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Abstract

Time series forecasting is a fundamental challenge in many scientific and industrial
domains, especially when dealing with chaotic and highly nonlinear systems. Traditional
forecasting models, including Artificial Neural Networks (ANNSs) and statistical methods,
often struggle to capture the complex temporal dependencies and uncertainty inherent in these
datasets. To address these limitations, hybrid approaches that integrate fuzzy logic and
Recurrent Neural Networks (RNNs) have emerged as promising alternatives. This thesis
presents a comparative study of two hybrid models: the Multi-Functional Recurrent Fuzzy
Neural Network (MFRFNN) and the Recurrent Neurofuzzy System ReNFuzz-LF. The
effectiveness of these models is evaluated across multiple datasets, including Electric Loads,
Lorenz chaotic system, Box—Jenkins Gas Furnace, Wind Speed Prediction, Google Stock Price
Prediction and Air Quality Index (AQI).
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1 Introduction

The ability to accurately forecast time series data is critical across various fields,
including finance, energy, meteorology, and environmental science. Forecasting accuracy is a
critical aspect in decision-making processes, impacting industries such as financial markets,
energy grid management, and air quality monitoring. Improved prediction models allow
businesses and policymakers to make informed decisions, minimize risks, and optimize

resource allocation.

However, real-world time series often exhibit chaotic behaviour, nonlinearity, and noise, making
traditional forecasting techniques inadequate. Classical models such as autoregressive integrated moving
average (ARIMA) and standard artificial neural networks (ANNS) struggle when faced with nonlinear
and multi-scale dependencies in time series data. RNNs, particularly LSTMs, improve sequential
data modelling but still face challenges in complex systems. Overfitting presents a significant
challenge for RNNs, as they may capture and retain noise in the data rather than learning
meaningful patterns. Their sequential processing structure also leads to increased

computational demands, making training both resource-intensive and time-consuming [1].

To address these challenges, integrating fuzzy logic with recurrent neural networks
helps improve generalization by introducing rule-based representations that captures
underlying trends more effectively. Such hybrid models have gained traction in recent years
showing promising results. By combining the interpretability of fuzzy systems, the adaptive
learning capabilities of neural networks and the memory mechanisms of recurrent

architectures, these models enable for more accurate and robust forecasting.

This thesis explores two hybrid models designed for time series forecasting, MFRFNN
and ReNFuzz-LF. MFRFNN[2] employs a dual-network structure where a fuzzy neural
network (FNN) predicts the system’s output, while a secondary FNN determines the system’s
state, allowing the system to learn multiple functions simultaneously. This makes it well-suited
for datasets where the same input may lead to different outputs depending on the system state.
On the other hand, ReNFuzz-LF[3] utilizes a rule-based fuzzy system with local RNN
consequents, enabling it to adapt dynamically to short-term fluctuations without the complexity
of a global feedback loop. Both models are assessed on diverse datasets, ranging from chaotic
synthetic data (Lorenz system) to real-world applications such as stock price forecasting and
AQI prediction.



1.1 Objectives

The primary objectives of this thesis are as follows:

1. Analysis of MFRFNN and ReNFuzz-LF models: A detailed examination of the
structural differences between MFRFNN and ReNFuzz-LF, highlighting their

respective mechanisms in handling nonlinear time series forecasting.

2. Implementation of ReNFuzz-LF in MATLAB: The development of ReNFuzz-LF in
MATLAB.

3. Application to benchmark time series problems: Testing both models on well-
established time series forecasting benchmarks, including the Lorenz system, Electric
Load, Box-Jenkins Gas Furnace, Wind Speed Prediction, Google Stock Price
Prediction, and Air Quality Index Prediction to evaluate their performance under

different conditions.



2. Literature Review

2.1 Artificial Intelligence

According to Elaine Rich[4], "Artificial Intelligence (A.l.) is the study of how to make
computers do things that people are better at". Many more definitions were given over the years
but a common theme is that Al is expected to imitate human intelligence or carry out activities

that previously necessitated human intervention.

Al is an umbrella term that encompasses a wide range of technologies and
methodologies. These include areas such as machine learning, natural language processing,
computer vision, robotics and expert systems. To build these intelligent systems, computational
models, algorithms, and statistical techniques are employed that can analyse data, recognize
patterns, learn from experiences, make informed decisions, comprehend natural language, and

adapt to evolving conditions.

2.1.1 A Brief History of Artificial Intelligence
The roots of Artificial Intelligence stretch back to Aristotle (384-322 BCE), where his
informal system of syllogisms was among the first recorded attempts to codify rational thought

into systematic rules.

This early groundwork set the stage for centuries of exploration into reasoning and the
mechanics of thought. In 1642, Blaise Pascal (1623-1662) built the Pascaline, a mechanical
calculator and wrote that it “produces effects which appear nearer to thought than all the actions
of animals”. Furthermore, Thomas Hobbes (1588-1679) suggested the idea of a thinking

machine and that reasoning was like numerical computations.

The 20th century marked a shift from mechanical tools to computational theories. Alan
Turing introduced the Turing Test, a criterion for determining a machine's capacity for
intelligent behaviour. During World War II, Turing’s work on The Bombe, an electro-
mechanical device used by British cryptologists to help decipher German Enigma-machine-
encrypted secret messages during World War 11, demonstrated the potential of machines to

process complex information, a concept that underpins much of Al today.

Al was formally recognized as an academic discipline at the 1956 Dartmouth
Conference[5], led by John McCarthy, Marvin Minsky, Nathaniel Rochester, and Claude

Shannon. This pivotal event introduced the idea that machines could simulate human cognitive
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functions. Early breakthroughs included programs like the Logic Theorist, capable of solving
mathematical proofs, and the General Problem Solver, which demonstrated logical reasoning
in simplified domains. However, these systems faced challenges when applied to real-world
problems, leading to periods of reduced funding and research interest, referred to as "Al

Winters".

The resurgence of Al in the late 20th century was driven by advancements in
computational power, the emergence of neural networks, and the development of machine
learning. Today, Al technologies are deeply integrated into our lives, influencing fields such

as healthcare, finance, transportation, and entertainment.

2.2 Artificial Neural Networks

Artificial Neural Networks (ANNSs) are a subfield of machine learning, inspired by the
structure and function of the human brain and biological neural networks. The primary
objective of neural networks is to identify patterns within data and enhance predictive
performance through various optimization techniques. These networks are widely used for

classification, pattern recognition, and sequential data processing.

2.2.1 Structure and Types of Artificial Neural Networks
Acrtificial Neural Networks consist of multiple layers of artificial neurons, weighted

connections and activation functions such as sigmoid, tanh or ReLu are used to determine the
degree of the neurons activation and also introduce non-linearity. Layers are structured into
three types:

e input layer, which receives the input data

e hidden layers, which transform the data through the weighted connections of

the network

e output layer, which produces the final result.

11
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Figure 2: Activation Functions

There are different types of neural networks, each used for different tasks. Feedforward
neural networks (FNNs) process data in one direction without loops, making them effective for
tasks like classification. Convolutional neural networks (CNNSs) are designed for spatial data,
particularly in image processing, by using convolutional layers to extract spatial features and
Recurrent neural networks (RNNSs) are better suited for sequential data, allowing information

from previous outputs to influence future predictions, making them ideal for tasks like speech
recognition and time-series forecasting.
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2.2.2 Training Process of Neural Networks

Training a neural network involves adjusting the weights of connections to minimize

errors and improve performance. The process follows these main steps:

Forward Propagation: Input data passes through the network layers, with each neuron
computing a weighted sum of its inputs and applying an activation function.

Loss Calculation: The difference between the predicted output and actual target value
is measured using a loss function. Common loss functions include Mean Squared Error
(MSE) for regression tasks or Cross-Entropy for classification tasks.

Backpropagation: Backpropagation is a computational method that uses the chain rule
to compute the gradients of the loss function with respect to each weight, propagating
errors backward from the output layer to the input layer. This allows the network to
compute how each weight should be adjusted.

Gradient Descent Optimization: Gradient descent is an optimization algorithm used to
minimize the loss function by updating the network’s weights in the direction of steepest
descent. It iteratively adjusts the parameters using a learning rate to determine the step
size for weight updates.

Iteration and Convergence: The process repeats for multiple epochs until the network
converges, meaning the loss stops decreasing significantly. Regularization techniques
such as dropout and L2 regularization help prevent overfitting by reducing model

complexity.

2.2.3 Recurrent Neural Networks (RNNs) and Challenges

Recurrent Neural Networks (RNNs)[6] introduce a memory mechanism that allows

them to retain information from previous inputs. Unlike feedforward networks, which treat

each input independently, RNNs incorporate loops within their architecture, enabling them to

maintain information over sequences.

13
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Figure 3: RNN Structure. The bottom is the input state; middle, the hidden state; top, the output state. U, V, W

are the weights of the network.

Training RNNs involves a technique called Backpropagation Through Time
(BPTT)[7], an extension of traditional backpropagation that adjusts weights by unrolling the
network through past time steps. However, standard RNNs struggle with long-range
dependencies due to the vanishing gradient problem, where gradients diminish exponentially

as they are propagated backward, making learning difficult over long sequences[1].

To address the vanishing gradient issue, Long Short-Term Memory Networks
(LSTMs)[8] were introduced. LSTMs use memory cells and gates (input, forget, and output)
to regulate the information passing through the network. This structure allows LSTMs to retain
or discard information as necessary. This makes them very effective for tasks requiring long-
term dependencies such as speech recognition and machine translation. Furthermore, they are

used in time-series prediction, where past data trends influence future outcomes.
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While RNNs, particularly LSTMs, improve sequential data modelling, they still face
challenges in complex nonlinear systems. Overfitting is a major issue, as RNNs can memorize
noise in data instead of generalizing patterns. Computational complexity also increases due to
the sequential nature of RNNs, making them computationally expensive to train. Additionally,
chaotic data poses difficulties, as RNNs may struggle to maintain stability and predictability

when dealing with highly unpredictable sequences.

To address these challenges, particularly in complex nonlinear systems, hybrid fuzzy
models offer a powerful solution by integrating the strengths of Fuzzy Logic and Recurrent
Neural Networks (RNNs). These models enhance interpretability and robustness by leveraging
fuzzy rules to handle uncertainty and imprecision, making them particularly effective in chaotic

environments.

2.3 Fuzzy Systems

Fuzzy systems[9] are a subset of computational intelligence methodologies that aim to
emulate human reasoning and decision-making processes using fuzzy set theory and fuzzy
logic. They are particularly useful when faced with imprecise or uncertain information and are
widely applied in various domains such as control systems, pattern recognition, decision-
making, and data analysis.

