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Abstract 

Time series forecasting is a fundamental challenge in many scientific and industrial 

domains, especially when dealing with chaotic and highly nonlinear systems. Traditional 

forecasting models, including Artificial Neural Networks (ANNs) and statistical methods, 

often struggle to capture the complex temporal dependencies and uncertainty inherent in these 

datasets. To address these limitations, hybrid approaches that integrate fuzzy logic and 

Recurrent Neural Networks (RNNs) have emerged as promising alternatives. This thesis 

presents a comparative study of two hybrid models: the Multi-Functional Recurrent Fuzzy 

Neural Network (MFRFNN) and the Recurrent Neurofuzzy System ReNFuzz-LF. The 

effectiveness of these models is evaluated across multiple datasets, including Electric Loads, 

Lorenz chaotic system, Box–Jenkins Gas Furnace, Wind Speed Prediction, Google Stock Price 

Prediction and Air Quality Index (AQI). 
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1 Introduction 
The ability to accurately forecast time series data is critical across various fields, 

including finance, energy, meteorology, and environmental science. Forecasting accuracy is a 

critical aspect in decision-making processes, impacting industries such as financial markets, 

energy grid management, and air quality monitoring. Improved prediction models allow 

businesses and policymakers to make informed decisions, minimize risks, and optimize 

resource allocation.  

However, real-world time series often exhibit chaotic behaviour, nonlinearity, and noise, making 

traditional forecasting techniques inadequate. Classical models such as autoregressive integrated moving 

average (ARIMA) and standard artificial neural networks (ANNs) struggle when faced with nonlinear 

and multi-scale dependencies in time series data. RNNs, particularly LSTMs, improve sequential 

data modelling but still face challenges in complex systems. Overfitting presents a significant 

challenge for RNNs, as they may capture and retain noise in the data rather than learning 

meaningful patterns. Their sequential processing structure also leads to increased 

computational demands, making training both resource-intensive and time-consuming [1].  

To address these challenges, integrating fuzzy logic with recurrent neural networks 

helps improve generalization by introducing rule-based representations that captures 

underlying trends more effectively. Such hybrid models have gained traction in recent years 

showing promising results. By combining the interpretability of fuzzy systems, the adaptive 

learning capabilities of neural networks and the memory mechanisms of recurrent 

architectures, these models enable for more accurate and robust forecasting. 

This thesis explores two hybrid models designed for time series forecasting, MFRFNN 

and ReNFuzz-LF. MFRFNN[2] employs a dual-network structure where a fuzzy neural 

network (FNN) predicts the system’s output, while a secondary FNN determines the system’s 

state, allowing the system to learn multiple functions simultaneously. This makes it well-suited 

for datasets where the same input may lead to different outputs depending on the system state. 

On the other hand, ReNFuzz-LF[3] utilizes a rule-based fuzzy system with local RNN 

consequents, enabling it to adapt dynamically to short-term fluctuations without the complexity 

of a global feedback loop. Both models are assessed on diverse datasets, ranging from chaotic 

synthetic data (Lorenz system) to real-world applications such as stock price forecasting and 

AQI prediction. 
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1.1 Objectives 

The primary objectives of this thesis are as follows: 

1. Analysis of MFRFNN and ReNFuzz-LF models: A detailed examination of the 

structural differences between MFRFNN and ReNFuzz-LF, highlighting their 

respective mechanisms in handling nonlinear time series forecasting. 

2. Implementation of ReNFuzz-LF in MATLAB: The development of ReNFuzz-LF in 

MATLAB. 

3. Application to benchmark time series problems: Testing both models on well-

established time series forecasting benchmarks, including the Lorenz system, Electric 

Load, Box–Jenkins Gas Furnace, Wind Speed Prediction, Google Stock Price 

Prediction, and Air Quality Index Prediction to evaluate their performance under 

different conditions. 
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2. Literature Review 

2.1 Artificial Intelligence 

According to Elaine Rich[4], "Artificial Intelligence (A.I.) is the study of how to make 

computers do things that people are better at". Many more definitions were given over the years 

but a common theme is that AI is expected to imitate human intelligence or carry out activities 

that previously necessitated human intervention. 

AI is an umbrella term that encompasses a wide range of technologies and 

methodologies. These include areas such as machine learning, natural language processing, 

computer vision, robotics and expert systems. To build these intelligent systems, computational 

models, algorithms, and statistical techniques are employed that can analyse data, recognize 

patterns, learn from experiences, make informed decisions, comprehend natural language, and 

adapt to evolving conditions. 

2.1.1 A Brief History of Artificial Intelligence 

The roots of Artificial Intelligence stretch back to Aristotle (384-322 BCE), where his 

informal system of syllogisms was among the first recorded attempts to codify rational thought 

into systematic rules. 

This early groundwork set the stage for centuries of exploration into reasoning and the 

mechanics of thought. In 1642, Blaise Pascal (1623-1662) built the Pascaline, a mechanical 

calculator and wrote that it “produces effects which appear nearer to thought than all the actions 

of animals”. Furthermore, Thomas Hobbes (1588-1679) suggested the idea of a thinking 

machine and that reasoning was like numerical computations. 

The 20th century marked a shift from mechanical tools to computational theories. Alan 

Turing introduced the Turing Test, a criterion for determining a machine's capacity for 

intelligent behaviour. During World War II, Turing’s work on The Bombe, an electro-

mechanical device used by British cryptologists to help decipher German Enigma-machine-

encrypted secret messages during World War II, demonstrated the potential of machines to 

process complex information, a concept that underpins much of AI today. 

AI was formally recognized as an academic discipline at the 1956 Dartmouth 

Conference[5], led by John McCarthy, Marvin Minsky, Nathaniel Rochester, and Claude 

Shannon. This pivotal event introduced the idea that machines could simulate human cognitive 
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functions. Early breakthroughs included programs like the Logic Theorist, capable of solving 

mathematical proofs, and the General Problem Solver, which demonstrated logical reasoning 

in simplified domains. However, these systems faced challenges when applied to real-world 

problems, leading to periods of reduced funding and research interest, referred to as "AI 

Winters". 

The resurgence of AI in the late 20th century was driven by advancements in 

computational power, the emergence of neural networks, and the development of machine 

learning. Today, AI technologies are deeply integrated into our lives, influencing fields such 

as healthcare, finance, transportation, and entertainment. 

 

2.2 Artificial Neural Networks 

Artificial Neural Networks (ANNs) are a subfield of machine learning, inspired by the 

structure and function of the human brain and biological neural networks. The primary 

objective of neural networks is to identify patterns within data and enhance predictive 

performance through various optimization techniques. These networks are widely used for 

classification, pattern recognition, and sequential data processing. 

 

2.2.1 Structure and Types of Artificial Neural Networks 

Artificial Neural Networks consist of multiple layers of artificial neurons, weighted 

connections and activation functions such as sigmoid, tanh or ReLu are used to determine the 

degree of the neurons activation and also introduce non-linearity. Layers are structured into 

three types:  

• input layer, which receives the input data  

• hidden layers, which transform the data through the weighted connections of 

the network 

• output layer, which produces the final result.  
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Figure 1: Artificial Neural Network Architecture 

 

 

 

Figure 2: Activation Functions 

 

There are different types of neural networks, each used for different tasks. Feedforward 

neural networks (FNNs) process data in one direction without loops, making them effective for 

tasks like classification. Convolutional neural networks (CNNs) are designed for spatial data, 

particularly in image processing, by using convolutional layers to extract spatial features and 

Recurrent neural networks (RNNs) are better suited for sequential data, allowing information 

from previous outputs to influence future predictions, making them ideal for tasks like speech 

recognition and time-series forecasting. 
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2.2.2 Training Process of Neural Networks 

Training a neural network involves adjusting the weights of connections to minimize 

errors and improve performance. The process follows these main steps: 

• Forward Propagation: Input data passes through the network layers, with each neuron 

computing a weighted sum of its inputs and applying an activation function. 

• Loss Calculation: The difference between the predicted output and actual target value 

is measured using a loss function. Common loss functions include Mean Squared Error 

(MSE) for regression tasks or Cross-Entropy for classification tasks. 

• Backpropagation: Backpropagation is a computational method that uses the chain rule 

to compute the gradients of the loss function with respect to each weight, propagating 

errors backward from the output layer to the input layer. This allows the network to 

compute how each weight should be adjusted. 

• Gradient Descent Optimization: Gradient descent is an optimization algorithm used to 

minimize the loss function by updating the network's weights in the direction of steepest 

descent. It iteratively adjusts the parameters using a learning rate to determine the step 

size for weight updates.  

• Iteration and Convergence: The process repeats for multiple epochs until the network 

converges, meaning the loss stops decreasing significantly. Regularization techniques 

such as dropout and L2 regularization help prevent overfitting by reducing model 

complexity. 

 

2.2.3 Recurrent Neural Networks (RNNs) and Challenges 

Recurrent Neural Networks (RNNs)[6] introduce a memory mechanism that allows 

them to retain information from previous inputs. Unlike feedforward networks, which treat 

each input independently, RNNs incorporate loops within their architecture, enabling them to 

maintain information over sequences. 
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Figure 3: RNN Structure. The bottom is the input state; middle, the hidden state; top, the output state. U, V, W 

are the weights of the network. 

 

Training RNNs involves a technique called Backpropagation Through Time 

(BPTT)[7], an extension of traditional backpropagation that adjusts weights by unrolling the 

network through past time steps. However, standard RNNs struggle with long-range 

dependencies due to the vanishing gradient problem, where gradients diminish exponentially 

as they are propagated backward, making learning difficult over long sequences[1]. 

 

To address the vanishing gradient issue, Long Short-Term Memory Networks 

(LSTMs)[8] were introduced. LSTMs use memory cells and gates (input, forget, and output) 

to regulate the information passing through the network. This structure allows LSTMs to retain 

or discard information as necessary. This makes them very effective for tasks requiring long-

term dependencies such as speech recognition and machine translation. Furthermore, they are 

used in time-series prediction, where past data trends influence future outcomes.  

 
Figure 4: LSTM Structure 
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While RNNs, particularly LSTMs, improve sequential data modelling, they still face 

challenges in complex nonlinear systems. Overfitting is a major issue, as RNNs can memorize 

noise in data instead of generalizing patterns. Computational complexity also increases due to 

the sequential nature of RNNs, making them computationally expensive to train. Additionally, 

chaotic data poses difficulties, as RNNs may struggle to maintain stability and predictability 

when dealing with highly unpredictable sequences. 

To address these challenges, particularly in complex nonlinear systems, hybrid fuzzy 

models offer a powerful solution by integrating the strengths of Fuzzy Logic and Recurrent 

Neural Networks (RNNs). These models enhance interpretability and robustness by leveraging 

fuzzy rules to handle uncertainty and imprecision, making them particularly effective in chaotic 

environments.  

2.3 Fuzzy Systems 

Fuzzy systems[9] are a subset of computational intelligence methodologies that aim to 

emulate human reasoning and decision-making processes using fuzzy set theory and fuzzy 

logic. They are particularly useful when faced with imprecise or uncertain information and are 

widely applied in various domains such as control systems, pattern recognition, decision-

making, and data analysis. 

 

2.3.1 Fuzzy Set Theory to Fuzzy Logic 

In traditional mathematical logic, classical set theory categorizes elements in a binary 

manner, an element either belongs to a set or it does not. However, real-world data is often 

imprecise. To address this limitation, Lotfi A. Zadeh introduced Fuzzy Set Theory[10] in 1965, 

which extends classical set theory by allowing elements to have partial membership, meaning 

an element can belong to a set to a certain degree between 0 and 1. This advancement enables 

a more nuanced approach to modeling uncertain or linguistically described data, such as "tall 

people," "warm temperatures," or "high risk." 

Fuzzy set theory provided the mathematical foundation for fuzzy logic by enabling 

reasoning under uncertainty. Fuzzy Logic[11] is a mathematical framework for reasoning 

under uncertainty, introduced by Lotfi A. Zadeh in 1973 as an extension of classical Boolean 

logic. Unlike traditional binary logic, which operates on strict true or false values, fuzzy logic 

allows for degrees of truth that range between 0 and 1. This makes it a multi-valued logic 
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system capable of handling vagueness and ambiguity, allowing for more flexible decision-

making processes. 

The motivation behind fuzzy logic arises from the fact that real-world concepts are 

often not sharply defined. Many everyday decisions are based on approximate reasoning rather 

than strict binary classifications. For instance, linguistic terms such as "hot," "cold," "tall," or 

"fast" do not have rigid boundaries but instead exhibit gradual transitions. Traditional logic 

fails to effectively model such imprecise concepts, whereas fuzzy logic provides a structured 

approach to quantify and process these uncertainties. 

2.3.1.1 Crisp Sets vs. Fuzzy Sets 

In classical set theory, a crisp set 𝐴 is defined such that each element 𝑥 in the universal 

set 𝑈 either belongs to 𝐴 (𝑥 ∈ 𝐴, membership value 1) or does not (𝑥 ∉ 𝐴, membership value 

0). Mathematically, this is expressed using an indicator function: 

𝜇𝐴( 𝑥 ) = {
1 , 𝑥 ∈  𝐴
0 , 𝑥 ∉  𝐴

  

However, in many real-world situations, classification is not absolute. For example, if 

we define a crisp set "Tall People" as those taller than 180 cm, a person who is 179 cm is not 

considered tall, even though the difference is negligible. 

