o4 UNIVERSITY OF
dp° WESTATTICA

Department of Informatics and Computer Engineering

Master of Science
Cybersecurity

Malware Analysis and Reverse
Engineering

Author: Chronis Anastasios - cscyb21033
Supervisor: Dr. Panayiotis Yannakopoulos

Athens, 2023

Malware Analysis and Reverse Engineering.

UNIVERSITY OF
WEST ATTICA

School of Engineering
Department of Informatics and Computer Engineering
Post-Graduate Studies Programme: CYBERSECURITY

M.Sc. Thesis
Malware Analysis and Reverse Engineering

Chronis Anastasios - cscyb21033
Supervisor: Panayiotis Yannakopoulos

Examination Committee:

Name Signature

Panayiotis Yannakopoulos
. e Digitally signed by
Panag|0t|5 Panagiotis Giannakopoulos

H Date: 2023.08.24 08:09:10
Giannakopoulos 7552

Konstantinos Mavrommatis Digitally signed by

KO n Sta ntl NOS Konstantinos Mavrommatis

Date: 2023.08.25 14:53:04

Mavrommatis ;o0

Dimitrios Kogias l %

Abstract

Malware is a constantly growing threat to both individuals and organizations as it can be
used to steal sensitive data, disrupt both minor and vital operations, and in some cases
cause physical damage to hardware and even humans. Reverse engineering is a
powerful tool for analyzing and understanding software, hardware and, in our case,
malware. It allows analysts to disassemble and decompile the code to determine its
functionality and identify vulnerabilities.

In this thesis, we present a comprehensive study of malware analysis and reverse
engineering techniques. We will begin by setting up a safe Lab environment, capable of
protecting the analyst while also providing them the tools needed to do their job.

The second part will be dedicated to Malware Analysis, starting with reviewing the
history and types of malware, before delving deeper, with tools and techniques used in
Static and Dynamic Analysis, code deobfuscation and closing with a concise workflow.
The third part will be reviewing Reverse Engineering tools and techniques as well as its
importance in a malware analyst’s repertoire.

We also discuss the ethical concerns of malware analysis and reverse engineering, like
the legal issues surrounding the possession and distribution of malware, as well as the
importance of a professional approach to the matter.

Finally, we will make a small statement about the future of Malware Analysis and
Reverse Engineering and provide use cases that Machine Learning can be used to help
the analysts secure an overall safer technological infrastructure.

Our work serves as an introduction point for cybersecurity analysts and computer or
software engineers that want to dig deeper into malware analysis.

Acknowledgements

| would like to express my gratitude towards Dr. Panayiotis Yannakopoulos and the rest
of the professors of the University of West Attica’s Cybersecurity Masters Program as
well as my colleagues of the 2021 class. | would like to extend that gratitude to the
entirety of the Cybersecurity community that keeps on providing free reading and
practice material as well resources for the ones that want to join their ranks.

On a more personal note, | want to thank my mother, my sister and my friends for being
at my side, my colleagues in the National Bank of Greece and especially my manager
Nikolaos Kipos and my supervisor Dr. Emmanouil Ladakis, the local gym that is proven
time and again to be a place of calm and solace, and finally, most of all, my father, who
remains an inspiration almost 20 years after his passing.

Table of Contents

Lab Setup 5
Overview 5
Definitions and Specifications 5
Lab Network 6

Network Topology 6
Virtual Network Setup 7
Gateway Setup 8
Flare VM Network Setup 9

Malware Analysis 11

Malware: Definition, Types and a brief History 11
Definition 11

Types of Malware 11
History of Malware 13
Malware Analysis: Definition and Types 14
Static Analysis 16
Identifying File Formats 16
Hashing 17
Analyzing Strings 19

The Portable Executable (PE) File Format 20
|dentifying Packers 28
Dynamic Analysis 29
Theoretical Background 29
Identifying Processes 29

Analyzing Packets 29

Privilege Escalation 30

Network Enumeration 31

Persistence 32
Understanding Subterfuge Techniques 35

Detonating Malware 37
Registry and Filesystem Monitoring 37

Monitoring Processes 39

Monitoring Process Injection 40

Monitoring Network Traffic 41
De-Obfuscating Malware 42
Malware Analysis Workflow 47

Reverse Engineering 50
What is Reverse Engineering in Malware Analysis 50

The Basics

CPU Registers

The Stack

50
50
51

The Heap

Assembly Instructions

Accessing the Source Code with Ghidra

Initiating the Process

Starting Point

Editing the Names and the Signatures
Using Ghidra’s Tools

51
51
52
52
56
58

Searching for Suspicious Functionality
Manipulating Return Values with XDBG

First Steps

Setting the Appropriate Breakpoints

Live Debugging

Dumping the Memory

Ethical Concerns

The Future of Malware Analysis and Reverse Engineering

Sources

59
60
61

62
62

63
65
68
70
71

Lab Setup

Overview

In order to perform malware analysis, we first need to understand the dangers it
inherently exposes us and our system to. We will be purposefully inflicting our system
with malware. And on our system, we have stored our personal data and information,
including passwords, credit cards, photographs, medical records and more. The last
thing we want is for them to get somehow leaked to the general public, or to become a
node of a widely infected network used for possibly illegal activities.