2.3.1 Fuzzy Set Theory to Fuzzy Logic

In traditional mathematical logic, classical set theory categorizes elements in a binary
manner, an element either belongs to a set or it does not. However, real-world data is often
imprecise. To address this limitation, Lotfi A. Zadeh introduced Fuzzy Set Theory[10] in 1965,
which extends classical set theory by allowing elements to have partial membership, meaning
an element can belong to a set to a certain degree between 0 and 1. This advancement enables
a more nuanced approach to modeling uncertain or linguistically described data, such as "tall

people,” "warm temperatures,” or "high risk."

Fuzzy set theory provided the mathematical foundation for fuzzy logic by enabling
reasoning under uncertainty. Fuzzy Logic[11] is a mathematical framework for reasoning
under uncertainty, introduced by Lotfi A. Zadeh in 1973 as an extension of classical Boolean
logic. Unlike traditional binary logic, which operates on strict true or false values, fuzzy logic
allows for degrees of truth that range between 0 and 1. This makes it a multi-valued logic

15



system capable of handling vagueness and ambiguity, allowing for more flexible decision-

making processes.

The motivation behind fuzzy logic arises from the fact that real-world concepts are
often not sharply defined. Many everyday decisions are based on approximate reasoning rather
than strict binary classifications. For instance, linguistic terms such as "hot," "cold," "tall," or
"fast” do not have rigid boundaries but instead exhibit gradual transitions. Traditional logic
fails to effectively model such imprecise concepts, whereas fuzzy logic provides a structured

approach to quantify and process these uncertainties.

2.3.1.1 Crisp Sets vs. Fuzzy Sets
In classical set theory, a crisp set A is defined such that each element x in the universal

set U either belongs to A (x € A, membership value 1) or does not (x ¢ A, membership value
0). Mathematically, this is expressed using an indicator function:

A
A

paCx) = {75 ¢

)

8 R

However, in many real-world situations, classification is not absolute. For example, if
we define a crisp set "Tall People" as those taller than 180 cm, a person who is 179 cm is not

considered tall, even though the difference is negligible.

To address this limitation, fuzzy sets introduce partial membership, allowing elements
to belong to a set to a certain degree between 0 and 1. This is achieved using a continuous

membership function p,(x), such that:
0<pu,(x)<1

For example, in a fuzzy set "Tall People", someone who is 190 cm might have a
membership of 0.9, while someone 170 cm might have a membership of 0.4. Instead of a

strict boundary, the transition between not tall and tall is smooth.

2.3.1.2 Crisp Logic vs. Fuzzy Logic

The distinction between crisp sets and fuzzy sets extends naturally into logical
reasoning. In crisp logic (Boolean logic), every statement must be either true (1) or false (0).
This is based on the Principle of Bivalence, which states that there are only two possible truth

values.

16



For example, consider a rule in classical logic:

e Crisp Logic Statement: "If temperature is greater than 30°C, then it is hot."
e Boolean evaluation:
o Iftemperature = 31°C, the statement is true (1).

o If temperature = 29°C, the statement is false (0).

This rigid classification ignores the fact that hotness is a gradual concept, and a

temperature of 29.9°C is not significantly different from 30.1°C.

In contrast, fuzzy logic allows for partial truth values, enabling more nuanced decision-
making. Instead of forcing a binary classification, a fuzzy rule would define "hot" as a

continuous function of temperature, where 30°C is not an absolute cutoff but rather part of a

smooth transition:

e Fuzzy Logic Statement: "If temperature is around 30°C, then it is somewhat hot."
e Fuzzy evaluation using a membership function:

o 28°C — Membership 0.6 (somewhat hot)

o 30°C — Membership 0.8 (fairly hot)

o 35°C — Membership 1.0 (definitely hot)

Instead of a step function, fuzzy logic uses smooth functions to represent truth values,

ensuring gradual transitions rather than abrupt jumps.

A graphical representation of this difference can be visualized through a membership
function, where truth values change gradually rather than in discrete steps. Instead of a step-
like function that jJumps from 0 to 1 at a threshold point, a fuzzy membership function smoothly

increases from cooler to hotter temperatures.

Crisp vs. Fuzzy Membership Function
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Figure 5: Crisp vs. Fuzzy Logic
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2.3.1.3 Membership Functions
A membership function (MF) assigns a value between 0 and 1 to each element,

representing its degree of belonging to a fuzzy set. The choice of membership function depends
on the application and domain expertise. Below are some of the most commonly used

membership functions, along with their mathematical formulas and explanations.

Triangular Membership Function (TriMF)
The triangular membership function is one of the simplest and most widely used fuzzy

membership functions. It is defined by three parameters: a (left endpoint), b (peak point), and

¢ (right endpoint), forming a triangle-shaped function.

( 0, x<aorx =c

!x—a <

—_—, a<x<
prri(x) =3{b—a

i b<x<c

c—b’ -0

Explanation:

e The membership value is 0 outside the range [a, c].
e The function increases linearly from a to b, reaching a maximum of 1 at b.

e The function decreases linearly from b to c, dropping back to 0 at c.

Example: Defining "moderate temperature" between 15°C and 30°C, with peak membership
at 22°C. (a = 15,b = 22,c = 30)

Triangular Membership Function for Moderate Temperature

Lof —— Moderate Temperature MF
i Peak Membership at 22°C
: - Lower Bound (15°C)
0.8} Upper Bound (30°C)

o
)

Membership Degree
e
=~

o
)

0.0

10 15 20 25 30 35
Temperature (°C)

Figure 6: Triangular Membership Function
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Trapezoidal Membership Function (TrapMF)
The trapezoidal membership function is an extension of the triangular function but allows

a flat top instead of a single peak. It is defined by four parameters: a (left endpoint), b (start

of plateau), ¢ (end of plateau), and d (right endpoint).

Explanation:

( 0, x<aorx=d

, a<x<b
b—a
Hrrap(X) = 1, b<x<c
d—x < x<d
T c<x<

e The function is 0 outside the range [a, d].

e The function increases linearly from a to b.

e [t remains constant at 1 between b and c, forming a plateau.

e |t decreases linearly from c to d.

Example: Defining "warm temperature" where 20°C to 25°C are fully considered warm,

while values between 15°C and 30°C are partially warm. (a = 15,b = 20,c = 25,d = 30)

0.8¢

Membership Degree

0.21

0.0

0.6

Warm Temperature MF
Start of Full Warm (20°C)
End of Full Warm (25°C)
----- Lower Bound (15°C)
Upper Bound (30°C)

Trapezoidal Membership Function for Warm Temperature
1.0} ; 5

10

15 20 25 30
Temperature (°C)

Figure 7: Trapezoidal Membership Function
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Gaussian Membership Function (GaussMF)
The Gaussian membership function is a smooth, bell-shaped function defined by two

parameters: ¢ (mean or centre of the curve) and o (standard deviation, controlling the width
of the bell curve).

_(x=0)?
.uGauss(x) =e 207

Explanation:

e The function is always positive and symmetric around c.

e The peak (maximum membership) is 1 at ¢, and values decrease smoothly on both
sides.

e The parameter o controls the spread. A larger o creates a wider function, while a

smaller & makes it narrower.

Example: Defining "medium speed" for a car, where the most confident medium speed is 50

km/h, but values between 40 km/h and 60 km/h also belong to the medium category with

lower degrees of membership. (¢ = 50,0 = 7)

Gaussian Membership Function for Medium Speed
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Figure 8: Gaussian Membership Function

Generalized Bell Membership Function (BellMF)
The generalized bell membership function provides more flexibility than the Gaussian

MF by introducing an additional parameter. It is defined by three parameters: a (width), b

(slope), and c (center or peak point).

20



Upen(x) = x—_c|2b

Explanation:

e The parameter a controls the width of the function.
e The parameter b determines the slope or sharpness of the function.

e The parameter c sets the center of the bell curve.

Example: Defining "moderate pressure™ in an industrial system, where a soft transition is
needed. (a =15, b = 3, ¢ = 50)

Generalized Bell Membership Function for Moderate Pressure
1.0 : ;

0.81

—— Moderate Pressure MF
Peak Membership at 50 Pressure Units
-+ Lower Transition (~35 Units)
-+ Upper Transition (~65 Units)

0.6

0.4r

Membership Degree

0.2

0.0

0 20 40 60 80 100
Pressure (Units)

Figure 9: Generalized Bell Membership Function

2.3.1.4 Fuzzy Set Operations

Fuzzy sets generalize classical set operations using t-norms (AND), s-norms (OR), and

negation (NOT):
e Union (OR operation): p,up(x) = max(ps(x), up (x)).
e Intersection (AND operation): u,ng(x) = min(/,tA(x),uB (x)).

e Complement (NOT operation): pu_,(x) = 1 — py(x).
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2.3.1.5 Advantages
One of the most significant advantages of fuzzy logic is its ability to handle gradual

transitions rather than enforcing strict categorizations. Another major advantage is that fuzzy
logic closely mimics human reasoning, which often relies on linguistic descriptions rather than
numerical precision, translating qualitative descriptions into a quantitative framework,

enabling machines to reason in a way similar to humans.

Fuzzy logic is also highly robust in uncertain environments, making it effective for
dealing with noisy, incomplete, or imprecise data. Unlike traditional mathematical models that
require exact equations, fuzzy logic systems can work with approximate rules and still produce
meaningful outputs. Instead of relying on complex equations, fuzzy logic systems can be built
using simple IF-THEN rules that encode expert knowledge. For example, in an automatic
braking system, a rule might state: "IF distance to obstacle is small AND speed is high, THEN
apply brakes strongly." Such rules are easy to understand and modify, making fuzzy logic an
accessible and interpretable approach to system design. Additionally, its flexibility and ease of
implementation have led to widespread adoption across multiple disciplines. As a result, fuzzy
logic has cemented its role in the development of intelligent systems that can process and

respond to real-world uncertainty in a sophisticated manner.

2.3.2 Fuzzy Inference Systems (FIS)
A Fuzzy Inference System (FIS) is a computational framework that applies fuzzy logic
to map inputs to outputs using a set of fuzzy rules. It serves as the core reasoning mechanism

in fuzzy logic-based decision-making and control systems

2.3.2.1 Core Principles of Fuzzy Systems
At the heart of fuzzy systems lie fuzzy sets, linguistic variables, and membership

functions.

