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Περίληψη

Σκοπός αυτής της εργασίας είναι να εκτιμηθεί το αντίκτυπο των lockdown της COVID-19
πανδημίας στην ατμοσφαιρική ποιότητα με την χρήση μοντέλων βαθείας μάθησης. Το κύριο
κίνητρο πίσω από αυτό το ερευνητικό έργο είναι η ανάγκη κατανόησης της αντίδρασης της
ατμοσφαιρικής ποιότητας σε κοινωνικοοικονομικές δραστηριότητες όπως τα lockdowns και
η εφαρμογή μοντέλων ικανά να μάθουν αυτήν την σχέση. Χρησιμοποιήσαμε δεδομένα πολ-
λαπλών περιοχών τα οποία περιέχουν δορυφορικές εικόνες CO και NO2 συγκεντρώσεων σε
συνδυασμό με πολιτικές που εφαρμόσθηκαν για την μείωση της εξάπλωσης του κορονοϊού.
Για την ολοκλήρωση αυτής της εργασίας υλοποιήθηκαν μοντέλα βαθείας μάθησης, ειδικότερα
CNN-LSTM, ConvLSTM και 3D-UNet και έπειτα αξιολογήθηκαν μεταξύ τους για να βρεθεί το
καλύτερο μοντέλο. Τα αποτελέσματά μας έδειξαν καλή απόδοση στο 3D-UNet νευρωνικό δί-
κτυο, ξεπερνώντας τα CNN-LSTM και ConvLSTM μοντέλα. Έπειτα, μελετήσαμε την επίδραση
των lockdown χαρακτηριστικών στην προγνωστική ικανότητα του προτεινόμενου μοντέλου.
Συνοψίζοντας, τα ευρήματα μας έδειξαν πως δεν είχαν σημαντική επίδραση στην ποιότητα
των προγνώσεων του μοντέλου.

Λέξεις Κλειδιά: Βαθεία μάθηση, Όραση Υπολογιστών, Ατμοσφαιρική ποιότητα, Πρόγνωση
χρονοσειρών
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Abstract

The purpose of this diploma thesis is to assess the impact of the lockdowns caused by the COVID­
19 pandemic on air quality by using deep learning models. The primary motivation behind this
research project is the need to understand how air quality responds to social­economic activities
such as city­level lockdowns and implement models able to learn that relationship. We use datasets
from multiple areas that contain satellite imagery of CO and NO2 air pollutants’ concentrations
in combination with policy responses for the COVID­19 pandemic to predict their respective fu­
ture image occurrences. Deep learning models, namely., CNN­LSTM, ConvLSTM, and 3D­UNet
models are implemented to complete this task and then evaluated to discover the best performing
network. Our results showed good performance on the 3D­UNet based network, surpassing both
the CNN­LSTM and ConvLSTM networks. We then assess the effect of the lockdown features on
the prediction performance of the 3D­UNet model. Overall, our findings show that the lockdown
features don’t have a notable impact on the model’s predictions’ quality.

Keywords: Deep learning, Computer Vision, Air quality, Time­series prediction
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Chapter 1

Introduction

This first chapter provides an overview of the challenges around air pollution and motivation for
this research, followed by details of the research goal. Lastly, a summary of the contributions is
presented, along with the outlines of the thesis structure.

1.1 Motivation

Air is vital for all living beings on earth and the necessity of healthy air has always been of great
importance. Rapid urbanization and industrialization had a profound influence on air pollution
making it amajormodern­day issue. Air pollution is defined as all destructive effects of any sources
which contribute to the pollution of the atmosphere and/or deterioration of the ecosystem. It is
made up of many kinds of pollutants including materials in solid, liquid, and gas phases [GRB16].
Air pollution is usually caused by energy production from power plants, industries, residential
heating, fuel burning vehicles, natural disasters etc.

Human health concern is one of the most important consequences of air pollution, especially in
urban areas. Long­term exposure to pollutants can cause neurological, reproductive and respiratory
health problems that can even lead to death [Man+20] and according to the World Health Orga­
nization air pollution kills an estimated seven million people worldwide every year, 4.2 million
of which occur as a result of exposure to ambient (outdoor) air pollution [WHO]. Environmental
degradation is another detrimental consequence of air pollution. The most important environmen­
tal effects of air pollution are as follows: global warming, photo­chemical smog, acid rain, aerosol
formation and depletion of ozone .

All the above mentioned raise an urgent need to anticipate and plan for pollution fluctuations to
help communities and individuals better mitigate the negative impact of air pollution. To achieve
that it is important to understand how pollution responds to changes in social and economic activity.

With the outbreak of the Coronavirus disease 2019 (COVID­2019), human activities were
limited or even prohibited as a series of measures in order to slow down social interactions. These
regulatory measures have been implemented across the countries, positively affecting air quality,
especially due to the reduction in pollutants emissions by transportation and industries [Wan+20].
Therefore it is important to understand how pollution responds to restriction policies, such as a city­
level lockdown, as it inform us how different pollutants may respond to milder forms of restrictions
on human activities such as pedestrianised zones,congestion charging and urban planning more
generally.

Nowadays the use of deep learning is spreading in the field of remote sensing, with applications
ranging from detection and classification of land use and monitoring to the prediction of many
natural or anthropogenic phenomena of interest. With the constant increase of remote sensing data
and the continuous research on end­to­end models, deep learning can be used to solve many remote

1
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sensing and geoscience problems.Accurate time series forecasting of remote sensing data such as
air quality is one such problem, and much effort has been made by researchers to create models
capable of fitting the underlying time series.

1.2 Research Goal

The goal of this thesis is to design and examine deep learning models to directly predict air quality
from satellite imagery and policy responses to the Coronavirus pandemic in order to assess the im­
pact of these policy responses to air quality. The image data required are publicly available from the
Copernicus Sentinel­5P mission and the policy responses data is also publicly available from the
Coronavirus Government Response Tracker. For the process of modeling and predicting air qual­
ity data we use many state­of­the­art deep learning models­i.e.,fully convolutional networks,auto
encoders and recurrent neural networks. Moreover, we use the best performing model to examine
and analyse the effects of the lockdowns features on air quality.

1.3 Contributions

This thesis consists of several contributions. Firstly, it provides a dense overview of existing deep
learning approaches that deal with the problem of remote sensing data prediction. Secondly it
performs an exploratory data analysis of air pollutants, and policy responses to the Coronavirus
pandemic. Thirdly it provides a comparison of the performance of multiple deep learning models
used to predict air quality data. Furthermore, the proposed model from the comparison is able to
predict the effect of the policy responses in the atmosphere, which can be used to quantify this
effect on urban environments such as cities. Not only that, but the proposed model is able to learn
spatio­temporal data, which means it can be used in different areas and in different time periods.
Last but not least, all Tensor Flow implementations are freely available to the research community
as is the data extraction and generation source code used to feed the deep learning models1.

1.4 Overview of the Study

The subsequent chapters of this thesis are structured as followed:

Chapter 2: Background Theory covers the theoretical concepts that are required to under­
stand our deep learning implementations and their consecutive evaluations. It provides a deeper
look into neural networks and explains how they are trained. Further, more advanced neural net­
work architectures are explored, namely convolutional neural networks (CNN) for spatial learning,
recurrent neural network (RNN) models for sequential learning, and auto­encoders.

Chapter 3: RelatedWork presents related work to our task. These works are about air quality
prediction projects, remote sensing data prediction and sequence­to­one prediction in general.

Chapter 4: Datasets describes in detail the process of data extraction, as well as data pre­
processing that was used on each dataset. Furthermore, Chapter 4 mentions also the creation of
the input dataset that was used to feed the deep learning models.

Chapter 5: Methodology, the full methodology for the prediction is presented. This chapter
describes the architectures and implementations details of the deep learning models, as well as the
reasons they were chosen for this particular task.

1https://github.com/AntonisAgap/thesis
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Chapter 6: Experiments,includes a presentation of all experiments and their results with
graphic presentations. Furthermore, Chapter 6 presents the comparison of the results of eachmodel
that was used in the experiments.

Chapter 7: Conclusions,concludes the work of this paper with an evaluation, discussion of
the results, as well as highlight the identified possible improvements for future work.





Chapter 2

Background Theory

This chapter introduces relevant background theory for the reader to pick up on key terminology
used throughout this thesis. Section 2.1 explains in short the COVID­19 pandemic and it’s re­
sponses by the governments. In the Section 2.2 air quality is defined along with the causes and
effects of its decrease . Section 2.3 describes the structure of simple feed­forward networks, their
training process and some regularization methods to improve their performance. In Sections 2.4
2.5 and 2.6 more advanced model architectures are presented that take advantage of the data’s spa­
tial and temporal properties. Namely, Section 2.4 presents the Convolutional Neural Networks,
Recurrent Neural Networks are explained in Section 2.5 and lastly Encoder­Decoder Networks are
described in Section 2.6. Lastly, in Section 2.7 the Batch Normalization technique is explored.

2.1 COVID­19 pandemic

As of September 2021 the COVID­19 pandemic is an ongoing global pandemic of coronavirus
disease 2019 (COVID­19), caused by severe acute respiratory syndrome coronavirus 2 (SARS­
CoV­2), which was the cause for over 4.14 million deaths worldwide. The disease transmits when
people breathe in air contaminated by droplets and small airborne particles, making the virus’
spread rapid. In order to stop the spread of the virus, restriction policies have been applied by the
governments. Social distancing, face masks in public, city­level lock downs are some of those
policies.

2.2 Air Quality

Air quality is the degree to which air is suitable or clean enough for humans, animals, or plants
to remain healthy. Air quality decreases through the release of pollutants into the air, which are
harmful to the health of humans and other living beings, or cause damage to the climate or to the
materials. The presence of air pollutants in the atmosphere defines air pollution. Table 2.1 lists
all the ’criteria air pollutants’, along with a short description of each. ’Criteria air pollutants’ is
an internationally used term to describe air pollutants that have been regulated and are used as
indicators of air quality.

2.2.1 Causes of air pollution

Sources of air pollution are either anthropogenic (human­made) or natural. Anthropogenic sources
are mostly related to the burning of fuel. Fossil fuel power plants, vehicles, and burn practices in
agriculture are such examples. Other than combustion, fumes from solvents, waste deposition,
and fertilized farmland also contribute to air contamination. Natural sources include among other

5
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volcanic eruptions, windstorms, biological decay, and forest fires. The severity of air pollution in
an area depends on three factors: the number of pollutants, the rate at which they are released into
the atmosphere, and how long they are trapped in an area. If air pollutants are in an area with good
airflow, they will mix with the air and quickly disperse. Air pollutants tend to remain in the air
where there are certain conditions like light winds or obstacles that restrict the transport of these
contaminants away from an area. Lastly, the increase of industrial and socioeconomic activities in
cities heavily impacts the rapid reduction of air quality over those areas.

2.2.2 Effects of air pollution

Effects of air pollutants have a negative impact not only on human health but also on the whole
environment [GRB16]. Ecologically, air pollution can cause major environmental damages to the
groundwater, soil, air. It is also a serious threat to wildlife. Researchers on [Lov+09],[Mel+16]
show the severe impact of air pollutants on diminishing species diversity. Haze, temperature inver­
sion, acid rain, and global climate change are other major environmental impacts of air pollution
[Man+20]. In terms of health hazards, long­term effects of air pollution on the onset of diseases
such as respiratory infections and inflammations, cardiovascular dysfunctions, and cancer is widely
accepted; hence, air pollution is linked with millions of death globally each year.

Name Information

Carbon monoxide (CO) Main sources of CO are combustion of fossil fu­
els, biomass burning, and atmospheric oxidation of
methane and other hydrocarbons.

Lead (PB) Lead is a naturally occurring heavy metal that can be
released into soil,air and water through soil erosion,
volcanic eruptions, sea spray and bushfires.

Nitrogen Dioxide (NO2) Nitrogen dioxide enters the atmosphere as a result
of anthropogenic activities such as fossil fuel com­
bustion and biomass burning, as well as natural pro­
cesses including microbiological processes in soils,
wildfires and lightning.

Ozone (O3) At high concentrations ozone becomes harmful to
the health of humans,animals and vegetation. Ozone
is also an important greenhouse­gas contributing to
ongoing climate change.

Particulate matter (PMx) Breathing in particle pollution can be harmful to hu­
man health. PM2.5 denotes the diameter of the par­
ticulate matter is less than 2.5 microns, and for PM10
it is 10 microns. Most particles form in the atmo­
sphere as a result of complex reactions of chemicals
such as sulfur dioxide and nitrogen oxides, which are
pollutants emitted from power plants, industries and
automobiles.

Sulphur Dioxide (SO2) (SO2) enters Earth’s atmosphere through both natu­
ral and anthropogenic processes, though themajority
is of anthropogenic origin.

Table 2.1: Criteria air pollutants. NO2 and CO are the pollutants of interest in this thesis.
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2.3 Neural Networks

The term ‘neural network’ has its origins in attempts to find mathematical representations of infor­
mation processing in biological systems . They were first introduced back in 1943 by the neurolo­
gist Warren McCulloch and the mathematician Walter Pitts. Their work inspired Frank Rosenblatt
to develop the so­called perceptron algorithm in 1962 [Bis06]. But by the 1990s, powerful al­
ternative machine learning techniques such as Support Vector Machines were favored by most
researchers, as they seemed to offer better results. However nowadays, with the availability of
large amounts of training data and computational power, neural networks frequently outperform
other machine learning techniques on very large and complex problems.

2.3.1 Basics

Rosenblatt’s perceptron is the simplest form of an ANN architecture. It corresponds to a two­class
model in which the weighted sum

∑n
i=1 wi xi = w ·x, where w and x are vectors whose components

are n weights and n inputs respectively, is used to construct a generalized linear model of the form:

y(x) = f (
n∑

i=1

wi xi + w0) (2.1)

where the nonlinear activation function f(·) is given by a step function of the form

f(x) =

{
+1 a ≥ 0
−1 a < 0

(2.2)

A bias weight w0 is typically included, which provides the ability to shift the results for a better
fit. A single perceptron can learn linear functions correctly. However, by building a network of
these models arranged into more layers consisting of multiple non­linear activation functions in
each, the network can now solve more complex problems. Such network architecture is known as
a multilayer perceptron (MLP).