To circumvent these issues, we will use two virtual machines. There are two main
benefits of virtual machines. First and foremost, we create a safe environment, that is
separated from our host operating system that can be infected without us worrying
about our main system. Second, and equally important, we can take snapshots of these
virtual machines that will allow us to revert any changes and resume our work from a
previous state that has either not been infected or has the malware at the state that we
desire.

Two virtual machines will be created. The first one will be a Windows machine and it will
have all the tools we will use to perform malware analysis and reverse engineering. The
second one will be a Kali Linux machine that will be used to monitor the first machine’s
network traffic during the malware analysis and for reverse engineering.

Definitions and Specifications

The main system, from now on referred to as host, is the main computer that | use daily.
It uses an Arch (BTW) Linux operating system and has 16GB of RAM and a 2013
4-core CPU (total 8 threads).

The first virtual machine, from now on referred to as Flare VM, uses Windows 10 as its
base operating system. It will be given 2 cores (4 threads) and 8GB of RAM. More
importantly, a lot of tools will be added that will be of use for the entire assignment.
These tools are included in the FlareVM. FlareVM is a Windows distribution that is
installed on top of the base operating system. It removes some key Windows features,
like the Windows Update and the Microsoft Defender and that is on purpose since we
will be infecting the machine with malware. FlareVM is developed by Mandiant
(mandiant.com - last day visited: 14/2/2023). Flare will be infected with various malware
throughout the analyst’s career.

The second virtual machine, from now on referred to as Kali, uses Kali Linux, a
GNU/Linux operating system based on Debian. It will be given 1 core (2 threads) and 4
GB of RAM. Kali Linux is probably the most well known operating system for security
research, penetration testing, and digital forensics. It is developed by Offensive Security

https://www.mandiant.com/

(https://www.offensive-security.com/ - last day visited: 14/2/2023). Kali will be used as a
gateway for Flare’s internet traffic.

Notes: These are the specifications | will be using but are not mandatory or even
important for that matter. Flare and Kali offer nothing more than a compilation of tools
bundled in a convenient and easily installed package.

Additionally, the wide variety of hypervisors (QEMU in my case, but there are other
cross-platform notable ones like VMWare and VirtualBox) can make them work in
virtually every host operating system. And for advanced users, a type 1 hypervisor like
Proxmox can make everything run with minimum overhead on a dedicated machine
used as a Lab.

Analysts that focus more on static analysis or reverse engineering, can omit the Kali
virtual machine. Doing so is obviously not as effective as the industry standard two
machine setup. While monitoring the network can provide valuable insight on dynamic
analysis, it does require more resources and that is why it can be ignored in some
cases.

Finally, a case has been made for the Remnux Linux distribution (based on Ubuntu) for
the gateway, with the argument that it is more Malware Analysis oriented than Kali.
Remnux however is dorman with its last update more than two years ago, so it will not
be preferred.

Lab Network

Network Topology

In order to monitor Flare’s traffic effectively, we will need to change a few settings and
route it through Kali first.

Flare Kali
192.168.42.140 Gateway 192.168.42.141
(static IP) (static IP)

Virtwal Switch
1892.168.421

/

Host Router
192.1688.1.5 Gateway 192 168 1.1
(DHCF) S

Figure 1.3.1 - Network Topology

https://www.offensive-security.com/

Virtual Network Setup

First, we need to create the Virtual Network in the KVM manager and give it its separate
IP range. To do this, we need to go to “Connection Details” under the Edit tab of the
Virtual Machine Manager and add a new one using the plus sign. In this case, we will
use NAT mode with the Network’s address at 192.168.42.0 and available IPs from
192.168.42.128 up to 192.168.42.254.

YA 4 Create a new virtual network

=! Create virtual network

Details | XML
Mame: | Lab
Mode: | NAT
Forward to: | Any physical device

~ IPv4 configuration
+| Enable IPv4

MNetwork: | 192.168.42.0/24
v | Enable DHCPv4

Start: | 192.168.42.128
End: | 192.168.42.254

~IPv6 configuration
Enable IPvE

~DNS domain name

®) Use network name

Custom

Cancel Finish

Figure 1.3.2 - Creating Virtual Network on Virtual Machine Manager

Gateway Setup

Now, we need to set Kali as the gateway. This procedure does require a few steps. First
of all, we need to set a static IP. We can do that by opening the Advanced Network
Configuration, selecting the “Wired connection 1” option and pressing at the cog to get
into the configuration. We need to set the Method to Manual (from DHCP) and add the
address. In this case, it will be the following.