To address this limitation, fuzzy sets introduce partial membership, allowing elements 

to belong to a set to a certain degree between 0 and 1. This is achieved using a continuous 

membership function 𝜇𝐴(𝑥), such that: 

0 ≤ 𝜇𝐴(𝑥) ≤ 1 

For example, in a fuzzy set "Tall People", someone who is 190 cm might have a 

membership of 0.9, while someone 170 cm might have a membership of 0.4. Instead of a 

strict boundary, the transition between not tall and tall is smooth. 

2.3.1.2 Crisp Logic vs. Fuzzy Logic 

The distinction between crisp sets and fuzzy sets extends naturally into logical 

reasoning. In crisp logic (Boolean logic), every statement must be either true (1) or false (0). 

This is based on the Principle of Bivalence, which states that there are only two possible truth 

values. 
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For example, consider a rule in classical logic: 

• Crisp Logic Statement: "If temperature is greater than 30°C, then it is hot." 

• Boolean evaluation: 

o If temperature = 31°C, the statement is true (1). 

o If temperature = 29°C, the statement is false (0). 

This rigid classification ignores the fact that hotness is a gradual concept, and a 

temperature of 29.9°C is not significantly different from 30.1°C. 

In contrast, fuzzy logic allows for partial truth values, enabling more nuanced decision-

making. Instead of forcing a binary classification, a fuzzy rule would define "hot" as a 

continuous function of temperature, where 30°C is not an absolute cutoff but rather part of a 

smooth transition: 

• Fuzzy Logic Statement: "If temperature is around 30°C, then it is somewhat hot." 

• Fuzzy evaluation using a membership function: 

o 28°C → Membership 0.6 (somewhat hot) 

o 30°C → Membership 0.8 (fairly hot) 

o 35°C → Membership 1.0 (definitely hot) 

Instead of a step function, fuzzy logic uses smooth functions to represent truth values, 

ensuring gradual transitions rather than abrupt jumps.  

A graphical representation of this difference can be visualized through a membership 

function, where truth values change gradually rather than in discrete steps. Instead of a step-

like function that jumps from 0 to 1 at a threshold point, a fuzzy membership function smoothly 

increases from cooler to hotter temperatures. 

 

Figure 5: Crisp vs. Fuzzy Logic 
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2.3.1.3 Membership Functions 

A membership function (MF) assigns a value between 0 and 1 to each element, 

representing its degree of belonging to a fuzzy set. The choice of membership function depends 

on the application and domain expertise. Below are some of the most commonly used 

membership functions, along with their mathematical formulas and explanations. 

 

Triangular Membership Function (TriMF) 

The triangular membership function is one of the simplest and most widely used fuzzy 

membership functions. It is defined by three parameters: 𝑎 (left endpoint), 𝑏 (peak point), and 

𝑐 (right endpoint), forming a triangle-shaped function. 

𝜇𝑇𝑟𝑖(𝑥) =

{
 
 

 
 

0, 𝑥 ≤ 𝑎 or 𝑥 ≥ 𝑐
𝑥 − 𝑎

𝑏 − 𝑎
, 𝑎 ≤ 𝑥 ≤ 𝑏

𝑐 − 𝑥

𝑐 − 𝑏
, 𝑏 ≤ 𝑥 ≤ 𝑐

 

Explanation: 

• The membership value is 0 outside the range [𝑎, 𝑐]. 

• The function increases linearly from 𝑎 to 𝑏, reaching a maximum of 1 at 𝑏. 

• The function decreases linearly from 𝑏 to 𝑐, dropping back to 0 at 𝑐. 

Example: Defining "moderate temperature" between 15°C and 30°C, with peak membership 

at 22°C. (𝑎 = 15, 𝑏 = 22, 𝑐 = 30) 

 

Figure 6: Triangular Membership Function 
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Trapezoidal Membership Function (TrapMF) 

The trapezoidal membership function is an extension of the triangular function but allows 

a flat top instead of a single peak. It is defined by four parameters: 𝑎 (left endpoint), 𝑏 (start 

of plateau), 𝑐 (end of plateau), and 𝑑 (right endpoint). 

𝜇𝑇𝑟𝑎𝑝(𝑥) =

{
 
 

 
 

0, 𝑥 ≤ 𝑎 or 𝑥 ≥ 𝑑
𝑥 − 𝑎

𝑏 − 𝑎
, 𝑎 ≤ 𝑥 ≤ 𝑏

1, 𝑏 ≤ 𝑥 ≤ 𝑐
𝑑 − 𝑥

𝑑 − 𝑐
, 𝑐 ≤ 𝑥 ≤ 𝑑

 

Explanation: 

• The function is 0 outside the range [𝑎, 𝑑]. 

• The function increases linearly from 𝑎 to 𝑏. 

• It remains constant at 1 between 𝑏 and 𝑐, forming a plateau. 

• It decreases linearly from 𝑐 to 𝑑. 

Example: Defining "warm temperature" where 20°C to 25°C are fully considered warm, 

while values between 15°C and 30°C are partially warm. (𝑎 = 15, 𝑏 = 20, 𝑐 = 25, 𝑑 = 30) 

 

Figure 7: Trapezoidal Membership Function 
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Gaussian Membership Function (GaussMF) 

The Gaussian membership function is a smooth, bell-shaped function defined by two 

parameters: 𝑐 (mean or centre of the curve) and 𝜎 (standard deviation, controlling the width 

of the bell curve). 

𝜇𝐺𝑎𝑢𝑠𝑠(𝑥) = 𝑒
−
(𝑥−𝑐)2

2𝜎2  

Explanation: 

• The function is always positive and symmetric around 𝑐. 

• The peak (maximum membership) is 1 at 𝑐, and values decrease smoothly on both 

sides. 

• The parameter 𝜎 controls the spread. A larger 𝜎 creates a wider function, while a 

smaller 𝜎 makes it narrower. 

Example: Defining "medium speed" for a car, where the most confident medium speed is 50 

km/h, but values between 40 km/h and 60 km/h also belong to the medium category with 

lower degrees of membership. (𝑐 = 50, 𝜎 = 7) 

 

Figure 8: Gaussian Membership Function 

 

Generalized Bell Membership Function (BellMF) 

The generalized bell membership function provides more flexibility than the Gaussian 

MF by introducing an additional parameter. It is defined by three parameters: 𝑎 (width), 𝑏 

(slope), and 𝑐 (center or peak point). 
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𝜇𝐵𝑒𝑙𝑙(𝑥) =
1

1 +∣
𝑥 − 𝑐
𝑎 ∣2𝑏

 

Explanation: 

• The parameter 𝑎 controls the width of the function. 

• The parameter 𝑏 determines the slope or sharpness of the function. 

• The parameter 𝑐 sets the center of the bell curve. 

Example: Defining "moderate pressure" in an industrial system, where a soft transition is 

needed. (𝑎 = 15, 𝑏 = 3, 𝑐 = 50) 

 

Figure 9: Generalized Bell Membership Function 

 

2.3.1.4 Fuzzy Set Operations 

Fuzzy sets generalize classical set operations using t-norms (AND), s-norms (OR), and 

negation (NOT): 

• Union (OR operation): 𝜇𝐴∪𝐵(𝑥) = max(𝜇𝐴(𝑥), 𝜇𝐵(𝑥)). 

• Intersection (AND operation): 𝜇𝐴∩𝐵(𝑥) = min(𝜇𝐴(𝑥), 𝜇𝐵(𝑥)). 

• Complement (NOT operation): 𝜇¬𝐴(𝑥) = 1 − 𝜇𝐴(𝑥). 
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2.3.1.5 Advantages 

One of the most significant advantages of fuzzy logic is its ability to handle gradual 

transitions rather than enforcing strict categorizations. Another major advantage is that fuzzy 

logic closely mimics human reasoning, which often relies on linguistic descriptions rather than 

numerical precision, translating qualitative descriptions into a quantitative framework, 

enabling machines to reason in a way similar to humans. 

Fuzzy logic is also highly robust in uncertain environments, making it effective for 

dealing with noisy, incomplete, or imprecise data. Unlike traditional mathematical models that 

require exact equations, fuzzy logic systems can work with approximate rules and still produce 

meaningful outputs. Instead of relying on complex equations, fuzzy logic systems can be built 

using simple IF-THEN rules that encode expert knowledge. For example, in an automatic 

braking system, a rule might state: "IF distance to obstacle is small AND speed is high, THEN 

apply brakes strongly." Such rules are easy to understand and modify, making fuzzy logic an 

accessible and interpretable approach to system design. Additionally, its flexibility and ease of 

implementation have led to widespread adoption across multiple disciplines. As a result, fuzzy 

logic has cemented its role in the development of intelligent systems that can process and 

respond to real-world uncertainty in a sophisticated manner. 

 

2.3.2 Fuzzy Inference Systems (FIS) 

A Fuzzy Inference System (FIS) is a computational framework that applies fuzzy logic 

to map inputs to outputs using a set of fuzzy rules. It serves as the core reasoning mechanism 

in fuzzy logic-based decision-making and control systems 

 

2.3.2.1 Core Principles of Fuzzy Systems 

At the heart of fuzzy systems lie fuzzy sets, linguistic variables, and membership 

functions.  

A fuzzy set is a collection of elements with varying degrees of membership, defined 

through a membership function. These sets can be discrete or continuous, depending on the 

nature of the problem. For instance, a fuzzy set describing "closeness to Vienna" for different 

cities, can be characterized using discrete membership values. Vienna itself has a membership 

value of 1, representing absolute closeness, while cities like Bratislava, Budapest, Berlin, and 
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Moscow gradually decrease in membership as the distance increases. Canberra, on the other 

hand, may have a membership value of zero, as it is extremely far away. In contrast, continuous 

fuzzy sets describe gradual transitions between categories. An example of this can be seen in 

temperature levels: a temperature of 5°C might fully belong to the set "Cold," while at 20°C it 

transitions toward "Warm" and further evolves to "Hot" as it approaches 35°C.  

Linguistic variables add another layer of abstraction to fuzzy logic. Instead of crisp 

numerical values, they use qualitative terms, such as "hot," "cold," "young," or "old," to 

represent concepts in a way that aligns with human intuition. For example, temperature can be 

described qualitatively rather than numerically, enhancing the system’s ability to interpret 

ambiguous or subjective information. 

Membership functions, which lie at the core of fuzzy logic systems, define the 

relationship between input values and their corresponding degrees of membership in fuzzy sets. 

For any input value within a given universe of discourse, the membership function assigns a 

degree of membership, ranging from 0 (no membership) to 1 (full membership). As mentioned 

above these functions enable fuzzy systems to handle complex, nonlinear, and vague scenarios 

effectively.  

Finally, the strength of fuzzy systems lies in their ability to apply fuzzy rules, expressed 

as intuitive “IF-THEN” statements. These rules provide the mechanism through which inputs 

are transformed into outputs, and by combining multiple of them, fuzzy systems can model 

intricate relationships and support complex decision-making processes. 

 

2.3.2.2 Fuzzy Inference Process 

The process of implementing a fuzzy system typically involves fuzzification, rule 

evaluation, aggregation, and defuzzification. 

In the fuzzification stage, crisp numerical inputs are converted into fuzzy values using 

membership functions. This transformation allows the system to handle degrees of truth rather 

than binary classifications.  

Once fuzzification is complete, the rule evaluation stage processes the fuzzy inputs 

using a predefined set of IF-THEN rules to establish relationships between input and output 

variables. This involves calculating the firing strength of each rule, which determines how 
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strongly the rule is activated based on the input membership values. The firing strength is 

computed using fuzzy logic operators, such as AND, OR, and NOT, and is used to adjust the 

degree of membership of the rule’s output, ensuring that the fuzzy inference process accurately 

reflects the influence of multiple overlapping rules. 

Following rule evaluation, the aggregation stage merges the outputs of all activated 

fuzzy rules into a unified fuzzy output set. Since multiple rules may contribute overlapping 

values to the same output variable, this step ensures that every relevant rule influences the final 

result based on its firing strength. The system combines these outputs using mathematical 

aggregation techniques, such as maximum or sum operations, to construct a single fuzzy set 

that accurately represents the collective decision-making process before defuzzification. 

Finally, in the defuzzification stage, the fuzzy output is converted back into a crisp 

numerical value suitable for real-world applications. Since fuzzy logic operates on linguistic 

and continuous truth values, a final crisp decision is required for actions such as adjusting fan 

speed or making a classification decision. Several defuzzification methods exist, each with its 

strengths and applications: 

• The Centroid of Area (COA) method is one of the most widely used, as it 

computes the centre of gravity of the fuzzy output distribution and provides 

smooth, stable, and intuitive defuzzification.  

𝑥∗ =
∫𝑥 ⋅ 𝜇(𝑥) 𝑑𝑥

∫ 𝜇(𝑥)  𝑑𝑥
 

Where 𝑥∗ is the crisp defuzzified output, 𝑥 represents the variable (e.g., 

temperature, speed, pressure, etc.) and 𝜇(𝑥) is the membership function of the 

fuzzy output. 

 

• The Center of Sums (COS), which unlike COA who integrates over the entire 

fuzzy area, it only considers the peak values of the output membership 

functions.  