AnMLP is composed of one (pass through) input layer, one or more ”hidden” layers and a final
layer called the output layer. It is common to describe the structure of a neural network as a graph
whose input,hidden and output variables are represented by nodes, and the weight parameters are
represented by links between the nodes. See Figure 2.1 for an example of a feed­forward MLP
with two hidden layers.

We can write down the neural network’s function corresponding to Figure 2.1 as follows. The
output of the mth hidden unit of the first hidden layer is obtained by calculating the weighted sum
of theD input values, adding the bias wm0 and then transforming it using a differentiable, nonlinear
activation function g1(·).

um = g1 (
D∑

d=1

w(1)
md xd + w(1)

m0 ) (2.3)

where w(1)
md denotes a weight in the first layer, going from input d to output m. Similarly the output

of the lth hidden unit of the second hidden layer and kth output unit of the output layer are obtained.

zl = g2 (
M∑

m=1

w(2)
lm um + w(2)

l0 ) (2.4)

yk = g̃ (
L∑

l=1

w(3)
kl zl + w(3)

k0 ) (2.5)
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Figure 2.1: An example graph of an MLP with an input layer x of D nodes, two hidden layers u of
M nodes and z of L nodes and lastly an output layer y of K nodes. The grayed out nodes
represent the additional input and hidden variables x0, u0 and z0 respectively, whose
links denote the bias weight parameters.(Based on [Bis06])

Using (2.3),(2.4) and (2.5) the overall network’s function of a four layers feed­forward MLP can
be defined as:

yk(x,w) = g̃ (
L∑

l=0

w(3)
kl g2 (

M∑
m0

w(2)
lm g1 (

D∑
d=0

w(1)
md xd))) (2.6)

The notation g̃ is used for the output units’ activation function, and its choice is determined by
the nature of the data and assumed distribution of target variables [Bis06]. The activation func­
tions used in this thesis are the sigmoid, hyperbolic tangent and ReLU functions. Their graphical
representations can been seen in 2.2

The sigmoid function g(x) can be regarded as a smoothed version of a step function, which
squashes real numbers to range between [0, 1]. It is a bounded differentiable real function, which
is given by the relationship

g(x) =
1

1+ e−x , (2.7)

The function appears in the output layers of the deep learning architectures, and is usually used
for predicting probability based output and has been applied successfully in binary classification
problems, modeling logistic regression tasks as well as other neural network domains [Nwa+18].
Its main advantages is that its derivative takes the simple form:

g′(x) = g(x)(1− g(x)), (2.8)

which is straightforward to verify and understand. However, the sigmoid function suffers ma­
jor drawbacks, which include gradient saturation, slow convergence and non­zero centred output
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(a) g(x) =
1

1+ e−x (b) g(x) =
ex − e−x

ex + e−x

(c) g(x) = max (0, x)

Figure 2.2: Graphical representations of the (a) sigmoid, (b) hyperbolic tangent and (c) ReLU ac­
tivation functions

thereby causing the gradient updates to propagate in different directions.
The hyperbolic tangent or tanh function was proposed to remedy some of these drawbacks.

The tanh function is a zero­centered function, which squashes real numbers to the range [−1, 1],
thus the output of the tanh function is given by:

g(x) =
ex − e−x

ex + e−x (2.9)

By providing a zero centered output the function aids the back­propagation training progress which
will be discussed in Section 2.3.2. Nonetheless, the tanh function also suffers by gradient satura­
tion.

Lastly we have the rectified linear unit (ReLU) function, which has been the most widely used
activation function for deep learning applications with state­of­the­art results to date [Nwa+18].
The ReLU function performs a threshold operation to each input element where the values less
than zero are set to zero, therefore the output of the function is given by

g(x) = max (0, x) =

{
xi, xi ≥ 0
0, xi < 0

(2.10)

This function rectifies the values of the inputs less than zero thereby forcing them to zero and
eliminating the vanishing gradient problem observed in the earlier types of activation functions.
Moreover, unlike the aforementioned activation functions, ReLU guarantees faster computation,
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since it doesn’t involve expensive operations such as exponentials and divisions. Unfortunately,
ReLU can be fragile during training, causing some of the units to never activate during the whole
training, but with a proper setting of the learning rate this is less frequently an issue.

2.3.2 Network Training

The final goal of a neural network’s training algorithm is to find a set of weights w, that minimize
a loss function1 E(w) [TSK06] :

argminwE(w) (2.11)

The loss function is the function that computes the distance between the model’s predicted
output y and the expected output ŷ. Similarly to the activation functions, the form of the cost
function is highly determined by the nature of the input and target variables. In this thesis the cost
functions which are used are: the Mean Squared Error (MSE), Root Mean Squared Error (RMSE)
and Mean Absolute Error (MAE).

The Mean Squared Error is usually the default loss function used in regression problems. Its
output is calculated as the average of the squared differences between the predicted and actual
values.

E(w) =
1
n

n∑
i=1

(yi − ŷi)2 (2.12)

The result is always a positive number and an MSE of 0.0 is considered a perfect value. Similarly
the Root Mean Squared Error is calculated by the rootedMSE.

E(w) =

√√√√1
n

n∑
i=1

(yi − ŷi)2 (2.13)

Lastly theMean Absolute Error is calculated as the average of the absolute difference between the
actual and predicted values.

E(w) =
1
n

n∑
i=1

|yi − ŷi| (2.14)

As mentioned earlier, minimizing the loss function is the goal of the training process. Many opti­
mizations techniques have been developed to solve such minimization problems and most of those
techniques are based on the gradient descent method. Gradient descent makes use of the deriva­
tive of the loss function E(w) with respect to the weights w and iteratively tries to find the global
minima of the function by doing small steps towards the negative gradient. By using gradient
descent any trainable weight parameter of the neural network can be updated by calculating:

w(τ+1)
i = w(τ)

i − λ∇E(w(τ)
i ) (2.15)

∇E(wt) =
∂E
∂w(τ)

i

(2.16)

where τ labels the iteration step and λ > 0 denotes the learning rate or step size that is used to
scale the gradient and control how much to change each input variable with respect to the gradient
[Bis06]. Choosing the correct learning rate is crucial since a learning rate that is too large can
cause the model to converge too quickly to a suboptimal solution, whereas a learning rate that is
too small can cause the process to stuck on a local minima.

1Sometimes also called cost function, error function or objective function.
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Calculating the gradients for nodes in the hidden layers of a feed­forward network can be a
challenge without knowing their outputs’ value. An iterative differentiation algorithm called er­
ror back­propagation is applied to solve this problem. Each iteration of the algorithm, also called
epoch, is composed of two passes: a forward pass and a backward pass. In the forward pass: the
input data is propagated to the input layer and goes through the hidden layers. Afterwards, the
network’s predictions are measured from the output layer, and lastly the network’s errors are cal­
culated using those predictions and a loss function E(w). Once the network’s errors are calculated,
the forward pass ends and the backward pass starts. In the backward pass, the network’s errors are
propagated from the output layer to the input layer passing through the hidden layers calculating
the gradients of the nodes. After the backward pass ends, the weights are updated using a gradient
descent­based algorithm.

In practice the vanilla gradient descent is a poor approach to update the weights of a neural
network since it uses the whole training dataset to perform just one update and in result can be very
slow and is intractable for datasets that don’t fit in memory. Stochastic gradient descent (SGD)
solves this problem by updating the parameters based on one data point at a time so that [Bis06],

w(τ+1)
i = w(τ)

i − λ∇En(w
(τ)
i ) (2.17)

The update can be also based on a sample of data points, where the size of the sample is known as
batch size. The optimizer that is used in this thesis is called adaptive moments estimation (Adam)
algorithm [KB15]. This algorithm is usually preferred as the default optimization method for most
deep learning applications since it’s been empirically shown that it compares favourably to other
gradient descent­based methods [Rud16] [KB15]. Adam is an extension to SGD, but unlike SGD,
which maintains a single learning rate for all weight updates, the Adam algorithm computes indi­
vidual adaptive learning rates for different parameters. This is achieved by utilizing the estimates
of first (the mean) m(t) and second (the uncentered variance) u(τ) moments of the gradients,

m(τ) = β1m(τ−1) + (1− β1)∇En(w(τ−1)) (2.18)

u(τ) = β2u(τ−1) + (1− β2)∇En(w(τ−1))2 (2.19)

to calculate the parameters’ exponential moving average of the gradients and the squared gra­
dients. The hyperparameteres β1, β2 ∈ [0, 1] control the decay rates of the previous mentioned
moving averages. Using these, the update rule of the Adam algorithm can be written as:

w(τ+1)
i = w(τ)

i − λ√
û(τ) + ε

m̂(τ) (2.20)

, where m̂(τ) and û(τ) are the bias­corrected first and second moment estimates respectively,

m̂(τ) =
mτ

1− bτ1
(2.21)

û(τ) =
uτ

1− bτ2
(2.22)

They hyperparameters typically require little tuning and the authors propose default values of
0.001 for λ, 0.9 for β1, 0.999 for β2, and 10−8 for ε [KB15].

Before training a machine learning model, the dataset is usually split into a training, a valida­
tion and a testing dataset. The training dataset is used for the calculation of the model’s parame­
ters as described and is usually consisted of the more substantial part of the dataset. The validation
dataset is a smaller subset of the training dataset and is used to evaluate the network’s performance
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during the training process. After the training process, the testing dataset is used to evaluate the
performance of the network’s prediction capability on unseen data of the same type. The network’s
ability to correctly predict outputs of a dataset other than the training dataset is called ”generaliza­
tion”, and therefore the objective of such a network is to be able to generalize on any kind of data
from the same type [Bis06].

2.3.3 Regularization

As already stated, our goal is to find a representation that generalizes well. Common problems
that have to be prevented when neural networks are trained are the effects of under­fitting and
over­ fitting. An under­fitted model is incapable of capturing the variability of data and instead it
makes a strong assumption about the data paying little attention to the data points. An example
of such model can been seen in (b) of Figure 2.3, where the model makes the assumption that
the data is linear, and fails to learn the relationships between the inputs (features) x and outputs
(labels) y. Reducing under­fitting can be usually achieved by increasing the model’s complexity
and training time [Koe19]. Over­fitting is the opposite of under­fitting. An over­fitted model has
a high variance, because it will change significantly depending on the training data. It learnt some
random regularity contained in the set of training patterns and essentially learns to memorize the
training data points and noise instead of learning the relationships between them. A model like
that has very bad generalization, making over­fitting one of the biggest problems in training neural
networks. In (c) of Figure 2.3 an example of an over­fitted model can been seen. Ideally we want
to train a model like (a) in Figure 2.3, where the model’s function approximates the true function
almost perfectly. We can evaluate a model’s generalization by comparing the loss functions of the
training, validation and testing datasets. Usually amodel that is under­fittedwill have high training,
validation and testing error, whereas an over­fitted model will have extremely low training error
but a high validation and testing error.

Avoiding the effects of over­fitting and under­fitting can be achieved by using regularization to
our deep learning problem. Regularization is anymodificationwemake to a learning algorithm that
is intended to reduce its generalization error but not its training error. Furthermore, regularization
from the start must always be considered, unless the training dataset contains a huge amount of
samples[GBC16]. In this thesis regularization techniques such as dropout and early stopping are
employed to address the over­fitting and under­fitting problems.

Dropout

Dropout is a regularization method that approximates training a large number of neural networks
with different architectures in parallel. The term dropout refers to the temporal removal of units
from a layer in a network, along with all its incoming and outgoing connections, as can be seen
in Figure 2.4. This has the effect of making the layer look­like and be treated­like a layer with a
different number of nodes and connectivity to the prior layer, which in turn prevents units from
co­adapting too much. [WWL13]. Essentially by applying dropout to a network’s training, we
sample a new thinned network from it, for each training case.

The choice of which units to drop is random and is defined by a hyperparameter called dropout
rate. The dropout rate specifies the probability at which outputs of the layer are dropped out, or
inversely, the probability at which outputs of the layer are retained. A common value for the
hidden layers is a probability of 0.5, which seems to be optimal for a wide range of networks and
tasks. However, for the input units, the optimal probability of retention is usually closer to 1,
such as 0.8 [Sri+14]. Dropout is used only in the training process of the neural network and may
be implemented on any or all hidden layers in the network as well as the visible or input layer.
It is not used on the output layer. Furthermore, it can be used with most types of layers, such
as dense fully connected layers, convolutional layers, and recurrent layers. This technique was
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(a) Good fitted function (b) Under fitted function

(c) Over fitted function

Figure 2.3: Graphical representations of different fitted functions

found to improve the performance of neural networks in a wide variety of application domains
[DSH13][Sri+14][GBC16]. However, one of its major drawbacks is that it increases training time.
A dropout network typically takes 2­3 times longer to train than a standard neural network of the
same architecture, since the parameter updates on the dropout network are very noisy[Sri+14].

Early stopping

When training a large network, there will be a point during the training when the model will stop
generalizing and start learning the statistical noise in the training dataset. As discussed above,
this is the effect of over­fitting, making the model less useful at making predictions on new data.
Another approach used in this thesis to solve over­fitting is by using a trigger, that will stop the
training process when the generalization performance starts to decrease. This approach is called
early stopping and is probably the most commonly used form of regularization in deep learning. In
this thesis, a model’s weights will be saved as long as its performance is better than the model’s at
the prior epoch. In that way , every time the error on the validation set improves, we store the best
model’s copy. An increase in validation loss over a given number of epochs will trigger the end of
the training process, leaving us with the model’s weights, whose generalization error (validation
loss) was the lowest. Early stopping is recommended to be used almost universally [GBC16] since
it’s simple and offers almost always better performance.
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(a) Feed­forward Neural Net (b) After applying dropout

Figure 2.4: Graphical representation of the dropout regularization of a neural network. Left: A
standard feed­forward neural network with 2 hidden layers. Right: An example of a
”thinned” neural network after applying dropout to the network on the left. Grayed out
units have been dropped (Based on [Sri+14])

2.4 Convolutional Neural Networks

In the previous section, neural networks have been described that exhibit a full connection of neu­
rons from one layer to the next. These types of layers are called fully­connected layers. Although
fully­connected layers allows us to train powerful networks, there are some downsides to them.
One of them is the inability to effectively learn on more complicated datasets such as images.
Given a dataset of gray scale images 2 with the standardized size of 32x32 pixels each, a tradi­
tional feed­forward neural network would require 1024 input weights and that’s just the input layer.
Considering the input layer, the network’s layers would become very large and their connections
would increase exponentially. This would end up in a network that is either too time­consuming to
train, or too big to even be able to be stored in memory. Furthermore, by training such a network,
we would discard each image’s spatial structure by flattening them into one­dimensional vectors.
Therefore we wouldn’t be able to use the knowledge of the pixels spatial relations to build efficient
models to learn from image data.

