 

al., 2018). 

 

1.3 Review of LightGBM in Fraud Detection 

LightGBM (Light Gradient Boosting Machine) is a gradient boosting framework known for its 

exceptional efficiency and speed, mainly when dealing with large datasets, and as a result has garnered 

significant attention in machine learning, giving it an edge over its competitors regarding performance 

and memory use, making it the best choice for demanding tasks like finding fraud, by utilizing it’s 

unique decision tree learning method, in which trees grow leaf-wise instead of level-wise,. (Ke et al., 

2017).   

LightGBM's ability to manage extensive transaction data, including high-dimensional features such as 

transaction quantities, timestamps, locations, and customer details is highly respected by the banking 

sector, valuing it for its ability to efficiently handle large-scale transaction data, including high-

dimensional features such as transaction amounts, timestamps, locations, and customer details, 

especially in fraud detection. The capability of natively managing missing values common in 

transaction data and handling categorical variables makes LightGBM highly effective, simplifying the 

data preprocessing pipeline, facilitating the handling of complex banking datasets that contain 

numerical and categorical features, unlike many machine learning models that require extensive 

preprocessing. 

The scalability and rapidity is one of LightGBM's most noteworthy benefits in fraud detection, by 

achieving superior accuracy and quicker training times by growing trees leaf-wise and concentrating 

on the nodes with the highest loss reduction when being compared to conventional methods such as 

Random Forests or XGBoost, which is crucial in fraud detection scenarios, enabling prompt decision-

making on potentially fraudulent transactions and flagging or blocking suspicious activities before 

they inflict significant damage. 
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Another advantage is its capacity to manage imbalanced datasets, a prevalent fraud detection problem 

with fraudulent transactions comprising only a minor proportion of the data and LightGBM resolving 

this through various mechanisms, including a "weighted" metric prioritizing the minority class 

(fraudulent transactions). The adaptation of the loss function to balance precision and recall or 

assigning a higher weight for the minority class to enhance the model's sensitivity to fraud without 

compromising accuracy for the majority class (non-fraudulent transactions), along with other 

parameters are also provided by the LightGBM algorithm. 

Finally, LightGBM excels is feature significance by offering financial institutions valuable insights 

into the features that are most influential in predicting fraud, thereby assisting them in identifying 

critical indicators of fraudulent behavior, with LightGBM's feature importance metrics possibly 

emphasizing specific transaction patterns or client behaviors that may consistently indicate fraud, 

being especially beneficial in the banking industry, where regulatory requirements frequently require 

explicit explanations for decisions regarding whether to approve, deny, or mark a transaction for 

further investigation. 

The detection of fraud using LightGBM, despite having numerous benefits, also presents some 

obstacles, with the need for fine tuning of the model's many hyperparameters, including the learning 

rate, number of leaves, and feature fraction, in an effort to guarantee optimal performance. While 

LightGBM can train rapidly, the optimal balance of precision and recall frequently necessitates 

meticulous hyperparameter tuning, which can be both computationally costly and time-consuming, 

with another obstacle being the potential for overfitting, mainly when dealing with high-dimensional 

datasets and although LightGBM's leaf-wise growth strategy enhances accuracy, it may also result in 

overfitting if not adequately regularized. Lastly, another critical factor in LightGBM's efficacy is data 

quality, with inconsistent or biased data possibly adversely affecting its predictions, even though the 

model can accommodate absent values, potentially disrupting legitimate transactions or allow fraud to 

go undetected, making it imperative to maintain high-quality, well-represented training data. 

 

1.4 Real-Time Data Processing and Kafka 

Real-time data processing has become essential in fraud detection, where quick choices are critical, 

with conventional batch processing techniques working well for analyzing historical data, but falling 

short for applications that need to analyze data instantly and take immediate action and real-time data 

processing making continuous analysis of incoming data streams possible, enabling systems to react 

swiftly to dynamic events and make timely choices. 

Designed to handle high-throughput, low-latency data streams, Apache Kafka is a distributed 

streaming platform and one of the leading real-time data processing platforms with Kafka being the 

first software LinkedIn created, being evolved into a standard for processing data in real-time in a 

variety of businesses. Because of the distributed commit log at the center of its architecture, producers 

can transmit data to topics, and consumers can subscribe to these topics to access and process data 
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with large volumes of streaming data being handled by Kafka with efficiency thanks to its ability to 

grow horizontally over several brokers (Kreps et al., 2011). 

Kafka is essential to fraud detection because transaction data can be continuously ingested and 

processed in real-time, enhancing fraud detection systems, which must evaluate transactions almost 

instantly to prevent fraudulent activity from escalating, ensuring low-latency data streaming, allowing 

machine learning models to categorize transactions as suspicious, fraudulent, or non-fraudulent 

quickly. 

Fault tolerance and durability are further benefits of Kafka's distributed architecture, being essential 

for mission-critical applications like fraud detection, with the risk of data loss being reduced via data 

replication over numerous brokers in the event of hardware failures, enabling companies to set up 

retention policies maximizing storage and maintain responsiveness (Narkhede et al., 2017). The 

integration of Apache Spark and Flink which are data processing frameworks interfacing easily with 

Kafka, is frequently used by organizations, as a more sophisticated real-time analytics pipeline, with 

real-time fraud detection models depending on ongoing data processing and decision-making often 

requiring these frameworks' extensive stream processing characteristics, such as windowing and 

stateful computations. (Zaharia et al., 2016). 

 

1.5 Related Work in Big Data Analytics for Fraud Detection 

Big data analytics have emerged as an essential tool in the struggle against fraud with traditional fraud 

detection methods, frequently dependent on rule-based systems or basic statistical models, being 

unable to keep up with the escalating scope and complexity of fraudulent activities, facilitating a 

substantial transition to the utilization of big data analytics, enabling the processing and analysis of 

extensive datasets to detect patterns, anomalies, and trends that suggest fraudulent behavior. 

One of the most significant developments in the field of fraud detection is the incorporation of machine 

learning algorithms with big data platforms, including Apache Hadoop and Apache Spark, facilitating 

large-scale datasets being processed across distributed computing environments. This solution enables 

the application of complex models such as Random Forests, LightGBM, Neural Networks, and 

Support Vector Machines (SVMs) with Aggarwal (2016) demonstrating that applying machine 

learning models to big data, potentially enhancing the accuracy and speed of fraud detection systems, 

identifying subtle patterns that conventional methods may overlook. 
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2 Methodology 

2.1 Tools and System 

The project is using Ubuntu 24.04 with the specifications listed below: 

CPU Model on constant consumption mode AMD Ryzen 7 5800H with Radeon Graphics 

Platform system Linux-6.8.0-39-generic-x86_64-with-glibc2.39 

Python version 3.12.3 

CodeCarbon version 2.5.0 

Available RAM 30 GB 

CPU count 16 

GPU model 1 x NVIDIA GeForce RTX 3070 Laptop GPU 

Table 1 – Hardware Specifications 

 

Python is the main programming language used to create the algorithms for this project; it is the best 

option for this task because of its many libraries and frameworks. With libraries like TensorFlow, 

Scikit-learn, and Pandas, among others, this language offers strong tools for creating and improving 

machine learning models, making it ideal for data science, machine learning, and deep learning 

applications. The above- mentioned packages give Python its adaptability and extensive ecosystem, 

making it perfect for complex projects including evaluation, model training, data preprocessing, and 

real-time decision-making.  

By encapsulating the code, libraries, and environment configurations required for various phases of 

the machine learning pipeline, from training to real-time evaluation, a Docker is used, ensuring a 

streamlined and consistent deployment process, potentially preventing problems caused by disparities 

between environments and enabling seamless transitions from development to production. In 

classifying transaction data into three groups, suspicious, no fraud, and fraud, the likely alternatives of 

the model evaluations, Docker containers supervise a PostgreSQL database that houses the outcomes 

of the training processes.  

 

Container ID Image Command Created Status Ports Names 

2958a8ebf44b redis 
“docker-

entrypoint.s…” 

3 months 

ago 

Up 3 

minutes 

0.0.0.0:6379/tcp, 

:::6379->6379/tcp 

redis-

container 

8d099417a3d7 
dpage/pga

dmin4 
“/entrypoint.sh” 

3 months 

ago 

Up 3 

minutes 

443/tcp, 

0.0.0.0:8081-

>80/tcp, [::]:8081-

>80/tcp 

pgadmin-

container 

11fbf147ece3 postgres 
“docker-

entrypoint.s…” 

3 months 

ago 

Up 3 

minutes 

0.0.0.0:5432/tcp, 

:::5432->5432/tcp 

postgres-

container 
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bb8074cf52e3 

confluenti

c/cp-

kafka:late

st 

“/etc/confluent/d

ock…” 

3 months 

ago 

Up 10 

seconds 

0.0.0.0:9092/tcp, 

:::9092->9092/tcp 
kafka 

bce2736d55e3 
zookeeper

:latest 

“docker-

entrypoint.…” 

3 months 

ago 

Up 3 

minutes 

2181/tcp, 2888/tcp, 

3888/tcp, 8080/tcp 

zookeepe

r 

15d65433a286 
apache/su

perset 

"/usr/bin/run-

server…" 

40 hours 

ago 

Up 40 

hours 

0.0.0.0:8088-

>8088/tcp, :::8088-

>8088/tcp 

superset-

container 

Table 2 - Docker configuration 

 

Because of the requirement for real-time data processing, Apache Kafka was chosen, facilitating 

smooth read, train, and write operations, making it possible to handle large volumes of data with low 

latency and high throughput. The aforementioned is essential in fraud detection systems where quick 

decisions are needed to reduce risks as they appear with Redis, an in-memory data structure store, 

being one of Kafka's two main component structures, involving managing Kafka offsets and tracks the 

status of data processing, guaranteeing dependable and scalable processing, with Redis, being a high-

speed storage layer serving as the system's backbone and ensuring fault-tolerant and real-time 

performance.  