A fuzzy set is a collection of elements with varying degrees of membership, defined
through a membership function. These sets can be discrete or continuous, depending on the
nature of the problem. For instance, a fuzzy set describing "closeness to Vienna™ for different
cities, can be characterized using discrete membership values. Vienna itself has a membership

value of 1, representing absolute closeness, while cities like Bratislava, Budapest, Berlin, and
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Moscow gradually decrease in membership as the distance increases. Canberra, on the other
hand, may have a membership value of zero, as it is extremely far away. In contrast, continuous
fuzzy sets describe gradual transitions between categories. An example of this can be seen in
temperature levels: a temperature of 5°C might fully belong to the set "Cold," while at 20°C it

transitions toward "Warm" and further evolves to "Hot" as it approaches 35°C.

Linguistic variables add another layer of abstraction to fuzzy logic. Instead of crisp

numerical values, they use qualitative terms, such as "hot,” “"cold,” "young,” or "old," to
represent concepts in a way that aligns with human intuition. For example, temperature can be
described qualitatively rather than numerically, enhancing the system’s ability to interpret

ambiguous or subjective information.

Membership functions, which lie at the core of fuzzy logic systems, define the
relationship between input values and their corresponding degrees of membership in fuzzy sets.
For any input value within a given universe of discourse, the membership function assigns a
degree of membership, ranging from 0 (no membership) to 1 (full membership). As mentioned
above these functions enable fuzzy systems to handle complex, nonlinear, and vague scenarios

effectively.

Finally, the strength of fuzzy systems lies in their ability to apply fuzzy rules, expressed
as intuitive “IF-THEN” statements. These rules provide the mechanism through which inputs
are transformed into outputs, and by combining multiple of them, fuzzy systems can model
intricate relationships and support complex decision-making processes.

2.3.2.2 Fuzzy Inference Process
The process of implementing a fuzzy system typically involves fuzzification, rule

evaluation, aggregation, and defuzzification.

In the fuzzification stage, crisp numerical inputs are converted into fuzzy values using
membership functions. This transformation allows the system to handle degrees of truth rather

than binary classifications.

Once fuzzification is complete, the rule evaluation stage processes the fuzzy inputs
using a predefined set of IF-THEN rules to establish relationships between input and output

variables. This involves calculating the firing strength of each rule, which determines how
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strongly the rule is activated based on the input membership values. The firing strength is
computed using fuzzy logic operators, such as AND, OR, and NOT, and is used to adjust the
degree of membership of the rule’s output, ensuring that the fuzzy inference process accurately
reflects the influence of multiple overlapping rules.

Following rule evaluation, the aggregation stage merges the outputs of all activated
fuzzy rules into a unified fuzzy output set. Since multiple rules may contribute overlapping
values to the same output variable, this step ensures that every relevant rule influences the final
result based on its firing strength. The system combines these outputs using mathematical
aggregation techniques, such as maximum or sum operations, to construct a single fuzzy set

that accurately represents the collective decision-making process before defuzzification.

Finally, in the defuzzification stage, the fuzzy output is converted back into a crisp
numerical value suitable for real-world applications. Since fuzzy logic operates on linguistic
and continuous truth values, a final crisp decision is required for actions such as adjusting fan
speed or making a classification decision. Several defuzzification methods exist, each with its
strengths and applications:

e The Centroid of Area (COA) method is one of the most widely used, as it
computes the centre of gravity of the fuzzy output distribution and provides
smooth, stable, and intuitive defuzzification.

. Jxu(x)dx
T T dx
Where x* is the crisp defuzzified output, x represents the variable (e.g.,
temperature, speed, pressure, etc.) and u(x) is the membership function of the

fuzzy output.

e The Center of Sums (COS), which unlike COA who integrates over the entire
fuzzy area, it only considers the peak values of the output membership
functions.

. 2o max(u(x)
.y max (;(x))
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Where x* is the crisp defuzzified output, c; is the center (typically mean) of
the it" fuzzy output set, max(p;(x)) is the peak value (maximum membership

degree) of the it" fuzzy set and n is the number of active fuzzy rules.

e The Center-Averaged Defuzzifier only considers the centers of the fuzzy rules.
This method is primarily used in TSK fuzzy inference systems, where the
output of each rule is a constant or linear function, making it much more
efficient than the Centroid of Area (COA) approach.

n
i=1 Wi G

i=1 Wi
Where x* is the crisp defuzzified output, c; is the center (typically mean) of
the i*" fuzzy set, w; is the weight (firing strength) of the i*" fuzzy rule and n

is the number of active fuzzy rules.

2.3.2.3 Types of Fuzzy Inference Systems
Fuzzy inference systems are broadly classified into two major types: the Mamdani

Fuzzy Inference System (Mamdani FIS) and the Takagi-Sugeno-Kang (TSK) Fuzzy Inference
System. Each type has distinct characteristics, advantages, and application domains, making

them suitable for different tasks.

The Mamdani FIS[12], introduced by Ebrahim Mamdani in 1974, was the first fuzzy
inference model applied in control systems. It uses fuzzy sets for both input and output
variables and applies rule-based reasoning. This system is particularly well-suited for control
applications, such as HVAC systems, washing machines, and industrial automation, where
expert-defined rules govern system behaviour. Its linguistic rule structure makes it highly

interpretable, allowing human experts to design rules in an intuitive, human-like manner.

In contrast, the Takagi-Sugeno-Kang (TSK) FIS[13], developed in 1985 by Takagi and
Sugeno, employs mathematical functions instead of fuzzy sets to represent outputs. Unlike
Mamdani FIS, which produces a fuzzy output requiring defuzzification, TSK models use a
weighted average of all rule outputs to generate crisp numerical values directly. Additionally,
TSK models can incorporate linear and nonlinear functions, allowing them to model complex

systems with higher accuracy than Mamdani FIS.
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2.3.4 Modern Advancements: Neuro-Fuzzy Systems

Neuro-Fuzzy Systems represent a hybrid approach that integrates Neural Networks
with Fuzzy Logic, combining the learning capabilities of neural networks with the
interpretability of fuzzy inference systems. Unlike traditional fuzzy logic systems, which rely
on manually defined rules, neuro-fuzzy systems can learn and optimize fuzzy rules

automatically from data.

One of the most significant advancements in neuro-fuzzy modeling was the
introduction of the Adaptive Neuro-Fuzzy Inference System (ANFIS)[14] by Jang in 1993.
ANFIS was designed as an extension of the TSK model, incorporating artificial neural
networks (ANNSs) to enable the system to learn from data rather than relying solely on manually
defined rules. By integrating machine learning techniques such as gradient descent and least
squares estimation, ANFIS can optimize rule parameters and membership functions in a data-

driven manner, making it highly adaptable to changing environments.

The introduction of ANFIS marked a significant milestone in the evolution of fuzzy
systems, as it bridged the gap between interpretable fuzzy reasoning and adaptive machine
learning models. Its ability to learn from numerical data while maintaining the structure of a
fuzzy inference system made it particularly useful in complex, nonlinear problems such as

time-series forecasting.

2.4 Time Series

A time series[15] is a sequence of observations recorded at regular time intervals,
usually equally spaced. The data is collected over time to analyse patterns, trends, and
relationships between observations to make predictions or gain insights into the behaviour of
a process. Time series can have either a single variable, known as a univariate time series, or
multiple variables, referred to as multivariate time series. Typical examples of time series data
can be, the daily closing prices of a stock or daily temperatures. Time series are ubiquitous in

many fields, such as economics, engineering, natural sciences, and finance.

The structure of a time series is usually influenced by four fundamental components (Trend,

Cyclical, Seasonal, Irregular):

e The trend reflects the long-term progression of the series, indicating whether the values
increase, decrease, or remain constant over time. For example, the growth of a

population often has upward or downward trends.
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e Seasonality, involves periodic fluctuations within a specific time frame, such as
monthly or yearly. Seasonal changes are observed in retail sales, where demand
increases during holidays, or temperature records, which rise during summer and fall
during winter.

e Time series data may display cyclical behaviour, characterized by oscillations over
extended periods due to broader factors such as economic cycles. For instance, a
business cycle often goes through phases like prosperity, decline, depression, and
recovery, which repeat over multiple years.

e Irregular variations or randomness arise from unpredictable influences such as wars or

natural disasters, which do not follow any pattern.

2.4.1 Time-Series Analysis

The applications of time series analysis span across numerous fields[15]. In business
and economics, time series are used to forecast sales and analyse stock prices. In finance,
exchange rates, interest rates, and stock market behaviour are often modelled using time series
techniques. Similarly, in scientific and engineering domains, time series play a vital role in
climate studies, where temperature and rainfall trends are analysed over decades. In healthcare,
time series analysis is applied to monitor patient vitals over time, detect disease outbreaks, or
track the progression of epidemics[16]. Environmental studies, too, rely heavily on time series
to observe pollution levels[17], atmospheric patterns, and natural resource consumption over
time. Another application of time series analysis is in electric load forecasting, where it is used
to predict electricity demand over different time horizons, ranging from short-term (hourly or
daily) to long-term (monthly or yearly).

The process of time series analysis involves identifying patterns within the data to build
suitable models that can describe the underlying dynamics of the series. This model is then

used to predict future events based on the observed historical patterns.

Time series forecasting is particularly useful when the statistical relationships among
successive observations are unclear. For example, historical trends in airline passenger counts
can be used to anticipate demand in upcoming months. Two famous examples of time series
include the weekly BP/USD exchange rate series, which illustrates how currency exchange
rates fluctuated over a 13-year period, and the monthly international airline passenger dataset,

which shows both seasonal variations and an overall upward trend in air travel from 1949 to
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1960. Graphical representations of these datasets often reveal trends, cycles, and seasonal

patterns that are essential for effective forecasting.
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Figure 10: BP/USD exchange rate series
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Figure 11: Monthly international airline passenger series

While many time series exhibit regular trends, cycles, and seasonality, some systems
exhibit chaotic behaviour, where small variations in initial conditions lead to significantly
different outcomes over time. These chaotic time series appear random but are governed by

deterministic rules.
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2.4.2 Chaos Theory

Chaos theory[18] is a branch of mathematics and science that studies systems that are
highly sensitive to initial conditions, often described as the butterfly effect. The field originated
in the mid-20th century with the work of researchers like Edward Lorenz, whose study of
weather systems highlighted how minor changes in input data could produce significantly
different forecasts. Chaos theory applies to various disciplines, including meteorology, physics,
biology, economics, and engineering, where it helps explain the behaviour of complex,

dynamic systems.