This section introduces convolutional neural networks (CNNs) that are designed for the pur­
pose of effectively learning from tabular image data, even though they are now used for a wide
range of tasks other than computer vision . In addition to their efficiency in achieving accurate
models, CNNs tend to be computationally efficient, since they require fewer parameters than fully­
connected architectures and because convolutions are easily parallelized across GPU cores. CNNs
emerged from the study of the brain’s visual cortex, and they have been used in image recognition
since the 1980s [Gro17]. An important milestone was a 1998 paper [Lec+98], which introduced the
famous LeNet­5 architecture,widely used to recognize handwritten check numbers, see Figure 2.5.
Nowadays, the use of CNN­based architectures is ubiquitous in the field of computer vision, and
they became so dominant that practitioners often apply CNNs whenever possible, even on tasks
with one­dimensional sequence structure, such as voice recognition or natural language process­
ing. The basic elements of CNNs —i.e., convolutional layers, pooling layers, padding and stride
as well as its detailed advantages are described in the following sections.

2A gray scale image is one in which the value of each pixel consists of a single value, thereby the image has only
one channel.
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Figure 2.5: Graphical representation of LeNet­5 architecture. The convolution and sub sampling
layers extract high level features from the images, while the full connection layers are
used to accurately predict the label using the high level features.(From [Lec+98])

2.4.1 Structure

Convolutional neural networks are networks that consist of at least one convolutional layer. In
other words, ”Convolutional networks are simply neural networks that use convolution in place
of general matrix multiplication in at least one of their layers” [GBC16]. Therefore in order to
accurately describe what a CNN is, it’s essential we define the convolution operation.

Generally speaking, a convolution is a mathematical operation of two functions f(x) and g(x)
which is typically denoted with an asterisk. Convolution is defined as the integral of the product
of the two functions after one is reversed and shifted:

(f ∗ g)(t) =
∫ −∞

∞
f(τ) · g(t− τ)dτ (2.23)

In convolutional neural networks terminology, the first argument to the convolution (the func­
tion f) is termed as the input and the second argument (the function g) as the kernel. Moreover, the
output of (f ∗ g)(x) is called feature map. Technically, the convolution as described in the used of
the convolution neural networks is actually cross­correlation, since the kernel isn’t flipped prior
to being applied to the input, see Figure 2.6. Cross correlation is defined as:

(f ∗ g)(t) =
∫ −∞

∞
f(t− τ) · g(τ)dτ (2.24)

, where f(t− τ) denotes the complex conjugate of f(t− τ). Nevertheless, in deep learning, it is still
referred to as convolution operation. Furthermore, since we are dealing with discrete images of
multiple channels in this thesis, we can reformulate the equation 2.24 as:

(I ∗ K)(x, y) =
nH∑
i=1

nW∑
j=1

nC∑
k=1

Ki,j,k · Ix+i−1,y+j−1,k (2.25)

, where nH is the height of the image, nW the width and nC the number of channels. The input
I is an image of size nW× nH× nC and K is a three­dimensional kernel with a window’s (receptive
field) size of k×k×nC. Being more specific, 2.25 is a discrete convolution. Discrete convolutions
are the bread and butter of CNNs and their advantages over affine transformations for learning will
be further discussed in Section 2.4.2.

Convolution layer

The core computation of a N­dimensional convolutional layer is a N­dimensional cross correlation
operation. A convolutional layer cross correlates the input and kernel and adds a scalar bias to
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Figure 2.6: Two­dimensional cross correlation operation. The shaded portions are the first output
element as well as the input and kernel tensor elements used for the output computation.
The kernel window will slide, both from left to right and top to bottom to calculate the
other three output elements. (From [Zha+19a])

produce the feature map. The feature map can be regarded as the learned learned representations
(features) in the spatial dimensions (e.g., width and height) to the subsequent layer. It is common
for a convolutional layer to use multiple kernels in parallel for a given input to produce multiple
feature maps. This gives the model multiple different ways of extracting features from an input.
The kernels are typically initialized randomly, just as a a fully­connected layer would [Zha+19a],
and their number is specified by the kernel depth. In summary, in a convolution layer, the kernel
iteratively slide across the whole input space. In every iteration step, it attempts to extract features
that are only dependent on a small neighboring region with the size of the kernel using the cross
correlation operation and outputting a feature map. The process is repeated several times using
different kernels, resulting in multiple feature maps. Furthermore, for computational efficiency
or simply downsampling, it’s standard to use a hyperparameter called stride to skip intermediate
locations by moving the kernel window more than one element at a time. Stride refers to the
number of rows and columns traversed per slide. When the stride is one then we move the filters
one pixel at a time, when its two then the filters jump two pixels at a time as we slide them around
and so forth. Lastly, sometimes its convenient to pad the input data around the border with zeros.
The size of this padding is specified by the hyperparameter zero­padding. Zero­padding allows
us to control the spatial size of the output, which is essential in this thesis, because it enables us
to preserve the spatial size of the input so the input and output dimensions are the same. For a
graphical example of a convolution that makes use of zero­padding and stride see Figure 2.7.

By using the equation 2.25, the bias and the stride terms, we can formulate the output of a
neuron in a convolutional layer as:

zi,j,k = bk +
fh∑

u=1

fW∑
v=1

fn′∑
k′=1

xi′,j′,k′ · wu,v,k′,k with

{
i′, = i× sh + u
j′, = j× sw + v

(2.26)

, where zi,j,k is the output of the neuron located in row i, column j in feature map k of the
convolutional layer l. Notations sh and sw are the dimensions of the stride, while fh, fw are the
dimensions of the receptive field and f′n the number of featuremaps in the previous layer or channels
if its the input image. The output is denoted as xi′,j′,k′ . The bias term for feature map k is denoted
as bk, whereas wu,v,k′,; is the connection weight between any neuron in feature map k of the layer l
and its input is located at row u and column v and feature map k′.
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Figure 2.7: Graphical example of a convolution with a 3 × 3 kernel over a 5 × 5 input using a
stride of 2×2. The input has been padded with a 1×1 border of zeros (zero­padding).
(From [DV16])

Each convolutional layer is usually followed by a non­linear activation function, preferably a
rectifier linear unit (ReLU). As can been seen in Figure 2.5 the convolutions layers are stacked
together. This architecture allows the network to concentrate on low­level features on the first
convolution layer,then assemble them into higher­level features in the convolution layer, and so
on. This hierarchical structure is one of the main reasons why CNNs work so well in computer
vision tasks [Gro17].

Pooling layer

It is a common practice to periodically insert an additional layer that performs sub sampling onto
the feature maps. This layer is referred to as the pooling or sub sampling layer. Its function is to
progressively reduce the spatial size of the representation in order to reduce the computational load,
the memory usage, and the number of parameters, thereby also controlling the effect of over fitting.
The pooling layer operates upon each featuremap separately to create a new set of the same number
of pooled feature maps. Much like the convolution layer, a kernel slides across the input feature
maps applying a pooling operation over the portion of the image covered by its kernel’s window’s
size. The size of the pooling operation is smaller than the size of the feature map; generally, it is
almost always with a window size of 2× 2 pixels and with a stride of 2 pixel to avoid any overlap.
Two common pooling operations used are: max pooling and average pooling. In max pooling the
function returns the maximum value of the receptive field’s values, whereas in average pooling the
function returns the average value. Usually, the max function is preferred in pooling layers since
it performs a lot better than the average function. In all cases, the result of a pooling operation
is a summarized version of the features detected in the input, thereby pooling helps to make the
representation become approximately invariant to local translations of the image. An example of
pooling layers can be seen in Figure 2.5, where the pooling layers are added after the convolution
layers.

Transposed convolution layer

As explained in Section 2.4.1, the convolution operation usually transforms the input into lower
dimensional feature maps . Convolutional autoencoders usually need the transformation going in
the opposite direction, i.e., from something that has the shape of the output of some convolution to
something that has the the shape of its input while maintaining the same connectivity pattern. This
operation is referred to as a transposed convolution3 and it is an essential part of the decoding layer
of autoencoders. Just like the standard convolutional layer, the transposed convolutional layer is
also defined by the padding and stride hyperparameters. However, in transposed convolutions the

3The transposed convolution is often called deconvolution. But because it is not actually performing the reverse
effect of a convolution, which is meant by the mathematical term of a deconvolution, it is strongly discouraged to name
it so. An alternative name that is also often used is upconvolution.
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forward and backward passes are swapped. This swap can be achieved by transposing the convo­
lution matrix on the output feature map convolution, which will generate the spatial dimensions
same as that of the input feature map.

2.4.2 Advantages

As mentioned above, discrete convolutions are the reason why CNNs are so popular for learning
data such as images, sound clips etc, as they are able to take advantage of the implicit structure of
such data and exploit their topological information. Other neural networks apply affine transfor­
mations4 over the data, whereas a discrete convolution is a linear transformation, which leverages
three important ideas that can help improve a machine learning system. These are: sparse interac­
tions, parameter sharing and equivariant representations [GBC16].

Sparse interactions

Convolutional networks, typically have sparse interactions. This is accomplished by making the
kernel smaller than the input. When only a few input unit contribute to a given output unit, we
can detect small, meaningful features with kernels that occupy far less elements than the original
input. Therefore, we need to store fewer parameters, which in turn reduces the memory require­
ments of the model and improves its statistical efficiency (see Figure 2.8). Furthermore, units in
the deeper layers may indirectly interact with a larger portion of the input. This allows the net­
work to efficiently describe complicated interactions between many variables by constructing such
interactions from simple building blocks that each describe only sparse interactions.

Parameter sharing

In a traditional neural net, each element of the weight matrix is used exactly once when computing
the output of a layer. In a convolutional neural network the same parameter can be used for more
than one function, see Figure 2.8. This is referred to as parameter sharing5. The parameter sharing
used by the convolution operation means that rather than learning a separate set of parameters for
each location we learn only one set, reducing the storage requirements for the model’s parameters
[GBC16]. Therefore, convolution is dramatically more efficient than affine transformations in
terms of the memory requirements and statistical efficiency.

Equivariant representations

In the case of convolution, the particular form of parameter sharing causes the layer to have a
property called equivariance to translation. To say a function is equivariant means that if the input
changes, the output changes in the same way. Specifically, a function f(x) is equivariant to a func­
tion g if f(g(x)) = g(f(x)). Because the kernel and its parameters are reused at every position, the
model learns the same representations at every position [GBC16]. This is useful when processing
time­series data, as the convolution produces a sort of timeline that shows when different features
appear in the input. Similarly with images, the feature map contains where certain features appear
in the input, and therefore by moving these features in the input, its representations will move the
same amount in the output. This property is very useful since its practical to share parameters of

4An affine transformation receives a vector as input that is multiplied with a matrix to produce an output, to which
a bias vector is usually added.

5The value of the weight applied to one input is tied to the value of a weight applied elsewhere, thereby we can also
use the term tied weights instead of parameter sharing
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Figure 2.8: Graphical representations of parameter sharing and sparse connections. Black arrows
indicate the connections that use a particular parameter in two different models. (Top)
The black arrows indicate that the central element of a kernel in a convolutional model
is used at all input locations (parameter sharing). (Bottom)reThe fully connectedmodel
has no parameter sharing and the central element of the weight matrix is only used
once. Furthermore, the highlighted input units denote that they affect all the highlighted
output units. (Top)When the output is formed by convolution with a kernel of width 3,
only three outputs are affected by the input unit (sparse connections). (Bottom)When
the output is formed by matrix multiplication, all the outputs are affected by the input,
therefore connectivity is no longer sparse. (Based on [Zha+19a])

features that appear more or less everywhere in the image (such as edges). Unfortunately, convo­
lutions are translation equivariant and not invariant, but as discussed before translation invariance
can be achieved by combining convolution layers with pooling layers.

2.5 Recurrent Neural Networks

A glaring limitation of the neural networks described until now is that their memory is kind of
static and their predictions are mostly based on the current inputs only. In this thesis it’s essential
to take advantage of the data’s spatial properties as well as its temporal properties. On the previous
section CNNs were explored as a way to efficiently process spatial information. On this section the
Recurrent Neural Networks, or RNNs will be introduced, which were specialized to better handle
sequential data. Sequential data can be sequences in the input, the output, or in the most cases
both, see Figure 2.9. RNNs make use of a looping mechanism, allowing them to store information
by transferring it from a one step of the back propagation to the next. Furthermore, unlike feed­
forward and convolution networks, RNNs can analyze on sequences of arbitrary lengths, rather
than on fixed­sized inputs. This property allows them to be extremely useful on tasks such as
natural language processing, timeseries prediction, image captioning and more. In the last few
years, there have been incredible success applying RNNs to a variety of problems [Gro17].

In this section, an overview about their structure is given, as well as the main problems they
are facing, and the solutions used to solve them.
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(a) One to Many (b) Many to One (c) Many to Many

Figure 2.9: Graphical examples of different recurrent networks input­output modes. The green
squares represent the inputs, the white squares the recurrent cells and the red squares
represent the outputs. In (a) we have a fixed­size input to a sequence output, an example
of such mode would be an image captioning application, where it takes an image and
outputs a sequence of words. Further, in (b) we can see that the sequence is now in
the input, an example of that could be a sentiment analysis application where a given
sentence is classified as an expression of positive or negative sentiment. And lastly in
(c) the network takes a sequence as an input and produces a sequence as an output. An
example of that could be a video classification application where we would label each
frame of the video (Based on [Kar15])

2.5.1 Structure

As mentioned above, RNNs extend the functionality of feed­forward networks to also take into
account previous inputs X0:t−1 and not only the current input Xt. An example of a layer of recur­
rent neurons unrolled through time6 can been seen in Figure 2.10, where at each time step t, every
neuron receives both the input vector Xt and the output vector from the previous time step Ht−1.
This process of passing information from the previous iteration to the hidden layer can be math­
ematically formulated with the notation proposed in [Zha+19a] . For that, we denote the hidden
layer block H as the aggregation of the hidden layers of the network. A hidden variable can be
calculated as:

Ht = φh(XtWxh + Ht−1Whh + bh) (2.27)

, where we denote the hidden state and the input at time step t respectively as Ht ∈ Rn×h and
Xt ∈ Rn×d, whereas n is the number of samples, d is the number of inputs of each sample and h is the
number of hidden units. Furthermore, Wxh ∈ Rd×h denotes the weight matrix, while Whh ∈ Rh×h

denotes the hidden­state­to­hidden­state matrix. Lastly, bh ∈ R1×h is the bias parameter and φh
notates the activation function, which is usually a ReLU or a tanh function7 For a times step t, the
output variable can be computed similarly to the one of a vanilla MLP:

Ot = φ0(HtWho + bo) (2.28)

Since the output Ot includes Ht, which is calculated by recursively using Ht−1, the RNN in­
cludes information of all hidden states. Therefore, an RNN has a form of memory, and the part
that preserves the information from the previous time steps is called a memory cell. A layer of
recurrent neurons, is a very basic memory cell, but in the Section 2.5.2 a more powerful type of
cell will be explored.