In addition to providing robust, interactive dashboards that offer profound insights into transaction 

data and the effectiveness of machine learning models, Apache Superset is used for data visualization 

and performance monitoring of fraud detection models, being essential for monitoring the real-time 

flow of data, identifying trends, and identifying anomalies. Furthermore, it facilitates the analysis of 

model performance over time, enabling for adjustments and improvements based on the processed 

data, allowing scientists and decision-makers to access important metrics and insights in an interactive, 

user-friendly way. 

Each container needed to be part of the same network for proper service communications. The 

arrangement that was adopted for running all the containers on the same network, here referred to as 

pgnetwork, forms the basis for ensuring that the connections are effective for smooth transactions of 

data among different parts with least hindrance possible in the overall system.  

Two primary machine learning pipelines, one dedicated to CatBoost and the other to LightGBM 

models are used in the proposed system, with each pipeline being responsible for a distinct aspect of 

the fraud detection system, working together to cover various transaction patterns. Managing the entire 

process for each step, from the data ingestion and preprocessing step to the model training step, real-

time evaluation, and retraining when necessary is a series of scripts, integrating Random Forest to 

investigate further and refine suspicious data classification enhances model accuracy and fine-tunes 

the overall classification process, leading to more precise detection of fraudulent activities. 
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2.2 Data Collection and Preprocessing 

A significant part of the data collected came from the IEEE-CIS Fraud Detection competition dataset, 

available on Kaggle (Kaggle, 2019), containing a wide range of features, such as transaction amounts, 

timestamps, product codes, device information, numerical features for identity, etc, with the diversity 

and richness of this dataset being crucial in the effective identification of potentially fraudulent 

activities. The rest of the data were sourced by various sources, including transaction records from 

financial institutions, e-commerce platforms, and public datasets. 

Data Preprocessing with various preprocessing techniques being implemented to guarantee the 

integrity and consistency of the data. 

Data Cleaning, ensuring consistent data quality by standardizing formats and addressing 

inconsistencies and missing values. 

Feature Engineering was used for the improvement of prediction accuracy with new features being 

developed, such as simplifying device information and extracting specific details from existing data. 

For both algorithms scale_pos_weight was dynamically set as a function of the inverse class 

frequencies with a multiplier to give more emphasis on the minority class.  

Normalization and Scaling with continuous features being normalized and scaled, guaranteeing 

practical model training and uniformity. 

Categorical Encoding was achieved by converting the machine learning models to numerical formats, 

facilitating the processing of categorical variables. 

Feature Selection was achieved by using a correlation heatmap as the sole method for feature selection, 

analyzing the relationships between features for the identification and the removal of highly correlated 

variables, preventing multicollinearity, at the same time allowing the retention of the most informative 

and independent features, ensuring that redundant data did not influence the model, streamlining the 

feature selection process while improving the model's performance with a single move. 

The aforementioned steps set the foundation for an accurate and reliable fraud detection, ensuring the 

dataset is well-prepared for model training and evaluation, with the implementation section providing 

a more detailed explanation of the specific implementation details of these phases. 

 

 

2.3 Optuna Framework 

Optimizing the hyper-patameters in our system is Optuna, a robust hyperparameter optimization 

library, optimizing the efficacy of the  catboost and LightGBM models. The whole process works by 

trial and error, being particularly well-suited for tasks that necessitate the efficient exploration of 

extensive hyperparameter spaces. (Akiba et al., 2019), being employed in autonomous search of the 
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optimal combination of hyperparameters, maximizing the AUC, thereby enhancing the model's 

generalization to new, unseen data. 

The ability of asynchronous optimization, enabling the evaluation of multiple trials in parallel, 

expediting the hyperparameter search procedure and mitigating potential bottlenecks, is probably 

Optuna’s most noteworthy advantage. Optuna was used in this study, monitoring multiple trials, each 

of which investigated distinct configurations for hyperparameters, including the learning rate, dropout 

rate, and number of layers in the neural network, as well as the number of leaves, maximum depth, 

and feature fraction in LightGBM, with the dashboard being incorporated in tracking the advancement 

of the hyperparameter optimization process. The user-friendly interface offered by this tool worked 

flawlessly in assessing the performance of each trial and visualizing the optimization results, 

facilitating the identification of the most suitable configurations for subsequent training and observing 

the impact of various hyperparameters on the model's loss function. 

The subsequent examples were used as a demonstration of Optuna’s ability in generating studies for 

both the CatBoost and LightGBM models: 

 

study = optuna.create_study(storage=storage,study_name=f"catboost_prd_{CU_DT}",direction=maximize) 

study = optuna.create_study(storage=storage, study_name=f"lgbm_prd_{CU_DT}", direction= maximize) 

Table 3 – Optuna Initialization 

 

The hyperparameter tuning process was streamlined, enabling optimal configurations for both models 

to be identified with greater efficiency and precision. (Akiba et al., 2019) by the use of the Optuna’s 

dashboard, contributing in a significant manner to the improved performance of the fraud detection 

pipeline, as being presented in the subsequent sections. 

Optuna provides an intuitively understandable interactive dashboard with comprehensive insights into 

the process of hyperparameter optimization. Such a tool enables researchers and practitioners to 

present important aspects of their studies intuitively, which may be interpreted more easily and used 

for model refinement in a far more effective manner. 

Hyperparameter Importance: The dashboard visualizes the relative importance of each hyperparameter 

regarding the optimization process. Thus, it is easy to obtain an idea of which parameter will play a 

most decisive role in the performance of the model to tune those first. 

Optimization Timeline: The timeline plot shows how trials develop with time. That provides a good 

overview of the optimization process' development and, on that basis, lets the user know how efficient 

the process is, or whether enough trials have been done to get something meaningful from them. 

Best Trial Information: The dashboard then highlights the best trial that occurred during the study, 

including the performance metric it achieved (objective value), along with the hyperparameter 
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configuration used. This makes it easier to pick out the best parameters for use or further 

experimentation. 

User-Defined Attributes: The dashboard contains study-specific attributes where users can define 

and record metadata or, in other words, information related to the studies. This would further help and 

facilitate the better management and documentation of experiments, usually in complex and 

collaborative projects. 

 

Figure 1 - Optuna-dashboard 

 

 

2.4 High Level Pipeline 

First, the pre-processing of raw transactional data is prepared for model training by cleaning, handling 

missing values, feature engineering, and encoding of categorical variables. In the case of CatBoost, it 

natively supports categorical features; hence, no special treatment is required. LightGBM uses 

encoding methods suitable for its structure. Fine-tuning of both models is performed with Optuna for 

hyperparameter optimization. 

The training process encompasses techniques for dealing with imbalanced datasets, such as 

dynamically computed class weights, to ensure the balance of fraudulent and non-fraudulent 

transactions in the model. Performance metrics like AUC, recall, precision, and confusion matrices are 

recorded in PostgreSQL tables: experiment_results_cb for CatBoost and experiment_results_lg for 

LightGBM. These tables allow tracking the performance of each model through their training. 
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In production, Kafka facilitates the real-time processing of incoming transaction data. Raw data is 

ingested by Kafka producers, where preprocessing steps are applied before the data is passed to the 

models. LightGBM and CatBoost operate simultaneously to classify transactions into three categories. 

These models identify suspicious transactions and then send them for further refinement in the labeling 

phase using a Random Forest algorithm. This adds to the analysis, hence bringing nuanced patterns in 

suspicious data that might not have been powerfully captured at the time of initial classification. Newly 

labeled fraudulent transactions are fed back into the training datasets for both models, allowing them 

to adapt to emerging fraud trends and maintain high detection accuracy. 

The last stage of the pipeline is visualization of the results and insights through Apache Superset. This 

provides an intuitive dashboard for stakeholders to monitor key performance metrics, analyze 

classification trends, and gain actionable insights from the data. Superset is connected directly to the 

PostgreSQL database, thus allowing dynamic and real-time visualizations of the outcomes from the 

pipeline. 

 

 

Figure 2 – High Level Flow 
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3 Implementation 

For a more comprehensive management and support of CatBoost and LightGBM streams, a 

comprehensive repository established, containing numerous critical folders, each with a distinct role 

in the development, training, and deployment processes. 