2.4.2.1 Chaotic Time Series and Nonlinear Dynamics
Unlike traditional time series, which often follow linear or periodic patterns, chaotic

time series[19] emerge in highly dynamic and nonlinear systems. In these systems, small
differences in the starting state can lead to vastly different outcomes, making long-term
prediction extremely difficult or even impossible. Despite this apparent randomness, chaotic

time series can reveal underlying patterns and structures.

One well-known example of a chaotic time series is the Mackey-Glass Chaotic Time
Series, which arises from a delayed differential equation originally used to model the variation
in the relative quantity of mature cells in the blood. The Mackey-Glass system demonstrates
complex, nonlinear, and chaotic behaviour depending on its delay parameter.

Mackey-Glass Chaotic Time Series
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Figure 12: Mackey-Glass Chaotic Time Series
Traditional forecasting models often fail in chaotic systems because they assume stable

and repeatable patterns in historical data. This limitation is particularly evident in various real-
world applications, where nonlinear dependencies and unpredictable fluctuations challenge

conventional prediction techniques. For example, predicting electricity consumption is difficult
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because demand varies based on time of day, seasonality, and human activity patterns.
Similarly, sales forecasting in retail is influenced by multiple factors such as holidays, and
consumer behaviour, making it hard to model accurately. In temperature prediction, daily
variations depend on local conditions, historical trends, and external influences, requiring
models that can adapt to changing patterns. These complexities demonstrate the limitations of
traditional forecasting techniques and highlight the need for more advanced, Al-driven
approaches that can adapt to chaotic and dynamic environments more effectively. Hybrid
models incorporating fuzzy logic and neural networks have shown promise in capturing the

complexity of these datasets, improving forecasting accuracy.

2.5 Hybrid Algorithms

The prediction of chaotic time series, which exhibit highly non-linear and dynamic
behaviour, remains a challenging task in system modeling. Existing models, such as Artificial
Neural Networks (ANNs), Fuzzy Neural Networks (FNNs), and Recurrent Neural Networks
(RNNs), have shown considerable promise but exhibit limitations when dealing with chaotic

systems where multiple outcomes may depend on the system’s state.

Several alternative methods have demonstrated promising performance in time series
prediction, among which Recurrent Fuzzy Neural Networks (FNNs) stand out. RFNNs are
hybrid models that integrate the learning capabilities of Recurrent Neural Networks (ANNSs)
with the interpretability and semantic transparency of fuzzy systems. Their ability to provide
local representation and align with human reasoning makes them particularly effective in
handling non-stochastic uncertainties. By capturing the underlying relationships within data,

RFNNs have achieved significant success in time series prediction.

2.5.1 MFRFNN: Multi-functional Recurrent Fuzzy Neural Network

To leverage the temporal learning ability of Recurrent Neural Networks (RNNSs)
alongside FNNSs' capacity to process fuzzy information, various Recurrent Fuzzy Neural
Networks (RFNN) have been introduced but most of them are designed to learn only a single
function. As a result, they generate a specific output based on current and previous inputs at
each time step. However, when dealing with chaotic time series, where strong nonlinearity is

present, a single-function approach is often insufficient.
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For example, consider the return map of the Mackey-Glass chaotic time series. It shows
that for a given value of X, two possible outputs (a and b) can emerge depending on the system’s
state. In such cases, an effective algorithm must simultaneously learn multiple functions (F1
and F2) and use system states to determine the appropriate output. If an algorithm only learns
a single function, it will be unable to distinguish between possible outcomes at x, leading to
reduced accuracy in time series prediction. Therefore, a network is required that can identify
system states and learn a separate function for each state. This means the system should be

capable of learning multiple functions concurrently.
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Figure 13: Return map of Mackey-Glass chaotic time series

Another key challenge in predicting chaotic time series is their high sensitivity to initial
conditions, which results in long-term unpredictability. A network designed for long-term
predictions must be able to learn system states dynamically to accurately capture the evolving
behaviour of chaotic time series. Additionally, it must incorporate a feedback loop to retain
historical information and make informed predictions. To overcome these limitations, the

Multi-Functional Recurrent Fuzzy Neural Network (MFRFNN) can be used.

The Multi-Functional Recurrent Fuzzy Neural Network (MFRFNN)[2] is a hybrid
model designed to handle complex time series forecasting problems, particularly those
involving chaotic systems. It consists of two interconnected FNNs. One network predicts future

values of the time series and the other determines the system’s state. By maintaining a memory

31



of past states and using them through the feedback mechanism in the model, it helps overcome
long-term dependency issues that many traditional models face. The most important part of
MFRFNN, is its ability to learn multiple functions simultaneously by employing the system
states, which is crucial for handling highly nonlinear and chaotic data

2.5.2 ReNFuzz-LF: A Recurrent Neurofuzzy System

ReNFuzz-LF[3] is a Recurrent Neurofuzzy System that was designed for short-term
electric load forecasting and operates with a single input. Unlike traditional static fuzzy models,
it features dynamic consequent parts that incorporate small-scale recurrent neural networks
(RNNSs). These networks possess local output feedback, which allows the system to learn the
temporal dependencies of time-series data. Additionally, the training method used for
ReNFuzz-LF, is Simulated Annealing Dynamic Resilient Propagation (SA-DRPROP)[20],

which helps alleviate the disadvantages of standard gradient-based methods.

Based on the initial application of this system, its structure enabled the model to capture
complex time dependencies in electricity demand, reduce the number of required inputs,
simplifying the forecasting process and it improved prediction accuracy through the
hybridization of fuzzy logic and neural networks. This system will be evaluated on various

non-linear datasets in the next chapters to assess its adaptability and performance.
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3 Methodology

3.1 Architecture of MFRFNN

The Multi-Functional Recurrent Fuzzy Neural Network (MFRFNN)[2] uses a state-based
mechanism that switch between different states and allows the system to learn multiple
functions simultaneously. This makes the system capable of modeling complex time-series data

where an input may generate multiple different outputs based on the state of the network.

The MFRFNN consists of two fuzzy neural networks (FNNs) employing Takagi-Sugeno-
Kang (TSK) fuzzy rules. One network generates the system’s output, while the other
determines the system’s state. The system state network uses a feedback loop that enables it to
retain historical information from the past states of the network. Additionally, the state signals

are fed into the output network using a delay unit to calculate the final system output.

— N: number of states

— Kiand K:: number of fuzzy rules in output and state network

- X = {x4,%,,...,x4}7: input vector

— y(t): system output at time step t

— A;j and B; ;: MFs for the j-th input variable x; in the i-th rule of the output and state
networks

~ Hay, (x;): membership value of the j-th input variable x; on 4; ;

— 1;(x) and q;(x): overall rule activation strength for the i-th rule in the output and state
networks

— 1i(x) and g;(x): normalized the firing strengths of r;(x) and g;(x)

— F; and G;: approximated functions for the output and state network for the j-th state of
the system

— w;; and v;;: link weights associated with the i-th rule in the output and state network,
for the j-th state of the system

— W and V: link weight matrices for output and state networks

— s;: state signal for the j-th state of the system

— F(t): vector of approximated functions of the output network at time step t

— S(t): vector of state signals at time step t

— G (t): vector of approximated functions of the state network at time step t
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— R(t): vector of approximated functions of the output network at time step t
— Q(t): vector of normalized firing strengths of the fuzzy rules at time t.

— o(t): intermediate output of state’s network output layer

— o(t): normalized o(t) within the range [1, N]

— E;: i-th membership function in the output layer of the state network

— g, (0(t)): membership function value for o(t) on the i-th state
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Figure 14: MFRFNN architecture

The output network performs N function approximations, using K:; fuzzy rules. The
system’s output comprises N segments, where each segment represents a function
approximation for a state, and the final output is obtained by summing these functions. The
state network performs N function approximations using K. fuzzy rules to determine the
system’s next state. The system consists of five layers, each serving a distinct purpose as

explained below.

3.1.1 MFRFNN Layers
3.1.1.1 Input Layer

The input layer receives the input data and transforms it using fuzzy membership functions.

The output of each neuron of the input layer is the membership value of x; on 4; ;, i.e., u Ay (x]-).

Clearly, there are K; x d neurons in the output network and K, x d neurons in the state network

in this layer.
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3.1.1.2 Fuzzy Rule Layer
In the fuzzy rule layer, the firing strengths of the rules are calculated for both output and

state networks. To calculate the firing strengths, the algebraic product is used as a T-norm
operator ensuring that the overall activation strength reflects the combined influence of all input

variables for a given rule.

d d
() = | [, ) a0 = | s, ()
j=1 j=1

3.1.1.3 Normalized Fuzzy Rules Layer
The normalized rule layer, normalizes all rule activations making their sum equal to 1 and

effectively representing the relative contribution of each rule.

Tl(x) - Zj(il‘r) (x) ql(X) Zj(ilq] (X')
R(t) = [flthJ""le]T Q(t) = [C_Ilﬂ C_IZ""'C_IKZ]T

3.1.1.4 Extended Fuzzy Rule layer
The extended fuzzy rule layer computes the weighted sums of the activation rules, using

the normalized firing strengths from the previous layer. The output of the layer represents the

output of the approximated functions F; and G; for the output network and state network,

respectively.

Ky K;
P}'sziwij GjZZC_Iivij
i=1

i=1
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Fl Gl
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Ft)=| 2| =WTR(t) G(t) = I :2‘ =VTQ(t)
Fy Gy

3.1.1.5 Output Layer
Finally, the output layer of the output network provides the final prediction . The outputs

of the approximate functions F; are multiplied by the state signals s; which activates only the
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functions that correspond to the current state. The final output of the system is the sum of these

functions.
N $1
~ T SZ
9O =SOFO) =) 5F,  S© =
Jj=1 Sy

To generate the state signals s;, firstly the output of Layer 4 G (t), is multiplied by the
current state signals S(t) and the results are summed giving us the intermediate output of the

state’s network output layer o(t).
o(t) = G)TS(t)

Then, o(t) is normalized in the range [1, N], o(t), to be used as input to membership

functions in the output layer of the state network.
o) = [o(®N - 1) +1]

The output of the MFs, S(t + 1), are the state signals (state network output) that
determine the next state of the network. (Note: The network can use crisp or fuzzy MFs. In the
case of crisp MFs the network has discrete states. On the other hand, when using fuzzy MFs
the states become continuous and the final output is a weighted sum of the N approximated

functions.)