6A network unrolled through time is the representation of the network against the time axis.
7Although many researchers prefer to use the tanh function rather than the ReLU one [Gro17].
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Figure 2.10: Structure of a RNN cell unrolled through time. (Based on [Ola15])

Backpropagation Through Time (BPTT)

Training an RNN, would require to properly backpropagate the errors through the network. To
accomplish that, a technique called Backpropagation Through Time (BPTT) is used, which is a
specific application of the back propagation algorithm in RNNs [Wer90]. Conceptually, BPTT
works by unrolling the network one time step at a time in order to obtain the dependencies among
model variables and parameters. After, backpropagation is applied to compute and store gradients.
Therefore to update the weights, the gradient of a loss function E(w) at a particular time step t
depends not only on the input but also on the gradients of previous states at all the previous time
steps. The total loss for a given sequence of input values paired with a sequence of output values
would be the sum of the losses over all the time steps. Hence we can formulate the gradient
calculation as:

∂E
∂Whh

=

T∑
t=1

∂et
∂Ot

· ∂Ot
∂φo

·Who

t∑
k=1

∂Ht
∂Hk

· ∂Hk
∂Whh

(2.29)

∂E
∂Wxh

=
T∑

t=1

∂et
∂Ot

· ∂Ot
∂φo

·Who

t∑
k=1

∂Ht
∂Hk

· ∂Hk
∂Wxh

(2.30)

, where et is a loss term at timestep t of the overall loss function E:

E(O,Y) =
T∑

t=1

et(Ot,Yt) (2.31)

Since the number of derivatives required for a single weight update is depending on the number
of timesteps of the input sequences, BPTT can be very computationally expensive as that number
increases. One way to solve this, is by using a modified version of the BPTT algorithm, called
Truncated Backpropagation Through time, or TBPTT. In this modified BPTT, the algorithm es­
tablishes an upper bound for the number of times the gradient can flow back to [Sch19]. This way,
each sequence is processed one timestep at a time and periodically (according to the upper bound)
the BPTT update is performed backwards, reducing the cost of parameters’ updates.

Drawbacks

As in most neural networks, vanishing or exploding gradients is a core issue in RNNs. As we can
see from Equation 2.29 and Equation 2.30, each time step’s gradient is calculated with the respect
to the effects of the gradients in the time step before it. If there are small adjustments to the time
steps before, then adjustments to the current time step will be even smaller, causing the gradients
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to exponentially shrink as it back propagates down and finally vanish. This basically stops the
contribution of states that happened far earlier than the current time step towards the current time
step [Sch19]. After a while, the RNN’s state contains virtually no trace of the first inputs, making
it unable to learn long­term dependencies. Similarly, big adjustments to the time steps before, can
cause the gradient to explode, which results in values that weight too much making the model’s
learning too noisy. In theory, RNNs are capable of learning data with long­term dependencies, but
in practice they fail to do so [Ola15]. This problem has been extensively explored in [BSF94].

2.5.2 Long Short­Term Memory

Long Short TermMemory networks, or LSTMS are a special variant of RNN,whichwere explicitly
designed to solve the long­term dependency problem. They were introduced by Hochreiter and
Schmidhuber (1997) [HS97], and were refined and popularized by many people in following work
[Gra+06] [Arr+19]. Over the years, LSTM networks have worked tremendously well on a large
variaty of problems, and are now widely used.

The core idea is that the network is able to decide what information to store in the long­term
state, what to throw away, and what to read from it. This is accomplished by using a memory cell
state C(t). which is updated using at attentive gating mechanism. At each time step, the cell state is
controlled by three trainable gates. The forget gate Ft is used to decide what information to throw
away from the cell state, the input gate It is used to decide what information to store in the cell
state and update it, and lastly the output gate Ot is used to decide what parts of the cell state to
output. It’s important to note, that these gates interact linearly with the cell state, simplifying the
gradient flow backwards through time, which in result prevents the vanishing gradient problem
vanilla RNNs faced. The gates Ft, It and Ot can be computed using the following equations:

Ft = σ(XtWxf + Ht−1Whf + bf) (2.32)

It = σ(XtWxi + Ht−1Whi + bi) (2.33)

Ot = σ(XtWxo + Ht−1Who + bo) (2.34)

, where Wxi,Wxf,Wxo ∈ Rd×x and Whi,Whf,Who ∈ Rh×h are the weight matrices, while
bi, bf, bo ∈ R1×h are their respective biases. The sigmoid function σ is used to transform the
output ∈ (0, 1) to a vector with entries ∈ (0, 1).

Furthermore, the input gate It computes a vector of new candidate values C̃t using a tanh
activation function, which results to having an output ∈ (−1, 1). The new candidate cell has its
own weight matricesWxc ∈ Rd×h,Whc ∈ Rh×h and biases bc ∈ R1×h. This can be mathematically
formulated as:

C̃t = tanh(XtWxc + Ht−1Whc + bc) (2.35)

Putting things together, tο update the old cell state Ct−1 ∈ Rnxh into the new cell state Ct we
calculate:

Ct = Ft ⊙ Ct−1 + It ⊙ C̃t (2.36)

, where ⊙ denotes the Hadamard product8. Lastly to compute the hidden states Ht ∈ Rn×h the cell
state Ct is put through a tanh function and multiplied by Ot:

Ht = Ot ⊙ tanh(Ct) (2.37)
8The Hadamard product computes the element­wise product of two matrices with the same dimension. Also known

as Schur product.
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A graphical representation the LSTM’s mechanism and further explanation can been seen in Figure
2.11.

In short, an LSTM cell can learn to recognize an important input, store it in the long­term as
long as it is needed, and learn to extract it whenever is needed. This is the reason why LSTMs
networks are capable of modeling long­term sequential dependencies in data such as time series,
texts, audio, and more. However its important to consider that their multiple memory cells increase
the training’s computational complexity and memory requirements.

Figure 2.11: Structure of a LSTM cell. The symbol
⊗

notates the element­wise multiplication,
while

⊕
notates the element­wise addition. Firstly, the forget gate Ft looks at the

previous hidden state Ht−1 and input Xt and outputs a number between 0 and 1, in­
dicating how much of the information it should keep. Next, the input gate It decides
which values to update, while the tanh function creates a vector of new candidate
values, C̃t, that could be added to the state Ct. The new state Ct is calculated using
the Equation 2.36. which works by forgetting the information Ft decided and adding
the new candidate values, scaled by how much we decided to update each state value.
Following the values we want to output are calculated through the output gateOt, and
lastly the new hidden state Ht is calculated from the values of the cell state Ct with
pushed values between ­1 and 1 multiplied by the output ofOt. (Based on [Zha+19a])

2.6 Auto­encoders

An auto­encoder is a neural network that is trained to reconstruct its input in a self­supervised
learning technique [GBC16]. Usually an auto­encoder network is composed of two parts. An
encoder and a decoder part9. In the encoder part, the auto­encoder takes input x ∈ Rd and maps
it to a representation h ∈ Rd

′
using a deterministic function of the type h = f(x). Following, the

decoder part produces a reconstruction r = g(h). Due to the analogy to encoding and decoding,
the learned representation is also referred to as code. An auto­encoder typically has a similar
architecture of that of a MLP network, except that the number of neurons in the output layer must
be equal to the number of inputs. Lastly, it’s important to note that autoencoders are specifically
designed to be unable to learn to copy the input perfectly, since learning to set g(f(x)) = x isn’t
very useful. Therefore, they are restricted in ways that forces them to learn useful properties of the
data in order to approximately reconstruct the desired output [GBC16].

9The encoder and decoder part are also called recognition network and generative network respectively.
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Auto­encoders have been extensively researched, and have been successfully implemented
over the years in applications such as dimensionality reduction, feature learning and more. How­
ever, in the recent years auto­encoders have received increasing attention because of their relations
with generative models [GBC16]. This means that auto­encoders are able to generate new data that
is similar to the input data.

2.6.1 Convolutional auto­encoders

Fully connected auto­encoders ignore the spatial properties of data such as images. Spatial local­
ity can be preserved by using convolution layers (parameter sharing) as explored in Section 2.4.2.
Convolution auto­encoders (CAEs) make use of this property by using convolution layers through­
out the network [Mas+11]. Just like the fully connected auto­encoders they are compromised of
a an encoder and a decoder part, however in CAEs the encoder part consists of convolution and
max pooling layers to down sample the input data and extract valuable features, while the decoder
part consists of transposed convolution layers that are used to reconstruct an image of the same
spatial dimensions as the input using the extracted feature maps. Transposed convolution layers
were explained in Section 2.4.1. A visual representation of the architecture of a simplified CAE
can been seen in Figure 2.12. Usually, CAEs are trained end­to­end to learn filters able to extract
features that minimize reconstruction errors in image reconstruction tasks. They have been suc­
cessfully implemented on many image­to­image translations tasks such as image segmentation,
image denoising and more.

Figure 2.12: An example of a convolution auto­encoder. In this network the original input x is
down sampled into a lower dimensions representation hwith the encoder network, and
after the original input is reconstructed using the decoder network. An application of
such network could be inputting images with noise and outputting the images without
noise (denoising application).(Based on [Kar18])

2.7 Batch Normalization

Training neural networks with many hidden layers can be very challenging. One reason for this
difficulty is that the distribution of the network’s activations changes due to the changes in network
parameters during training. This can cause the learning algorithm to forever chase a moving target.
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This phenomenon has been defined as Internal Covariate Shift [IS15]. Internal covariate shift
requires careful parameter initialization and lowering learning rates which slows down the training
process or even halts it in models with saturating nonlinearities.

One modern technique that tries to solve this problem is called batch normalization [IS15].
It helps coordinate the update of multiple layers in the model by scaling the output of the layer.
Specifically it standardizes the activations of each input variable per mini­batch to have a mean
of zero and a standard deviation of one. In effect, it compensates the covariate shift between two
layers of the network. Batch normalization can be mathematically formulated as:

Z̃(i) = β+ γ ∗ Z(i) − μ√
σ2 − ε

(2.38)

, where Z̃(i) ∈ Rd is layer’s output, while Z(i) ∈ Rd is the output of the previous layer to
be normalized. The notations μ = 1

n
∑

i Z(i) and σ = 1
n
∑

i(Z(i) − μ) are the mean and standard
deviation respectively. The two trainable parameters γ ∈ Rd and β ∈ Rd allow the model to choose
the optimum distribution for each hidden layer, whereas ε ∈ R serves as a regularization parameter
used for numerical stability [IS15].

Batch normalization can be implemented during training in two different modes. One mode
is using a running average of mean and standard deviation and maintaining them across the mini
batches. However, this has been observer to lead in unstable training [Iof17]. Alternately, the
mean and standard deviation of each input variable per mini­batch can be calculated and use these
statistics to perform the standardization. This is the mode used throughout this work.

In conclusion, batch normalization is an important method to employ during training since it
offers us many advantages. The researchers in [IS15] showed that batch normalization not only
speeds up training, since it allows use of higher learning rates, but even achieves a higher accuracy
compared to the same versions of the networks with no batch normalization.





Chapter 3

Related work

As mentioned above, understanding the COVID­19 responses impact on air quality is of great
importance and much research has been dedicated to examine that exact impact since the start
of the pandemic. This chapter presents the related work of researchers that associate COVID­19
policy responses and air quality usingmachine learning basedmethods. In addition it also discusses
existing deep learning approaches that have addressed the issue of air quality prediction and remote
sensing imagery frame prediction in general.

3.1 Examining COVID­19 and air pollution link

The COVID­19 pandemic has caused disastrous health and socioeconomic crises across the globe
and many questions have been raised about the interconnection between the pandemic and air
quality.

3.1.1 COVID­19 mortality and air pollution link

Recent studies of COVID­19 in several countries identified links between air pollution and death
rates. [Tra+21] explored potential links between major fossil fuel­related air pollutants and SARS­
CoV­2mortality in England. The authors collected air quality data andCOVID­19 cases and related
deaths data to analyze their association using generalised statistical models. They concluded that a
small increase in air pollution leads to a large increase in the COVID­19 infectivity and mortality
rate in England. In another study, [MMS21] employed deep learning models to explore the rela­
tionship between pollution and the number of deaths from COVID­19 in New York state. Data on
confirmed deaths (total and daily) due to COVID­19 were collected by NYC health and air pollu­
tant data (PM2.5 and NO2) was compiled from the AQIGN database. Their results confirmed that
pollutants such as PM2.5 and NO2 accelerated COVID­19 deaths.