 

3.1 Overview of the Repository Structure 

 

Figure 3 – Project Structure 

 

• Configs containing configuration files that contain critical parameters such as the number of 

Optuna trials, data paths for training and production, bulk sizes, and so on, enabling effortless 

modifications to various configurations. 

• Data includes the training datasets used to construct and train machine learning models, 

guaranteeing that all training data is conveniently located and readily accessible. 

• Model_Nec_Info, storing essential outputs from the training process, including model 

visualizations, summaries, lists of features used, etc, aiding in model evaluation and 

documentation. 
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• Models with the best-performing models are saved after training, making future deployment 

and further analysis easy. 

• Plots, containing visual outputs, such as precision-recall curves and confusion matrices, help 

in the assessment of the model's performance and understanding the data. 

• Scripts, including utility scripts for maintenance tasks, such as cleaning Kafka offsets in Redis 

and clearing PostgreSQL tables, to keep the database optimized. 

• Source with the models processing production data from this folder in real-time, ensuring their 

evaluation of new, unseen data. 

• Finally, Utils, including reusable functions and utilities that support tasks like data 

preprocessing, model training, and evaluation, fostering code reuse and enhancing 

maintainability across the project. 

 

 

3.2 Preprocessing Phase  

The first step of the implementation process was importing the paths and parameters from a JSON 

configuration file (config_cb.json / config_lg.json), which contained key parameters such as the data 

path (DATA_PATH), the number of optimization trials (N_TRIALS), batch size (BATCH_SIZE) and 

the number of folds for stratified folding (NFOLDS). These parameters ensured a structured and 

efficient training process. Python libraries such as NumPy, Pandas, Seaborn, and Matplotlib were 

utilized for handling and visualizing the data, providing a comprehensive toolkit for the 

implementation. 

The CodeCarbon library was integrated as an efficient way of tracking CO2 emissions during the 

training process, keeping in line with the project's emphasis on sustainability, and the monitor and 

mitigation of the environmental impact was deemed essential, after considering the high computational 

demands of training deep learning and tree-based models, aligning with the broader goal of promoting 

environmentally responsible AI development. 

The training dataset was imported using a csv file, while extracting the isFraud column as the target 

variable and the remaining columns as features or inputs, both the CatBoost and LightGBM 

algorithms, aiming to build a comparable methodology regarding data preprocessing, with column 

names being standardized by converting them to lowercase after the data is loaded, guaranteeing 

consistency throughout the procedure, while at the same time recording metadata, including column 

names and data types, into a database for future reference and easy tracking, facilitating the 

documentation of the features employed during model training and ensures consistency in dataset 

analysis by both approaches. Several essential preprocessing steps are incorporated by the 

preprocess_data function, standardizing, cleaning, and enhancing the dataset, ensuring the data fed 

into the models is robust and reflecting the underlying patterns necessary for effective fraud detection. 



 

 

  

Page 26 of 82 

 

3.2.1 Data Logging  

In this study, an Excel workbook is generated to compile key insights about the dataset at various 

stages of preprocessing. This report serves as a summary of the dataset’s characteristics and 

transformations, rather than a comprehensive log of all data modifications. It provides a high-level 

overview to enhance understanding and transparency of the dataset's key attributes. The report includes 

the following sections: 

 

Dataset Shapes: Record the initial and post-processing dimensions (number of rows and columns) of 

the dataset, for reference. This section captures a picture of the progress of the dataset throughout the 

course of preprocessing. 

Prevalence of Devices: Among the set, the distribution of devices is summarized, depicting the counts 

of each device in their raw state. It gives a great idea of the presence of different devices within the 

dataset. 

Overview of Missing Data: Missing values are summarized for each feature in terms of percent. This 

provides an understanding of which features have a large amount of missing data that might need 

special handling. 

Removed Features: Features removed during preprocessing, because they were redundant or 

irrelevant, are listed. This section identifies columns not included and ensures clarity on changes made 

to the dataset structure. 

Email Domain Insights: A split is given of the most frequent domains occurring in the email data set. 

This part provides an overview of the most common domains linked with transactions, which may give 

a trend or pattern. 

Transaction Amount Summary: Descriptive statistics for transaction amount is provided, detailing 

mean, median, and range. This gives the numerical nature of the actual features of the data set. 

The naming convention for this Excel workbook is dynamic to allow immediate identification of the 

date and time of processing. This summary report provides a quick and accessible overview of the 

important insights in the dataset, supporting transparency and data-driven decision-making. 
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Figure 4 - Number of Features by Group 

 

Figure 5 - Distribution of Feature Types in Dataset 
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Figure 6 - Distribution of addr1 

 

Figure 7 - Distribution of addr2 
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Figure 8 - Distribution of transactionamt 

 

Figure 9 - Distribution of dist2 



 

 

  

Page 30 of 82 

 

 

Figure 10 - Distribution of dist1 

 

Figure 11 - Distribution of card5 
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Figure 12 - Distribution of card3 

 

Figure 13 - Distribution of card2 
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Figure 14 - Distribution of card1 

 

Figure 15 - Distribution of transactiondt 

 

3.2.2 Handling Missing Values and High Repetitive 

This is a very fundamental step in the preprocessing pipeline, since poor handling of missing values 

might lead to biased or incomplete models. The count and percentage of missing values for each feature 

are calculated and logged for transparency in the quality of the dataset. Features with a high proportion 
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of missing values (above 90%) are flagged as candidates for removal. This threshold ensures that 

features contributing minimal information due to excessive missing values are excluded, hence 

reducing noise in the dataset. 

When working in training mode (MODE='TRN'), a bar plot is created to visualize the percentage of 

missing values across features. This visualization is saved for easy interpretation and serves as a 

diagnostic tool for assessing the completeness of the dataset. 

It also identifies columns that demonstrate very low variability, usually those dominated by a single 

value. For example, features where more than 90% of the values consist of the same value—features 

that are considered here as adding little informational value to the model—are removed. These 

columns, very commonly known as "redundant features," are excluded to ensure the dataset remains 

compact, efficient, and focused on informative predictors. 

The pipeline then proceeds to handle missing data in the retained features through imputation strategies 

specific to each feature type. Numerical features will be imputed with their medians, and categorical 

ones with their most frequent value. These imputation methods preserve the integrity of the dataset 

and ensure compatibility with downstream machine learning models. 

The preprocessing pipeline ensures the quality of the used dataset, optimizes it for training by the 

systematic handling of missing values and redundant features. This reduces the possibility of bias and 

inefficiency in the model. 

 

 

Figure 16 – Percentage of Missing Values by Feature 
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3.2.3 Device Information Transformation 

The raw device data are usually very noisy, coming from various heterogeneous sources. If not 

properly handled, this noise will mask the meaningful patterns in the data, which increases the risk of 

overfitting and reduces the predictive accuracy of the model. Therefore, in this pipeline, a special care 

has been taken in using the mapping dictionary that helps to normalize the different representations of 

device manufacturers into consistent categories. 

The mapping dictionary is also applied to the deviceinfo column in order to harmonize the 

representation of manufacturers of devices. For example, "SAMSUNG,","SM,", and "GT-" are 

mapped to "Samsung." This way, the model may treat these variants as one and retain their predictive 

value while not adding too much complexity. Devices with fewer than 200 occurrences are replaced 

by "Others," reducing the impact of rare categories that may otherwise contribute to noise and reduce 

model generalization. This threshold ensures that the dataset focuses on dominant patterns while 

managing data sparsity. 

Moreover, the pipeline transforms information related to a device into general categories by grouping 

the devices under major brands—for example, Samsung, Apple, and Motorola. Such transformation 

captures trends that surround specific manufacturers, generally indicative of user behavior—for 

example, some device types may have a special spending pattern or relate to transactions with 

anomalies in them, hence making this an important transformation while detecting fraud. 

If the pipeline is in training mode (MODE='TRN'), it creates visualizations of boxplots to analyze the 

relationship between device brands and transaction amounts. These boxplots give valuable insight into 

how transaction behavior varies across device categories, adding another layer of interpretability. 

Such cleaning and standardization of the device-related data only serve to increase their quality, but 

the transformation also helps the model learn meaningful patterns. Simplifying input data while 

retaining its predictive value reduces complexity, ultimately leading to improved model performance 

and generalization. 
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Figure 17 - Transaction Amount by Device Brand 

 

3.2.4 Transforming Email Domains and Temporal Features 

Email domain features, such as p_emaildomain and r_emaildomain, are transformed by mapping them 

according to a predefined mapping that groups the domains into bigger categories: google, yahoo, and 

microsoft. Suffixes are also extracted to distinguish U.S.-based from international domains, adding 

contextual information that is often very indicative of user identity. 

Temporal features derived from transaction timestamps capture important time-based behavioral 

patterns. The pipeline calculates actual transaction dates relative to START_DATE and extracts 

components such as month, week, and day of the year. Such features allow for the identification of 

fraudulent patterns that evolve over specific time intervals. 

 

3.2.5 Feature Engineering 

Feature engineering enriches the dataset by creating new, informative features. Composite features, 

such as userinfo, derived from card1, card2, and card3, and full_address, derived from addr1 and addr2, 

are created to capture potential correlations between related features. The engineered features provide 
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more context for fraud detection algorithms. By combining related attributes, these engineered features 

help the model uncover complex interactions that might be indicative of fraudulent behavior (Heaton, 

2016). 