Cl Editing Wired connection 1

Connectionname Wired connection 1

General Ethernet 802.1X Security DCB Proxy IPv4 Settings IPv6 Settings
Method Manual

Addresses

Address Gateway Add

192.168.42.141 pr 192.168.42.1
Delete

DMNS servers

Search domains

Require IPv4 addressing for this connection to complete

Cancel ' Save

Figure 1.3.3 - Setting up a static IP on Kali Linux

Then, we need to add a route for Flare on the Kali. To do so we need to open a terminal
and type the following command:

sudo route add -net <Windows VM subnet> netmask <Windows VM subnet mask> gw
<Kali Linux VM IP address>

In our case, this translates to:

route add -net 192.168.42.0 netmask 255.255.255.0 gw 192.168.42.141
Finally, we need to set up the firewall for the Kali VM. To do so, we once again need to
open the terminal. We will first need to install ufw. This is a user-friendly frontend for
iptables. To install it, we type the command:
sudo apt update && sudo apt install ufw

Then we need to allow traffic. We can do that with the commands:

ufw enable
ufw default allow incoming

This does give access to the internet to Flare VM. However, we are studying malware
here and sometimes, we only want to see the IP addresses, not actually communicate
with them. In these cases, we can drop traffic incoming from Flare with this command:

Shome/kali
-4 INPUT -5 192.168.42.140 -7 DROP

fhome/kali

Figure 1.3.4 - Blocking outwards traffic from Flare VM

Flare VM Network Setup

In order to set the static IP at the Flare VM, we need to go to the Network Adapters. To
do so, at the start menu, we search for “Network Status”, go to the “Ethernet” tab and
then “Change adapter Options”. By right-clicking the adapter and going to the
properties, we can edit the IPv4 settings to the following:

10

Internet Protocel Version 4 (TCP/1Pvd) Properties >
General

‘fou can get IP settings assigned automatically if your network supports
this capability, Otherwise, you need to ask your network administrataor
for the appropriate IP settings.

() Obtain an IP address automatically
(@) Use the following IP address:

IP address: | 192,168 . 42 . 140 |
Subnet mask: | 255.255.255. 0 |
Default gateway: | 192,168 . 42 . 141 |

Obtain DM5 server address automatically

(®) Use the following DMNS server addresses:

Preferred DMS server; | 1 .1 .1 .1 |

Alternate DMS server: | 1 .0 .0 .1 |

[]validate settings upon exit Advanced. ..

Cancel

Figure 1.3.4 - Setting up a static IP on Windows

Both VMs should have an internet connection now and all of Flare’s traffic is routed
through Kali.

11

Malware Analysis

Malware: Definition, Types and a short History

Definition
Malware, a word deriving from Malicious Software, is an application designed to extract
information, utilize resources, get access to a computer, remotely execute code or do

whatever else a malicious actor wants to do with a computer that is not his own but has
control over.

Types of Malware

There are several types of malware, distinguished by the way they operate and the way
they affect various systems.

Viruses: A virus is a rather small program that often infects the target as part of
legitimate software or file and then, once activated, starts making copies of itself. When
the virus is run, it will probably try to infect the rest of the network either by automatically
send data to other connected computers or by utilizing a more subtle approach and wait
for the users to share them using social engineering techniques. Viruses is by far the
most common type of malware and can cause a wide range of damage. It can delete
files, steal personal information like passwords or bank details, encrypt or corrupt data,
and even make the infected computer part of a botnet used to launch Distributed Denial
of Service (DDoS) attacks.

Worms: Worms, just like viruses, will start replicating themselves, however it is software
of its own and is not getting attached to other software or files. Worms usually exploit
vulnerabilities in operating systems or other legitimate software like internet browsers.
Once they infect a computer they will try to spread through the rest of the network.
Worms are capable of spreading via email, instant messaging and social networks, but
due to their nature of not being attached to a legitimate piece of software or file, they
usually require a zero day vulnerability or a serious user error. Still, since they can give
the hacker the option of executing code remotely, worms can be a devastating infection.

Trojan _Horses: Trojan horses are types of malware that disguise themselves as
legitimate software in order to trick the user into installing it. Most trojan horses are
delivered via browser with fake websites imitating the official page of a free tool like
7zip, obs or audacity. Unlike worms that utilize vulnerabilities, trojan horses need the
user to misjudge a situation, visit the fake webpage, download the malicious executable

12

and actually run it on their computer. Then, the hacker can get a reverse shell, giving
them full access to the user's computer.