3.1.2 COVID­19 response policies and air pollution link

On the other side, city restrictions that were implemented to fight the pandemic have caused sig­
nificant changes in air quality. Recent data released by NASA (National Aeronautics and Space
Administration) and ESA (European Space Agency) indicates that nitrogen dioxide (NO2) in some
of the epicenters of COVID­19 such as Wuhan, Italy, Spain and USA etc. has reduced up to 30%
[MLS20]. This sudden change could have had a positive impact on human health where air pol­
lution is a major concern. In [CEL20] they calculated that the reduction of NO2 concentrations
could have prevented as many as 496 deaths in Wuhan city, 3,368 deaths in Hubei province and
10,822 deaths in China as a whole. Additionally, they quantified the impact of Wuhan COVID­19
lockdown on concentrations of four air pollutants: sulphur dioxide (SO2); nitrogen dioxide (NO2);
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carbon monoxide (CO2); and particulate matter (PM10). In order to isolate the effect of the policy
interventions on pollutant concentrations the authors cleverly implemented machine learning to
remove the confounding effects of weather conditions on them. Further, they use a (ridge) aug­
mented synthetic control method on daily weather normalised pollution numbers of thirty cities to
estimate how concentrations levels in Wuhan have changed relative to the synthetic control. The
city­level hourly concentrations of the four pollutants were collected from ’Qingyue Open Envi­
ronmental Data Center’ between January 2013 to February 2020. Summarizing their results, the
authors found that Wuhan experienced a significant reduction in concentrations of NO2 and PM10
as a results of the COVID­19 lockdown. Concentrations of NO2 fell by as much as 24 μg/m3

during their analysis period in January/February 2020 (a reduction of 63% from the pre­lockdown
level of 38 μg/m3), while PM10 fell by approximately 24 μg/m3 (a reduction of 35% from the
pre­lockdown level of 62 μg/m3). The authors found no significant reductions in concentrations
of SO2 or CO.

A different strategy is applied by [Wan+21] that includes using the Community Multi­scale
Air Quality (CMAQ) model to simulate air pollutants before, during and after the the COVID­19
outbreak in the PRD. Therefore, January 5 to 22 was Period I before the pandemic, Period II during
the pandemic was from January 23 to February 19, and February 20 to March 9 was Period III after
the pandemic. The authors used numerical hourly data of six key pollutants: O3,CO,NO2,SO2 and
PM2.5, which were obtained from the China National Environmental Monitoring Center. Their
results showed that during Period II air quality improved significantly with PM2.5, NO2, and
SO2 decreased by 52%, 67%, and 25%, respectively, while O3 had no obvious changes in most
cities, which mainly was due to the synergetic effects of emissions and meteorology. Lastly they
point out that in Period III, the increase of secondary components was faster than that of primary
PM2.5(PPM), which indicated that changes in PPM concentration were more sensitive to emissions
reduction.

In [RZ21] the authors proposed an alternative approach to analyze the effect of the COVID­19
lockdown on air pollutants concentrations, which is based around machine learning modeling. A
Gradient Boosting Machine (GBM) algorithm was used to build 24 models (one for each city area)
to predict NO2,CO,PM2.5 and SO2 numerical concentrations in Quito,Ecuador as if COVID­19
quarantine never existed. The authors processed four years and sixmonths of atmospheric pollution
and meteorological data on the period prior and during COVID­19 quarantine. The evaluation of
their models showed a high predictive performance for NO2 and CO, a good one for SO2 and
fair for PM2.5, varying for different districts of their city. The quantification of the concentration
changes due to the reduced human activity, was obtained by comparing the values provided by the
models to the real measurements. They observed a clear reduction for NO2 (−53% ± 2%), SO2
(−45%±11%), and CO (−30%±13%) concentrations during the full lockdown. The reduction in
PM2.5 concentrations displayed some variability depending on the type of monitoring site (traffic
site: −21% ± 3%, industrial site: −12% ± 11%). The authors conclude by highlighting the
reliability of their predictions,which supports the idea than an ML­based modeling is a robust
method to quantify the impact of any event on air pollution.

Similarly, [Lov+21] utilized machine learning to analyze local air quality improvements dur­
ing the COVID­19 lockdown in Graz, Austria. The authors collected six years of data (2014­2019)
from five measurements sites in Graz. Numerical concentrations of NO2, PM10,and O3 were set
as target variables for the models, while relative humidity, air pressure, air temparature, precipi­
tation, wind direction, and wind speed data were set as predictive variables. Unlike [RZ21] they
did not include the lag­values of the respective (predicted) pollutant as well as no other pollutant
concentrations as predictors in the respective models. The machine algorithm used in this study
was Random Forest Regression (RF). Further, they compared the predicted pollutant concentra­
tions to the measured (true) values to explore the impact of the restrictions on air quality. Their
findings indicated that the city’s average concentration reductions for the lockdown period were:
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−36.9% to −41.6% for NO2 and −6.6% to −14.2% for PM10. However they also estimated an
increase of 11.6% to 33.8% for O3, which they attribute to the inverse relationship of O3 with NOx
concentrations. The authors state that the reduction in pollutant concentrations, especially NO2
can be explained by the significant drops in traffic­flows during the lockdown period (−51.6%
to −43.9%) in the area of Graz. Since their prediction models showed good generalization, the
authors, much like [RZ21], argued that machine learning is a suitable tool to analyze pollution
changes during events where atmospheric emissions change rapidly and conclude by stating that
although machine learning showed similar results to the observational methods, it enabled for far
more robust comparisons with the observed time series.

3.2 Spatiotemporal sequence forecasting

A main goal of this study is to use a data­driven machine learning model to predict air pollutants
over an area. Machine learning modeling has been used extensively in the field of remote sensing
data prediction and timeseries forecasting in general.

3.2.1 Air quality prediction

Recent advancements in sensor technology and big data provided the scientific community with
continuously expanding resources of data collection. Numerical readings of air quality monitoring
stations have been widely used to accurately predict air pollutants concentrations.

[Zhe+15] forecast the reading of an air quality monitoring station using a data­driven method
that considered meteorological data, weather forecasts, and air quality data of the station and other
stations within a few hundred kilometers. Their predictive model compromised of four major
components­i.e., a linear regression­based temporal predictor to model the local factors of air
quality, a neural network­based spatial predictor to model global factors, a dynamic aggregator
combining the predictions of the spatial and temporal predictors according to meteorological data,
and an inflection predictor to capture sudden changes in air quality. Their method achieved an
accuracy of 0.75 for the first 6 hours and 0.6 for the next 7­12 hours in Beijing.

However [Zhe+15] could not capture the long­term features and short­term features at the
same time, and could not learn both temporal and spatial properties in one model. [Zha+19b]
proposed a data driven model, called as long short­term memory ­ fully connected (LSTM­FC)
neural network, to predict PM2.5 contamination of a specific air quality monitoring station over
48h using historical air quality data, meteorological data, weather forecast data, and the day of
the week. The LSTM­FC model could memorize long­range temporal dependence and integrate
spatial information The authors evaluated their novel model on a dataset containing records of
36 air quality monitoring stations in Beijing from 2014/05/01 to 2015/04/30 and compared it with
artificial networks (ANN) and long­short termmemory (LSTM) models on the same dataset. Their
findings showed that compared with ANN and LSTM, their proposed model gave better predictive
results based on RMSE and MAE metrics.

In another study, [Lia+20] conducted a series of experiments, using datasets for three different
regions to obtain the best prediction performance of five different machine learning methods—
i.e.Adaptive boosting (AdaBoost), artificial neural networks (ANN), random forest, stacking en­
semble, and support vector machines (SVM). Types of data they used as predictors involve nu­
merical observations of six pollutants (O3, SO2, PM2,5, PM10, CO, and NO2), meteorological data
and time data (the day of the month, day of the week, and the hour of the day) from January 2008
to December 2018. The target variables of the models were the Air Quality Index (AQI) of the
regions in three different time intervals (1­h,8­h,24­h). The authors used root mean squared error
(RMSE), mean squared error (MAE) and R­squared (R2) as performance metrics for the aforemen­
tioned methods. Their results showed that all five machine learning methods produced promising
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results with AdaBoost providing the best MAE results, stacking ensemble the best RMSE results
and SVM the worst results among all methods explored.

Lastly as previously discussed, [RZ21] used a Gradient Boosting Machine algorithm to pre­
dict air pollutants using the lag­values of the respective pollutants as an input to their models and
[Lov+21] used a Random Forest Regression algorithm using weather, environmental and temporal
variables as predictive values.

3.2.2 Remote sensing imagery forecasting

In this study we are interested in air quality prediction based on satellite imagery. Therefore it
is important to review related works that make use of remote sensing imagery in their prediction
models. Remote sensing imagery forecasting falls broadly into two categories: those that explicitly
model time, e.g., with a recurrent neural network (RNN), and those that use a convolutional neural
network (CNN) to transform input images into a desired output image, therefore the related works
of this subsection will be grouped into those two categories.

Recurrent Neural Network Approach

[Shi+15] formulated precipitation nowcasting as a spatiotemporal sequence forecasting problem
in which both the input and the prediction target are spatiotemporal sequences. By extending the
previous discussed FC­LSTM to have convolution structures in both the input­to­state and state­to­
state transitions, the author proposed the convolution LSTM (ConvLSTM) and used it to build an
end­to­end trainable model for precipitation nowcasting. When evaluated on a synthetic Moving­
MNIST dataset and a radar echo dataset, the proposed model consistently outperformed both the
FC­LSTM and the state­of­the­art operational ROVER algorithm.

The proposed ConvLSTM model of [Shi+15] has been widely used in the field of remote
sensing. Researchers in [Kim+17] used a two­stacked ConvLSTM for their proposed data­driven
precipitation prediction model called DeepRain. The model was used to predict the numerical
amount of rainfall from weather radar data, which was a three­dimensional and four­channel data.
According to their findings DeepRain reduced RMSE by 23.0% compared to linear regression.

Researchers in [Xia+19] also used ConvLSTM as a building block for their proposed model.
One of the main goals of the study was to develop a spatiotemporal deep learning model that can
model and capture both the spatial and temporal dependencies of sea surface temperature (SST),
and predict the next’s day SST field frame accurately and holistically in a data­driven end­to­end
manner. The authors conducted their experiments using a 36­year satellite­derived SST data in
a subarea of the East China Sea. Their model was compared to three different models, which
included LSTM, linear support vector regression (SVR) and a persistence model. For the LSTM
model, two different kinds of settings were compared. One treated each pixel in an SST field
as an individual sample (LSTM­1 feature) model and the other treated all the pixels in a field
as a sample (LSTM­n features) model. The four models were evaluated using different statistics
metrics, including RMSE, MAPE, Pearson corellation coefficient and KDE. Their results showed
that the ConvLSTM­based model consistently outperformed the other three models. Moreover, the
ConvLSTM­based model could directly predict the SST fields while the linear SVR model and the
LSTM (feature­1) model had to make predictions pixel by pixel.

Both [Kim+17] and [Xia+19] showed promising results for the ConvLSTM model. However
[Mos+20] argued that the ConvLSTM architecture underperforms when the size of images and
length of sequences become higher in comparison with other models. [Mos+20] conducted ex­
periments and tested several parameters in order to compare three different LSTM architectures
for the problem of prediction in remote sensing images time series. The three models that were
compared were: the Stack­LSTM, the CNN­LSTM and the ConvLSTM. The authors used a set
of 158 images from the Sentinel­1 mission to train and test the models. Different lengths of train
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sequences and image resolutions have been applied when evaluating the models and the authors
used MAE, RMSE as well as the Structural Similarity Index SSIM as the performance metrics.
Their results showed that the ConvLSTM model performed poorly when the size of images and
length of sequences increased. In addition to that, because of the convolutions operations, time
processing of the ConvLSTM model was significantly higher than with the other two. Further­
more, the CNN­LSTM model seemed to produce the better results even though the stack­LSTM
had the lowest training loss and processing time. The authors attribute the good generalization of
the CNN­LSTM to the CNN part of the model, which was able to extract important features and
then the LSTM network could memorize how they were changing over time. They conclude by
recommending the CNN­LSTM architecture for forecasting tasks using earth observations images
time series.

Convolutional Neural Network Approach

Given the usefulness of convolutional neural networks, many researchers treated the remote sens­
ing imagery forecasting problem as an image­to­image translation problem. A widely used model
to solve such problems is the well­known encoder­decoder architecture called UNet [RFB15].
UNet was originally designed for biomedical images segmentation tasks. Unlike LSTMs, UNet
has no explicit modeling of memory. It takes an input image (or multiple concatenated images) and
outputs a single classification map. The architecture of the UNet consists of a contracting path to
capture context and a symmetric expanding path that enables precise localization. The authors in
[RFB15] included data augmentation in the architecture to teach the network the desired invariance
and robustness properties, when only few training samples are available. Their results showed that
UNet outperformed many state­of­the­art models on many biomedical segmentation tasks.

In [Agr+19], the authors proposed a network structure for weather forecasting that is based
on UNet. The implementation of [Agr+19] aimed at classifying four different rain intensities (<
0.1mm/h, < 1.0mm/h, < 2.5mm/h, > 2.5mm/h) one hour into the future. To this end, multiple pre­
cipitationmaps (of the past hour) are concatenated and used as input to the UNet architecture. Their
results showed that the proposed model outperformed traditional numerical methods for short­term
nowcasting predictions.

In a similar study, [Søn+20] the authors classified 512 classes instead of just four, as opposed
to the model described in [Agr+19]. The authors in [Søn+20] proposed MetNet, a neural network
that forecasts precipitation up to 8 hours into the future. MetNet used as input radar and satellite
data and produced as an output a probabilistic precipitation map of 512 classes. The model’s
architecture consisted of five parts: the input layer, the spatial downsampler, the temporal encoder,
the spatial aggregator and the output layer. Their results showed improvements over the traditional
numerical method for short­term­nowcasting HRRR for up to 8 hours of lead time.

Similar to the studies of [Agr+19] and [Søn+20], [TSM21] proposed a UNet­based model
called SmaAt­Unet, which rather than predicting just classes, it predicts exact rain intensities.
SmaAt­Unet is a smaller and attentive version of a UNet architecture. Their novel model made
two modifications in the original UNet architecture. Firstly they added the convolutional block
attention modules (CBAM) mechanism to the encoder part in order to direct the network to pay
more attention to features important for the task at hand. Secondly they used depthwise­separable
convolutions (DSCs) in order to reduce the number of parameters without sacrificing performance.
For comparison, the authors also trained other UNet architectures that either have none or one of
the modifications previously mentioned. The models were trained using the MSE loss function
between the output images and the ground truth images using a dataset of 400,000 normalized
256x256 images. In addition to MSE, the authors calculated different scores for the performance
evaluation, such as Precision, Recall, Accuracy and F­1 score, critical success index (CSI), false
alarm rate (FAR) and Heidke Skill Score (HSS). Their results showed that implementing eachmod­
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ification alone slightly decreased the performance in comparison with the original Unet. However
their proposed model SmaAt­Unet which incoporated both modifications into plain UNet, resulted
in a better performance than UNet combined with each of the modification alone. In conclusion,
their proposed model performed on par to the UNet architecture which is way bigger than itself on
a precipitation nowcasting task.