Some of the categorical features are also encoded with frequency encoding, replacing values by their 

frequency in the dataset. This would help bring out the patterns related to rare or frequent occurrences 

of features. The transaction amounts in the dataset (transactionamt) are transformed with a natural 

logarithm (log1p) to reduce skew and normalize their distribution, generally reducing the effect of 

extremely large outliers. 

 

 

Figure 18 - Transaction Pattern by Hour of Day 
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Figure 19 - Top 10 Email Domain Providers 

 

Figure 20 - Distribution of Transaction Amounts (Log-transformed) 

 

3.2.6 Handling Categorical Features: Label Encoding 

Categorical features, such as deviceinfo and others, must be converted into numerical formats for 

models like LightGBM, which require numerical inputs for training. This conversion process is 
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commonly achieved through label encoding, where a mapping function transforms unique categories 

into distinct numerical values. Formally, the label encoding process can be represented as: 

f(x):C1,C2,…,Cn⟶ {0,1,2,…,n−1}  

with C1, C2,…, Cn being the unique categories in the categorical feature xx, and nn is the total number 

of unique categories with the function f(x)f(x) assigning an integer to each category.  

For example, having a column like deviceinfo with categories such as "Samsung," "Motorola," and 

"Apple," they will be mapped to a unique integer, such as the following example: 

f(deviceinfo)={"Samsung":0,"Motorola":1,"Apple":2,… } 

This step is essential because machine learning algorithms cannot process textual data and rely on 

numerical representations to learn patterns. Label encoding is particularly advantageous for ordinal 

features, where categories have a natural order (e.g., "Low," "Medium," "High"), as the numerical 

mapping aligns with their inherent ranking. 

However, when applied to nominal features, which lack an intrinsic order, label encoding can 

inadvertently introduce arbitrary numerical relationships. While this may pose challenges for certain 

models, such as linear regression, tree-based models like LightGBM are inherently robust to such 

numerical ordering. These models split data based on thresholds rather than interpreting numerical 

relationships, allowing them to handle encoded categorical data effectively without bias. 

CatBoost, in contrast, eliminates the need for label encoding entirely by offering built-in support for 

categorical features. Instead of assigning arbitrary numerical values, CatBoost employs advanced 

statistical techniques and combinations of categorical values to create meaningful representations. This 

approach reduces the risk of bias and enhances the model's ability to generalize, particularly when 

dealing with high-cardinality categorical features (Prokhorenkova et al., 2018). As a result, CatBoost's 

method not only simplifies preprocessing but also boosts performance on datasets with diverse and 

complex categorical attributes. 

 

3.2.7 Split Dataset - Pipeline 

Numerical and categorical features are passed through separate pipelines, each designed for the 

particular needs of that type of feature: 

Numerical Pipeline: 

The numerical pipeline begins with a FeatureExtractor that identifies and selects the numerical 

attributes in the dataset. It imputes missing values for these attributes using the median strategy—a 

robust approach that minimizes the influence of outliers, ensuring the imputed values don't skew the 

data distribution. After imputation, numerical features are standardized using StandardScaler, which 

removes the mean and scales features to unit variance. Standardization ensures that all numerical 
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features are on a comparable scale, which avoids the domination of the learning process by any single 

feature with a larger range. This step improves the stability of the model and allows it to converge 

faster during training.  

Categorical Pipeline: 

The categorical pipeline begins with a FeatureExtractor that will select only categorical attributes; it 

replaces missing values of these features using the strategy of using the most frequent value—imputes 

missing values with the mode of the column. Together, these steps preserve data integrity and ensure 

that imputed values make sense in context for the categorical columns. 

The transform_features function consolidates these pipelines, which are then applied to the dataset. 

The pre-processing framework stays adaptive to a variety of datasets and preprocessing requirements 

while applying transformations consistently by modularizing the pipelines. 

To deal with large datasets, the preprocessing pipeline uses a chunked processing approach. Instead of 

trying to process the whole dataset at once, which might even cause system memory to run out, the 

dataset is broken down into manageable chunks. Each chunk is then independently passed through the 

numerical and categorical transformation pipelines using the transform_features function. 

Such chunked processing has a few benefits for large datasets. In general, by breaking a dataset into 

smaller subsets, the pipeline avoids memory bottlenecks, thus the algorithm is compatible with systems 

having limited memory capacity. These are applied uniformly to the whole dataset, while being 

processed in chunks, to maintain consistency and integrity of the final recombined data. This ensures 

that the resultant dataset is cohesive and ready for downstream machine learning tasks. 

 

After transformation of all chunks, they are concatenated together into a single dataset. This last step 

is performed to make sure that the data is ready for downstream machine learning tasks and that all 

features are scaled, imputed, and standardized accordingly. 

 

3.2.8 Handling Imbalanced Data 

Class imbalance was the most crucial step of the entire process, considering the huge amount of 

variation in the number of instances between the legitimate and fraudulent transactions. This would 

amount to a severe problem since models could easily get biased towards predicting the majority class, 

leading to overfitting or a low recall for the minority class. This, in banking, is very risky, especially 

when a model fails to give a higher recall, as misclassifying a fraudulent transaction as genuine might 

cause great financial and reputational loss. Therefore, ensuring the model's ability to effectively 

identify fraudulent transactions was of paramount importance. 

The dataset, by default, is imbalanced, with a significantly higher number of legitimate transactions 

compared to fraudulent ones. This imbalance poses a challenge for machine learning models, as they 

tend to become biased toward predicting the majority class (legitimate transactions). Such bias can 
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result in poor performance in detecting the minority class (fraudulent transactions). Addressing this 

issue is crucial to ensure the model can effectively differentiate between fraudulent and non-fraudulent 

transactions. 

For both models, the imbalance was addressed by calculating weights for the classes based on their 

relative frequencies in the dataset. Fraudulent transactions, being fewer in number, were given 

proportionally higher importance. These class weights were incorporated into the model's training 

process using the scale_pos_weight parameter. This ensured that errors in predicting fraudulent 

transactions were penalized more heavily than errors for legitimate transactions, improving the model's 

ability to identify fraud. 

Both implementations emphasized the recall metric, which measures the proportion of actual 

fraudulent transactions that the model correctly identifies. In fraud detection, maximizing recall is 

crucial because missing fraudulent transactions (false negatives) can lead to significant financial or 

reputational losses. By prioritizing the minority class, the models were optimized to reduce false 

negatives and improve recall. 

 

Figure 21 - Class Distribution (1/2) 
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Figure 22 - Class Distribution (2/2) 

 

3.2.9 Features Scaling 

The last step in the chain of the preprocessing pipeline is scaling numerical features using the 

StandardScaler. This utility removes the mean of each feature and scales those features to a standard 

range, in order to make all numerical features more equal, preventing overpowering features with 

large-value ranges from dominating the learning process. This further reduces the possibility of any 

bias in the model or giving partiality to one of the input features. 
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Application of StandardScaler standardizes the preprocessing, considering all these models would be 

blended with other models, and features in large numerical difference may make some impacts to 

model interpretability. Standardizing features also provides better optimization stability and promises 

faster convergence when training, especially for numerical features that highly vary in scale. 

This is standardized preprocessing that prepares the data for machine learning models quite nicely, as 

observed in James et al. (2013). It may not be strictly necessary when dealing with tree-based models, 

such as LightGBM or CatBoost, but this makes the data cleaner and easier to understand, and it also 

better connects with other preprocessing. 

 

3.2.10 Pipeline 

LightGBM and CatBoost preprocessing pipeline takes raw data as input, making it ready for training. 

It takes as an argument the preprocess_data function processing the data and splits the categorical and 

numerical variables. In CatBoost, this uses native support for categorical variables without any 

encoding from other libraries, hence maintaining the relationship between such features. For 

LightGBM, the categorical features are encoded to make them compatible with the model's training 

process. 

Stratified splitting ensures that the class distribution will be well captured across the subsets for a 

balanced distribution in both fraudulent and no-fraud transactions. The stratified split splits the data 

into training, validation, and testing subsets. 

Because the target variable isfraud is highly imbalanced, class weights are computed dynamically 

depending on the frequency of each class in the training data. These weights have been added to both 

models during training so that the predictions are not biased toward the majority class. In fact, this 

approach gives a great boost in improving recall for the minority fraudulent class, which is so critical 

when it comes to fraud detection. 

Memory control in the above processes involves deleting any intermediate dataset once it is no longer 

useful and a call to gc.collect() to make sure the garbage collector runs, so big memory allocations can 

be accommodated. For example, the data objects which could be temporary splits or/and folds are 

deleted instantly after usage for freeing the occupied resources. 

The final models, with the hyperparameters tuned to the best, were trained on combined training and 

validation sets. 

 

3.2.10.1 CatBoost Hyperparameters 

Iterations: It defines the number of boosting rounds. Range: 500 to 1000. 

Learning Rate: Logarithmic scale search from 0.01 to 0.2 to balance training speed and accuracy. 
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Depth: Defines the depth of a tree. Values explored: from 4 to 8 to avoid overfitting but capture the 

complexity. 