UE, (5(t))
St+1) = |HE (fi(t))

s, (5(0)

3.1.2 Training Algorithm

MFRFNN employs a hybrid learning approach that combines two main techniques: the
Least Squares Method and Particle Swarm Optimization (PSO). MFRFNN’s total number of
trainable parameters is (K; + K2) * N which can be broken down to K; * N for the link weight

matrix W of the output network and K-> * N for the link weight matrix V of the state network.
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3.1.2.1 Output Network’s weight matrix (Least Squares Method)

To construct the output network’s weight matrix, we need to estimate the optimal weight
vector 6 using the least squares method. To achieve this, the algorithm iterates over the
training dataset, computing the rule normalized firing strengths, for both networks.
Additionally, for each data point the approximate functions, normalized intermediate output
and state signals of the state network are calculated. Once all data points have been processed,
the optimal weight matrix is obtained using the Moore—Penrose pseudoinverse. Finally, the
final cost value is calculated as the root mean squared error between predicted and actual

outputs.

v
RMSE = |- (411l - 9,)?
p i=1

— x[t] and y[t]: input and output at timestep ¢t

— p:number of training samples

— D = {(x[t], y[t]},_,: Training Dataset

— A: contribution of each fuzzy rule to each state for all training samples
- 7,1[1]: normalized firing strength of i-th fuzzy rule for j-th training sample
—  yli: actual output of i-th training sample

— 0: vectorized representation of the weight matrix W

— @ = optimal weight vector that minimizes the square error || 46 — y||?

Aside from equation §(t) = F(t)TS(¢), the final output of the system can be also computed
using y = tr(R(t)ST(t)W). This can be derived by expressing F(t) in terms of the firing
strength vector R(t) and the weight matrix W. Since F; = Zlel T, wij, We rewrite it in matrix

form as F(t) = WTR(t). Substituting this into $(t) we get the following:
9(t) = (WTR(1))' S(t) = R()"WS(t)
Applying the trace identity a” B¢ = tr(ca” B), we obtain:

y =tr(R®ST(HOW)
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By inputting the training data into § = tr(R(¢)ST (t)W) we get the matrix equation:

y[1]

(2]

AB =y, y=|".

yfp]
s, s, o fUs e 7,
1_'[2]5 1_'[2]5 1_'[2]5 1_'[2]5

A: 1 1 1 2 2 1 Ky N , 9:[W11 W12 Wy WKlN]T

171[10151 ﬁ[p]Sz 7:2[10]51 f,?f]sN

To estimate the optimal weight vector 6 = we need to find a 8 that minimizes the square
error ||A8 — y||?. Since A has more equations than unknowns we seek the least-squared
solution which finds 6 * that minimizes the residual error. This optimal solution is given by
the  Moore-Penrose  pseudoinverse, which provides a closed-form  solution:

0 x= (ATA) 14Ty

The Moore-Penrose pseudoinverse is particularly useful because it provides a direct, non-

iterative solution and guarantees the optimal 6 that minimizes the squared error.
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Training of output network weight matrix (Least Squared Errors)

Input:
K;,K,,N,V, Training dataset: D = {x[t], y[t]}le

Output:
Optimal weight matrix 6*, Cost value C

S0
Si «— 1 // Initialize with starting state
A «—[] // Initialize an empty matrix
fort— 1 topdo
fori« 1toK; do
Compute 7;(x[*)
end
fori— 1toK; do
Compute 7; (x[*1)
end
Add new row [fl[t]sl Als, o ABlsy e 7 sN] to matrix A
fori«— 1toK,do
Compute g;(x!*)
end
fori < 1to K, do
Compute g;(x[*)
end
Compute G (t)
Compute o(t)
Compute o(t)
Compute S using// Determine the next state

end

Compute 6*
y <« AB*

1P .
Ce Y -5
péai=1
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3.1.2.2 State Network’s weight matrix (Particle Swarm Optimization)

Since the state network’s relationship to the output is nonlinear, to get the optimal weights
of the state network ¥V we cannot use the linear least-squares method. Instead, Particle Swarm
Optimization (PSO)[21] is used.

Particle Swarm Optimization (PSO) is a population-based stochastic optimization
algorithm inspired by the social behavior of flocking birds, originally proposed by Kennedy
and Eberhart (1995).

—  x¥: weight matrix of state network for the i-th particle at the k -th iteration

— vk velocity of the i-th particle at the k -th iteration

— p;: personal best position of the i-th particle

—  Dgpbest- 9lobal best position among all particles in the swarm

— w;: output network’s weight matrix for the i-th particle

— ¢, and c,: cognitive and social acceleration coefficients, determining the influence of
pf and Pgbesc

— 1, and r,: random vectors uniformly distributed within [0,1]

In PSO, each potential solution to the optimization problem is called a particle, and a
collection of these particles forms a swarm. Every particle is associated with a position
(position= weight matrix of state network) and velocity, which are iteratively updated to
explore the solution space effectively. The position x¥ and velocity v/ of the i-th particle at

iteration k are updated using the following equations:

vll“"l = Wl'vlk + clrl(pi - X:c) + Czrz(pgbest - xlk)

k+1

k+1 _ k
i —xi +vi

X

3.1.2.3 Training

Together, these two algorithms enable MFRFNN to learn both the output and state network
parameters. Firstly, PSO randomly initializes x;, v; and w; for each particle of the swarm. As
mentioned above x; and w; represent the weight matrix of state and output networks for the
i-th particle, respectively. The weights are then optimized for each particle using the LSE
algorithm which also calculates the cost value using the Root Mean Squared Error.
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Additionally, now knowing the initial cost value of each particle, the global best position is

initialized using the particle with the minimum error.

Having the initialized values of x;, v;, w; and pgpes: , their training begins and goes on
until a stopping criterion is met (such as a convergence threshold or a maximum number of
iterations). During the PSO algorithm, for each iteration and each particle, x; and v; are update
using the equations mentioned previously. Additionally, the weight matrix w of each particle
is updated and its cost value is calculated. Taking into account if the cost value is lower than
the previous ones, the particle’s best position is updated and in the event of an overall best
position of the swarm, the global best position is updated as well. The global best position of
the swarm at the end of training is equal to the state network’s weight matrix. Finally, having
the optimized weight matrix for the state network, the optimized weight matrix of the output

network can be created using the LSE algorithm.

3.1.3 Testing

To test the network, y = A8* must be calculated, where 6* are the trained weights of the output
network and A can be constructed during the testing algorithm based on the input. Similarly,
as the Output Network weights algorithm, the algorithm iterates over the testing dataset,
computing the rule normalized firing strengths, for both networks. Additionally, for each data
point the approximate functions, normalized intermediate output and state signals of the state

network are calculated. At each iteration anew row [7'ls, #ls, - 7lls; o sy

is added to matrix A. At the end of the algorithm, we have the complete matrix A and the already

known 6%, which are multiplied together to get the predictions for the testing dataset.
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MFRFNN Training (PSO)

Input:
K;,K,,N,V, Training dataset: D = {x[t], y[t]}le

Output:
The global best particle (gbest)

for each particle i do
Initialize x;e RK2XN)X1 gnd v, e RK2XN)X1 1 random vectors
Initialize w;e RK2*M)*1 tg random vectors
Pi < Xi
Update w; and calculate the cost value f (p;) using LSE algoritm
end

gbest « argmin;f (p;)

while stopping criterion is not met do
for each particle i do
Update v;
Update x;
Update w; and calculate f(x;) using Algorithm 1
If f(x;) < f(p:) then
bi <X
If f (1) < f(Pgpest) then
gbest « i
end
end
end
end
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Testing Algorithm

Input:

Ky, K5, N,V,0" Training dataset: D = {x[1, y[t]}f:1

Output:
Predicted Output (¥)

S«0
Si «— 1 // Initialize with starting state
A «—[] // Initialize an empty matrix
fort— 1 topdo
fori« 1toK; do
Compute 7;(x[*)
end
fori— 1toK; do
Compute 7; (x[*1)
end

Add new row [fl[t]sl s, . s

fori— 1to K, do
Compute g;(x!*)
end
fori < 1to K, do
Compute g;(x[*)
end
Compute G (t)
Compute o(t)
Compute o(t)
Compute S // Determine the next state
end
Ve« AB*

=[]
TK1 SN

] to matrix A
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3.2 Architecture of ReNFuzz-LF
The rule base of traditional Takagi—Sugeno—Kang (TSK)[3] models consist of fuzzy

sets in the premise part and linear functions of the inputs as the consequent part but in general
these functions can be any continuous and derivable nonlinear function. ReNFuzz-LF follows
a hybrid fuzzy-neural architecture where each fuzzy rule contains a small-scale recurrent neural

network with local feedback as its consequent part.
IF x; (k) is A; AND ... AND x,, (k) is A,, THEN g(x(k))

The model doesn’t incorporate external output feedback, enabling it to maintain local
learning capabilities of the classical TSK model while benefiting from the structured
uncertainty handling of fuzzy logic. The premise part of the fuzzy rules is static, whereas the
consequent parts dynamically adjust to capture time-dependent variations in the time series
data. These dynamic consequent parts, connect with each other during the defuzzification
process to calculate the output of the model.

— N: number of samples

— x(k) = [xq4,*, %] k-th sample vector

— x;(k): i-th input of k-th sample vector

—  AL: fuzzy set of the i-th input of a I-th rule

— R: number of rules

— i (k): firing strength of I-th rule for k-th sample
= py(x;(k)): membership degree of x; (k) in Al

- my = [myy, -+, My, ]T: mean values of all Gaussian membership functions of I-th rule

— o0y = [011,*, 01, ]": standard deviations of all Gaussian membership functions of I-th
rule

- wl(,fi), wl(f): synaptic weights at the hidden layer of the consequent parts. (wl(hl) is a vector
of all the weights connecting each input from the input layer to the hidden neurons)

- wl(,‘:’): bias terms of the hidden layer of the consequent parts

- wl(,‘f), wl(s): synaptic weight at the output layer of the consequent parts

— wl(s): bias terms of the output layer of the consequent parts

—  f(k,1): output of activation function of the I-th fuzzy rule of the k-th sample

— s;(k): output of the h-th hidden neuron of the I-th fuzzy rule of the k-th sample
—  g;: output of the I-th fuzzy rule
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3.2.1 Fuzzy Rules and Defuzzification
3.2.1.1 Premise Part

The premise part of each rule of the fuzzy rule base, is composed of single-dimension

Gaussian membership functions.

(xi (k) — mli)z}

pa(xi(k)) = exp {—
A Zazzi

The firing strength of each rule is calculated as the algebraic product of the Gaussian

membership functions

(k) = fu(x(k); my, 00) = HMAg(xi(k)), [=1,...R

3.2.1.2 Consequent Part
Each fuzzy rule's consequent part is a three-layer RNN with local output feedback,

which enables the system to retain historical information. The RNN input layer receives m
inputs, the hidden layer has H hidden neurons and the output layer calculates the output of the

RNN. The activation function f(-) used in the network is the hyperbolic tangent.
z

" _ez—e‘
flle D) = eZ+e?