In another study, the authors in [FAM20] propose four UNet­based models for remote sens­
ing imagery forecasting. Modern enhancement techniques such as residual connections, inception
modules and asymmetric convolutions were used to extend the UNet architecture and produce
four different models, each one being an extended version of the previous one. These are 3DDR­
UNet, Res­3DDR­UNet, InceptionRes­3DDR­UNet and AsymmInceptionRes­3DDR­UNet. The
data which was used in their paper consists of satellite images provided by the Copernicus ob­
servation program. The selected data start on 01/03/2017 and end on 13/02/2019, with an hourly
temporal resolution. The dataset consists of four weather variables­i.e., Eastward current veloc­
ity, Northward current velocity, Seawater salinity and Sea surface height.Therefor each time­step
of each variable was represented by a 135x135 image. The proposed models were examined un­
der different setups, i.e. different seasons and numbers of hours ahead using MSE as the loss
function and performance metric. Among those models, AsymmInceptionRes­3DDR­UNet and
InceptionRes­3DDR­Unet have shown superior performance thanks to the use of parallel convo­
lutions. However, the incorporation of asymmetric convolutions and additional parallel branches
made the AsymmInceptionRes­3DDR­UNet perform slightly better than the latter, yielding the
most promising results.



Chapter 4

Datasets

This chapter presents an overview of all the different datasets that were used throughout this thesis.
Two different datasets are used since we are focusing on the COVID­19 lockdowns’ impact on air
quality. Specifically, the Sentinel­5P dataset is used to model air quality data, while the Oxford
Coronavirus Government Response Tracker dataset is used to learn the impact of the lockdowns.
Both of the datasets’ pre­processing procedures and characteristics are explained in Sections 4.1
and 4.2, respectively. Moreover, samples of the datasets are presented, alongside graphical repre­
sentations and tables of their analysis. Lastly, the generation method of the input dataset used to
train and test the deep learning models is described in Section 4.3.

4.1 Sentinel­5P datasets

The Sentinels are a constellation of satellites developed by the European Space Agency (ESA)
to operationalize the Copernicus1 program, which aims at providing accurate, timely, and easily
accessible information about the Earth’s environment. The Sentinel missions include radar and
super­spectral imaging for the land, ocean, and atmospheric monitoring. Each Sentinel mission is
compromised of two satellites, providing robust datasets for the Copernicus services. The objec­
tives of each Sentinel mission can be seen in Table 4.1.

Mission Objective

Sentinel­1 The Sentinel­1 mission provides all­weather, day
and night radar imaging for land and ocean services.

Sentinel­2 Sentinel­2’s main objective is land monitoring, by
providing with high­resolution optical imagery.

Sentinel­3 It’s primary objective is marine observation. That in­
clude studying sea­surface topography, sea and land
surface temperature, and ocean and land colour.

Sentinel­4 This mission aims to provide with continuous moni­
toring of the composition of the Earth’s atmosphere.

Sentinel­5/5­P The Sentinel­5/5P’s objective is dedicated to air
quality monitoring, by providing timely data on a
multitude of trace gases and aerosols affecting air
quality and climate

Table 4.1: Objectives of the Sentinels missions under the Copernicus programme.

1https://www.copernicus.eu/
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In this thesis, we are interested in gathering air quality data from the Sentinel­5P mission.
As shown in Table 4.1, this mission’s main objective is to perform atmospheric measurements
relating to air quality, climate forcing, ozone, and UV radiation. Its data includes concentration
measurements of ozone, methane, formaldehyde, aerosol, carbon monoxide, nitrogen oxide, and
sulfur dioxide. In order to measure these concentrations, the Sentinel­5 satellite uses Tropomi
(TROPOspheric Monitoring Instrument) 2, which is a spectrometer able to sense ultraviolet (UV),
visible (VIS), near (NIR), and short­wavelength infrared (SWIR) in the atmosphere. Tropomi
takes measurements that cover an area of approximately 7 km long and 2600 km wide in a spatial
resolution of 0.01 arc degrees every second.

Associated with different levels of TROPOMI processing, three different data products are
produced. These are Level­0 products, Level­1B products, and Level­2 products. Each level of
a data product is generated by its previous layer. Level­0 products are time­ordered, raw satel­
lite telemetry without temporal overall, including all sensor data for atmospheric and calibration
measurements. Level 1­B products are geolocated and radiometrically corrected top of the at­
mosphere Earth radiances in all spectral bands, while the Level­2 products are geolocated total
columns of ozone, sulfur dioxide, nitrogen dioxide, carbon monoxide, formaldehyde and methane,
tropospheric columns of ozone, cloud, and aerosol information. There are also two main types of
processing: NRT (Near Real Time) and OFFL (Offline). For NRT processing, the products are
available within 3 hours after sensing, whereas for OFFL processing, the data is available from
12 hours to 5 days after sensing, depending on the product. However, data mining of the Level­2
data products can be challenging since the data is binned by time and not by latitude and longi­
tude. Not only that, but the time that takes for the satellite to pass over the same geographical
point on the ground is 16 days. To make the data mining process more manageable, we used the
Sentinel­5P’s Level­3 data products that are publicly available on the Google Earth Engine’s3 Data
Catalog, which are generated and maintained by the Google Earth Engine’s team. Specifically the
two datasets that are used in this thesis are:

• the Sentinel­5P OFFL CO: Offline Carbon Monoxide dataset,

• and the Sentinel­5P OFFL NO2: Offline Nitrogen Dioxide dataset.

Each of these datasets contain high­resolution rasters4 of CO and NO2 concentrations respec­
tively. More information about each dataset can be found in the Earth Engine’s data catalog5
website.

4.1.1 Data mining

In order to mine the data, the Earth Engine’s Python API is used. For each dataset, the band that
showed the measurements of each air pollutant’s concentrations was downloaded. These bands
are: the vertically integrated CO column density and the total vertical column of NO2. All of these
bands have a spatial resolution of 1113.2 meters. Table 4.2 shows more information about these
bands.

Furthermore, since we are interested for air quality during the lockdown periods, the dataset
was filtered to be between 1/1/2020 (start of the pandemic) and 22/9/2021 (present), with a time
interval of 10 days to minimize any loss of data caused by the orbit of the satellite. Moreover,
the datasets’ images cover the areas of: California, Delhi, Democratic Republic of Congo (DRC),

2http://www.tropomi.eu/
3Google Earth Engine is a geospatial processing service, powered by the Google Cloud Platform.

https://earthengine.google.com/
4Rasters are spatial data models that define space as an array of equally sized cells, arranged in rows and columns,

and composed of single or multiple bands, where each cell contains a value representing information.
5https://developers.google.com/earth­engine/datasets/catalog/sentinel­5p
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Air pollutant Description Units min max

CO Vertically integrated CO
column density.

mol/m2 −34.43 5.71

NO2 Ratio of the slant column
density of NO2 and the to­
tal air mass factor.

mol/m2 −0.00051 0.0192

Table 4.2: Bands descriptions. The min and max values are estimated.

Greece, South Korea and United Kingdom. The areas were selected according to their pollution
level and strictness of lockdown policies. In order to lower the computational cost of the models’
training, all images were reshaped to dimensions of 64×64×1. Samples of the three datasets can
been seen in Figure 4.1. In total, 378 images were downloaded for the CO dataset and 372 for the
NO2 dataset.

(a) Sample images of CO concentrations.

(b) Sample images of NO2 concentrations.

Figure 4.1: Sample images of the two datasets. The measurements are from the South Korea area.
Furthermore, from left to right the creation dates of each image are: (2021/07/14 ­ 2021/07/24),
(2021/07/24 ­ 2021­08­03), (2021­08­03, 2021­08­13).

As can been seen in Figure 4.1a, even with a time interval, there existed some kind of data loss.
In the CO dataset 39% of its images had missing pixels, while in the NO2 dataset the number was
closer to 52%, see Tables 4.3a, 4.3b. This probably was caused as a side­effect of the satellite’s
orbit around Earth, as aforementioned. However, even if the time interval to compose the final
image is increased, the problem remains.

4.1.2 Data pre­processing and characteristics

Missing values in datasets can cause problems for machine learning algorithms; therefore, it was
essential to pre­process the data and impute the missing values. The approach for data imputation
for the three datasets is composed of two parts. First, linear interpolation is applied to estimate as
many as possible unknown values. Further, any unknown value that remained to be estimated was
filled using the mean of the known data points.



36 4. Datasets

Area Total number of images Images with data loss

California 63 21
Delhi 63 3
Democratic Republic of
Congo

63 4

Greece 63 44
South Korea 63 49
United Kingdom 63 26
Total 378 147

(a) Data loss of the CO dataset.

Area Total number of images Images with data loss

California 62 55
Delhi 62 28
Democratic Republic of
Congo

62 30

Greece 62 15
South Korea 62 18
United Kingdom 62 47
Total 372 193

(b) Data loss of the NO2 dataset.

Table 4.3: Data loss of the two datasets. Every image that contained 1 or more NaN values was
considered as an image with data loss.

Data imputation process

In general, interpolation is a technique used to estimate unknown data points using the knowledge
of its neighboring known data points. One of the most common methods of interpolation is lin­
ear interpolation. Linear interpolation approximates values of some function f using two known
values of that function at other points. However, since images are not one­dimensional data, a gen­
eralized form of linear interpolation called linear barycentric interpolation is used. Barycentric
interpolation on 2D data uses only three near­neighbors data points to interpolate.

As a first step, the convex hull of the input data is triangulated. In this case, the triangulation
that is constructed is the Delaunay triangulation. Following, each unknown data point inside the
convex hull was interpolated using barycentric interpolation. Specifically, for an unknown data
point x in the interior of a triangle tile formed by x1, x2, x3 the following interpolation was used to
approximate its value:

f(x) ≈
3∑

i=1

aif(xi) (4.1)

, where ai > 0 are the barycentric coordinates of x, which are used as weights in the interpo­
lation.

After, all unknown data points x that were outside of the convex hull of the input data, were
filled using the mean of all known data points xi of the image:

x =
1
n

n∑
i=i

xi (4.2)
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An example of the data imputation process can be seen in Figure 4.2. At first, the image
was interpolated using linear barycentric interpolation. However, pixels at the bottom right cor­
ner were outside the convex hull of the image, and in effect, the algorithm did not estimate their
values. These unknown data points were given the value of the mean of all known pixels, as cal­
culated in Equation 4.2. Furthermore, the statistical descriptions of the Sentinel­5P CO and NO2
datasets after the data imputation are described in the Table 4.4. By looking at the table, the area of
Democratic Republic of Congo has the highest CO concentrations, whereas Greece has the lowest.
Moreover, South Korea has the highest NO2 concentrations, that are almost double compared to
the other areas.

(a) Original image (b) Image after barycentric
interpolation

(c) Image after mean
interpolation

Figure 4.2: Example of the data imputation process. The image is taken from the NO2 dataset and
covers the area of the United Kingdom from 2021/02/04 to 2021/02/14.

California Delhi DRC Greece South Korea United Kingdom Total

mean 30.76 37.73 48.10 33.05 41.16 33.60 37.40
std 6.81 7.03 14.54 3.53 5.71 3.89 9.79
min 16.51 12.27 21.15 2.85 11.79 20.44 2.85
25% 26.71 33.99 37.42 30.46 37.79 30.95 31.46
50% 29.87 38.10 45.47 32.96 41.14 34.08 35.78
75% 33.76 41.82 55.74 35.48 44.56 36.49 41.02
max 313.3 101.2 148.4 109.24 90.48 52.65 313.3

(a) CO dataset. The values in the table have been multiplied with 103, for better presentation.

California Delhi DRC Greece South Korea United Kingdom Total

mean 17.39 29.12 17.40 17.62 43.45 29.60 25.74
std 12.60 18,74 16.08 6.66 36.37 21.84 22.93
min ­46.38 ­10.64 ­23.48 ­14.75 ­30.16 ­80.61 ­80.61
25% 11.25 20.33 9.50 13.69 23.96 16.12 13.54
50% 14.69 26.01 12.65 16.65 33.02 24.27 19.91
75% 19.89 33.46 8 19.15 20.19 49.67 37.89 30.39
max 501.7 585.8 614.2 211.9 699.2 406.3 699.2

(b) NO2 dataset. The values in the table have been multiplied with 106, for better presentation.

Table 4.4: Statistical descriptions of the two Sentinel­SP5 datasets, after data imputation. Column
Total shows statistics for the whole dataset.
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4.2 Oxford Coronavirus Government Response Tracker datasets

COVID­19 has prompted a wide range of responses from governments worldwide, creating the
pressing need to track these responses to more efficiently evaluate how to address COVID­19.
Oxford COVID­19Government Response Tracker (OxCGRT) [Hal+21] provides a systematic way
to track government responses to COVID­19. OxCGRT collects publicly available information on
23 indicators by a team of over one hundred Oxford University students and staff. These indicators
range from spanning containment and closure policies to health system policies, such as testing
regimes. In this thesis we are interested in policies that can have an effect on air quality. They can
be policies that restrict movement of vehicles such as cars, buses, or even airplanes. Therefore the
indicators that were selected are:

• Close public transport indicator.

• Stay at home requirements indicator.

• Restrictions on internal movement indicator.

• International travel controls indicator.

These indicators are reported for each day a policy is in place and are measured on a simple
scale of severity. For example, the close public transport indicator has a severity scale from 0 to
2, where code 0 means no measures, whereas code 2 means that citizens are prohibited from using
public transports. Furthermore, the stay at home requirements indicator has a severity scale from
0 to 3, where code 3 indicates that citizens are required not to leave their houses with minimal
exceptions. Moreover, the restrictions on internal movement indicator scale from 0 to 2, with code
2 meaning that internal movement restrictions are in place. Lastly, the international travel controls
indicator has a severity scale from 0 to 4, where code 4 means ban on all regions or total border
closure. For more information about these four indicators, see Table 4.5.