L2 Leaf Regularization: Controls overfitting, values optimized from 0.1 to 10. 

Bagging Temperature: Regulates randomness of subsampling, values searched from 0.0 to 1.0. 

Random Strength: Regularizes noise in split thresholds, optimized between 1e−71e−7 and 10.0. 

Scale Pos Weight: Scales the loss function to account for class imbalance, calculated using class 

frequencies dynamically. 

Border Count: The number of splits for numeric features, fixed at 128 for regular granularity. 

 

The model has been trained on a GPU, which will significantly speed up training and optimization, 

especially for larger datasets or wide hyperparameter search spaces. 

This setup will make sure that the powerful capabilities of CatBoost in handling categorical data and 

complex feature interactions are unleashed to their full potential, while being optimized for 

performance by means of a strong hyperparameter tuning process. 

 

Figure 23 - CatBoost GPU Utilization 

 

3.2.10.2 LightGBM Hyperparameters 

 

Learning Rate: Step size in every optimization. 



 

 

  

Page 44 of 82 

 

Search Space: Logarithmic scale from 0.03 to 0.1 because it offers a great trade-off between 

convergence speed and stability. 

Number of Leaves: To define the complexity of every tree. 

Range: 100 to 200. 

Feature Fraction: Fraction of features used for each tree. Range: 0.3 to 0.8. 

Bagging Fraction: Fraction of data samples used for each tree. Range: 0.3 to 1.0. 

Minimum Data in Leaf: This ensures that leaves have at least this number of samples, thereby acting 

as a prevention against overfitting. 

Range: 10 to 50. 

reg_alpha: L1 regularization. 

reg_lambda: L2 regularization. 

Range: Both optimized between 0.01 and 10 in order to reduce overfitting. 

Scale Pos Weight: Scales the contribution of the minority class to the loss function. 

Value: Computed dynamically as a ratio of class frequencies. 

Max Depth: Maximum depth of trees to prevent overfitting. Range: 8 – 15 

Max Bin: It computes a number of bins for a continuous feature. 

Range: 60 - 125. 

The model has been trained with n_jobs=5. LightGBM can use full parallel processing on multiple 

CPU cores. This config greatly speeds up both training and evaluation by dividing the work in an 

efficient way and is particularly useful when working with big datasets or compute-heavy pipelines. 

This parallelism is very useful for hyperparameter optimization, where different combinations of 

parameters can be tested at the same time, saving a lot of time in finding the best model configuration. 

Besides that, multi-threading ensures that all computational resources of the system are utilized with 

minimal idle time, which increases overall efficiency. 

 

 

3.3 Plotting Training Results 

In the CatBoost and LightGBM scripts, the evaluate_model function is executed to start the evaluation 

phase following the training phase. 
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The confusion matrix (conf_matrix), a useful tool for visualizing a classification model's performance, 

is one of the important performance metrics that the evaluate_model function returns, with the 

summary of the important metrics being presented below.  

1. The Confusion Matrix is a 2x2 matrix that provides a detailed breakdown of the classification 

results by showing the counts of: 

True Positives (TP) the number of correctly predicted fraud transactions. 

True Negatives (TN) the number of correctly predicted non-fraud transactions 

False Positives (FP) 
the number of non-fraud transactions incorrectly predicted as fraud (Type 

I error) 

False Negatives (FN) 
which is the number of fraud transactions incorrectly predicted as non-

fraud (Type II error) 

Table 4 - The Confusion Matrix 

 

2. Precision is the determining factor of accurate positive predictions to all of the model's positive 

predictions. i.e., the proportion of predicted fraud cases that actually occurred. 

3. Recall is the ratio of real fraud cases that the model correctly identified, or the number of real 

fraud cases that were correctly predicted to be fraud to the total cases. 

4. F1 Score uses the precision and recall harmonic means, offering an impartial assessment of 

the model's performance, being helpful in situations where the dataset is unbalanced (like in 

fraud detection). 

5. Area Under the Receiver Operating Characteristic Curve, or AUC-ROC, measures how 

well the model can differentiate between fraud and non-fraud across a range of thresholds with 

a higher AUC score indicating model performing better. 

6. AUC-PR (Area Under the Precision-Recall Curve) is another threshold-based metric useful 

for imbalanced datasets, focusing on the trade-off between precision and recall. 

CatBoost and LightGBM generate their predictions with the predict method. Then, probabilities of the 

fraud class are thresholded at 0.2 to differentiate between classes; that will be done with all models for 

consistency because this dataset is quite imbalanced. This ensures a standardized evaluation 

framework across models, aligning with best practices for handling imbalanced datasets (He and 

Garcia, 2009). 

Then, it also presents in an interesting form what are the hyperparameters generated after the 

optimization using the pipelines and Table from the Rich library. These are both printed to the console 

for immediate review and outputted to a text file (e.g., lgbm_parameters_<date>.txt) in the model_info 

directory using PrettyTable. The mentioned practices ensure that both pipelines keep parameters and 

configurations accessible, thereby facilitating reproducibility, comparison, and documentation. 

In both pipelines, the format_elapsed_time function is used to document the total training time in a 

human-readable format, helping assess computational efficiency and resource usage. The final models 
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are saved with  save_model() function, ensuring they can be reused for future predictions or analysis 

without retraining. These steps collectively emphasize transparency, reproducibility, and clarity in 

documenting the training and configuration processes for both machine learning pipelines. 

 

3.4 Save Metrics 

Both models’ training scripts incorporate a dedicated function, insert_results_into_db, that is executed 

at the conclusion of the training process. This function is accountable for the storage of critical 

performance metrics in a PostgreSQL database. By enabling the systematic recording of evaluation 

metrics, this function facilitates future analyses, comparisons, and audits of the models' performance, 

a practice widely recognized as essential in machine learning workflows (Amershi et al., 2019). 

The insert_results_into_db function records numerous critical metrics, including precision, recall, F1 

score, ROC AUC, and precision-recall AUC. These metrics are indispensable for assessing the efficacy 

of the fraud detection algorithms, as they offer valuable insights into their capacity to differentiate 

between legitimate and fraudulent transactions. Furthermore, the function records the values of the 

confusion matrix (true negatives, false positives, false negatives, and true positives), which provide a 

more detailed understanding of the model's classification accuracy. The CodeCarbon library monitors 

the model's total execution time and the environmental impact in terms of CO2 emissions, 

supplementing these metrics. 

The function initially establishes a connection with the database in accordance with the configuration 

file (config.ini). It either constructs the table if it does not exist or inserts the results into the appropriate 

columns after confirming that the table for the respective algorithm exists (e.g., experiment_results_cb 

for the CatBoost or experiment_results_lgbm for LightGBM). This guarantees that the system is 

capable of managing numerous experiments and preserving the results for future reference. After 

inserting the data, the system securely terminates the database connection. 

This automated logging process offers a methodical approach to monitoring performance metrics 

across multiple experiments, thereby simplifying the evaluation and optimization of models over time 

for data scientists and engineers. Such practices are increasingly crucial in scalable AI systems, as they 

provide transparency, reproducibility, and opportunities for continual improvement (Mitchell et al., 

2019). 

 

3.5 Kafka Production Script  

Real-time fraud detection is made possible by this production script, which is made to implement 

CatBoost and LightGBM models in a live setting, aiming to process transaction data in real-time, 

categorizing transactions as fraudulent, non-fraudulent, or suspicious, and store the results in the 

relevant databases for additional analysis, the system makes use of TensorFlow for model inference 

and Kafka for message streaming, with an enhanced and thorough breakdown of the main elements 
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and features of the script presented below. First, the script loads a configuration file (config_cb.json / 

config_lg.json) which includes important parameters that control the system's behavior: 

DATA_PATH Specifies the location of the data to be processed 

CHUNK_SIZE Defines the batch size for processing data in manageable chunks 

OFFSET 
Sets the threshold for the number of suspicious transactions after which the 

processing halts 

DIR 
Specifies the directory where the trained CatBoost / LightGBM models are 

stored 

Table 5 – Kafka script configuration parameters 

These settings enable the script to be easily and adaptably adapted to a range of environments and data 

sources, making it suitable for a variety of use cases, controlling the flow of transaction data using a 

Kafka producer and a consumer, with preprocessed data being sent to the Kafka topic raw_data_cb / 

raw_data_lg implemented by KafkaProducer for processing in real time, and KafkaConsumer 

retrieving batches of messages from the same topic. 

The most recent iteration of the CB/LG models are used, then loaded using TensorFlow's load_model 

function, enabling the system to quickly classify transactions thanks to this Kafka-based configuration, 

guaranteeing the seamless transfer of real-time data with the model path being dynamically chosen to 

guarantee that the most accurate and recent model is used, keeping the fraud detection system current 

with changing fraud patterns. 

The script simulates live transactions by reading real-time transaction data from a CSV file and sending 

each row as a message to Kafka via the producer with the Pandas read_csv function reading the data 

in chunks, making the handling of large datasets effectively a possibility, with the messages being 

transmitted to the Kafka topic after each chunk is processed row by row. 