Layer1 Layer 2 ; Layer 3

(3)
wy

w!)

x(k) — | w® —h z>—@—» @ (k)

(1)
Wiy

Figure 15: ReNFuzz-LF consequents part RNN configuration
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The output of the h-th hidden neuron of the I-th rule is calculated as follows:

m
si(0) = F(W)Tx (k) + wP s (k) + w) = (Z |windx:00) | + wi s () + w(”)
(=1

l

and the output of the I-th fuzzy rule:

a(k) = (Z [wisu (k)] + wf”)

3.2.1.3 Defuzzification Part

After calculating all the rule activations, the final output of ReNFuzz-LF is calculated using

the weighted average method.

Yl (k) gi (k)
ey (k)

y(k) =

Rule 1: Premise part # EA)
(static) 4
2, (k |_’ Defuzzification part
Rule 1: Consequent .\1(1‘) fnetic) P
part (dynamic) L static

x(k) : ZR://,(I\')~g,(A) —— y(k)

= x Hg (k) 4 R
Rule R: Premise part R 4
(static) 4 Zl‘“'(]\)
e (k
Rule R: Consequent :\"( )
part (dynamic)

Figure 16: ReNFuzz-LF diagram

3.2.2 Training Algorithm

ReNFuzz-LF is trained using a hybrid optimization method using the Fuzzy C-means
clustering to calculate the premise’s part parameters and an iterative algorithm based on
Simulated Annealing Dynamic Resilient Propagation (SA-DRPROP) to optimize the synaptic
weights of the consequent’s part RNN.

The total number of trainable parameters is R*(2m+(m+3)H+1) which can be broken
down to 2mR for the premise part and ((m+3)H+1)R for the consequent part, where m is

equal to the number of inputs of each sample vector.
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3.2.2.1 Premise Part Parameters (FCM)

— my;: mean value of the Gaussian MF of the i-th input of the I-th rule (centres of FCM

clusters)
— oy;- standard deviation of the Gaussian MF of the i-th input of the I-th rule

- uy (k) = [uy(k), ..., upm (k)17 membership degree that x(k) belongs to the I-th cluster

c: scale parameter within [0, 1]

The trainable parameters of the premise part are static. This means that they are
calculated once and remain unchanged during the training of the consequent’s part
parameters. The algorithm employed to calculate the m and ¢ parameters of the premise part

and consequently the partition of the input space, is the fuzzy C-means (FCM).

FCM is a generalization of the K-means algorithm. It’s an unsupervised clustering
algorithm that incorporates fuzzy set theory. Rather than assigning each data point to a

specific cluster it allows for varying degrees of membership to multiple.

The mean values m of the Gaussian membership functions are equal to the cluster centers

and the standard deviations ¢ are calculated as shown below.

o T (k)x(k)
CTOEN  wl)

1

R m L A, 2 1_E
() = [Z Zi 1 (mu — % (k) ]
k=1

ﬁl(mli)z

X wi () (my — x(K)?
" N (k)

To evaluate the best partition of the input data the Davies-Bouldin Index (DBI) is
calculated. DBI measures the compactness and separation of clusters to determine how well-
defined they are. Partitions with the lower DBI, result in better clustering results. This might
not always create the best model though because a high number of clusters may result in
overfitting. That’s why multiple models with different partitions might be train to evaluate

which is the best.
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3.2.2.2 Consequent Part (SA-DRPROP)

The use of an iterative approach based on SARPROP for the training of the RNN, helps

address the problem of local minima trapping, and makes a broader search across the weight

space to find the optimal weights.

w;: consequent synaptic weight i

+ +Er—
2 ai('t) and 2 g‘(; L. partial derivatives of error function E with respect to the adaptive

weight w; for present t and previous t-1 iteration of SA-DRPROP

f'(k,1) =1 — f(k, D)?: derivative of g;(k) with respect to its arguments
¥y (k): actual output value

w;: one of weights wy,w, or ws of | — th fuzzy rule

Ain (N): boundary condition of the h-th neuron of I-th rule(N-final sample)
Ain(k): Lagrange multiplier of the h-th neuron of I-th rule for the k-th sample
Temp = 1.2: Temperature

SA = 27tTemp: Simulated Annealing term at t-th iteration

a; = 0.01

a, =04

Ao, = 0.01: initialized step size

Apmin = 0.0001: minimum step size

Amax = 0.5: maximum step size

n~ = 0.5: step size decrease

nt = 1.05: step size increase

r: random noise value within [0,1]
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Before initiating and after each iteration of the training algorithm the derivatives of the
error function E with respect to all weights must be calculated (Note: the synaptic weights are
initialized randomly). The error function used for the extraction of the error gradients is the
Root Mean Squared Erro (RMSE).

N

1
RMSE = |~ [y(k) = 9(0)I?

k=1

For weights w, and ws the derivatives are calculated using the classic chain rule:

9E c WNTIGIACOENG
PO {k ) = 35 ) }

=1

OE c O (k1)
™ (5) {Z [y(k) — (’O]W;

. L oYE ..
For weights w;, w, and w5 ordered derivatives .- are necessary to unfold in time the
l

neuron’s operation.

O*E o 0F a*y(k)
ow, o] dy(k) dw,

0E 0dy(k) 0*g,(k) . m(k) a*g,(k)
L, 0y(k) 0g,(k) ow, NZ{W‘) y(o] R (k) ow, }

+
Additionally, to facilitate the calculation of % Lagrange multipliers are incorporated.
l

Firstly, the boundary conditions 4;;,(N) are calculated and then the Lagrange multipliers are
calculated backwards from 4;, (N — 1) to 4;,(1).

w(NF'(N, z)wf,;”}

2 N
/’lm(N)=NZ{[y(N)—J7(N)] R 1 (N)
] =11

Ain(k) = Ak + Df'(k+ 1,1, h)wl(z)

[y(k) = 3 (k)]

Mz

#z(k)f (k, l)w(‘”}

2
N 1 (k)

k=1
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+
By applying the Lagrange multipliers to ZTE the ordered derivatives of E with respect to
l

wy, W, and wy are:

I'E
5= ) An(Of (e L))
d lhi k=1

IE
ﬂ = z Alh(k)f’(k; l, h)slh(k - 1)
awy,,” =

IE
5= D An(Of G L h)
oWy, 4=

Having calculated all error gradients, the new SA-DRPROP error gradients are calculated
by adding a weight decay term to the error gradients. (Note: SA-DRPROP error gradients are
initialized randomly)

OYE(t) w;

— .SA.
ow; %1 1+w?

l

SA — DRPROP error gradient (iteretiont) =

To update each weight after each iteration, their respective step sizes must be updated.
The step sizes of each weight are initialized to a small value 4, and during training they are
adjusted according to the sign of the SA-DRPROP error gradient at the current and previous
iteration of the respective weight. Obviously, there are 3 different cases:

*E(t) 9*E(t-1)
an an

1. If the error gradients have the same sign { > 0}, this leads to a step

size increase.

t . t-1
A9 = mm{n*’Ag ),Amax}

L

*E(t) 0TE(t-1)
an awl

2. If the error gradients have opposite signs { < 0}, this leads to a step

decrease. When the step size is lower than the threshold a, - SA? indicates a
possibility of falling into a local minimum, so noise r is added to the step size to help

the weight overcome it,

280 = max{n=- A8 1 - SAZ, Ay}

L
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otherwise,
A() = max{n A(t 2 Amix}

*E(t) 9TE(t-1)
an 6wl

3. Inthe case where { = O} the step size remains the same

Finally, the weight updates are calculated as follows:

i

SA-DRPROP Training

Input:
SA error gradients(SAEG;) and weights(w;) of previous iteration,
OYE(t) (-1
— A
aWi t

Output:
Updated weights

» A1, A, T, SA' YI_' 7]+: Amix' Amax

For each weight w; do

A*E(t) wi(t—1)
SAEG;(t) = B —a,-SA Trwi 12

a+E(t) 0tE(t-1)

If ow; ow;

>0

Agt) = min {n+A§t_1),Amax}

d*E(t) 9*E(t-1)
ow; ow;

Else, if ——— <0

if (A" < a, - SA?)
else
Else, 4% = 2{™"

end
end

Update w;: w;(t) = w;(t — 1) — sign (6+E(t)) A(t)
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3.3 Datasets
3.3.1 Wind Speed Prediction Problem

This dataset was sourced from the lowa Department of Transport’s website and
consist of 647 samples of wind direction and speed from February 2011. This dataset
represents a non-linear, dynamic, and volatile time series problem, where the objective is to
predict the future wind speed based on current wind speed and wind direction. Due to the
chaotic nature of wind patterns, predicting wind speed is particularly challenging, requiring
robust forecasting models that can effectively capture temporal dependencies and stochastic

variations. The dataset was split into 500 samples for training and 147 samples for testing.

3.3.2 Box-Jenkins Gas Furnace

The Box-Jenkins Gas Furnace problem is a time-series forecasting benchmark, where
the objective is to predict the CO: concentration rate based on the input oxygen flow rate. The
dataset was split into 200 samples for training and 96 samples for testing. Unlike the Wind
Speed Prediction dataset, where external environmental factors influence predictions, the
Box-Jenkins problem is a controlled process with a clearer input-output dependency.
However, its non-linearity make it a strong benchmark for evaluating adaptive learning

models.

3.3.3 Google Stock Price

Stock price prediction is inherently a non-linear, chaotic, and volatile problem due to
the influence of market fluctuations, investor sentiment, and external economic factors. In the
Google Stock Price dataset, the objective is to predict the future stock price based on the
previous day's closing price. The dataset consists of 1532 daily google stock prices, from

which the 1200 are used for training and the 332 for testing.

3.3.4 Lorenz System
The Lorenz system is a system. originally developed by Edward Lorenz. It is modeled

by three differential equations which when =10, p=8/3 and p=28, it has chaotic solutions:
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dx d dz

_ _ ay _ — ) — v —
dt—a(y x), dt—x(p z) =y, 4 Bz

The dataset consists of 20,000 time-series samples, each containing three state variables x(t),
y(t), and z(t), which evolve over time. The data was generated using the fourth-order Runge-
Kutta method and the objective is to do one-step ahead predictions. The first 11250 samples
were used for training and the last 5000 for testing. The rest were used as a validation set.