The four datasets were downloaded from the OWID’s (Our World In Data) platform6, which
takes data directly from the OxCGRT project. The datasets consist of areas names, areas codes,
dates and the aforementioned indicators. Every dataset was filtered in two ways. Firstly it was
filtered between 1/1/2020 and 22/9/2021, and after, it was filtered to contain data only for the six
areas mentioned in Section 4.1.1. In addition, since the dataset contained policy indicators for
the United States and not its states, the United States indicators were used for the California area.
Similarly, the policy indicators for India were used for the Delhi area. Thus, each area had data of
631 values of four different indicators, which represented every day that each policy was applied.
Table 4.6 gives more information about the datasets, whereas Figure 4.3 provides a cross­area
comparison analysis of the different policy responses.

6https://ourworldindata.org/policy­responses­covid



4.2. Oxford Coronavirus Government Response Tracker datasets 39

Name Description Severity scale

Close public transport Record closing of public
transport

0: No measures, 1: Recommend
closing (or significantly volume
of transportation), 2: Require
closing (or prohibit most citizens
from using it.

Stay at home require­
ments

Record orders to “shelter­
in­ place” and otherwise
confine to home.

0: No measures, 1: Recommend
not leaving the house, 2: Require
not leaving the house with ex­
ceptions for ”essential” trips, 3:
Require not leaving house with
minimal exceptions.

Restrictions on internal
movement

Record restrictions on in­
ternal movement.

0: No measures, 1: Recom­
mend not to travel between re­
gions/cities, 2: Internal move­
ment restrictions in place.

International travel con­
trols

Record restrictions on in­
ternational travel.

0: No measures, 1: Screening, 2:
Quarantine arrivals from high­
risk regions, 3: Ban on arrivals
from some regions, 4: Ban on all
regions or total border closure.

Table 4.5: Information about OxCGRT’s policy responses indicators. The coding instructions
column shows the levels of the severity scale of each indicator and their respective descriptions.
Based on [Hal+21]

Figure 4.3: Cross­area comparative analysis of the policy responses indicators using their respec­
tive Stringency Index, see Table 4.6.
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California Delhi DRC Greece South Korea United Kingdom

Code 0 76 181 365 73 631 79
Code 1 555 117 203 541 0 552
Code 2 0 333 63 17 0 0

Stringency index 43.9 62.0 26.0 45.5 0.0 43.7

(a) Close public transport indicator dataset.

California Delhi DRC Greece South Korea United Kingdom

Code 0 74 25 87 82 176 241
Code 1 309 56 0 276 427 210
Code 2 248 331 491 249 28 180
Code 3 0 219 53 24 0 0

Stringency index 42.5 72.6 60.2 44.6 25.5 30.1

(b) Stay at home requirements indicator dataset.

California Delhi DRC Greece South Korea United Kingdom

Code 0 73 128 334 108 176 191
Code 1 82 84 182 221 332 102
Code 2 476 419 115 302 123 338

Stringency index 81.9 73.0 32.6 65.3 45.8 61.6

(c) Restrictions on internal movement indicator dataset.

California Delhi DRC Greece South Korea United Kingdom

Code 0 32 25 62 73 34 159
Code 1 0 47 83 85 0 0
Code 2 36 2 330 0 252 199
Code 3 563 338 0 474 345 273
Code 4 0 219 156 0 0 0

Stringency index 69.7 76.9 54.1 59.6 60.9 48.2

(d) International travel controls indicator dataset.

Table 4.6: Descriptions of the four OxCGRT datasets. Each cell contains the number of days where
a level of individual policy response indicator was applied in that area. The Stringency Index is
a composite of each indicator that was calculated similarly to [Hal+21]. Specifically, each value
was rescaled between 0 and 100 by the respective indicator’s maximum value. The rescaled values
are then averaged to get the composite indices. It’s important to note that the value and purpose of
this composite index are to allow for simple cross­area comparisons of the policy responses and is
not used for the analysis of a specific area.

By examining the datasets’ analysis, the area of Delhi has the highest Stringency Index across
all the indicators, except the restrictions on internal movement. Therefore, we can assume that the
highest traffic reduction was in the area of Delhi. California, Greece, and the United Kingdom
had similar Stringency Indices, with the United Kingdom having the lowest one. The Democratic
Republic of Congo was the second most strict area on the stay­at­home policy, although it had
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lower indices on the other indicators than the countries mentioned earlier. Similarly, South Korea
also had lower indices, with the close public transport indicator equal to zero.

All things considered, it should be noted that the above indicators can not truly represent the
policies that were applied in each area since there is no information on how well the policies were
enforced, nor they take into account significant nuance and heterogeneity these policies exhibit
[Hal+21].

4.3 Input dataset generation

In this thesis, themachine learningmodels must detect relationships between the lockdown policies
and the air pollutants. Therefore, it is essential to use both of the datasets mentioned above in the
training process of the models. In order to do that, we generated an input dataset that contains the
aggregated data of both the Sentinel­5P’s and OxCGRT’s datasets. Consequently, we generated a
multi­band raster for every Sentinel­5P satellite image. Each raster has five bands; one is the air
pollutant’s concentrations image, and the other five are the respective policy responses indicators.

Firstly, the pixel values of the Sentinel­5P’s datasets and the indicators’ values of the Ox­
CGRT’s datasets were normalized between 0 and 1. Normalization of the input variables ensures
that all of the datasets’ values are on the same scale, as well as making training faster and reducing
the chances of getting stuck on local optima [Hua+20]. Furthermore, since the policy responses
indicators were provided on a daily basis, we needed to aggregate their values to a single 10­day
interval value. However, since the indicators are of ordinal data type, computing the mean of its
sample is considered inappropriate [Jam05], for the reason that although they have a ranked order,
the intervals between their ranks cannot be presumed equal. Therefore, to aggregate the values of
a policy response indicator sample x ∈ R10 of ten days, we use the median7 value of that sample,
which is calculated as:

median(x) = x(n+1)/2 (4.3)

Further, to create the raster band for each indicator sample’s median we generate a matrix
X = [median(x)i,j] ∈ Rh×w, where h is the height of the Sentinel­5P’s image, and w is it’s width.
Lastly we generate the input dataset S = {Zi}ni=1 for each air pollutant, where Zi ∈ Rw×h×b

is a raster of height h and width w with b bands/channels. Specifically, Zw,h;1 is the air pollutant
band, Zw,h;2 is the restrictions on internal movement indicator band, Zw,h;3is the international travel
controls indicator band, Zw,h;4 is the close public transport indicator band, and Zw,h;5 is the stay at
home requirements indicator band.

In total 378 rasters of shape 64×64×5 have been generated for theCO dataset, and 372 rasters
of the same shape have been generated for the NO2 dataset. An example of the input’s dataset is
shown in Figure 4.4.

7The median is the middle value that separates the greater and lesser halves of a data sample.
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Figure 4.4: Example raster of the input’s dataset. The raster covers the area of the United Kingdom
between the dates of 2020/01/01 and 2020/01/11. From top to bottom, the first band is
the CO’s concentrations band from the Sentinel­5P’s dataset, while the other four bands
are the medians of the OxCGRT’s policy responses indicators of that time period.



Chapter 5

Methodology

This chapter provides an overview of the problem this thesis is researching and the deep learning
models that were implemented to solve it.

5.1 Problem Formulation

This research aims to predict the next image occurrence of air quality data over an area using
its past five occurrences of air quality and lockdown measures data. Therefore, given a dataset,
S = {(xi, yi)}ni=1, where xi ∈ X := [0, 1]d and yi ∈ Y := [0, 1]do, the goal is to approximate the non­
linear function f(x; θ) with fθ : X → Y as accurately as we can. The notations d and do denote the
input and output dimensions respectively, while θ denotes the set of parameters of fθ. Specifically,
let xi = {xi1 , xi2 , xi3 , xi4 , ..., xit−1 , xit , xit+1 , xit+2 , ..., xit+n} be a time series of input rasters used for
training the models, with dimensions (W,H,C). For a given sequence zi = {zi1, zi1, ..., zit−1, zi}
as input for prediction, the objective is to predict yi = f(zi), where zit+1 = yi. W, H and C denote
the width, height and number of channels of each raster and t denotes the timestep. To achieve this,
three models were implemented. These models are the CNN­LSTM, ConvLSTM and 3D­UNet
model, which are all presented in the following sections.

5.2 CNN­LSTM model

We need to implement a sequence­to­one prediction model to forecast the next raster occurrence of
a given time series. Therefore, it is crucial to take advantage of both the given rasters’ spatial prop­
erties and the sequences’ temporal properties. As aforementioned in Chapter 2, CNNs can learn
the spatial properties of the data while LSTM networks can learn the temporal ones. Therefore,
one approach for working with spatiotemporal data is to combine both networks by placing LSTM
layers after the CNN layers. Such architecture is called Convolutional­LSTM (CNN­LSTM) and
was first introduced as the Long­Term Recurrent Convolutional Network (LRCN)[Don+16]. This
architecture is composed of two sub­models: the CNN model and the LSTM model. The CNN
model extracts important features of the data, which are then flattened in a 1­D tensor and are then
given to the LSTM model to learn the sequential properties of the data. The results of the LSTM
layers are then reshaped with dimensions equal to do.

In our implementation, one 2DConvolutional layer has been inserted, along with one Max­
Pooling2D layer and a Flatten layer transforming the extracted features to a appropriate shape for
the LSTM layers. Afterwards, two LSTM layers are stacked and a Dense layer. Lastly, a Reshape
layer is used as mentioned. The graphical representation of the implemented model can been seen
in Figure 5.1.
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Figure 5.1: Implemented CNN­LSTM model. Since there is a single CNN model and a sequence
of LSTM models, we wrap the entire CNN input model in a TimeDistributed layer, to
apply the same CNN layer to each timestep independently.

5.3 Convolutional LSTM

Another way of working with spatiotemporal data is to use the model proposed in [Shi+15]. The
researchers merged the functionalities of the CNN and LSTM architecures, to create a LSTM­
variant cell called the Convolutional LSTM (ConvLSTM) cell. The code idea of the ConvLSTM
cell is to handle all inputs, hidden states, cell or gate outputs as 3D tensors, in order to preserver
their spatial properties. This is achieved by replacing the matrix multiplication operation used in
the vanilla LSTM (see Figure 2.11) with the convolution operation in the input­to­state and state­
to­state transitions, as shown in Figure 5.2.

By using the latter modification and the Equations 2.32 to 2.37, we can formulate the in­
put,states, gates and output of the ConvLSTM as:

Ft = σ(Xt ∗Wxf + Ht−1 ∗Whf + bf) (5.1)

It = σ(Xt ∗Wxi + Ht−1 ∗Whi + bi) (5.2)

Ot = σ(Xt ∗Wxo + Ht−1 ∗Who + bo) (5.3)
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C̃t = tanh(Xt ∗Wxc + Ht−1 ∗Whc + bc) (5.4)

Ct = Ft ⊙ Ct−1 + It ⊙ C̃t (5.5)

Ht = Ot ⊙ tanh(Ct) (5.6)

Figure 5.2: Inner structure of ConvLSTM. (From [Xia+19].)

Regarding the implementedConvLSTMmodel, only threeConvLSTM layers have been stacked,
associated with BatchNormalization for the reasons mentioned in Chapter 2.7. Furthermore, we
add Dropout in eachConvLSTM layer to avoid the phenomenon of overfitting. Lastly, we put a
2DConvolutional layer to reshape the output data to the appropriate dimensions. The graphical
representation of the ConvLSTM model is shown in Figure 5.3.

Figure 5.3: Implemented ConvLSTM model.

5.4 3D­UNet

The problem of this thesis can be also treated as a future frame prediction problem, where each
frame is a raster. In this context, another approach to consider is the use of: Auto­encoders (See
Section 2.6). As discussed in Chapter 2, auto­encoders have been successfully implemented for
such problems [Liu+18] [FAM20], thereby its important to implement them to our problem.

As mentioned in Chapter 3, one of the most popular auto­encoders is the UNet architecture,
which is also used as our core model. Contrary to the vanilla UNet, we are using 3DConvolutional
layers to be able to feed the network with sequences of multi band rasters. Specifically, our 3D­
UNet model is based on the 3DDR­UNet model from [FAM20]. The 3DDR­UNet architecture is
able to capture both spatial and temporal dependencies by manipulating 3­dimensional data in the
encoder part and 2­dimensional data in the decoder, see Figure 5.4. Afterwards, the time dimension
is reduced from t (number of timesteps) to 1 before the expansion part of the decoder. This config­
uration allows the network to extract features on the encoder part and averaging them in a weighted
fashion over the time dimension. Similarly to the vanilla UNet, the number of convolutional filters



46 5. Methodology

grow exponentially in the encoder part, and shrink again in the decoder part. By giving both of the
pooling operations and deconvolutions kernel sizes of 1×2×2 the temporal dimension of the data
remains unchanged. In summary, the network is trained to perform a regression for every pixel to
accurately map the set of input rasters to the output.

Figure 5.4: Graphical representation of the 3DDR­UNet model’ architecture. The annotations
above the convolutions/deconvolutions represent the output shape of those layers,
whereas the number of filters is specified below them. (From [FAM20].)



Chapter 6

Experiments

This chapter presents the experiments conducted in this Thesis. First, Section 6.1 describes the
experimental setup, including the dataset generation for the training and testing of the models, as
well as a brief introduction of the evaluation metrics that are used.

6.1 Experimental Setup

All of the experiments were done using the Python 31 programming language. Furthermore, for
the training, testing, and implementation of the deep learning models, the Keras API2 of the Ten­
sorFlow 23 framework was used. For more information about the hardware and software specifi­
cations, see Table 6.1a and Table 6.1b .

CPU Model Name Intel Xeon Broadwell
CPU Freq 2.6 GHz
CPU Type Dedicated
No. vCPUs 4

RAM 8GB

(a) Hardware specifications.

Version
Python 3.7.4

TensorFlow 2.4.0
Keras 2.3.1

(b) Software specifications.

Table 6.1: System specifications

6.1.1 Training and testing dataset

In order, to use the input dataset for the training and testing of the model, it was split in the correct
form by generating the X and Y arrays keeping their chronological order. Each sample of X is a
sequence of five rasters, where each raster has the shape 64× 64× 5, whereas each Y sample is a
raster of shape 64× 64× 1, since we only want to predict the next air pollutant band occurrence.
An overview of the arrays is shown in Table 6.2. Lastly the arrays mentioned above were split to
create the (X train,Y train) and (X test,Y test) datasets. Specifically, 80%was selected as the training
dataset and 20% was selected as the testing dataset. In addition, 20% of the training dataset was
used as a validation dataset during training.