The process of loading metadata from a configuration file guarantees that data types and column names 

are consistent across various data sources with Data Cleaning aiding in ensuring consistency. Column 

names are also converted to lowercase and hyphens are swapped out for underscores and at the same 

time using Scaling features ensures that numerical values fall within a steady range, with the 

scale_features function normalizing the data, allowing the models to process the data efficiently 

because scaling avoids problems like skewed predictions brought on by large numerical differences. 

Following preprocessing and scaling, the data is fed into the trained models to make predictions with 

the configured CHUNK_SIZE determining the batch size for the script's processing of Kafka batch 

data. For every batch data is scaled and preprocessed to conform to the model's required format, 

following the model forecasts each transaction's probability of fraud with each transaction being given 

a label by the model using a threshold-based classification approach: 

0 Assigned to transactions with a prediction probability below 0.2 

-1 Assigned to transactions with probabilities between 0.2 and 0.7, indicating uncertainty 

1 Assigned to transactions with probabilities above 0.7 
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Table 6 – Transactions’ labels 

 

The detection of clear fraud cases flagging of suspicious activities is ensured through the classification 

mechanism, warranting further investigation. The results are sent to separate Kafka topics and stored 

in corresponding PostgreSQL tables after the classification of the transactions. 

fraud_cb / fraud_lg Stores transactions identified as fraudulent 

no_fraud_cb / fraud_lg Stores legitimate transactions 

suspicious_cb / suspicious_lg Stores transactions marked as suspicious, requiring further review 

Table 7 – Transactions’ tables 

 

Effective analysis and monitoring are made possible by this data segregation, with each transaction 

category being handled correctly with targeted reactions to fraud and suspicious activity being possible 

by arranging the classified data in separate tables. 

This tracking of dubious transactions is one of the script's most crucial functions with the save_offset 

function being used to update the offset value each time a batch is processed, guaranteeing that the 

script can continue processing from the most recent transaction without having to reprocess data that 

has already been handled in the event that it is interrupted. 

The quantity of highly dubious transactions is continuously tracked by initiating a stopping condition 

when the quantity of suspicious transactions surpasses the pre-established OFFSET, enabling the 

system to restrict the volume of data processed prior to subsequent operations, an action similar to 

retraining the model. 

To guarantee seamless execution and offer insights into its operations, the script incorporates thorough 

logging throughout the processing pipeline, with important occurrences, like preprocessing, batch 

processing, and scaling completion. All the above are being recorded to provide operators with insight 

into the script's development, as in the event of an error, the script records it and offers a thorough 

stack trace for troubleshooting, guaranteeing that any problems are found and fixed right away, while 

at the same time, the script is built to withstand errors, with the fraud detection process being 

minimized by recovering and starting from the most recently saved offset if an error or even a failure 

happens. 

 

3.6 Labeling Suspicious Data 

Labeling begins with loading the necessary configurations from a JSON file, config_rf.json, which 

provides dynamic and reusable settings for the pipeline. It utilizes the RandomForestClassifier, a 

reliable and interpretable machine learning algorithm, to classify suspicious cases. Training is 

conducted using stratified cross-validation to ensure balanced evaluation of fraud and non-fraud 
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classes (Breiman, 2001). To further improve detection performance, class weights address the 

imbalance in the dataset effectively. 

Data preparation involves merging two main datasets, fraud_df and no_fraud_df, into a single dataset 

while keeping their labels in separate variables to form the target variable. This consolidated dataset 

serves as the basis for training and validation of the Random Forest model. Meanwhile, suspicious_df 

undergoes preprocessing to match the processed training dataset, ensuring consistent features and 

compatibility with the model’s input. 

Evaluation is performed using Stratified K-Folds Cross-Validation with five folds. Stratification 

ensures consistent class distribution across splits, which is vital for fraud detection due to the intrinsic 

class imbalance (Kohavi, 1995). Performance metrics, including precision, recall, F1-score, and AUC, 

are calculated for each fold, and the results are reviewed. Average metrics, along with their standard 

deviations, are computed to assess the reliability and robustness of the model. 

Once evaluated, the model predicts labels for the suspicious dataset. These predictions are integrated 

into the dataset under a new column, isfraud, with fraudulent cases extracted for further analysis. 

Newly labeled fraudulent cases are appended to the training dataset, selectively enriching the model's 

learning. This process is critical for continuous adaptation, allowing the model to identify emerging 

fraud patterns effectively. 

Efficient data retrieval is managed through the fetch_data function, which interfaces with a 

PostgreSQL database. This function is designed to handle large datasets by implementing an offset 

mechanism for tables exceeding a predefined threshold. The mechanism divides the dataset into 

manageable chunks using SQL's LIMIT and OFFSET clauses, optimizing data retrieval (Rowe & 

Stonebraker, 1987). This approach minimizes memory overload, reduces server load, and ensures rapid 

processing. 

Fraudulent data is appended to the training dataset in the final step, allowing the model to learn from 

new fraud cases during subsequent training iterations. By focusing on new fraudulent patterns, the 

model's predictive accuracy and robustness against evolving schemes are improved. This iterative 

update process is integral to maintaining the pipeline's effectiveness over time, ensuring reliable 

detection of sophisticated fraud patterns. 
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4 Challenges and Limitations 

4.1 Memory Management 

One of the biggest limitations faced during the development process was memory management. A 

system with 16 GB RAM was used, which for most of the operations is more than enough. In some 

operations, though, such as rebalancing and handling large datasets, complications related to memory 

appeared. This especially happened when the system required more memory than what was available; 

this caused performance bottlenecks and increased the possibility of the system crashing. 

These challenges were overcome by configuring the system to utilize disk space as additional memory 

by increasing swap memory to 30 GB. With this, the system can easily handle higher workloads 

without compromising on performance. In addition, managing the memory effectively also involved 

the reconfiguration of the models and their respective hyperparameters so that the experiments 

smoothly ran on the development machine. 

For example, the setting of n_jobs = -1 in the hyperparameters of the model and in Optuna trials caused 

system crashes in the LightGBM pipeline due to excessive consumption of the available resources. 

This has been tuned to using a limited number of threads as the n_jobs parameter to allow efficient 

computation without system crashes. Many such adjustments have been done with other parts of the 

workflow for better utilization of resources without the experiments being cut off. 

These changes highlight the importance of aligning model configurations with system constraints, 

especially for large-scale machine learning pipelines. By carefully managing memory and adapting 

model settings, the development process maintained stability while achieving the desired experimental 

outcomes. 

 Total Used Free Shared Buff/Cache Available 

Memory 30 Gi 7.8 Gi 8.0 Gi 118 Mi 4.6 Gi 22 Gi 

Swap 29 Gi 0    B 29 Gi    

Table 8 - Memory Management 

 

4.2 LGBM GPU Support 

Another critical issue encountered was related to using GPU acceleration with LightGBM. While GPU 

support is intended to speed up training, errors occurred during the process, such as: 

lightgbm.basic.LightGBMError: Check failed: (best_split_info.left_count) > (0) 

This error usually occurs due to problems in the GPU-based split calculation, which often relates to 

some specific setup of the data or some rare cases present in the dataset. For example, a conversation 

on GitHub underlines similar problems that users have when training LightGBM models on GPUs; 

this shows that some data features might cause this error.  
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5 Results  

5.1 Performance Evaluation Main Training 

5.1.1 LGBM  

5.1.1.1 Main Training  

CU_DT 20241216 

Precision 0.9206 

Recall 0.7353 

F1_Score 0.8175 

ROC_AUC 0.9731 

PR_AUC 0.8624 

Execution_Time 11 hours, 10 minutes 

Emissions 0.2229 

Table 9 - Main Training Metrics - LightGBM 

 

 

Figure 24 - Precision-Recall Curve Main training - LightGBM 
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Figure 25 - Receiver Operating Characteristic (ROC) Curve Main training -LightGBM 

 

Figure 26 - Confusion Matrix Main Training– LightGBM 
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Parameter Value 

max_depth 15 

num_leaves 240 

min_data_in_leaf 25 

max_bin 187 

Table 10 - Tree Structure Parameters (LightGBM Main Training) 
Table 11 - Learning Parameters (LightGBM Main Training) 

Parameter Value 

learning_rate 0.03572380838577693 

feature_fraction 0.44315949154615925 

bagging_fraction 0.9244814427726744 

bagging_freq 8 

 

Parameter Value 

min_child_weight 0.00148097144714855 

reg_alpha 0.02464267739550402 

reg_lambda 0.01563385157285081 

Table 12 - Regularization Parameters (LightGBM Main Training) Table 13 - System settings (LightGBM Main Training) 

 

 

Parameter Value 

verbosity -1 

n_jobs 1 

seed 42 

5.1.1.2 Labelling Main Training 

Label Value 

no_fraud_lg 160209 

fraud_lg 2785 

suspicious_lg 5006 

Table 14 - Production predictions (LightGBM Main Training) Table 15 - Random Forest Labeling Metrics (LightGBM Main 

Training) 