𝑥∗ =
∑ 𝑐𝑖
𝑛
𝑖=1 ⋅ max(𝜇𝑖(𝑥))

∑ max𝑛
𝑖=1 (𝜇𝑖(𝑥))
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Where 𝑥∗ is the crisp defuzzified output, 𝑐𝑖 is the center (typically mean) of 

the 𝑖𝑡ℎ fuzzy output set, max(𝜇𝑖(𝑥)) is the peak value (maximum membership 

degree) of the 𝑖𝑡ℎ fuzzy set and 𝑛 is the number of active fuzzy rules. 

• The Center-Averaged Defuzzifier only considers the centers of the fuzzy rules. 

This method is primarily used in TSK fuzzy inference systems, where the 

output of each rule is a constant or linear function, making it much more 

efficient than the Centroid of Area (COA) approach. 

𝑥∗ =
∑ 𝑤𝑖
𝑛
𝑖=1 𝑐𝑖
∑ 𝑤𝑖
𝑛
𝑖=1

 

Where 𝑥∗ is the crisp defuzzified output, 𝑐𝑖 is the center (typically mean) of 

the 𝑖𝑡ℎ fuzzy set, 𝑤𝑖 is the weight (firing strength) of the 𝑖𝑡ℎ fuzzy rule and 𝑛 

is the number of active fuzzy rules. 

 

2.3.2.3 Types of Fuzzy Inference Systems 

Fuzzy inference systems are broadly classified into two major types: the Mamdani 

Fuzzy Inference System (Mamdani FIS) and the Takagi-Sugeno-Kang (TSK) Fuzzy Inference 

System. Each type has distinct characteristics, advantages, and application domains, making 

them suitable for different tasks. 

The Mamdani FIS[12], introduced by Ebrahim Mamdani in 1974, was the first fuzzy 

inference model applied in control systems. It uses fuzzy sets for both input and output 

variables and applies rule-based reasoning. This system is particularly well-suited for control 

applications, such as HVAC systems, washing machines, and industrial automation, where 

expert-defined rules govern system behaviour. Its linguistic rule structure makes it highly 

interpretable, allowing human experts to design rules in an intuitive, human-like manner. 

In contrast, the Takagi-Sugeno-Kang (TSK) FIS[13], developed in 1985 by Takagi and 

Sugeno, employs mathematical functions instead of fuzzy sets to represent outputs. Unlike 

Mamdani FIS, which produces a fuzzy output requiring defuzzification, TSK models use a 

weighted average of all rule outputs to generate crisp numerical values directly. Additionally, 

TSK models can incorporate linear and nonlinear functions, allowing them to model complex 

systems with higher accuracy than Mamdani FIS. 
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2.3.4 Modern Advancements: Neuro-Fuzzy Systems 

Neuro-Fuzzy Systems represent a hybrid approach that integrates Neural Networks 

with Fuzzy Logic, combining the learning capabilities of neural networks with the 

interpretability of fuzzy inference systems. Unlike traditional fuzzy logic systems, which rely 

on manually defined rules, neuro-fuzzy systems can learn and optimize fuzzy rules 

automatically from data. 

One of the most significant advancements in neuro-fuzzy modeling was the 

introduction of the Adaptive Neuro-Fuzzy Inference System (ANFIS)[14] by Jang in 1993. 

ANFIS was designed as an extension of the TSK model, incorporating artificial neural 

networks (ANNs) to enable the system to learn from data rather than relying solely on manually 

defined rules. By integrating machine learning techniques such as gradient descent and least 

squares estimation, ANFIS can optimize rule parameters and membership functions in a data-

driven manner, making it highly adaptable to changing environments. 

The introduction of ANFIS marked a significant milestone in the evolution of fuzzy 

systems, as it bridged the gap between interpretable fuzzy reasoning and adaptive machine 

learning models. Its ability to learn from numerical data while maintaining the structure of a 

fuzzy inference system made it particularly useful in complex, nonlinear problems such as 

time-series forecasting.  

2.4 Time Series 

A time series[15] is a sequence of observations recorded at regular time intervals, 

usually equally spaced. The data is collected over time to analyse patterns, trends, and 

relationships between observations to make predictions or gain insights into the behaviour of 

a process. Time series can have either a single variable, known as a univariate time series, or 

multiple variables, referred to as multivariate time series. Typical examples of time series data 

can be, the daily closing prices of a stock or daily temperatures. Time series are ubiquitous in 

many fields, such as economics, engineering, natural sciences, and finance. 

The structure of a time series is usually influenced by four fundamental components (Trend, 

Cyclical, Seasonal, Irregular): 

• The trend reflects the long-term progression of the series, indicating whether the values 

increase, decrease, or remain constant over time. For example, the growth of a 

population often has upward or downward trends.  
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• Seasonality, involves periodic fluctuations within a specific time frame, such as 

monthly or yearly. Seasonal changes are observed in retail sales, where demand 

increases during holidays, or temperature records, which rise during summer and fall 

during winter.  

• Time series data may display cyclical behaviour, characterized by oscillations over 

extended periods due to broader factors such as economic cycles. For instance, a 

business cycle often goes through phases like prosperity, decline, depression, and 

recovery, which repeat over multiple years. 

• Irregular variations or randomness arise from unpredictable influences such as wars or 

natural disasters, which do not follow any pattern. 

 

2.4.1 Time-Series Analysis 

The applications of time series analysis span across numerous fields[15]. In business 

and economics, time series are used to forecast sales and analyse stock prices. In finance, 

exchange rates, interest rates, and stock market behaviour are often modelled using time series 

techniques. Similarly, in scientific and engineering domains, time series play a vital role in 

climate studies, where temperature and rainfall trends are analysed over decades. In healthcare, 

time series analysis is applied to monitor patient vitals over time, detect disease outbreaks, or 

track the progression of epidemics[16]. Environmental studies, too, rely heavily on time series 

to observe pollution levels[17], atmospheric patterns, and natural resource consumption over 

time. Another application of time series analysis is in electric load forecasting, where it is used 

to predict electricity demand over different time horizons, ranging from short-term (hourly or 

daily) to long-term (monthly or yearly).  

The process of time series analysis involves identifying patterns within the data to build 

suitable models that can describe the underlying dynamics of the series. This model is then 

used to predict future events based on the observed historical patterns.  

Time series forecasting is particularly useful when the statistical relationships among 

successive observations are unclear. For example, historical trends in airline passenger counts 

can be used to anticipate demand in upcoming months. Two famous examples of time series 

include the weekly BP/USD exchange rate series, which illustrates how currency exchange 

rates fluctuated over a 13-year period, and the monthly international airline passenger dataset, 

which shows both seasonal variations and an overall upward trend in air travel from 1949 to 
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1960. Graphical representations of these datasets often reveal trends, cycles, and seasonal 

patterns that are essential for effective forecasting. 

 

Figure 10: BP/USD exchange rate series 

 

Figure 11: Monthly international airline passenger series 

 

While many time series exhibit regular trends, cycles, and seasonality, some systems 

exhibit chaotic behaviour, where small variations in initial conditions lead to significantly 

different outcomes over time. These chaotic time series appear random but are governed by 

deterministic rules.  
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2.4.2 Chaos Theory 

Chaos theory[18] is a branch of mathematics and science that studies systems that are 

highly sensitive to initial conditions, often described as the butterfly effect. The field originated 

in the mid-20th century with the work of researchers like Edward Lorenz, whose study of 

weather systems highlighted how minor changes in input data could produce significantly 

different forecasts. Chaos theory applies to various disciplines, including meteorology, physics, 

biology, economics, and engineering, where it helps explain the behaviour of complex, 

dynamic systems. 

 

2.4.2.1 Chaotic Time Series and Nonlinear Dynamics 

Unlike traditional time series, which often follow linear or periodic patterns, chaotic 

time series[19] emerge in highly dynamic and nonlinear systems. In these systems, small 

differences in the starting state can lead to vastly different outcomes, making long-term 

prediction extremely difficult or even impossible. Despite this apparent randomness, chaotic 

time series can reveal underlying patterns and structures. 

One well-known example of a chaotic time series is the Mackey-Glass Chaotic Time 

Series, which arises from a delayed differential equation originally used to model the variation 

in the relative quantity of mature cells in the blood. The Mackey-Glass system demonstrates 

complex, nonlinear, and chaotic behaviour depending on its delay parameter.  

 

                 Figure 12: Mackey-Glass Chaotic Time Series 

Traditional forecasting models often fail in chaotic systems because they assume stable 

and repeatable patterns in historical data. This limitation is particularly evident in various real-

world applications, where nonlinear dependencies and unpredictable fluctuations challenge 

conventional prediction techniques. For example, predicting electricity consumption is difficult 
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because demand varies based on time of day, seasonality, and human activity patterns. 

Similarly, sales forecasting in retail is influenced by multiple factors such as holidays, and 

consumer behaviour, making it hard to model accurately. In temperature prediction, daily 

variations depend on local conditions, historical trends, and external influences, requiring 

models that can adapt to changing patterns. These complexities demonstrate the limitations of 

traditional forecasting techniques and highlight the need for more advanced, AI-driven 

approaches that can adapt to chaotic and dynamic environments more effectively. Hybrid 

models incorporating fuzzy logic and neural networks have shown promise in capturing the 

complexity of these datasets, improving forecasting accuracy. 

 

2.5 Hybrid Algorithms 

The prediction of chaotic time series, which exhibit highly non-linear and dynamic 

behaviour, remains a challenging task in system modeling. Existing models, such as Artificial 

Neural Networks (ANNs), Fuzzy Neural Networks (FNNs), and Recurrent Neural Networks 

(RNNs), have shown considerable promise but exhibit limitations when dealing with chaotic 

systems where multiple outcomes may depend on the system’s state. 

Several alternative methods have demonstrated promising performance in time series 

prediction, among which Recurrent Fuzzy Neural Networks (FNNs) stand out. RFNNs are 

hybrid models that integrate the learning capabilities of Recurrent Neural Networks (ANNs) 

with the interpretability and semantic transparency of fuzzy systems. Their ability to provide 

local representation and align with human reasoning makes them particularly effective in 

handling non-stochastic uncertainties. By capturing the underlying relationships within data, 

RFNNs have achieved significant success in time series prediction. 

 

2.5.1 MFRFNN: Multi-functional Recurrent Fuzzy Neural Network 

To leverage the temporal learning ability of Recurrent Neural Networks (RNNs) 

alongside FNNs' capacity to process fuzzy information, various Recurrent Fuzzy Neural 

Networks (RFNN) have been introduced but most of them are designed to learn only a single 

function. As a result, they generate a specific output based on current and previous inputs at 

each time step. However, when dealing with chaotic time series, where strong nonlinearity is 

present, a single-function approach is often insufficient. 
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For example, consider the return map of the Mackey-Glass chaotic time series. It shows 

that for a given value of x, two possible outputs (a and b) can emerge depending on the system’s 

state. In such cases, an effective algorithm must simultaneously learn multiple functions (F1 

and F2) and use system states to determine the appropriate output. If an algorithm only learns 

a single function, it will be unable to distinguish between possible outcomes at x, leading to 

reduced accuracy in time series prediction. Therefore, a network is required that can identify 

system states and learn a separate function for each state. This means the system should be 

capable of learning multiple functions concurrently. 

 

 

Figure 13: Return map of Mackey-Glass chaotic time series 

 

Another key challenge in predicting chaotic time series is their high sensitivity to initial 

conditions, which results in long-term unpredictability. A network designed for long-term 

predictions must be able to learn system states dynamically to accurately capture the evolving 

behaviour of chaotic time series. Additionally, it must incorporate a feedback loop to retain 

historical information and make informed predictions. To overcome these limitations, the 

Multi-Functional Recurrent Fuzzy Neural Network (MFRFNN) can be used.  

The Multi-Functional Recurrent Fuzzy Neural Network (MFRFNN)[2] is a hybrid 

model designed to handle complex time series forecasting problems, particularly those 

involving chaotic systems. It consists of two interconnected FNNs. One network predicts future 

values of the time series and the other determines the system’s state. By maintaining a memory 
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of past states and using them through the feedback mechanism in the model, it helps overcome 

long-term dependency issues that many traditional models face. The most important part of 

MFRFNN, is its ability to learn multiple functions simultaneously by employing the system 

states, which is crucial for handling highly nonlinear and chaotic data 

2.5.2 ReNFuzz-LF: A Recurrent Neurofuzzy System  

ReNFuzz-LF[3] is a Recurrent Neurofuzzy System that was designed for short-term 

electric load forecasting and operates with a single input. Unlike traditional static fuzzy models, 

it features dynamic consequent parts that incorporate small-scale recurrent neural networks 

(RNNs). These networks possess local output feedback, which allows the system to learn the 

temporal dependencies of time-series data. Additionally, the training method used for 

ReNFuzz-LF, is Simulated Annealing Dynamic Resilient Propagation (SA-DRPROP)[20], 

which helps alleviate the disadvantages of standard gradient-based methods. 

Based on the initial application of this system, its structure enabled the model to capture 

complex time dependencies in electricity demand, reduce the number of required inputs, 

simplifying the forecasting process and it improved prediction accuracy through the 

hybridization of fuzzy logic and neural networks. This system will be evaluated on various 

non-linear datasets in the next chapters to assess its adaptability and performance. 
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3 Methodology 

3.1 Architecture of MFRFNN 

The Multi-Functional Recurrent Fuzzy Neural Network (MFRFNN)[2] uses a state-based 

mechanism that switch between different states and allows the system to learn multiple 

functions simultaneously. This makes the system capable of modeling complex time-series data 

where an input may generate multiple different outputs based on the state of the network. 