3.3.5 Air Quality Index (AQI)

The Air Quality Index (AQI) prediction dataset is a real-world time-series dataset used
for evaluating models in multi-step-ahead forecasting of air pollution levels. This dataset was
collected from 12 air quality monitoring stations around Beijing, China, covering the period
from 2013 to 2017. The data contains frequent and drastic fluctuations, making it a
challenging benchmark for predictive modeling. The objective of this dataset is to predict
future AQI levels based on past pollution measurements. The dataset consists of 35,064
samples, recorded hourly over a period of 1,461 days (4 years). Each sample contains six

major air pollution components that significantly impact AQI values:

1. PM2.5 (Fine Particulate Matter, ug/m?®) — Tiny particles that pose significant health

risks.

2. PM10 (Respirable Particulate Matter, pg/m?) — Coarser particles that affect respiratory
health.

3. SO: (Sulfur Dioxide, ppm) — A gas that contributes to acid rain and respiratory issues.

4. NO: (Nitrogen Dioxide, ppm) — A pollutant associated with vehicle emissions and

industrial activity.

5. CO (Carbon Monoxide, ppm) — A toxic gas affecting human health, often from

combustion sources.
6. Os (Ozone, ppm) — A key component of smog, which can cause breathing problems.

The dataset is split into 22800 samples (950 days) for training, 1200 samples (50 days) for
validation and the rest for testing. Additionally, a sliding window approach is used, where

four past time steps are utilized as input sequences to predict future AQI values.
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3.3.6 Electric Load

The electric load dataset for derived from the Greek Power Transmission Operator.
The dataset consists of 35064 samples at one-hour intervals of the electric load consumption.
The training dataset, comprises of 26280 samples, representing historical data from three
consecutive years (2013-2015) and the testing set, contains 8784 samples of electric load
values for the year 2016.

3.4 Evaluation Metrics

The Root Mean Squared Error (RMSE) measures the average magnitude of

prediction errors while penalizing larger errors more significantly.

N
1
RMSE = | (v = 9)?
i=1

The Mean Squared Error (MSE) is similar to RMSE but does not apply the square

root transformation.

1w .
MSE = NZ(%’ -3
l:

The Mean Absolute Error (MAE) averages the absolute differences between
predictions and actual values making it a more straightforward metric. Unlike RMSE and MSE,

MAE treats all errors equally without disproportionately penalizing larger errors.

N
1
MAE=NZ|yi—yi|
l:

The Symmetric Mean Absolute Percentage Error (SMAPE) provides an error

measure in percentage form, making it useful when comparing datasets with different scales.

N
100% lyi — ¥ |
N ¢ [yi | +19; |
1 2

1=

sMAPE =
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4 Results and Analysis

In this chapter a performance analysis is made for MFRFNN and ReNFuzz-LF on the
Lorenz chaotic system and five real-world datasets, including Box—Jenkins Gas Furnace, Wind
Speed Prediction, Google Stock Price Prediction, Air Quality Index Prediction and Electric
Load Dataset. To evaluate their performance the Mean Square Error (MSE), Root Mean Square
Error (RMSE), Mean Absolute Error (MAE), and Symmetric Mean Absolute Percentage Error
(SMAPE) were used.

For MFRFNN all datasets were normalised to the range [0, 1] and for ReNFuzz-LF to
[-0.8, 0.8]. Since having this difference in normalisation, the results in Tables 1-7 are calculated

with the denormalized predictions and outputs of each model.

The hyperparameters of MFRFNN, including the number of fuzzy rules for the output
and state networks, the number of states, and the maximum fitness evaluations for the PSO
algorithm. These hyperparameters are portrayed in Table 10 for each benchmark. For the input
layer of both of MFRFNN’s networks, uniformly distributed triangular membership functions

were used as well as for the continuous MFs in the output layer of the state network.

The hyperparameters of ReNFuzz, include the number of hidden neurons, number of
fuzzy rules, MFs and the learning parameters of the SA-DRPROP algorithm which are shown
in Tables 8-9. In order to create the MFs, partition by means of FCM (Fuzzy C-Means) was
performed to obtain the mean and standard deviation parameters of the Gaussian MFs.
Additionally, the Davies-Bouldin index was examined to choose the best partition of the data
for each dataset. Once the fuzzy sets were created, the parameters of the MFs remained
unchanged during training of the model. Finally, the number of hidden neurons in the rule
consequents were chosen by trial and error by examining [2, 3, 4, 5, 10] number of neurons.

4.1 Results

Performance metrics across several datasets underscore the advantages of each

approach in different contexts.

4.1.1 Google Stock Price (1-step ahead prediction)

In the one-step-ahead prediction of the Google Stock Price dataset, which is highly non-
stationary and exhibits significant short-term fluctuations, MFRFNN outperforms ReNFuzz-
LF, achieving lower RMSE (0.696 vs. 0.782) and MAE (0.289 vs. 0.782). ReNFuzz-LF’s
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higher absolute error suggests that its localized memory and rule base finds it harder to adapt
to the high volatility and rapid fluctuations in stock prices, in comparison to MFRFNN. This
indicates that MFRFNN’s feedback mechanism and dual network architecture, appears to be
better suited for capturing short-term dependencies of stock prices, resulting in higher accuracy

and lower prediction errors.

ReNFuzz Performance on Google Stock Price - Testing MFRFNN Performance on Google Stock Price (Testing)
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Figure 17: Performance on Google Stock Price Dataset

Table 1: Google Stock Price problem errors

One step ahead prediction error on

Google Stock Price problem

Method RMSE MSE MAE SMAPE
MFRFNN 0.696 0.484  0.289 0.204
ReNFuzz-LF 0.782 0.612 0.576 0.232

4.1.2 Box-Jenkins Gas Furnace (Two-Input)

The Box-Jenkins Gas Furnace dataset, is a two-input forecasting problem. Here,
ReNFuzz-LF and MFRFNN perform comparably. For one-step ahead predictions, ReNFuzz-
LF achieves a slightly lower RMSE (0.606 vs. 0.649), indicating a good fit to the data.
However, MFRFNN achieves lower MAE (0.424 vs 0.493) which suggests it might have some
large errors that inflate RMSE. Additionally, as it can be seen on figure 19 both models
struggled to predict local min and max values, suggesting that additional improvements may

be needed.
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ReNFuzz Performance on Box‘-Jenkms . Te‘stlng MFRFNN Performance on Box-Jenkins Dataset (Testing)
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Figure 18: Performance on Box-Jenkins Dataset

Table 2: Box-Jenkins Gas Furnace problem errors

One step ahead prediction error on
Box-Jenkins gas furnace problem

Method RMSE MSE  MAE SMAPE
MFRFNN 0.649 0.421 0.424 0.765
ReNFuzz-LF 0.606 0.367  0.493 0.887

4.1.3 Wind Speed Forecasting (Two-Input)

The Wind Speed dataset, is also a two-input problem. For this task, MFRFNN
outperforms ReNFuzz-LF across all metrics, achieving a lower RMSE (0.553 vs. 1.009), lower
SMAPE (9.829 vs. 16.897), and better MAE (0.435 vs. 0.779). These results indicate that
ReNFuzz-LF struggled to learn the wind speed dynamics. As can be seen on figure 20, the
ReNFuzz model is unable to predict the low wind values. The feedback mechanism of
MFRFNN appears to provide better adaptability, making it the superior model for short-term

wind speed forecasting in this case.
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ReNFuzz Performance on Wind Speed - Testing

MFRFNN Performance on Wind Speed (Testing) 16
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Figure 19: Performace on Wind Speed Dataset

Table 3: Wind Speed problem errors

One step ahead prediction error on Wind
Speed problem

Method RMSE MSE MAE sMAPE
MFRFNN 0.553 0.306 0.435 9.829
ReNFuzz-LF 0.930 0.865 0.707 22.944

4.1.4 Lorenz System (Chaotic System)
For the chaotic time series generated by the Lorenz system, ReNFuzz-LF’s design, with

its localized RNN consequents, captures the short-term chaotic dynamics better than
MFRFNN, allowing the model to achieve very low error measures. The model’s ability to
retain short-term memory seems to be well matched to the sensitive nature of chaotic systems,
making it a better forecaster for this problem. This is probably due to MFRFNN was
overestimating some values as it can be seen on Figures 21. Despite this, MFRFNN ability to

learn multiple functions simultaneously show very promising results as it was able to capture

the pattern of the data.
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Figure 20: Performance on Lorenz system
Table 4: Lorenz System problem errors
One step ahead prediction error on Lorenz System problem
Method RMSE MSE MAE SMAPE
X y z X y z X y z X y z
MFRFNN 0.344 0.505 0.843|0.118 0.256 0.71 | 0.225 0.312 0.479|7.452 7.858 1.983
ReNFuzz-LF 0.198 0.342 0.299 | 0.039 0.117 0.089 | 0.138 0.182 0.198 | 6.003 4.679 1.006
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4.1.5 AQI (5 & 10 step predictions)

Multi-step forecasts, such as those for various AQI datasets (e.g., 5-step and 10-step
ahead predictions), introduce additional challenges due to error accumulation. To train these
models, a rolling window of 4 inputs through the data was used at each timestep to try to capture
the underline dynamics of the time-series. The results indicate that ReNFuzz-LF outperforms
MFRFNN in forecasting PM2.5, PM10, SO2, and O3, particularly in both five-step and ten-
step ahead predictions based on the RMSE, and MFRFNN exhibits better performance for NO2
and CO. However, both models experience increased error metrics in comparison with the
previous datasets. ReNFuzz-LF, which relies on short-term memory in each fuzzy rule, seems
to struggle maintaining information over extended horizons, leading to higher relative errors.
MFRFNN, while designed to capture multiple state transitions through its feedback loop, also
faces difficulties with cumulative uncertainty. From figures 21 is evident that the models
struggle to predict very low and high values while capturing the overall outline of the data and
having better predictions on medium values. Additionally, MFRFNN seems to overestimate
some outliers in the data adding to its worse performance metrics. These challenges underscore
the inherent complexity of long-horizon forecasting and suggest that both approaches may

require further refinement.
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ReNFuzz Performance on AQI (NO2 5step) - Testing
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Table 5: 5-step ahead AQI errors