Metric Value 

Precision 0.963 

Recall 0.890 

F1-Score 0.925 

Label Value 

0 5006 

1 0 

Table 16 - Random Forest Predictions (LightGBM Main Training) 
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Figure 27 - Confusion Matrix - Random Forest (LightGBM Main Training) 

 

 

5.1.2 CatBoost 

5.1.2.1 Main Training  

CU_DT 20241229 

Precision 0.8621 

Recall 0.8047 

F1_Score 0.8324 

ROC_AUC 0.9733 

PR_AUC 0.8764 

Execution_Time 7 hours, 24 minutes 

Emissions 0.2887 

Table 17 - Main Training Metrics - CatBoost 
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Figure 28 - Precision-Recall Curve Main training - CatBoost 

 

Figure 29 - Precision-Recall Curve Main training - CatBoost 
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Figure 30 - Confusion Matrix Main Training– CatBoost 

 

Parameter Value 

iterations 932 

depth 8 

Table 18 - Tree Structure Parameters (CatBoost Main Training) 
Table 19 - Learning Parameters (CatBoost Main Training) 

Parameter Value 

learning_rate 0.19253249019700144 

bagging_temperature 0.03119132475308568 

 

Parameter Value 

l2_leaf_reg 0.1096079848122838 

random_strength 
4.0090816333290635e-

05 

Table 20 - Regularization Parameters (CatBoost Main Training) Table 21 - System settings (CatBoost Main Training) 

Parameter Value 

verbose 0 

task_type GPU 

random_seed 42 
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5.1.2.2 Labelling Main Training 

Label Value 

no_fraud_lg 3520 

fraud_lg 211467 

suspicious_lg 5013 

Table 22 - Production predictions (CatBoost Main Training) Table 23 - Random Forest Labeling Metrics (CatBoost Main 

Training) 

Metric Value 

Precision 0.931 

Recall 0.695 

F1-Score 0.796 

Label Value 

0 5013 

1 0 

Table 24 - Random Forest Predictions (CatBoost Main Training) 

 

 

Figure 31 - Confusion Matrix - Random Forest (CatBoost Main Training) 
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5.2 Retraining impact on model performance 

5.2.1 LGBM 

5.2.1.1 First Run 

5.2.1.1.1 Retraining Phase 

CU_DT 20241217 

Precision 0.9461 

Recall 0.7896 

F1_Score 0.8608 

ROC_AUC 0.9770 

PR_AUC 0.9019 

Execution_Time 11 hours, 28 minutes 

Emissions 0.2011 

Table 25 - Retraining Metrics (LightGBM First Run) 

 

 

Parameter Value 

max_depth 18 

num_leaves 209 

min_data_in_leaf 67 

max_bin 171 

 Table 26 - Tree Structure Parameters Retraining (LightGBM First 

Run) 

 Table 27 - Learning Parameters Retraining (LightGBM First 

Run) 

 

Parameter Value 

learning_rate 0.0523112513101304 

feature_fraction 0.5602917667839747 

bagging_fraction 0.991175811839782 

bagging_freq 6 

Parameter Value 

min_child_weight 0.01191905264957574 

reg_alpha 0.03124271599931228 

reg_lambda 0.12081273980068283 

 Table 28 - Regularization Parameters Retraining (LightGBM First 

Run) 

 Table 29 - System settings Retraining (LightGBM First Run) 

Parameter Value 

verbosity -1 

n_jobs 1 

seed 42 
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Figure 32 - Precision-Recall Curve Retraining (LightGBM First Run) 

 

 

Figure 33 - Receiver Operating Characteristic (ROC) Curve Retraining (LightGBM First Run) 
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Figure 34 - Confusion Matrix - Retraining (LightGBM First Run) 

 

5.2.1.1.2 Labelling Phase  

Label Value 

no_fraud_lg 138112 

fraud_lg 2842 

suspicious_lg 5045 

Table 30 - Production predictions (LightGBM First Run) Table 31 - Random Forest Labeling Metrics (LightGBM First 

Run) 

Metric Value 

Precision 0.961 

Recall 0.782 

F1-Score 0.862 

Label Value 

0 4999 

1 46 

Table 32 - Random Forest Predictions (LightGBM First Run) 
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Figure 35 - Confusion Matrix - Random Forest (LightGBM First Run) 

 

5.2.1.2 Second Run 

5.2.1.2.1 Retraining Phase 

CU_DT 20241218 

Precision 0.9520 

Recall 0.8110 

F1_Score 0.8758 

ROC_AUC 0.9797 

PR_AUC 0.9164 

Execution_Time 11 hours, 59 minutes 

Emissions 0.2079 

Table 33 - Retraining Metrics (LightGBM Second Run) 
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Parameter Value 

max_depth 13 

num_leaves 228 

min_data_in_leaf 86 

max_bin 232 
 Table 34 - Tree Structure Parameters Retraining (LightGBM 

Second Run) 

 Table 35 - Learning Parameters Retraining (LightGBM 

Second Run) 

Parameter Value 

learning_rate 0.0549380670305092 

feature_fraction 0.6687257546614209 

bagging_fraction 0.946378206358222 

bagging_freq 4 

Parameter Value 

min_child_weight 0.00146217790161635 

reg_alpha 0.03958323074861385 

reg_lambda 0.01516435533248889 
 Table 36 - Regularization Parameters Retraining (LightGBM 

Second Run) 

 Table 37 - System settings Retraining (LightGBM Second 

Run) 

Parameter Value 

verbosity -1 

n_jobs 1 

seed 42 

   

 

Figure 36 - Precision-Recall Curve Retraining (LightGBM Second Run) 
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Figure 37 - Receiver Operating Characteristic (ROC) Curve Retraining (LightGBM Second Run) 

 

 

Figure 38 - Confusion Matrix - Retraining (LightGBM Second Run) 
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5.2.1.2.2 Labelling Phase  

Label Value 

no_fraud_lg 181155 

fraud_lg 2564 

suspicious_lg 4281 

Table 38 - Production predictions (LightGBM Second Run) Table 39 - Random Forest Labeling Metrics (LightGBM 

Second Run) 

 

Metric Value 

Precision 0.981 

Recall 0.706 

F1-Score 0.821 

Label Value 

0 4280 

1 1 

Table 40 - Random Forest Predictions (LightGBM Second Run) 

 

 

Figure 39 - Confusion Matrix - Random Forest (LightGBM Second Run) 
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5.2.2 CatBoost 

5.2.2.1 First Run 

5.2.2.1.1 Retraining Phase 

CU_DT 20241230 

Precision 0.86791 

Recall 0.8327 

F1_Score 0.8499 

ROC_AUC 0.9772 

PR_AUC 0.8998 

Execution_Time 8 hours, 9 minutes 

Emissions 0.3203 

Table 41 - Retraining Metrics (CatBoost First Run) 

 

Parameter Value 

iterations 788 

depth 8 
Table 42 - Tree Structure Parameters Retraining (CatBoost First 

Run) 
Table 43 - Learning Parameters Retraining (CatBoost First Run) 

 

Parameter Value 

learning_rate 0.19861699134137997 

bagging_temperature 0.15063115230908067 

Parameter Value 

l2_leaf_reg 
0.120891453425621 

 

random_strength 0.002759259413445753 
Table 44 - Regularization Parameters Retraining (CatBoost First 

Run) 

Table 45 - System settings Retraining (CatBoost First Run) 

Parameter Value 

verbose 0 

task_type GPU 

random_seed 42 
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Figure 40 - Precision-Recall Curve Retraining (CatBoost First Run) 

 

 

Figure 41 - Receiver Operating Characteristic (ROC) Curve Retraining (CatBoost First Run) 
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Figure 42 - Confusion Matrix - Retraining (CatBoost First Run) 

 

5.2.2.1.2 Labelling Phase  

Label Value 

no_fraud_lg 84701 

fraud_lg 2269 

suspicious_lg 5030 

Table 46 - Production predictions (CatBoost First Run) Table 47 - Random Forest Labeling Metrics (CatBoost First 

Run) 

Metric Value 

Precision 0.974 

Recall 0.496 

F1-Score 0.657 

Label Value 

0 5003 

1 27 

Table 48 - Random Forest Predictions (CatBoost First Run) 
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Figure 43 - Confusion Matrix - Random Forest (CatBoost First Run) 

 

5.2.2.2 Second Run 

5.2.2.2.1 Retraining Phase 

CU_DT 20241231 

Precision 0.8828 

Recall 0.8440 

F1_Score 0.8630 

ROC_AUC 0.9789 

PR_AUC 0.9091 

Execution_Time 8 hours, 57 minutes 

Emissions 0.3531 

Table 49 - Retraining Metrics (CatBoost Second Run) 
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Parameter Value 

iterations 980 

depth 8 

Table 50 - Tree Structure Parameters Retraining (CatBoost 

Second Run) 
Table 51 - Learning Parameters Retraining (CatBoost Second 

Run) 

 

Parameter Value 

learning_rate 0.19940029466202946 

bagging_temperature 0.5547321050988824 

 

Parameter Value 

l2_leaf_reg 0.1274298734640127 

random_strength 0.05009820908437887 

Table 52 - Regularization Parameters Retraining (CatBoost Second 

Run) Table 53 - System settings Retraining (CatBoost Second Run) 