The MFRFNN consists of two fuzzy neural networks (FNNs) employing Takagi-Sugeno-

Kang (TSK) fuzzy rules. One network generates the system’s output, while the other 

determines the system’s state. The system state network uses a feedback loop that enables it to 

retain historical information from the past states of the network. Additionally, the state signals 

are fed into the output network using a delay unit to calculate the final system output. 

− N: number of states 

− K₁ and K₂: number of fuzzy rules in output and state network 

− 𝐱 = {𝑥1, 𝑥2, … , 𝑥𝑑}
𝑇: input vector 

− 𝑦̂(𝑡): system output at time step t 

− 𝐴𝑖,𝑗 and 𝐵𝑖,𝑗: MFs for the 𝑗-th input variable 𝑥𝑗 in the 𝑖-th rule of the output and state 

networks 

− 𝜇𝐴𝑖,𝑗(𝑥𝑗):  membership value of the 𝑗-th input variable 𝑥𝑗 on 𝐴𝑖,𝑗  

− 𝑟𝑖(𝑥) 𝑎𝑛𝑑 𝑞𝑖(𝑥): overall rule activation strength for the 𝑖-th rule in the output and state 

networks 

− 𝑟̅𝑖(𝑥) 𝑎𝑛𝑑 𝑞̅𝑖(𝑥): normalized the firing strengths of 𝑟𝑖(𝑥) and 𝑞𝑖(𝑥) 

− 𝐹𝑗 and 𝐺𝑗: approximated functions for the output and state network for the j-th state of 

the system 

− 𝑤𝑖𝑗 and 𝑣𝑖𝑗: link weights associated with the 𝑖-th rule in the output and state network, 

for the 𝑗-th state of the system 

− 𝑊 𝑎𝑛𝑑 𝑉: link weight matrices for output and state networks 

− 𝑠𝑗: state signal for the 𝑗-th state of the system 

− 𝐹(𝑡): vector of approximated functions of the output network at time step 𝑡 

− 𝑆(𝑡): vector of state signals at time step 𝑡 

− 𝐺(𝑡): vector of approximated functions of the state network at time step 𝑡  
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− 𝑅(𝑡): vector of approximated functions of the output network at time step 𝑡 

− 𝑄(𝑡): vector of normalized firing strengths of the fuzzy rules at time 𝑡. 

− 𝑜(𝑡): intermediate output of state’s network output layer 

− 𝑜̅(𝑡): normalized 𝑜(𝑡) within the range [1, 𝑁] 

− 𝐸𝑖: i-th membership function in the output layer of the state network 

− 𝜇𝐸𝑖(𝑜(𝑡)): membership function value for 𝑜(𝑡) on the 𝑖-th state 

 

 

Figure 14: MFRFNN architecture 

 

The output network performs N function approximations, using K₁ fuzzy rules. The 

system’s output comprises N segments, where each segment represents a function 

approximation for a state, and the final output is obtained by summing these functions. The 

state network performs N function approximations using K₂ fuzzy rules to determine the 

system’s next state. The system consists of five layers, each serving a distinct purpose as 

explained below. 

3.1.1 MFRFNN Layers 

3.1.1.1 Input Layer 

The input layer receives the input data and transforms it using fuzzy membership functions. 

The output of each neuron of the input layer is the membership value of 𝑥𝑗 on 𝐴𝑖,𝑗, i.e., 𝜇𝐴𝑖,𝑗(𝑥𝑗). 

Clearly, there are 𝐾1 𝑥 𝑑 neurons in the output network and 𝐾2 𝑥 𝑑 neurons in the state network 

in this layer. 
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3.1.1.2 Fuzzy Rule Layer 

In the fuzzy rule layer, the firing strengths of the rules are calculated for both output and 

state networks. To calculate the firing strengths, the algebraic product is used as a T-norm 

operator ensuring that the overall activation strength reflects the combined influence of all input 

variables for a given rule. 

𝑟𝑖(𝑥) =∏𝜇𝐴𝑖,𝑗

𝑑

𝑗=1

(𝑥𝑗)                                𝑞𝑖(𝑥) =∏𝜇𝐵𝑖,𝑗

𝑑

𝑗=1

(𝑥𝑗) 

3.1.1.3 Normalized Fuzzy Rules Layer 

The normalized rule layer, normalizes all rule activations making their sum equal to 1 and 

effectively representing the relative contribution of each rule.  

𝑟̅𝑖(𝑥) =
𝑟𝑖(𝑥)

∑ 𝑟𝑗
𝐾1
𝑗=1

(𝑥)
                                       𝑞̅𝑖(𝑥) =

𝑞𝑖(𝑥)

∑ 𝑞𝑗
𝐾2
𝑗=1

(𝑥)
 

𝑅(𝑡) = [𝑟̅1, 𝑟̅2, . . . , 𝑟̅𝐾1]
𝑇                𝑄(𝑡) = [𝑞̅1, 𝑞̅2, . . . , 𝑞̅𝐾2]

𝑇   

3.1.1.4 Extended Fuzzy Rule layer 

The extended fuzzy rule layer computes the weighted sums of the activation rules, using 

the normalized firing strengths from the previous layer. The output of the layer represents the 

output of the approximated functions 𝐹𝑗 and 𝐺𝑗 for the output network and state network, 

respectively. 

𝐹𝑗 =∑𝑟̅𝑖

𝐾1

𝑖=1

𝑤𝑖𝑗                                        𝐺𝑗 =∑𝑞̅𝑖

𝐾2

𝑖=1

𝑣𝑖𝑗 

𝑊 = [

𝑤11 𝑤12 … 𝑤1𝑁
𝑤21 𝑤22 … 𝑤2𝑁

⋱
𝑤𝐾11 𝑤𝐾12 … 𝑤𝐾1𝑁

]            𝑉 = [

𝑣11 𝑣12 … 𝑣1𝑁
𝑣21 𝑣22 … 𝑣2𝑁

⋱
𝑣𝐾21 𝑣𝐾22 … 𝑣𝐾2𝑁

] 

𝐹(𝑡) = [

𝐹1
𝐹2
⋮
𝐹𝑁

] = 𝑊𝑇𝑅(𝑡)                        𝐺(𝑡) = [

𝐺1
𝐺2
⋮
𝐺𝑁

] = 𝑉𝑇𝑄(𝑡)         

3.1.1.5 Output Layer 

Finally, the output layer of the output network provides the final prediction 𝑦̂. The outputs 

of the approximate functions 𝐹𝑗 are multiplied by the state signals 𝑠𝑗 which activates only the 
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functions that correspond to the current state. The final output of the system is the sum of these 

functions.  

𝑦̂(𝑡) = 𝑆(𝑡)𝑇𝐹(𝑡) =∑𝑠𝑗

𝑁

𝑗=1

𝐹𝑗  ,              𝑆(𝑡) = [

𝑠1
𝑠2

𝑠𝑁

] 

 To generate the state signals 𝑠𝑗, firstly the output of Layer 4 𝐺(𝑡), is multiplied by the 

current state signals 𝑆(𝑡) and the results are summed giving us the intermediate output of the 

state’s network output layer 𝑜(𝑡).  

𝑜(𝑡) = 𝐺(𝑡)𝑇𝑆(𝑡) 

Then, 𝑜(𝑡) 𝑖𝑠 normalized in the range [1, 𝑁], 𝑜̅(𝑡), to be used as input to membership 

functions in the output layer of the state network. 

𝑜̅(𝑡) = [𝑜(𝑡)(𝑁 − 1) + 1] 

The output of the MFs, 𝑆(𝑡 + 1), are the state signals (state network output) that 

determine the next state of the network. (Note: The network can use crisp or fuzzy MFs. In the 

case of crisp MFs the network has discrete states. On the other hand, when using fuzzy MFs 

the states become continuous and the final output is a weighted sum of the N approximated 

functions.)  

𝑆(𝑡 + 1) =

[
 
 
 
 
𝜇𝐸1(𝑜̅(𝑡))

𝜇𝐸2(𝑜̅(𝑡))

⋮
𝜇𝐸𝑁(𝑜̅(𝑡))]

 
 
 
 

 

 

3.1.2 Training Algorithm 

MFRFNN employs a hybrid learning approach that combines two main techniques: the 

Least Squares Method and Particle Swarm Optimization (PSO). MFRFNN’s total number of 

trainable parameters is (K₁ + K₂) * N which can be broken down to K₁ * N for the link weight 

matrix 𝑊 of the output network and K₂ * N for the link weight matrix 𝑉 of the state network.  
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3.1.2.1 Output Network’s weight matrix (Least Squares Method) 

To construct the output network’s weight matrix, we need to estimate the optimal weight 

vector 𝜃∗ using the least squares method. To achieve this, the algorithm iterates over the 

training dataset, computing the rule normalized firing strengths, for both networks. 

Additionally, for each data point the approximate functions, normalized intermediate output 

and state signals of the state network are calculated. Once all data points have been processed, 

the optimal weight matrix is obtained using the Moore–Penrose pseudoinverse. Finally, the 

final cost value is calculated as the root mean squared error between predicted and actual 

outputs. 

RMSE = √
1

𝑝
∑(𝑦[𝑖] − 𝑦̂𝑖)2

𝑝

𝑖=1

 

− 𝑥[𝑡] and 𝑦[𝑡]: input and output at timestep 𝑡 

− 𝑝: 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 

− 𝐷 = {(𝑥[𝑡], 𝑦[𝑡])}𝑡=1
𝑝

: Training Dataset 

− 𝐴: contribution of each fuzzy rule to each state for all training samples 

− 𝑟̅1
[1]

: normalized firing strength of i-th fuzzy rule for j-th training sample 

− 𝑦[𝑖]: actual output of i-th training sample 

− 𝜃: vectorized representation of the weight matrix 𝑊 

− 𝜃 ∗: optimal weight vector that minimizes the square error ‖𝐴𝜃 − 𝑦‖2 

 

Aside from equation 𝑦̂(𝑡) = 𝐹(𝑡)𝑇𝑆(𝑡), the final output of the system can be also computed 

using 𝑦̂ = tr(𝑅(𝑡)𝑆𝑇(𝑡)𝑊). This can be derived by expressing 𝐹(𝑡) in terms of the firing 

strength vector 𝑅(𝑡) and the weight matrix 𝑊. Since 𝐹𝑗 = ∑ 𝑟𝑖̅
𝐾1
𝑖=1 𝑤𝑖𝑗, we rewrite it in matrix 

form as 𝐹(𝑡) = 𝑊𝑇𝑅(𝑡). Substituting this into 𝑦̂(𝑡) we get the following: 

𝑦̂(𝑡) = (𝑊𝑇𝑅(𝑡))
𝑇
𝑆(𝑡) = 𝑅(𝑡)𝑇𝑊𝑆(𝑡) 

Applying the trace identity 𝑎𝑇𝐵𝑐 = tr(𝑐𝑎𝑇𝐵), we obtain: 

𝑦̂ = tr(𝑅(𝑡)𝑆𝑇(𝑡)𝑊) 
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By inputting the training data into 𝑦̂ = tr(𝑅(𝑡)𝑆𝑇(𝑡)𝑊) we get the matrix equation: 

𝐴𝜃 = 𝑦 ,                𝑦 =

[
 
 
 
𝑦[1]

𝑦[2]

⋮
𝑦[𝑝]]

 
 
 

 

𝐴 =

[
 
 
 
 𝑟̅1
[1]
𝑠1 𝑟̅1

[1]
𝑠2 ⋯ 𝑟̅2

[1]
𝑠1 ⋯ 𝑟̅𝐾1

[1]
𝑠𝑁

𝑟̅1
[2]
𝑠1 𝑟̅1

[2]
𝑠2 ⋯ 𝑟̅2

[2]
𝑠1 ⋯ 𝑟̅𝐾1

[2]
𝑠𝑁

⋯ ⋯ ⋱ ⋮ ⋱ ⋮

𝑟̅1
[𝑝]
𝑠1 𝑟̅1

[𝑝]
𝑠2 ⋯ 𝑟̅2

[𝑝]
𝑠1 ⋯ 𝑟̅𝐾1

[𝑝]
𝑠𝑁]
 
 
 
 

 ,   𝜃 = [𝑤11 𝑤12 𝑤21 … 𝑤𝐾1𝑁]𝑇 

       To estimate the optimal weight vector 𝜃 ∗ we need to find a 𝜃 that minimizes the square 

error ‖𝐴𝜃 − 𝑦‖2. Since 𝐴 has more equations than unknowns we seek the least-squared 

solution which finds 𝜃 ∗ that minimizes the residual error. This optimal solution is given by 

the Moore-Penrose pseudoinverse, which provides a closed-form solution: 

𝜃 ∗= (𝐴𝑇𝐴)−1𝐴𝑇𝑦 

The Moore-Penrose pseudoinverse is particularly useful because it provides a direct, non-

iterative solution and guarantees the optimal 𝜃 that minimizes the squared error. 
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Training of output network weight matrix (Least Squared Errors) 

Input: 

𝐾1, 𝐾2, 𝑁, 𝑉,  Training dataset: 𝐷 = {𝑥[𝑡],   𝑦[𝑡]}
𝑡=1

𝑝
 

 

Output: 

Optimal weight matrix 𝜃∗, Cost value 𝐶 

 

S ← 0   

S₁ ← 1  // Initialize with starting state   

A ← [ ]  // Initialize an empty matrix   

for t ← 1 to p do   

    for i ← 1 to 𝐾1 do   

        Compute 𝑟𝑖(𝑥
[𝑡])  

    end   

    for i ← 1 to 𝐾1 do   

        Compute 𝑟̅𝑖(𝑥
[𝑡])    

    end   

    Add new row [𝑟̅1
[𝑡]
𝑠1 𝑟̅1

[𝑡]
𝑠2 ⋯ 𝑟̅2

[𝑡]
𝑠1 ⋯ 𝑟̅𝐾1

[𝑡]
𝑠𝑁] to matrix A  

    for i ← 1 to 𝐾2 do   

        Compute 𝑞𝑖(𝑥
[𝑡])   

    end   

    for i ← 1 to 𝐾2 do   

        Compute 𝑞̅𝑖(𝑥
[𝑡])  

    end   

    Compute 𝐺(𝑡)  

    Compute 𝑜(𝑡)  

    Compute 𝑜̅(𝑡)   

    Compute 𝑆 using// Determine the next state   

end   

 

Compute 𝜃∗ 

𝑦̂ ← 𝐴𝜃∗ 

𝐶 ← √
1

𝑝
∑ (𝑦[𝑖] − 𝑦̂𝑖)

2
𝑝

𝑖=1
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3.1.2.2 State Network’s weight matrix (Particle Swarm Optimization) 

Since the state network’s relationship to the output is nonlinear, to get the optimal weights 

of the state network 𝑉 we cannot use the linear least-squares method. Instead, Particle Swarm 

Optimization (PSO)[21] is used. 