Five step ahead prediction error on AQI Data

Method PM2.5 PM10
RMSE MSE MAE sMAPE | RMSE MSE MAE sMAPE
MFRFNN 50.04 2521.11 14.46  36.76 47.35 224780 2142 38.26
ReNFuzz-LF 32.18 1035.51 18.02 47.87 4041 163299 26.04 44.00
NO2 CcO
RMSE MSE MAE SsMAPE | RMSE MSE MAE sMAPE
MFRFNN 13.45 180.87 11.63 40.82 |446.99 199803.17 282.77 22.07
ReNFuzz-LF 16.96 287.62 1491 49.98 |503.87 253881.33 33291 25.70
S0O2 o3
RMSE MSE MAE SsMAPE | RMSE MSE MAE sMAPE
MFRFNN 15.15 234.00 4.91 29.67 3433 1318.15 19.48 51.06
ReNFuzz-LF 11.23 126.16 6.32 36.73 16.46 270.97 13.29 44.98
Table 6: 10-step ahead AQI errors
Ten step ahead prediction error on AQI Data
Method PM2.5 PM10
RMSE MSE MAE SsMAPE | RMSE MSE MAE sMAPE
MFRFNN 50.93 2593.36 22.55 54.11 59.45 353454 3141 49.73
ReNFuzz-LF | 38.00 1444.00 24.67 60.66 53.00 2809.30 34.01 54.00
NO2 (6{0)
RMSE MSE MAE SsMAPE | RMSE MSE MAE sMAPE
MFRFNN 20.84 43410 17.23 51.03 |683.44 467093.06 447.23 3445
ReNFuzz-LF 23.27 54148 20.55 60.28 |670.82 450003.77 452.81 34.64
SO2 03
RMSE MSE MAE SsMAPE | RMSE MSE MAE sMAPE
MFRFNN 22.44 50347 8.16 46.56 57.49 330558 31.16 64.52
ReNFuzz-LF 10.62 11285 6.68 41.46 25.43 646.49 20.88 57.89
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4.1.6 Electric Load (24 step ahead prediction)

On the other hand, on the Electric Load dataset, ReNFuzz-LF, demonstrates stronger
performance, maintaining stable error measures. The improved results on this dataset are likely
attribute to the clearer trends in load data compared to environmental data, despite the longer
forecasting horizon. The results demonstrate that ReNFuzz-LF significantly outperforms
MFRFNN in 24-step-ahead (1-day) electric load forecasting. ReNFuzz-LF achieves an RMSE
equal to 124.6 in contrast to the 181.4 of the MFRFNN model. This indicates a better overall
prediction accuracy and lower error variance. Additionally, the lower MAE (86.4 vs 117) and
SMAPE (1.8 vs. 2.56) highlight its superior precision. It is important to note that while both
models perform better on this dataset than the AQI dataset, they continue to struggle with

accurately predicting high and low values compared to the mid-range values of the time series.
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Figure 22: Performance on Electric Load dataset

Table 7: Electric Load problem

24 step ahead prediction error on
Electric Load problem

Method RMSE MAE sMAPE
MFRFNN 186.32 116.98  2.56
ReNFuzz-LF  124.64 86.40 1.80
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4.2 Parameters

A recurring theme in the experimental results is the importance of balancing model
complexity with the risk of overfitting. In ReNFuzz-LF, the number of hidden neurons in the
local RNN consequents must be carefully chosen. For instance, experiments with the Lorenz
y(t) prediction indicate that configurations with 4 neurons can lead to oscillatory behaviour
(Figure 24), while 3 neurons yield smoother, more stable forecasts. This illustrates that a lean

architecture is often preferable when the forecasting task does not demand extensive memory.

Another aspect worth noting is the role of training epochs. For instance, in the Lorenz
y(t) and z(t) predictions, both models showed that training beyond a certain number of epochs
resulted in diminishing returns, likely due to overfitting or the model reaching an optimal
learning plateau. In such cases, the decision to stop training at 250 epochs was justified, as
extending training did not yield improved performance and risked degrading the model’s
ability to generalize. This is a critical consideration for both models, emphasizing the

importance of early stopping and validation-based training strategies.

ReNFuzz Performance on Lorenz20000(y) - Testing
T

Lorenz20000(y)

200
Time Step

Figure 23: Oscillations (ReNFuzz - Lorenz system)
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Table 8: ReNFuzz-LF Parameters

ReNFuzz-LF Parameters

Hidden Input
Benchmark Rules ) ]
Neurons Dimensions

N
[EEN
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Lorenz x(t)
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Lorenz z(t)

Wind Speed
Box-Jenkins

AQI PM2.5 5-step
AQI PM10 5-step
AQI SO2 5-step
AQI NO2 5-step
AQI CO 5-step
AQI O3 5-step
AQI PM2.5 10-step
AQI PM10 10-step
AQI SO2 10-step
AQI NO2 10-step
AQI CO 10-step
AQI O3 10-step
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Table 9: SA-DRPROP Learning Parameters for ReNFuzz-LF
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MFRFNN, performance is sensitive on the number of fuzzy rules and states. Careful
tuning of the rule base and the number of states is essential to fully leverage its ability to learn
multiple functions. When the system’s state space is adequately represented, MFRFNN can
capture the nuances of complex, nonlinear data more effectively. However, an overly complex

rule base or state structure may lead to overfitting.

Table 10: MFRFNN Parameters

MFRFNN Parameters

Maximum Number of Number of input
Benchmark Kl1|K2|N )
FES (PSO Algorithm) steps
Air Quality Index | 16 | 16 | 2 250 4
Lorenz System 27 | 27 | 3 500 1
Box-Jenkin Gas
9 | 4|2 4000 1
Furnace
Wind Speed 4 | 4 |2 4000 1
Google Stock
) 31 3|2 4000 1
Price
Electric Load 3132 500 1
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Table 11: Normalized Errors

Normalized Metrics MFRFNN

Normalized Metrics ReNFuzz-LF

Dataset RMSE MSE MAE sSMAPE | RMSE MSE MAE SMAPE
Wind Speed 0.0205 | 0.0004 | 0.0161 9.8291 0.0551 | 0.0030 | 0.0419 | 23.1692
Box-Jenkins 0.0436 | 0.0019 | 0.0285 | 4.5896 0.0153 | 0.0002 | 0.0125 1.8542
Google Stock Price | 0.0022 | 0.0000 | 0.0009 1.1354 0.0039 | 0.0000 | 0.0029 3.7481
Electric Load 0.0258 | 0.0007 | 0.0162 4.9526 0.0276 | 0.0008 | 0.0192 | 16.9020
Lorenz x(t) 0.009 | 0.0001 | 0.006 1.89 0.0089 | 0.0001 | 0.0062 5.9673
Lorenz y(t) 0.01 | 0.00009 | 0.006 1.5346 0.0114 | 0.0001 | 0.0061 4.6131
Lorenz z(t) 0.0195 | 0.0004 | 0.011 2.6 0.0121 | 0.0001 | 0.0080 7.5657
AQI PM2.5 5-step 0.0559 | 0.0031 | 0.0162 | 45.8437 | 0.0575 | 0.0033 | 0.0322 6.5446
AQI PM10 5-step 0.0482 | 0.0023 | 0.0218 | 40.6609 | 0.0658 | 0.0043 | 0.0424 7.9938
AQI SO2 5-step 0.0445 | 0.0020 | 0.0144 | 31.1177 | 0.0527 | 0.0028 | 0.0297 5.4423
AQI NO2 5-step 0.0467 | 0.0022 | 0.0404 | 45.9219 | 0.0942 | 0.0089 | 0.0828 | 16.1827
AQI CO 5-step 0.0452 | 0.0020 | 0.0286 | 26.1955 | 0.0814 | 0.0066 | 0.0538 | 18.1831
AQI O3 5-step 0.0812 | 0.0074 | 0.0461 | 51.4735 | 0.0623 | 0.0039 | 0.0503 7.9950
AQI PM2.5 10-step | 0.0569 | 0.0032 | 0.0252 | 63.6104 | 0.0679 | 0.0046 | 0.0441 8.6228
AQI PM10 10-step 0.0605 | 0.0037 | 0.0320 | 52.2109 | 0.0864 | 0.0075 | 0.0554 9.7293
AQI SO2 10-step 0.0659 | 0.0043 | 0.0239 | 48.2281 | 0.0499 | 0.0025 | 0.0314 5.6383
AQI NO2 10-step 0.0723 | 0.0052 | 0.0598 | 56.5346 | 0.1293 | 0.0167 | 0.1142 | 21.8999
AQI CO 10-step 0.0690 | 0.0048 | 0.0452 | 39.9908 | 0.1084 | 0.0118 | 0.0732 | 20.8772
AQI O3 10-step 0.1360 | 0.0185 | 0.0737 | 64.9483 | 0.0962 | 0.0093 | 0.0790 | 12.3967
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5 Conclusion and Future Directions

In conclusion, our findings show that ReNFuzz-LF and MFRFNN each have distinct
strengths depending on the forecasting task. ReNFuzz-LF offers a streamlined, efficient
approach without excessive computational demands. With it’s RNN consequents, it excels in
electric load forecasting as well as in capturing the short-term dynamics of chaotic systems like
the Lorenz system. In contrast, MFRFNN, is designed to address complex, multi-state
problems by determining the state of then network and making predictions with its dual-
network feedback architecture. With this architecture, it was able to capture the unpredictability
of wind speed and volatility of stock prices. Overall, both models were able to capture the
patterns of all datasets, however, both face challenges in long-term forecasting on
environmental data, most likely due to error accumulation over multiple prediction steps.
Additionally, in many cases MFRFNN tend to overestimate outliers, and both models had
issues with capturing low and high values in data while making great predictions on mid-range
values. Although extended forecasting remains difficult, the insights into parameter tuning,
training strategies, and architectural design provide clear avenues for further refinement. These
findings underscore that selecting the appropriate model depends critically on the dataset’s
structure and the forecasting horizon, and they offer a roadmap for future enhancements in

neurofuzzy time series prediction.

Future research may focus on integrating advanced techniques such as attention
mechanisms[22], or adaptive normalization[23] strategies to further enhance long-term
predictive performance. Additionally, when a model consistently underestimates high values
or overestimates low values, this may indicate that the fuzzy membership functions do not
adequately cover the tails of the data distribution, or that the loss function does not sufficiently
penalize errors at these extremes. One potential refinement is to modify the membership
functions by incorporating additional, specialized fuzzy sets that focus specifically on the high
and low ends of the data range. By assigning extra fuzzy sets to the tail regions, the model may
gain a more granular representation of rare events, ensuring that these extremes are better
captured during inference. These refinements, whether through enhanced membership function
design or loss function reweighting, provide targeted mechanisms for addressing the common

challenge of accurately predicting high and low extremes in time series data.
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