Parameter Value 

verbose 0 

task_type GPU 

random_seed 42 

   

 

Figure 44 - Precision-Recall Curve Retraining (CatBoost Second Run) 
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Figure 45 - Receiver Operating Characteristic (ROC) Curve Retraining (CatBoost Second Run) 
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Figure 46 - Confusion Matrix - Retraining (CatBoost Second Run) 

5.2.2.2.2 Labelling Phase  

Label Value 

no_fraud_lg 35018 

fraud_lg 1975 

suspicious_lg 5007 

Table 54 - Production predictions (CatBoost Second Run) Table 55 - Random Forest Labeling Metrics (CatBoost Second 

Run) 

 

Metric Value 

Precision 0.919 

Recall 0.289 

F1-Score 0.439 

Label Value 

0 4998 

1 9 
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Table 56 - Random Forest Predictions (CatBoost Second Run) 

 

 

Figure 47 - Confusion Matrix - Random Forest (CatBoost Second Run) 
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5.3 Co2 emissions and Electricity usage 

5.3.1 LGBM 

 

Figure 48 – Energy Consumption/ Emissions Rate/ Duration (LightGBM) 

 

Training Energy(kWh) Emissions Rate (kg Co2eq/s) 

First 0.6473 5.538e-06 

Second 0.5842 4.873e-06 

Third 0.6038 4.82e-06 

Table 33 – LGBM Energy / Emissions 
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5.3.2 CatBoost 

 

Figure 49 – Energy Consumption/ Emissions Rate/ Duration (CatBoost) 

 

Training Energy(kWh) Emissions Rate (kg Co2eq/s) 

First 0.83836 1.083e-05 

Second 0.93022 1.091e-05 

Third 1.02529 1.096e-05 

Table 33 – CatBoost Energy / Emissions 
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5.4 Evaluation of Pipelines 

The evaluation of the LightGBM and CatBoost pipelines by different measures of performance, 

computational efficiency, and environmental impact points toward different strengths and limitations 

for each model. Similar to both, the models would be trained, followed by categorizing data into fraud, 

no_fraud, and suspicious tables. The suspicious category was labeled with the use of Random Forest. 

That newly labeled fraud data appended into the training set could also be used for model retraining. 

Therefore, LightGBM is better to go with for the overall framework based on the results. The reasons 

with a comparison of the results are described in detail below. 

LightGBM has always outperformed for all main metrics and improved iteration after iteration. It 

reached 0.9206 in precision for the first run and 0.952 for the third. Recall increased from 0.7353 to 

0.811, showing that the model is capable of detecting fraudulent cases while keeping false negatives 

low. The F1-score, providing a balance between precision and recall, increased from 0.8175 to 0.8758, 

hence very good general performance. The ROC AUC score has also risen from 0.9731 to 0.9797, 

showing a high capability of distinguishing between fraud and non-fraud transactions. 

By comparison, the CatBoost was competitive but slightly lagged in precision and F1-score. Precision 

for CatBoost increased from 0.8621 in the first run to 0.8829 in the third run, while recall increased 

from 0.8047 to 0.844. Its F1-score only peaked at 0.8630 in the third run, remaining far below 

LightGBM's through iterations. Even though the ROC AUC score was close, at 0.9789 for CatBoost 

in the third run, the model will turn out to be less effective for tasks with high predictive accuracy at 

minimal false positives due to the lower precision and F1-score. 

The superiority of LightGBM is further indicated by the labeling phase, which is based on Random 

Forest. While both pipelines employed Random Forest to label suspicious data, LightGBM always 

outperformed CatBoost in precision and F1-scores during the labeling phase. In the case of LightGBM, 

the Random Forest classifier achieved a precision of 0.981 in the third run, while in the same iteration, 

the precision dropped to 0.919 for CatBoost's labeling phase. Similar differences are demonstrated by 

LightGBM with higher F1-scores in all runs, meaning a better balance between the identification of 

fraud and reduction of false positives during labeling. 

CatBoost shows more variance in the outcomes of its labeling, such as with its Random Forest recall 

decreasing significantly from 0.695 on the first run to 0.289 on the third. The decline suggests 

difficulties in the handling of ambiguous cases from the suspicious category in the course of pipeline 

iterations. 

Execution time and emission are two important parameters that describe how efficiently and eco-

friendly the performance of the pipelines is. For execution time, CatBoost showed higher speeds, since 

it executed its first run in 7 hours and 24 minutes and its third run in 8 hours and 57 minutes, while 

LightGBM took 11 hours and 10 minutes and 11 hours and 59 minutes for the same runs, respectively. 

This makes CatBoost more time-efficient. 
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However, LightGBM was very environmentally efficient. Its level of emissions went down from 

0.2229 kg CO₂ in the first run to 0.2079 kg CO₂ in the third run, while that of the CatBoost model 

started at 0.2887 kg CO₂ and increased to 0.3531 kg CO₂, reflecting how much more it consumed 

resources though with the shortest execution time. This trade-off against time and environmental 

impact makes LightGBM more sustainable. 

The results indicated that LightGBM fits best in the framework for more than one reason, since it 

showed higher accuracy. Indeed, LightGBM gave consistently high precision, recall, and F1-scores 

across all iterations. These metrics are really critical in fraud detection, as false positives result in 

unnecessary disruptions while false negatives lead to undetected fraudulent activity. 

Improved Labeling Performance: The Random Forest classifier in LightGBM's pipeline 

outperformed CatBoost in labeling the suspicious category with higher precision and F1-scores. This 

consistency ensures that high-quality data is integrated into the iterative retraining process, further 

improving the model. 

Environmental Efficiency: Although LightGBM took more execution time, its less emission makes 

it more eco-friendly, tuned to the latest awareness about computational efficiency and environmental 

care. 

Scalability and Generalization: Robustness with big datasets combined with strong LightGBM's 

ROC AUC and precision-recall AUC score guarantees good generalization over unseen data. This 

makes it more applicable to real-world situations, as scalability and adaptability are featured here. 
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6 Visualizing Insights with Apache Superset 

The last step of the fraud detection framework is to provide actionable insights to its end users via a 

strong Business Intelligence tool. This is an important phase that bridges the gap between the technical 

implementation of the framework and its practical utility by ensuring that the stakeholders are able to 

use the processed data effectively. 

Key metrics will be developed to visualize and interpret an opensource BI platform such as Apache 

Superset. Superset allows defining and tracking KPIs on raw or processed data, enabling the teams to 

monitor several aspects of the system performance. However, in this particular implementation, 

Superset was used to build dashboards that would visualize the model evaluation metrics comprising 

Model Precision, Model Recall, and Model AUC (ROC_AUC). 

This intuitive, user-facing interface will give a nontechnical end user insight into the performance of 

the system and evaluation of its outputs in near real time. Apache Superset serves a fundamental 

purpose in practical fraud detection framework deployment by offering the capability to make 

informed decisions with well-defined, easily accessible metrics. 

 

6.1 LGBM 

 

Figure 50 - LightGBM Superset Metrics 
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6.2 CatBoost 

 

Figure 51 - CatBoost Superset Metrics 
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7 Conclusion 

This thesis has explored and compared LightGBM and CatBoost algorithms of advanced machine 

learning pipelines used in fraud detection within a financial transaction. In view of this, a framework 

is implemented which is built upon iterative training, classification, and labeling suspicious data 

dynamically to construct a pretty robust system that could recognize fraudulent activities effectively. 

Upon drawing detailed performance analysis, it emerged that LightGBM presents the best model for 

the proposed framework due to its good precision, F1-score, and environmental efficiency. In the real-

world application, even though CatBoost executes faster, the overall balance between accuracy, 

sustainability, and scalability will lead to choosing LightGBM for deployment. 

These results emphasize how effective an iterative retraining approach could be, with the model 

learning progressively from the data labeled by Random Forest. This strategy improved the results in 

both pipelines across successive iterations and demonstrated how the framework is able to adapt to 

changing fraud patterns. 

In the future, the scope of data analysis would be extended to deeper insights and refinement of feature 

engineering. Extensive explorative data analysis shall be carried out to bring forth many hidden 

patterns and trends that may help in enhancing model performance even further. Another critical task 

will involve deploying this fraud detection framework as a web application. The application is 

designed in such a way that it is data-agnostic and optimized for banking datasets with fraud-related 

problems, adaptable to challenges in other sectors. 

A web-based user interface allows stakeholders to input data easily and obtain real-time predictions, 

thus further enhancing the system's accessibility and ease of use. Furthermore, scalability and 

adaptability are designed into the system for increasingly complex and larger data, supported by robust 

infrastructure and computing power. It will, therefore, be developed further into a practical, efficient, 

and complete fraud case detection solution that will meet the demands of modern financial systems 

and related industries. 
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Figure 52 - Web user interface 

  

This research laid the ground for a scalable and adaptive fraud detection system. The results 

emphasized the potential of machine learning and iterative feedback loops in solving complex fraud 

detection problems, while future developments will mold this framework into a versatile tool for the 

financial industry and beyond. 
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