Particle Swarm Optimization (PSO) is a population-based stochastic optimization 

algorithm inspired by the social behavior of flocking birds, originally proposed by Kennedy 

and Eberhart (1995). 

− 𝑥𝑖
𝑘: weight matrix of state network for the i-th particle at the k -th iteration 

− 𝑣𝑖
𝑘: velocity of the 𝑖-th particle at the k -th iteration  

− 𝑝𝑖: personal best position of the 𝑖-th particle 

− 𝑝𝑔𝑏𝑒𝑠𝑡: global best position among all particles in the swarm 

− 𝑤𝑖: output network’s weight matrix for the i-th particle 

− 𝑐1 and 𝑐2: cognitive and social acceleration coefficients, determining the influence of 

𝑝𝑖
𝑘 and 𝑝𝑔𝑏𝑒𝑠𝑡

𝑘  

− 𝑟1 and 𝑟2: random vectors uniformly distributed within [0,1] 

In PSO, each potential solution to the optimization problem is called a particle, and a 

collection of these particles forms a swarm. Every particle is associated with a position 

(position= weight matrix of state network) and velocity, which are iteratively updated to 

explore the solution space effectively. The position 𝑥𝑖
𝑘 and velocity 𝑣𝑖

𝑘 of the 𝑖-th particle at 

iteration 𝑘 are updated using the following equations: 

𝑣𝑖
𝑘+1 = 𝑤𝑖𝑣𝑖

𝑘 + 𝑐1𝑟1(𝑝𝑖 − 𝑥𝑖
𝑘) + 𝑐2𝑟2(𝑝𝑔𝑏𝑒𝑠𝑡 − 𝑥𝑖

𝑘) 

𝑥𝑖
𝑘+1 = 𝑥𝑖

𝑘 + 𝑣𝑖
𝑘+1 

3.1.2.3 Training 

Together, these two algorithms enable MFRFNN to learn both the output and state network 

parameters. Firstly, PSO randomly initializes 𝑥𝑖 , 𝑣𝑖 𝑎𝑛𝑑 𝑤𝑖 for each particle of the swarm. As 

mentioned above 𝑥𝑖  𝑎𝑛𝑑 𝑤𝑖 represent the weight matrix of state and output networks for the   

i-th particle, respectively. The weights are then optimized for each particle using the LSE 

algorithm which also calculates the cost value using the Root Mean Squared Error. 
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Additionally, now knowing the initial cost value of each particle, the global best position is 

initialized using the particle with the minimum error.  

Having the initialized values of 𝑥𝑖 ,  𝑣𝑖 , 𝑤𝑖 𝑎𝑛𝑑 𝑝𝑔𝑏𝑒𝑠𝑡 , their training begins and goes on 

until a stopping criterion is met (such as a convergence threshold or a maximum number of 

iterations). During the PSO algorithm, for each iteration and each particle, 𝑥𝑖  𝑎𝑛𝑑 𝑣𝑖 are update 

using the equations mentioned previously. Additionally, the weight matrix 𝑤 of each particle 

is updated and its cost value is calculated. Taking into account if the cost value is lower than 

the previous ones, the particle’s best position is updated and in the event of an overall best 

position of the swarm, the global best position is updated as well. The global best position of 

the swarm at the end of training is equal to the state network’s weight matrix. Finally, having 

the optimized weight matrix for the state network, the optimized weight matrix of the output 

network can be created using the LSE algorithm.  

 

3.1.3 Testing 

To test the network, 𝑦̂ = 𝐴𝜃∗ must be calculated, where 𝜃∗ are the trained weights of the output 

network and A can be constructed during the testing algorithm based on the input. Similarly, 

as the Output Network weights algorithm, the algorithm iterates over the testing dataset, 

computing the rule normalized firing strengths, for both networks. Additionally, for each data 

point the approximate functions, normalized intermediate output and state signals of the state 

network are calculated. At each iteration a new row [𝑟̅1
[𝑡]
𝑠1 𝑟̅1

[𝑡]
𝑠2 ⋯ 𝑟̅2

[𝑡]
𝑠1 ⋯ 𝑟̅𝐾1

[𝑡]
𝑠𝑁] 

is added to matrix A. At the end of the algorithm, we have the complete matrix A and the already 

known 𝜃∗, which are multiplied together to get the predictions for the testing dataset. 
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MFRFNN Training (PSO) 

Input: 

𝐾1, 𝐾2, 𝑁, 𝑉,  Training dataset: 𝐷 = {𝑥[𝑡],   𝑦[𝑡]}
𝑡=1

𝑝
 

 

Output: 

The global best particle (gbest) 

 

for each particle i do   

    Initialize 𝑥𝑖𝜖ℝ
(𝐾2𝑥𝑁)𝑥1 and 𝑣𝑖𝜖ℝ

(𝐾2𝑥𝑁)𝑥1 to random vectors   

    Initialize 𝑤𝑖𝜖ℝ
(𝐾2𝑥𝑁)𝑥1 to random vectors   

    𝑝𝑖 ← 𝑥𝑖 

    Update 𝑤𝑖 and calculate the cost value 𝑓(𝑝𝑖) using LSE algoritm 

end 

𝑔𝑏𝑒𝑠𝑡 ← 𝑎𝑟𝑔𝑚𝑖𝑛𝑖𝑓(𝑝𝑖) 

 

while stopping criterion is not met do 

    for each particle i do 

        Update 𝑣𝑖  

        Update 𝑥𝑖  

        Update 𝑤𝑖 and calculate 𝑓(𝑥𝑖) using Algorithm 1 

        If 𝑓(𝑥𝑖) < 𝑓(𝑝𝑖) then 

            𝑝𝑖 ← 𝑥𝑖 

            If 𝑓(𝑝𝑖) < 𝑓(𝑝𝑔𝑏𝑒𝑠𝑡) then 

                𝑔𝑏𝑒𝑠𝑡 ← 𝑖 

            end 

        end 

    end 

end 
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Testing Algorithm 

Input: 

𝐾1, 𝐾2, 𝑁, 𝑉, 𝜃
∗ Training dataset: 𝐷 = {𝑥[𝑡],   𝑦[𝑡]}

𝑡=1

𝑝
 

 

Output: 

Predicted Output (𝑦̂) 

 

S ← 0   

S₁ ← 1  // Initialize with starting state   

A ← [ ]  // Initialize an empty matrix   

for t ← 1 to p do   

    for i ← 1 to 𝐾1 do   

        Compute 𝑟𝑖(𝑥
[𝑡])  

    end   

    for i ← 1 to 𝐾1 do   

        Compute 𝑟̅𝑖(𝑥
[𝑡])  

    end   

    Add new row [𝑟̅1
[𝑡]
𝑠1 𝑟̅1

[𝑡]
𝑠2 ⋯ 𝑟̅2

[𝑡]
𝑠1 ⋯ 𝑟̅𝐾1

[𝑡]
𝑠𝑁] to matrix A  

    for i ← 1 to 𝐾2 do   

        Compute 𝑞𝑖(𝑥
[𝑡])   

    end   

    for i ← 1 to 𝐾2 do   

        Compute 𝑞̅𝑖(𝑥
[𝑡])  

    end   

    Compute 𝐺(𝑡)  

    Compute 𝑜(𝑡)  

    Compute 𝑜̅(𝑡)  

    Compute 𝑆 // Determine the next state   

end   

𝑦̂ ← 𝐴𝜃∗ 
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3.2 Architecture of ReNFuzz-LF 

The rule base of traditional Takagi–Sugeno–Kang (TSK)[3] models consist of fuzzy 

sets in the premise part and linear functions of the inputs as the consequent part but in general 

these functions can be any continuous and derivable nonlinear function. ReNFuzz-LF follows 

a hybrid fuzzy-neural architecture where each fuzzy rule contains a small-scale recurrent neural 

network with local feedback as its consequent part.  

IF 𝑥1(𝑘) is 𝐴1 AND . . . AND 𝑥𝑚(𝑘) is 𝐴𝑚 THEN 𝑔(𝑥(𝑘)) 

The model doesn’t incorporate external output feedback, enabling it to maintain local 

learning capabilities of the classical TSK model while benefiting from the structured 

uncertainty handling of fuzzy logic. The premise part of the fuzzy rules is static, whereas the 

consequent parts dynamically adjust to capture time-dependent variations in the time series 

data. These dynamic consequent parts, connect with each other during the defuzzification 

process to calculate the output of the model. 

− N: number of samples 

− 𝑥(𝑘) = [𝑥1, ⋯ , 𝑥𝑚]
𝑇: k-th sample vector  

− 𝑥𝑖(𝑘): i-th input of k-th sample vector 

− 𝐴𝑖
𝑙: fuzzy set of the i-th input of a l-th rule 

− 𝑅: number of rules 

− 𝜇𝑙(𝑘): firing strength of l-th rule for k-th sample 

− 𝜇
𝐴𝑖
𝑙(𝑥𝑖(𝑘)): membership degree of 𝑥𝑖(𝑘) in 𝐴𝑖

𝑙  

− 𝑚𝑙 = [𝑚𝑙1, ⋯ ,𝑚𝑙𝑚]
𝑇: mean values of all Gaussian membership functions of l-th rule 

− 𝜎𝑙 = [𝜎𝑙1, ⋯ , 𝜎𝑙𝑚]
𝑇: standard deviations of all Gaussian membership functions of l-th 

rule 

− 𝑤𝑙ℎ𝑖
(1)
, 𝑤𝑙ℎ

(2)
: synaptic weights at the hidden layer of the consequent parts. (𝑤𝑙ℎ

(1)
 is a vector 

of all the weights connecting each input from the input layer to the hidden neurons) 

− 𝑤𝑙ℎ
(3)

: bias terms of the hidden layer of the consequent parts 

− 𝑤𝑙ℎ
(4)
, 𝑤𝑙

(5)
: synaptic weight at the output layer of the consequent parts 

− 𝑤𝑙
(5)

: bias terms of the output layer of the consequent parts 

− 𝑓(𝑘, 𝑙): output of activation function of the l-th fuzzy rule of the k-th sample 

− 𝑠𝑙ℎ(𝑘): output of the h-th hidden neuron of the l-th fuzzy rule of the k-th sample 

− 𝑔𝑙: output of the l-th fuzzy rule 
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3.2.1 Fuzzy Rules and Defuzzification 

3.2.1.1 Premise Part 

 The premise part of each rule of the fuzzy rule base, is composed of single-dimension 

Gaussian membership functions. 

𝜇
𝐴𝑖
𝑙(𝑥𝑖(𝑘)) = 𝑒𝑥𝑝 {−

(𝑥𝑖(𝑘) − 𝑚𝑙𝑖)
2

2𝜎𝑙𝑖
2 } 

 The firing strength of each rule is calculated as the algebraic product of the Gaussian 

membership functions 

𝜇𝑙(𝑘) = 𝑓𝜇(𝑥(𝑘); 𝑚𝑙, 𝜎𝑙) =∏𝜇
𝐴𝑖
𝑙(𝑥𝑖(𝑘))

𝑚

𝑖=1

, 𝑙 = 1, . . . , 𝑅 

3.2.1.2 Consequent Part 

Each fuzzy rule's consequent part is a three-layer RNN with local output feedback, 

which enables the system to retain historical information. The RNN input layer receives m 

inputs, the hidden layer has H hidden neurons and the output layer calculates the output of the 

RNN. The activation function 𝑓(∙) used in the network is the hyperbolic tangent. 