This process has been repeated for both of the different air pollutants datasets (CO, NO2).

1https://www.python.org/
2https://keras.io/
3https://www.tensorflow.org/
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X Y

[X1,X2,X3,X4,X5] [X6]
[X2,X3,X4,X5,X6] [X7]
[X3,X4,X5,X6,X7] [X8]
...
[XN−5, ...,XN−1] [XN]

Table 6.2: Overview of the training/testing dataset.

6.1.2 Evaluation Metrics

Generally low training loss values indicate that the model is learning well the underlying repre­
sentations of the data. However, it does not mean that it is efficient. Therefore, it’s important to
consider other parameters as well to evaluate our models. Since, this is regression problem the
Mean Squared Error, Root Mean Squared Error, and Mean Absolute Error(see Section 2.3.2) are
used to evaluate the predictions’ quality. Moreover since the output of the models are 2D raster
satellite images, the Structural Similarity Index Metric (SSIM) is used [Wan+04] for a better eval­
uation. SSIM’s values vary between 0 and 1, where values closer to 1 indicate good similarities.
The SSIM is calculated as:

SSIM(x, y) =
(2μxμy + c1)(2σxy + c2)

(μ2x + μ2y + c1)(σ2x + σ2y + c2)
(6.1)

, where x and y are the images to be compared.
Furthermore, the training and testing time are used as metrics to evaluate the computational

cost of each model.

6.1.3 Hyperparameters

Before setting parameters for the models, combinations of losses, optimizers and learning rates
have been tested. Ultimately, all models were trained using MAE as the loss function and the
Adaptive Movement Optimization Adam optimizer (see Section 2.3.2). For the Adam optimizer
the values 0.9 and 0.999 have been chosen as the β1 and β2 hyperparameters. Furthermore, the
learning rate of 0.001 has been used with a decaying rate of 0.01 in order for the model to learn
more complicated representations when reaching a plateau whilst training. Lastly, early stopping
has been applied, by saving the model with the lowest validation loss as the training continues.
Each model has been trained for 150 epochs with a batch size of 16.

As for the ConvLSTMmodel, each of itsConvLSTM layers has 64 filters. The first ConvLSTM
layer has a kernel size of 5 × 5, the second’s size is 3 × 3, and the third’s size is 1 × 1. The
3DConvolutional layer has 1 filter in order to output only the air pollutant’s band and a kernel size
of 3 × 3 × 3. Lastly, each layer’s output was passed through a ReLU activation function. Table
6.3 shows more information about the ConvLSTM’s parameters.

The CNN­LSTM’s model 2DConvolutional layer has a kernel size of 3 × 3 and the number
of its filters is 64. The following MaxPooling2D layer has a kernel size of 2 × 2 and stride size
of 1 × 1. Moreover, it’s LSTM layers have a unit size of 16 and 64, while the last Dense layer
has 4096 units for each pixel of the output’s image. As with the ConvLSTM model, all layers
pass their outputs through a ReLU activation function. More information about the CNN­LSTM
model’s parameters are shown in Table 6.4.

As been aforementioned, the 3D­UNet model is composed of three parts; the encoder, the
bottleneck and the decoder part. For the encoder part, four convolutional blocks have been stacked.
Each convolutional block has two 3DConvolutional layers and a 3DMaxPooling layer. The number
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of convolutional filters grows exponentially after each convolutional block from 8 filters to 64.
Every convolutional layer has a kernel size of 3 × 3 and every max pooling layer has a kernel
size of 1× 2× 2, in order to keep the temporal dimension of the data unchanged. The bottleneck
part of the network is composed of a 3DMaxPolling layer and three 3DConvolutional layers of
64 filters. Further, the decoder part is composed of four up­sampling blocks, where each block
shrinks the number of filters from 64 to 8. In the end a 2DConvolutional layer is added with 1
filter and a kernel size of 1 × 1 to output the predicted image. Similarly to the other two models,
each convolutional layers’ output is pushed through a ReLU activation function. More information
about the model’s parameters can been seen in Table 6.5.

Layer Number of parameters

ConvLSTM2D 1702912
BatchNormalization 512
Dropout 0
ConvLSTM2D 1180160
BatchNormalization 512
Dropout 0
ConvLSTM2D 131584
BatchNormalization 512
Dropout 0
Conv3D 3457

Table 6.3: ConvLSTM’s parameters overview. The model has a total number of 3, 018, 881 train­
able parameters and 768 non­trainable parameters.

Layer Number of parameters

ConvLSTM2D 2944
MaxPooling2D 512
Flatten 0
LSTM 16258112
LSTM 20736
Dense 266240

Table 6.4: CNN­LSTM’s parameters overview. The model has a total number of 16, 548, 032
trainable parameters.

6.2 Experimental Results

Two experiments have been conducted to assess the COVID 19 lockdowns impact on air quality.
In the first experiment the three mentioned deep learning models are compared in order to find
the best model for the air quality prediction task. Secondly, the proposed model is compared to a
version of itself, which is trained using only the air pollutants’ concentrations satellite images. This
is to explore how much the lockdowns features actually affect our model’s air quality predictions
performance.
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Layer Parameters
Conv3D 1088
Conv3D 1736

MaxPooling3D 0
Conv3D 3472
Conv3D 6928

MaxPooling3D 0
Conv3D 13856
Conv3D 27680

MaxPooling3D 0
Conv3D 55360
Conv3D 110656
Dropout 0

(a) Encoder

Layer Parameters

MaxPooling3D 0
Conv3D 221312
Conv3D 82048
Conv3D 442496
Dropout 0

(b) Bottleneck

Layer Parameters

UpSampling3D 0
Conv3D 20544
Conv3D 65600
Conv3D 221248
Conv3D 110656

UpSampling3D 0
Conv3D 5152
Conv3D 16416
Conv3D 55328
Conv3D 27680

UpSampling3D 0
Conv3D 1296
Conv3D 4112
Conv3D 13840
Conv3D 6928

UpSampling3D 0
Conv3D 328
Conv3D 1032
Conv3D 3464
Conv3D 1736
Conv3D 434
Conv2D 3

(c) Decoder

Table 6.5: 3D­UNet’s parameters overview. The model has a total number of 1, 522, 429 trainable
parameters.

6.2.1 Experiment 1: Comparison of machine learning models for air quality pre­
diction using the COVID­19 dataset.

This subsection presents the results of the three models trained with the full datasets that were
described in Section 4.3. The Figures 6.1 and 6.2 show the training and validation loss across the
training of the models for the CO and NO2 datasets respectively. Furthermore, Tables 6.6 and 6.7
show the evaluation metrics of each model for the two datasets. Lastly, examples of the predicted
images of the proposed model for each area are displayed in Figures 6.3 and 6.4.

MSE RMSE MAE SSIM Train time (seconds)

CNN­LSTM 0.0030 0.055 0.033 0.42 13,800
ConvLSTM 0.0019 0.043 0.026 0.54 30,300
3D­UNet 0.00069 0.026 0.016 0.74 8,850

Table 6.6: Evaluation metrics of the three models for the CO dataset.

MSE RMSE MAE SSIM Train time (seconds)

CNN­LSTM 0.0029 0.054 0.039 0.43 9,750
ConvLSTM 0.0025 0.050 0.029 0.51 29,550
3D­UNet 0.0002 0.014 0.0091 0.87 6,900

Table 6.7: Evaluation metrics of the three models for the NO2 dataset.
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(a) CNN­LSTM model. (b) ConvLSTM model

(c) 3D­UNet model

Figure 6.1: Training and validation losses of the three models during training for the CO dataset.

(a) CNN­LSTM model. (b) ConvLSTM model

(c) 3D­UNet model

Figure 6.2: Training and validation losses of the three models during training for the NO2 dataset.
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(a) California.

(b) Delhi.

(c) Democratic Republic of Congo.

(d) Greece.

(e) South Korea.

(f) United Kingdom.

Figure 6.3: Prediction examples from the CO dataset using the 3D­UNet. From left to right the
first five images of each area are the input data for the model, whereas the sixth and seventh image
is the ground truth and the prediction respectively. Note that the policies bands of the input images
are not shown in this figure for better presentation.
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(a) California.

(b) Delhi.

(c) Democratic Republic of Congo.

(d) Greece.

(e) South Korea.

(f) United Kingdom.

Figure 6.4: Prediction examples from the NO2 dataset using the 3D­UNet. From left to right the
first five images of each area are the input data for the model, whereas the sixth and seventh image
is the ground truth and the prediction respectively. Note that the policies bands of the input images
are not shown in this figure for better presentation.
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6.2.2 Experiment 2: Comparison of the proposed machine learning model using
the OxCGRT dataset and without using it.

This subsection presents the results of the comparison between the proposed 3D­UNet model when
trained using the OxCGRT dataset and when trained without it. Tables 6.8 and 6.9 show the metrics
on the predictions of each model on the test dataset, whereas Tables 6.10 to 6.11 show the metrics
differences of the two models based on each area’s whole dataset. The name 3D­UNet (C19)
corresponds to the 3D­UNet that was trained using the OxCGRT dataset.

MSE RMSE MAE SSIM

3D­UNet (C19) 0.00069 0.026 0.016 0.74
3D­UNet 0.00078 0.027 0.017 0.74

Table 6.8: Evaluation metrics of the three models for the CO dataset.

MSE RMSE MAE SSIM

3D­UNet (C19) 0.00021 0.014 0.0091 0.87
3D­UNet 0.00039 0.017 0.011 0.86

Table 6.9: Evaluation metrics of the three models for the NO2 dataset.

MSE diff. RMSE diff. MAE diff.

California ­0.00001 0 0
Delhi ­0.00002 ­0.001 ­0.001
DRC ­0.00012 ­0.002 ­0.003
Greece ­0.00001 0 0

South Korea ­0.00003 ­0.002 ­0.0001
United Kingdom ­0.00001 ­0.001 0

Table 6.10: Metric differences of the 3D­UNet (C19) and 3D­UNet predictions of the whole CO
dataset grouped by area. The differences were calculated by subtracting the 3D­UNet metrics from
the 3D­UNet (C19) metrics.

MSE diff. RMSE diff. MAE diff.

California ­0.0001 ­0.003 ­0.004
Delhi ­0.00014 ­0.002 ­0.003
DRC ­0.00019 ­0.005 ­0.007
Greece ­0.0001 ­0.005 ­0.004

South Korea ­0.0008 ­0.012 ­0.009
United Kingdom ­0.0002 ­0.003 ­0.003

Table 6.11: Metric differences of the 3D­UNet (C19) and 3D­UNet predictions of the whole NO2
dataset grouped by area. The differences were calculated by subtracting the 3D­UNet metrics from
the 3D­UNet (C19) metrics.
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Conclusion

This study aims to evaluate the impact of Covid­19 lockdowns on air quality using deep learning
models. We started by providing the reader with the theoretical background on the different deep
learning techniques used. Further, we explained the generation process of the input dataset, which
contained both air quality and lockdown data. Moreover, we implemented and compared three
different deep learning models that can use spatiotemporal data to make future air quality frame
predictions. The best­performing model is then compared to a version of itself trained without
lockdowns data to assess the impact of those features on the model’s prediction performance. Our
findings showed a slight performance increase when the lockdown data was used. More specif­
ically, 6.11 and 6.10 show that the lockdown features affect more the areas with the highest air
pollutants concentrations; Democratic Republic of Congo for the CO dataset, and South Korea for
the NO2 dataset.

7.1 Discussion

After comparing the three different models, we were surprised by the better performance of the
3D­UNet architecture over the other two models. The results showed the potential of such an ar­
chitecture, which could learn spatiotemporal data using only convolutional layers. In addition,
because the 3D­UNet only used convolutional layers, the processing time and the number of pa­
rameters of the model were much lower than the other two. Nevertheless, we believe that there is
still space to further improve the performance of all three models by choosing better parameters
and generally better optimization. It is also important to note that the choice of learning rate and
batch size played an influential role in the performance of this task.

Furthermore, the results of our second experiment showed that the lockdown features had a
minimal positive impact on our model’s performance. We consider that this happens for several
reasons. First and foremost, the impact of the COVID­19 lockdowns on air quality over these areas
might not be significant enough to increase our proposed model’s performance majorly. Nonethe­
less, Tables 6.11 and 6.10 indicate that the lockdown features slightly increase performance more
in areas where the air pollution was the highest, which might show that these areas’ air quality
was impacted the most by the lockdown policies. Additionally, it should be pointed out that the
lockdown features were very noisy since it was impossible to know how well each of these poli­
cies was enforced, which could significantly affect the outcome of their impact on air quality. All
things considered, a spatiotemporal predictive model has been implemented, which is capable of
using lockdown and air quality features for its predictions.
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7.2 Future Work

There are at least the following three proposals for future work:
Firstly, all of the deep learning models that were explored should be more thoroughly exam­

ined and fine­tuned. We believe that not only the proposed model but the other two models can
obtain even better results. One way to achieve this is by performing a more extensive hyperpa­
rameter search. Moreover, more advanced techniques such as inception modules, residual blocks,
asymmetric convolutions, and bidirectional LSTM layers should be explored to further increase
our models’ performances [FAM20]. Unfortunately, this is beyond the timeframe of this theses;
hence finding acceptable results in the first experiment was the prime motivation.

Secondly, since the 3D­UNet approach yielded such promising results, exploring other pow­
erful convolutional autoencoders such as the Generative Adversarial Networks (GANs) is also
essential. GANs have shown great promise in the field of future frame prediction [Lee+18]; there­
fore, implementing them for this thesis’ task should be further examined.

Lastly, and probably most importantly, we believe that a better feature selection could achieve
more insightful results about the impact of lockdowns on air quality. In this thesis, we had access
to 10­day aggregated air quality data (see Section 4.1). We believe that more accurate features
such as daily air quality data could better reflect air quality change over an area. Furthermore, as
mentioned, the lockdown features were very noisy since every lockdown was differently enforced
and applied, which means that every lockdown had a different effect on vehicle traffic, which had
a different effect on air quality. Therefore, as used in [TGC21], features such as daily traffic data
could prove very useful for themodel to better understand the relationships between lockdowns and
air quality. Lastly, as mentioned in Section 2.2.1, other factors such as weather and temperature
significantly affect air quality and should be taken in consideration in the prediction part of the
experiment in future works.
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