𝑓(𝑘, 𝑙) =
𝑒𝑧 − 𝑒−𝑧

𝑒𝑧+𝑒−𝑧
 

 

 

Figure 15: ReNFuzz-LF consequents part RNN configuration 
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The output of the h-th hidden neuron of the l-th rule is calculated as follows: 

𝑠𝑙ℎ(𝑘) = 𝑓((𝑤𝑙ℎ
(1)
)𝑇𝑥(𝑘) + 𝑤𝑙ℎ

(2)
𝑠𝑙ℎ(𝑘) + 𝑤𝑙ℎ

(3)
) = 𝑓 (∑[𝑤𝑙ℎ𝑖

(1)
𝑥𝑖(𝑘)] + 𝑤𝑙ℎ

(2)
𝑠𝑙ℎ(𝑘) + 𝑤𝑙ℎ

(3)

𝑚

𝑖=1

) 

and the output of the l-th fuzzy rule: 

𝑔𝑙(𝑘) = 𝑓 (∑[𝑤𝑙ℎ
(4)
𝑠𝑙ℎ(𝑘)] + 𝑤𝑙

(5)

𝐻

ℎ=1

) 

 

3.2.1.3 Defuzzification Part 

After calculating all the rule activations, the final output of ReNFuzz-LF is calculated using 

the weighted average method. 

𝑦(𝑘) =
∑ 𝜇𝑙(𝑘)𝑔𝑙(𝑘)
𝑅
𝑙=1

∑ 𝜇𝑙(𝑘)
𝑅
𝑙=1

 

 

 

Figure 16: ReNFuzz-LF diagram 

 

3.2.2 Training Algorithm 

ReNFuzz-LF is trained using a hybrid optimization method using the Fuzzy C-means 

clustering to calculate the premise’s part parameters and an iterative algorithm based on 

Simulated Annealing Dynamic Resilient Propagation (SA-DRPROP) to optimize the synaptic 

weights of the consequent’s part RNN. 

The total number of trainable parameters is R*(2m+(m+3)H+1)  which can be broken 

down to 2mR for the premise part and ((m+3)H+1)R for the consequent part, where m is 

equal to the number of inputs of each sample vector.  
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 3.2.2.1 Premise Part Parameters (FCM) 

− 𝑚𝑙𝑖: mean value of the Gaussian MF of the i-th input of the l-th rule (centres of FCM 

clusters) 

− 𝜎𝑙𝑖: standard deviation of the Gaussian MF of the i-th input of the l-th rule 

− 𝑢𝑙𝑖(𝑘) = [𝑢𝑙𝑖(𝑘), … , 𝑢𝑙𝑚(𝑘)]
𝑇: membership degree that x(k) belongs to the l-th cluster 

− 𝑐: scale parameter within [0, 1]  

The trainable parameters of the premise part are static. This means that they are 

calculated once and remain unchanged during the training of the consequent’s part 

parameters. The algorithm employed to calculate the m and σ parameters of the premise part 

and consequently the partition of the input space, is the fuzzy C-means (FCM).  

FCM is a generalization of the K-means algorithm. It’s an unsupervised clustering 

algorithm that incorporates fuzzy set theory. Rather than assigning each data point to a 

specific cluster it allows for varying degrees of membership to multiple. 

The mean values m of the Gaussian membership functions are equal to the cluster centers 

and the standard deviations σ are calculated as shown below. 

𝑚𝑙𝑖 =
∑ 𝑢𝑙𝑖(𝑘)𝑥𝑖(𝑘)
𝑁
𝑘=1

∑ 𝑢𝑙𝑖(𝑘)
𝑁
𝑘=1

 

𝑢𝑙𝑖(𝑘) = [∑
∑ (𝑚𝑙𝑖 − 𝑥𝑖(𝑘))

2𝑚
𝑖=1

∑ (𝑚𝑙𝑖)2
𝑚
𝑖=1

𝑅

𝑘=1

]

1− 
1
𝑐

 

𝜎𝑙𝑖 =
𝑐∑ 𝑢𝑙𝑖(𝑘)(𝑚𝑙𝑖 − 𝑥𝑖(𝑘))

2𝑁
𝑘=1

∑ 𝑢𝑙𝑖(𝑘)
𝑁
𝑘=1

 

 

To evaluate the best partition of the input data the Davies-Bouldin Index (DBI) is 

calculated. DBI measures the compactness and separation of clusters to determine how well-

defined they are. Partitions with the lower DBI, result in better clustering results. This might 

not always create the best model though because a high number of clusters may result in 

overfitting. That’s why multiple models with different partitions might be train to evaluate 

which is the best.  
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3.2.2.2 Consequent Part (SA-DRPROP) 

The use of an iterative approach based on SARPROP for the training of the RNN, helps 

address the problem of local minima trapping, and makes a broader search across the weight 

space to find the optimal weights. 

− 𝑤𝑖: consequent synaptic weight i 

− 
𝜕+𝐸(𝑡)

𝜕𝑤𝑖
 and 

𝜕+𝐸(𝑡−1)

𝜕𝑤𝑖
: partial derivatives of error function E with respect to the adaptive 

weight 𝑤𝑖 for present t and previous t-1 iteration of SA-DRPROP 

− 𝑓’(𝑘, 𝑙) = 1 − 𝑓(𝑘, 𝑙)2: derivative of 𝑔𝑙(𝑘) with respect to its arguments 

− 𝑦̂(𝑘): actual output value 

− 𝑤𝑙: 𝑜𝑛𝑒 𝑜𝑓 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑤1, 𝑤2 𝑜𝑟 𝑤3 𝑜𝑓 𝑙 − 𝑡ℎ 𝑓𝑢𝑧𝑧𝑦 𝑟𝑢𝑙𝑒 

− 𝜆𝑙ℎ(𝑁): boundary condition of the h-th neuron of l-th rule(N-final sample) 

− 𝜆𝑙ℎ(𝑘): Lagrange multiplier of the h-th neuron of l-th rule for the k-th sample 

− 𝑇𝑒𝑚𝑝 = 1.2: Temperature 

− 𝑆𝐴 = 2−𝑡∙𝑇𝑒𝑚𝑝: Simulated Annealing term at t-th iteration 

− 𝛼1 = 0.01 

− 𝛼2 = 0.4 

− 𝛥0 = 0.01: initialized step size 

− 𝛥𝑚𝑖𝑛 = 0.0001: minimum step size 

− 𝛥𝑚𝑎𝑥 = 0.5: maximum step size 

− 𝜂− = 0.5: step size decrease 

− 𝜂+ = 1.05: step size increase 

− 𝑟: random noise value within [0,1]  
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Before initiating and after each iteration of the training algorithm the derivatives of the 

error function E with respect to all weights must be calculated (Note: the synaptic weights are 

initialized randomly). The error function used for the extraction of the error gradients is the 

Root Mean Squared Erro (RMSE). 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑[𝑦(𝑘) − 𝑦̂(𝑘)]2
𝑁

𝑘=1

 

 For weights 𝑤4 𝑎𝑛𝑑 𝑤5 the derivatives are calculated using the classic chain rule: 

∂𝐸

∂𝑤𝑙ℎ
(4)
=
2

𝑁
{∑[

𝑁

𝑘=1

𝑦(𝑘) − 𝑦̂(𝑘)]
𝜇𝑙(𝑘)𝑓′(𝑘, 𝑙)𝑠𝑙ℎ(𝑘)

∑ 𝜇𝑖(𝑘)
𝑅
𝑖=1

} 

∂𝐸

∂𝑤𝑙
(5)
=
2

𝑁
{∑[

𝑁

𝑘=1

𝑦(𝑘) − 𝑦̂(𝑘)]
𝜇𝑙(𝑘)𝑓′(𝑘, 𝑙)

∑ 𝜇𝑖(𝑘)
𝑅
𝑖=1

} 

For weights 𝑤1, 𝑤2 𝑎𝑛𝑑 𝑤3 ordered derivatives 
𝜕+𝐸

𝜕𝑤𝑙
 are necessary to unfold in time the 

neuron’s operation.  

𝜕+𝐸

𝜕𝑤𝑙
=∑

𝜕𝐸

𝜕𝑦(𝑘)

𝜕+𝑦(𝑘)

𝜕𝑤𝑙

𝑁

𝑘=1

=∑
𝜕𝐸

𝜕𝑦(𝑘)

𝜕𝑦(𝑘)

𝜕𝑔𝑙(𝑘)

𝜕+𝑔𝑙(𝑘)

𝜕𝑤𝑙
= 
2

𝑁
∑{[𝑦(𝑘) − 𝑦̂(𝑘)]

𝜇𝑙(𝑘)

∑ 𝜇𝑖(𝑘)
𝑅
𝑖=1

𝜕+𝑔𝑙(𝑘)

𝜕𝑤𝑙
}

𝑁

𝑘=1

𝑁

𝑘=1

 

Additionally, to facilitate the calculation of 
𝜕+𝑔𝑙(𝑘)

𝜕𝑤𝑙
 Lagrange multipliers are incorporated. 

Firstly, the boundary conditions 𝜆𝑙ℎ(𝑁) are calculated and then the Lagrange multipliers are 

calculated backwards from 𝜆𝑙ℎ(𝑁 − 1) to 𝜆𝑙ℎ(1). 

𝜆𝑙ℎ(𝑁) =
2

𝑁
∑{[𝑦(𝑁) − 𝑦̂(𝑁)]

𝜇𝑙(𝑁)𝑓′(𝑁, 𝑙)𝑤𝑙ℎ
(4)

∑ 𝜇𝑖(𝑁)
𝑅
𝑖=1

}

𝑁

𝑘=1

 

𝜆𝑙ℎ(𝑘) = 𝜆𝑙ℎ(𝑘 + 1)𝑓′(𝑘 + 1, 𝑙, ℎ)𝑤𝑙ℎ
(2)
+
2

𝑁
∑{[𝑦(𝑘) − 𝑦̂(𝑘)]

𝜇𝑙(𝑘)𝑓′(𝑘, 𝑙)𝑤𝑙ℎ
(4)

∑ 𝜇𝑖(𝑘)
𝑅
𝑖=1

}

𝑁

𝑘=1
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By applying the Lagrange multipliers to 
𝜕+𝐸

𝜕𝑤𝑙
 the ordered derivatives of E with respect to 

𝑤1, 𝑤2 𝑎𝑛𝑑 𝑤3 are: 

𝜕+𝐸

𝜕𝑤𝑙ℎ𝑖
(1)
=∑𝜆𝑙ℎ(𝑘)𝑓′(𝑘, 𝑙, ℎ)𝑥𝑖(𝑘)

𝑁

𝑘=1

 

𝜕+𝐸

𝜕𝑤𝑙ℎ
(2)
=∑𝜆𝑙ℎ(𝑘)𝑓′(𝑘, 𝑙, ℎ)𝑠𝑙ℎ(𝑘 − 1)

𝑁

𝑘=1

 

𝜕+𝐸

𝜕𝑤𝑙ℎ
(3)
=∑𝜆𝑙ℎ(𝑘)𝑓′(𝑘, 𝑙, ℎ)

𝑁

𝑘=1

 

 

Having calculated all error gradients, the new SA-DRPROP error gradients are calculated 

by adding a weight decay term to the error gradients. (Note: SA-DRPROP error gradients are 

initialized randomly) 

𝑆𝐴 − 𝐷𝑅𝑃𝑅𝑂𝑃 𝑒𝑟𝑟𝑜𝑟 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 (𝑖𝑡𝑒𝑟𝑒𝑡𝑖𝑜𝑛 𝑡) =
𝜕+𝐸(𝑡)

𝜕𝑤𝑖
− 𝛼1 ∙ 𝑆𝐴 ∙

𝑤𝑖

1 + 𝑤𝑖
2 

To update each weight after each iteration, their respective step sizes must be updated. 

The step sizes of each weight are initialized to a small value 𝛥0 and during training they are 

adjusted according to the sign of the SA-DRPROP error gradient at the current and previous 

iteration of the respective weight. Obviously, there are 3 different cases: 

1. If the error gradients have the same sign {
𝜕+𝐸(𝑡)

𝜕𝑤𝑙
∙
𝜕+𝐸(𝑡−1)

𝜕𝑤𝑙
> 0}, this leads to a step 

size increase. 

𝛥𝑖
(𝑡)
= 𝑚𝑖𝑛{𝜂+𝛥𝑖

(𝑡−1)
, 𝛥𝑚𝑎𝑥} 

2. If the error gradients have opposite signs {
𝜕+𝐸(𝑡)

𝜕𝑤𝑙
∙
𝜕+𝐸(𝑡−1)

𝜕𝑤𝑙
< 0}, this leads to a step 

decrease. When the step size is lower than the threshold 𝛼2 ∙ 𝑆𝐴
2 indicates a 

possibility of falling into a local minimum, so noise 𝑟 is added to the step size to help 

the weight overcome it,  

𝛥𝑖
(𝑡)
= 𝑚𝑎𝑥{𝜂− ∙ 𝛥𝑖

(𝑡−1)
∙ 𝑟 ∙ 𝑆𝐴2, 𝛥𝑚𝑖𝑥} 
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otherwise, 

𝛥𝑖
(𝑡)
= 𝑚𝑎𝑥{𝜂−𝛥𝑖

(𝑡−1)
, 𝛥𝑚𝑖𝑥} 

3. In the case where {
𝜕+𝐸(𝑡)

𝜕𝑤𝑙
∙
𝜕+𝐸(𝑡−1)

𝜕𝑤𝑙
= 0} the step size remains the same 

  

Finally, the weight updates are calculated as follows: 

𝑤𝑖(𝑡) = 𝑤𝑖(𝑡 − 1) − 𝑠𝑖𝑔𝑛 (
𝜕+𝐸(𝑡)

𝜕𝑤𝑖
)𝛥𝑖

(𝑡)
 

 

SA-DRPROP Training 

Input: 

𝑆𝐴 𝑒𝑟𝑟𝑜𝑟 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑠(𝑆𝐴𝐸𝐺𝑖) 𝑎𝑛𝑑 𝑤𝑒𝑖𝑔ℎ𝑡𝑠(𝑤𝑖) 𝑜𝑓 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛, 

𝜕+𝐸(𝑡)

𝜕𝑤𝑖
, 𝛥𝑖
(𝑡−1), 𝛼1, 𝛼2, 𝑟, 𝑆𝐴, 𝜂

−, 𝜂+, 𝛥𝑚𝑖𝑥 , 𝛥𝑚𝑎𝑥 

Output: 

Updated weights 

For each weight 𝑤𝑖 do 

    SAEG𝑖(t) =
𝜕+𝐸(𝑡)

𝜕𝑤𝑖
− 𝛼1 ∙ 𝑆𝐴 ∙

𝑤𝑖(𝑡−1)

1+𝑤𝑖(𝑡−1)
2 

    If  
𝜕+𝐸(𝑡)

𝜕𝑤𝑖
∙
𝜕+𝐸(𝑡−1)

𝜕𝑤𝑖
> 0 

        𝛥𝑖
(𝑡) = 𝑚𝑖𝑛 {𝜂+𝛥𝑖

(𝑡−1), 𝛥𝑚𝑎𝑥} 

    Else, if 
𝜕+𝐸(𝑡)

𝜕𝑤𝑖
∙
𝜕+𝐸(𝑡−1)

𝜕𝑤𝑖
< 0 

        if (𝛥𝑖
(𝑡) < 𝛼2 ∙ 𝑆𝐴

2) 

            𝛥𝑖
(𝑡) = 𝑚𝑎𝑥 {𝜂− ∙ 𝛥𝑖

(𝑡−1) ∙ 𝑟 ∙ 𝑆𝐴2, 𝛥𝑚𝑖𝑛} 

        else 

            𝛥𝑖
(𝑡) = 𝑚𝑎𝑥 {𝜂− ∙ 𝛥𝑖

(𝑡−1), 𝛥𝑚𝑖𝑛} 

    Else, 𝛥𝑖
(𝑡) = 𝛥𝑖

(𝑡−1)
 

    end 

end 

Update 𝑤𝑖: 𝑤𝑖(𝑡) = 𝑤𝑖(𝑡 − 1) − 𝑠𝑖𝑔𝑛 (
𝜕+𝐸(𝑡)

𝜕𝑤𝑖
)𝛥𝑖

(𝑡)
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3.3 Datasets 

3.3.1 Wind Speed Prediction Problem 

This dataset was sourced from the Iowa Department of Transport’s website and 

consist of 647 samples of wind direction and speed from February 2011. This dataset 

represents a non-linear, dynamic, and volatile time series problem, where the objective is to 

predict the future wind speed based on current wind speed and wind direction. Due to the 

chaotic nature of wind patterns, predicting wind speed is particularly challenging, requiring 

robust forecasting models that can effectively capture temporal dependencies and stochastic 

variations. The dataset was split into 500 samples for training and 147 samples for testing. 

 

3.3.2 Box-Jenkins Gas Furnace  

The Box-Jenkins Gas Furnace problem is a time-series forecasting benchmark, where 

the objective is to predict the CO₂ concentration rate based on the input oxygen flow rate. The 

dataset was split into 200 samples for training and 96 samples for testing. Unlike the Wind 

Speed Prediction dataset, where external environmental factors influence predictions, the 

Box-Jenkins problem is a controlled process with a clearer input-output dependency. 

However, its non-linearity make it a strong benchmark for evaluating adaptive learning 

models. 

 

3.3.3 Google Stock Price 

Stock price prediction is inherently a non-linear, chaotic, and volatile problem due to 

the influence of market fluctuations, investor sentiment, and external economic factors. In the 

Google Stock Price dataset, the objective is to predict the future stock price based on the 

previous day's closing price. The dataset consists of 1532 daily google stock prices, from 

which the 1200 are used for training and the 332 for testing. 

 

3.3.4 Lorenz System 

The Lorenz system is a system. originally developed by Edward Lorenz. It is modeled 

by three differential equations which when σ=10, β=8/3 and ρ=28, it has chaotic solutions: 
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𝑑𝑥

𝑑𝑡
= 𝜎(𝑦 − 𝑥),     

𝑑𝑦

𝑑𝑡
= 𝑥(𝜌 − 𝑧) − 𝑦,     

𝑑𝑧

𝑑𝑡
= 𝑥𝑦 − 𝛽𝑧 

The dataset consists of 20,000 time-series samples, each containing three state variables x(t), 

y(t), and z(t), which evolve over time. The data was generated using the fourth-order Runge-

Kutta method and the objective is to do one-step ahead predictions. The first 11250 samples 

were used for training and the last 5000 for testing. The rest were used as a validation set. 

3.3.5 Air Quality Index (AQI)  

The Air Quality Index (AQI) prediction dataset is a real-world time-series dataset used 

for evaluating models in multi-step-ahead forecasting of air pollution levels. This dataset was 

collected from 12 air quality monitoring stations around Beijing, China, covering the period 

from 2013 to 2017. The data contains frequent and drastic fluctuations, making it a 

challenging benchmark for predictive modeling. The objective of this dataset is to predict 

future AQI levels based on past pollution measurements. The dataset consists of 35,064 

samples, recorded hourly over a period of 1,461 days (4 years). Each sample contains six 

major air pollution components that significantly impact AQI values: 

1. PM2.5 (Fine Particulate Matter, μg/m³) – Tiny particles that pose significant health 

risks. 

2. PM10 (Respirable Particulate Matter, μg/m³) – Coarser particles that affect respiratory 

health. 

3. SO₂ (Sulfur Dioxide, ppm) – A gas that contributes to acid rain and respiratory issues. 

4. NO₂ (Nitrogen Dioxide, ppm) – A pollutant associated with vehicle emissions and 

industrial activity. 

5. CO (Carbon Monoxide, ppm) – A toxic gas affecting human health, often from 

combustion sources. 

6. O₃ (Ozone, ppm) – A key component of smog, which can cause breathing problems. 

The dataset is split into 22800 samples (950 days) for training, 1200 samples (50 days) for 

validation and the rest for testing. Additionally, a sliding window approach is used, where 

four past time steps are utilized as input sequences to predict future AQI values. 
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3.3.6 Electric Load 

The electric load dataset for derived from the Greek Power Transmission Operator. 

The dataset consists of 35064 samples at one-hour intervals of the electric load consumption. 

The training dataset, comprises of 26280 samples, representing historical data from three 

consecutive years (2013–2015) and the testing set, contains 8784 samples of electric load 

values for the year 2016. 

 

3.4 Evaluation Metrics 

The Root Mean Squared Error (RMSE) measures the average magnitude of 

prediction errors while penalizing larger errors more significantly. 

RMSE = √
1

𝑁
∑(𝑦𝑖 − 𝑦̂𝑖)2
𝑁

𝑖=1

 

The Mean Squared Error (MSE) is similar to RMSE but does not apply the square 

root transformation.  

MSE =
1

𝑁
∑(𝑦𝑖 − 𝑦̂𝑖)

2

𝑁

𝑖=1

 

The Mean Absolute Error (MAE) averages the absolute differences between 

predictions and actual values making it a more straightforward metric. Unlike RMSE and MSE, 

MAE treats all errors equally without disproportionately penalizing larger errors. 

MAE =
1

𝑁
∑ ∣

𝑁

𝑖=1

𝑦𝑖 − 𝑦̂𝑖 ∣ 

The Symmetric Mean Absolute Percentage Error (sMAPE) provides an error 

measure in percentage form, making it useful when comparing datasets with different scales. 

sMAPE =
100%

𝑁
∑

∣ 𝑦𝑖 − 𝑦̂𝑖 ∣

∣ 𝑦𝑖 ∣ +∣ 𝑦̂𝑖 ∣
2

𝑁

𝑖=1
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4 Results and Analysis 
In this chapter a performance analysis is made for MFRFNN and ReNFuzz-LF on the 

Lorenz chaotic system and five real-world datasets, including Box–Jenkins Gas Furnace, Wind 

Speed Prediction, Google Stock Price Prediction, Air Quality Index Prediction and Electric 

Load Dataset. To evaluate their performance the Mean Square Error (MSE), Root Mean Square 

Error (RMSE), Mean Absolute Error (MAE), and Symmetric Mean Absolute Percentage Error 

(sMAPE) were used.  

For MFRFNN all datasets were normalised to the range [0, 1] and for ReNFuzz-LF to 

[-0.8, 0.8]. Since having this difference in normalisation, the results in Tables 1-7 are calculated 

with the denormalized predictions and outputs of each model.  

The hyperparameters of MFRFNN, including the number of fuzzy rules for the output 

and state networks, the number of states, and the maximum fitness evaluations for the PSO 

algorithm. These hyperparameters are portrayed in Table 10 for each benchmark. For the input 

layer of both of MFRFNN’s networks, uniformly distributed triangular membership functions 

were used as well as for the continuous MFs in the output layer of the state network.  

The hyperparameters of ReNFuzz, include the number of hidden neurons, number of 

fuzzy rules, MFs and the learning parameters of the SA-DRPROP algorithm which are shown 

in Tables 8-9. In order to create the MFs, partition by means of FCM (Fuzzy C-Means) was 

performed to obtain the mean and standard deviation parameters of the Gaussian MFs. 

Additionally, the Davies-Bouldin index was examined to choose the best partition of the data 

for each dataset. Once the fuzzy sets were created, the parameters of the MFs remained 

unchanged during training of the model. Finally, the number of hidden neurons in the rule 

consequents were chosen by trial and error by examining [2, 3, 4, 5, 10] number of neurons.  

4.1 Results 

Performance metrics across several datasets underscore the advantages of each 

approach in different contexts. 

4.1.1 Google Stock Price (1-step ahead prediction) 

In the one-step-ahead prediction of the Google Stock Price dataset, which is highly non-

stationary and exhibits significant short-term fluctuations, MFRFNN outperforms ReNFuzz-

LF, achieving lower RMSE (0.696 vs. 0.782) and MAE (0.289 vs. 0.782). ReNFuzz-LF’s 
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higher absolute error suggests that its localized memory and rule base finds it harder to adapt 

to the high volatility and rapid fluctuations in stock prices, in comparison to MFRFNN. This 

indicates that MFRFNN’s feedback mechanism and dual network architecture, appears to be 

better suited for capturing short-term dependencies of stock prices, resulting in higher accuracy 

and lower prediction errors.  

 

 

Figure 17: Performance on Google Stock Price Dataset 

 

 

                         Table 1: Google Stock Price problem errors 

One step ahead prediction error on                                      

Google Stock Price problem 

Method RMSE MSE MAE sMAPE 

MFRFNN 0.696 0.484 0.289 0.204 

ReNFuzz-LF 0.782 0.612 0.576 0.232 

 

4.1.2 Box-Jenkins Gas Furnace (Two-Input) 

The Box–Jenkins Gas Furnace dataset, is a two-input forecasting problem. Here, 

ReNFuzz-LF and MFRFNN perform comparably. For one-step ahead predictions, ReNFuzz-

LF achieves a slightly lower RMSE (0.606 vs. 0.649), indicating a good fit to the data. 

However, MFRFNN achieves lower MAE (0.424 vs 0.493) which suggests it might have some 

large errors that inflate RMSE. Additionally, as it can be seen on figure 19 both models 

struggled to predict local min and max values, suggesting that additional improvements may 

be needed. 
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Figure 18: Performance on Box-Jenkins Dataset 

  

 

                           Table 2: Box-Jenkins Gas Furnace problem errors 

One step ahead prediction error on                                            

Box-Jenkins gas furnace problem 

Method RMSE MSE MAE sMAPE 

MFRFNN 0.649 0.421 0.424 0.765 

ReNFuzz-LF 0.606 0.367 0.493 0.887 

 

 

 

4.1.3 Wind Speed Forecasting (Two-Input) 

The Wind Speed dataset, is also a two-input problem. For this task, MFRFNN 

outperforms ReNFuzz-LF across all metrics, achieving a lower RMSE (0.553 vs. 1.009), lower 

sMAPE (9.829 vs. 16.897), and better MAE (0.435 vs. 0.779). These results indicate that 

ReNFuzz-LF struggled to learn the wind speed dynamics. As can be seen on figure 20, the 

ReNFuzz model is unable to predict the low wind values.  The feedback mechanism of 

MFRFNN appears to provide better adaptability, making it the superior model for short-term 

wind speed forecasting in this case. 
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Figure 19: Performace on Wind Speed Dataset 

 

 

                                            Table 3: Wind Speed problem errors 

One step ahead prediction error on Wind 

Speed problem 

Method RMSE MSE MAE sMAPE 

MFRFNN 0.553 0.306 0.435 9.829 

ReNFuzz-LF 0.930 0.865 0.707 22.944 

 

 

4.1.4 Lorenz System (Chaotic System) 

For the chaotic time series generated by the Lorenz system, ReNFuzz-LF’s design, with 

its localized RNN consequents, captures the short-term chaotic dynamics better than 

MFRFNN, allowing the model to achieve very low error measures.  The model’s ability to 

retain short-term memory seems to be well matched to the sensitive nature of chaotic systems, 

making it a better forecaster for this problem. This is probably due to MFRFNN was 

overestimating some values as it can be seen on Figures 21. Despite this, MFRFNN ability to 

learn multiple functions simultaneously show very promising results as it was able to capture 

the pattern of the data.  
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Figure 20: Performance on Lorenz system 

Table 4: Lorenz System problem errors 

One step ahead prediction error on Lorenz System problem 

Method RMSE MSE MAE sMAPE 

 
x y z x y z x y z x y z 

MFRFNN 0.344 0.505 0.843 0.118 0.256 0.71 0.225 0.312 0.479 7.452 7.858 1.983 

ReNFuzz-LF 0.198 0.342 0.299 0.039 0.117 0.089 0.138 0.182 0.198 6.003 4.679 1.006 



60 
 

4.1.5 AQI (5 & 10 step predictions)  

Multi-step forecasts, such as those for various AQI datasets (e.g., 5-step and 10-step 

ahead predictions), introduce additional challenges due to error accumulation. To train these 

models, a rolling window of 4 inputs through the data was used at each timestep to try to capture 

the underline dynamics of the time-series. The results indicate that ReNFuzz-LF outperforms 

MFRFNN in forecasting PM2.5, PM10, SO2, and O3, particularly in both five-step and ten-

step ahead predictions based on the RMSE, and MFRFNN exhibits better performance for NO2 

and CO. However, both models experience increased error metrics in comparison with the 

previous datasets. ReNFuzz-LF, which relies on short-term memory in each fuzzy rule, seems 

to struggle maintaining information over extended horizons, leading to higher relative errors. 

MFRFNN, while designed to capture multiple state transitions through its feedback loop, also 

faces difficulties with cumulative uncertainty. From figures 21 is evident that the models 

struggle to predict very low and high values while capturing the overall outline of the data and 

having better predictions on medium values. Additionally, MFRFNN seems to overestimate 

some outliers in the data adding to its worse performance metrics. These challenges underscore 

the inherent complexity of long-horizon forecasting and suggest that both approaches may 

require further refinement. 
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Figure 21: Performance on AQI dataset 
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Table 5: 5-step ahead AQI errors 

Five step ahead prediction error on AQI Data 

Method PM2.5 PM10 

  RMSE MSE MAE sMAPE RMSE MSE MAE sMAPE 

MFRFNN 50.04 2521.11 14.46 36.76 47.35 2247.80 21.42 38.26 

ReNFuzz-LF 32.18 1035.51 18.02 47.87 40.41 1632.99 26.04 44.00 

  NO2 CO 

  RMSE MSE MAE sMAPE RMSE MSE MAE sMAPE 

MFRFNN 13.45 180.87 11.63 40.82 446.99 199803.17 282.77 22.07 

ReNFuzz-LF 16.96 287.62 14.91 49.98 503.87 253881.33 332.91 25.70 

  SO2 O3 

  RMSE MSE MAE sMAPE RMSE MSE MAE sMAPE 

MFRFNN 15.15 234.00 4.91 29.67 34.33 1318.15 19.48 51.06 

ReNFuzz-LF 11.23 126.16 6.32 36.73 16.46 270.97 13.29 44.98 

 

Table 6: 10-step ahead AQI errors 

Ten step ahead prediction error on AQI Data  

Method PM2.5 PM10 

  RMSE MSE MAE sMAPE RMSE MSE MAE sMAPE 

MFRFNN 50.93 2593.36 22.55 54.11 59.45 3534.54 31.41 49.73 

ReNFuzz-LF 38.00 1444.00 24.67 60.66 53.00 2809.30 34.01 54.00 

  NO2 CO 

  RMSE MSE MAE sMAPE RMSE MSE MAE sMAPE 

MFRFNN 20.84 434.10 17.23 51.03 683.44 467093.06 447.23 34.45 

ReNFuzz-LF 23.27 541.48 20.55 60.28 670.82 450003.77 452.81 34.64 

  SO2 O3 

  RMSE MSE MAE sMAPE RMSE MSE MAE sMAPE 

MFRFNN 22.44 503.47 8.16 46.56 57.49 3305.58 31.16 64.52 

ReNFuzz-LF 10.62 112.85 6.68 41.46 25.43 646.49 20.88 57.89 
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4.1.6 Electric Load (24 step ahead prediction) 

On the other hand, on the Electric Load dataset, ReNFuzz-LF, demonstrates stronger 

performance, maintaining stable error measures. The improved results on this dataset are likely 

attribute to the clearer trends in load data compared to environmental data, despite the longer 

forecasting horizon. The results demonstrate that ReNFuzz-LF significantly outperforms 

MFRFNN in 24-step-ahead (1-day) electric load forecasting. ReNFuzz-LF achieves an RMSE 

equal to 124.6 in contrast to the 181.4 of the MFRFNN model. This indicates a better overall 

prediction accuracy and lower error variance. Additionally, the lower MAE (86.4 vs 117) and 

sMAPE (1.8 vs. 2.56) highlight its superior precision. It is important to note that while both 

models perform better on this dataset than the AQI dataset, they continue to struggle with 

accurately predicting high and low values compared to the mid-range values of the time series.  

 

Figure 22: Performance on Electric Load dataset 

 

 

                                        Table 7: Electric Load problem 

24 step ahead prediction error on                                          

Electric Load problem 

Method RMSE MAE sMAPE 

MFRFNN 186.32 116.98 2.56 

ReNFuzz-LF 124.64 86.40 1.80 

 

 

 



64 
 

4.2 Parameters 

A recurring theme in the experimental results is the importance of balancing model 

complexity with the risk of overfitting. In ReNFuzz-LF, the number of hidden neurons in the 

local RNN consequents must be carefully chosen. For instance, experiments with the Lorenz 

y(t) prediction indicate that configurations with 4 neurons can lead to oscillatory behaviour 

(Figure 24), while 3 neurons yield smoother, more stable forecasts. This illustrates that a lean 

architecture is often preferable when the forecasting task does not demand extensive memory.  

Another aspect worth noting is the role of training epochs. For instance, in the Lorenz 

y(t) and z(t) predictions, both models showed that training beyond a certain number of epochs 

resulted in diminishing returns, likely due to overfitting or the model reaching an optimal 

learning plateau. In such cases, the decision to stop training at 250 epochs was justified, as 

extending training did not yield improved performance and risked degrading the model’s 

ability to generalize. This is a critical consideration for both models, emphasizing the 

importance of early stopping and validation-based training strategies. 

 

 

 

Figure 23: Oscillations (ReNFuzz - Lorenz system) 
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                         Table 8: ReNFuzz-LF Parameters 

ReNFuzz-LF Parameters 

Benchmark Rules 
Hidden 

Neurons 

Input 

Dimensions 

Google Stock Price 6 2 1 

Electric Load 3 2 1 

Lorenz x(t) 3 10 1 

Lorenz y(t) 3 3 1 

Lorenz z(t) 2 2 1 

Wind Speed 4 2 2 

Box-Jenkins 2 3 2 

AQI PM2.5 5-step 4 4 4 

AQI PM10 5-step 6 4 4 

AQI SO2 5-step 4 10 4 

AQI NO2 5-step 6 4 4 

AQI CO 5-step 5 2 4 

AQI O3 5-step 3 4 4 

AQI PM2.5 10-step 6 5 4 

AQI PM10 10-step 6 5 4 

AQI SO2 10-step 4 5 4 

AQI NO2 10-step 6 4 4 

AQI CO 10-step 5 3 4 

AQI O3 10-step 3 3 4 

 

 

               Table 9: SA-DRPROP Learning Parameters for ReNFuzz-LF 

Learning parameters of SA-DRPROP (ReNFuzz-LF) 

Temp n+ n- Δmin Δmax Δ0 α1 α2 

1.2 1.05 0.5 0.0001 0.5 0.01 0.01 0.4 
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MFRFNN, performance is sensitive on the number of fuzzy rules and states. Careful 

tuning of the rule base and the number of states is essential to fully leverage its ability to learn 

multiple functions. When the system’s state space is adequately represented, MFRFNN can 

capture the nuances of complex, nonlinear data more effectively. However, an overly complex 

rule base or state structure may lead to overfitting. 

 

       Table 10: MFRFNN Parameters 

MFRFNN Parameters 

Benchmark K1 K2 N 
Maximum Number of 

FES (PSO Algorithm) 

Number of input 

steps 

Air Quality Index 16 16 2 250 4 

Lorenz System 27 27 3 500 1 

Box-Jenkin Gas 

Furnace 
9 4 2 4000 1 

Wind Speed 4 4 2 4000 1 

Google Stock 

Price 
3 3 2 4000 1 

Electric Load 3 3 2 500 1 
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Table 11: Normalized Errors 

  Normalized Metrics MFRFNN Normalized Metrics ReNFuzz-LF 

Dataset RMSE MSE MAE sMAPE RMSE MSE MAE sMAPE 

Wind Speed 0.0205 0.0004 0.0161 9.8291 0.0551 0.0030 0.0419 23.1692 

Box-Jenkins 0.0436 0.0019 0.0285 4.5896 0.0153 0.0002 0.0125 1.8542 

Google Stock Price 0.0022 0.0000 0.0009 1.1354 0.0039 0.0000 0.0029 3.7481 

Electric Load 0.0258 0.0007 0.0162 4.9526 0.0276 0.0008 0.0192 16.9020 

Lorenz x(t) 0.009 0.0001 0.006 1.89 0.0089 0.0001 0.0062 5.9673 

Lorenz y(t) 0.01 0.00009 0.006 1.5346 0.0114 0.0001 0.0061 4.6131 

Lorenz z(t) 0.0195 0.0004 0.011 2.6 0.0121 0.0001 0.0080 7.5657 

AQI PM2.5 5-step 0.0559 0.0031 0.0162 45.8437 0.0575 0.0033 0.0322 6.5446 

AQI PM10 5-step 0.0482 0.0023 0.0218 40.6609 0.0658 0.0043 0.0424 7.9938 

AQI SO2 5-step 0.0445 0.0020 0.0144 31.1177 0.0527 0.0028 0.0297 5.4423 

AQI NO2 5-step 0.0467 0.0022 0.0404 45.9219 0.0942 0.0089 0.0828 16.1827 

AQI CO 5-step 0.0452 0.0020 0.0286 26.1955 0.0814 0.0066 0.0538 18.1831 

AQI O3 5-step 0.0812 0.0074 0.0461 51.4735 0.0623 0.0039 0.0503 7.9950 

AQI PM2.5 10-step 0.0569 0.0032 0.0252 63.6104 0.0679 0.0046 0.0441 8.6228 

AQI PM10 10-step 0.0605 0.0037 0.0320 52.2109 0.0864 0.0075 0.0554 9.7293 

AQI SO2 10-step 0.0659 0.0043 0.0239 48.2281 0.0499 0.0025 0.0314 5.6383 

AQI NO2 10-step 0.0723 0.0052 0.0598 56.5346 0.1293 0.0167 0.1142 21.8999 

AQI CO 10-step 0.0690 0.0048 0.0452 39.9908 0.1084 0.0118 0.0732 20.8772 

AQI O3 10-step 0.1360 0.0185 0.0737 64.9483 0.0962 0.0093 0.0790 12.3967 
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5 Conclusion and Future Directions 

In conclusion, our findings show that ReNFuzz-LF and MFRFNN each have distinct 

strengths depending on the forecasting task. ReNFuzz-LF offers a streamlined, efficient 

approach without excessive computational demands. With it’s RNN consequents, it excels in 

electric load forecasting as well as in capturing the short-term dynamics of chaotic systems like 

the Lorenz system. In contrast, MFRFNN, is designed to address complex, multi-state 

problems by determining the state of then network and making predictions with its dual-

network feedback architecture. With this architecture, it was able to capture the unpredictability 

of wind speed and volatility of stock prices. Overall, both models were able to capture the 

patterns of all datasets, however, both face challenges in long-term forecasting on 

environmental data, most likely due to error accumulation over multiple prediction steps. 

Additionally, in many cases MFRFNN tend to overestimate outliers, and both models had 

issues with capturing low and high values in data while making great predictions on mid-range 

values. Although extended forecasting remains difficult, the insights into parameter tuning, 

training strategies, and architectural design provide clear avenues for further refinement. These 

findings underscore that selecting the appropriate model depends critically on the dataset’s 

structure and the forecasting horizon, and they offer a roadmap for future enhancements in 

neurofuzzy time series prediction. 

Future research may focus on integrating advanced techniques such as attention 

mechanisms[22], or adaptive normalization[23] strategies to further enhance long-term 

predictive performance. Additionally, when a model consistently underestimates high values 

or overestimates low values, this may indicate that the fuzzy membership functions do not 

adequately cover the tails of the data distribution, or that the loss function does not sufficiently 

penalize errors at these extremes. One potential refinement is to modify the membership 

functions by incorporating additional, specialized fuzzy sets that focus specifically on the high 

and low ends of the data range. By assigning extra fuzzy sets to the tail regions, the model may 

gain a more granular representation of rare events, ensuring that these extremes are better 

captured during inference. These refinements, whether through enhanced membership function 

design or loss function reweighting, provide targeted mechanisms for addressing the common 

challenge of accurately predicting high and low extremes in time series data. 
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