Rootkits: Rootkits is a weird and divisive type of malware. Rootkits can be used to hide
the presence of other malware on a system. However, there are companies like video
games publishers and companies performing exams and issuing certificates that openly
install rootkits on the user's computer as a cheating prevention procedure. And most
users are fine with it, not knowing the implications. What's worse is that these rootkits
are usually not removed when the user uninstalls the piece of software they came with.
Rootkits can be very difficult to detect and remove. They often use stealth techniques to
evade detection by antivirus software and can be used to give the malicious actors
complete and unauthorized access to a computer. Then, the hacker can perform a wide
variety of attacks to either the user, the entire network or even use the computer as a
proxy for other malicious activities.

Spyware: Spyware is another divisive type of malware. It collects information of the
user's activities and can steal personal information such as login credentials, credit card
numbers, medical records and other sensitive or personal information. What makes
spyware divisive among users is the fact that governments and security agencies
around the world often use these types of malware in order to better monitor the
population for illegal activities. And while cybersecurity professionals understand the
dangers and take precautionary measures against such malware, some end users are
in favor of them in the name of safety and security. They are wrong, but this will not stop
some three letter agencies from invading citizen privacy.

Adware: Adware oftenly ends up in a computer without the user's knowledge because
they did not disable a pre-checked agreement box in the installation process of some
other software. It usually comes in the form of a browser extension or a toolbar or even
some otherwise legitimate software like antivirus programs. Adware is no longer that
common but was widely used in the past, even by very reputable companies, to force
the user into a specific browser or search engine or to install the trial version of some
software against the user's will. What's more, adware would often display pop-up
windows of advertisements that were notoriously hard to close and often came with
video and sound, prompting the user to subscribe to any type of overpriced services.

Cryptojacking: Cryptojacking is a rather newer type of malware. Instead of stealing
information, passwords and credit cards, it installs a crypto miner at the victim’s
computer and utilizes its resources to mine various types of cryptocurrency for the
hacker. This is a serious offense for three major reasons. First of them, the victim gets a
slower computer since the mining software drains most of the computer’s resources.

13

Second, the victim will have to pay a massive electricity bill at the end of the month and
finally, the hardware gets degraded as constantly working at 100% can make it more
susceptible to damage.

Ransomware: Ransomware is the final type of malware we will discuss and one of the
most serious ones. Ransomware can affect everyone, from individual users to public
services like hospitals and even to billion dollar corporations. Once infected, the
ransomware will encrypt the victim's files, making them inaccessible. The hacker will
then ask for payment, usually in the form of cryptocurrencies, in order to provide the
decryption key. Most corporations have a bitcoin wallet and the main reason is to
preemptively own one in case of a catastrophic ransomware attack. In the best case
scenario, the victim will have a safe backup and get out of the situation virtually
unscathed, but in the worst case scenario involves the victim paying the hackers and
still not getting the decryption key.

History of Malware

The idea of software capable of replicating itself, was first conceptualized by John von
Neumann in as early as 1949. Though just an idea at the time, it provided the
foundation for the first malware created 22 years later, a virus called Creeper, originally
written by Bob Thomas and later redesigned by Ray Tomlinson. Creeper could copy
itself on a computer and used ARPANET (the predecessor of Internet) to spread
throughout the entire network.

Ray Tomlinson later created the Reaper with the sole purpose of removing Creeper and
its copies. Reaper is considered to be the first anti-virus. Creeper however was not
really malicious, especially considering that the operators of the infected computers
knew about it and how it was going to actually infect them. Much later, Tomlinson gave
an interview[1](last visited - 26/01/2023) going in depth on the way Creeper and Reaper
worked.

The first real malware was Wabbit, a virus created in 1974, capable of rapidly depleting
a system’s resources by constantly creating new processes and copying the original file.
This procedure, known as a “fork bomb” due to the Operating System’s fork mechanism,
made the computer practically unusable and is the first case of a Denial of Service
attack. The only weakness of Wabbit was that it could not spread via the network.

The first trojan horse was created in 1975 and was called PREVADE[2] (Internet source
- last visited 26/01/2023). It would be called as a subroutine of the game named
ANIMAL and would copy itself in every directory the user had access to. It would
eventually spread by users trading the game on tapes.

14

https://www.osnews.com/story/29157/interview-with-ray-tomlinson-on-creeperreaper/
https://www.fourmilab.ch/documents/univac/animal.html

In 1988 the Morris Internet Worm was created by Robert Tappan Morris and resulted
with him being the first arrest since the release of malware was considered to be a
felony in the United States under the 1986 Computer Fraud and Abuse act. The Morris
Internet Worm was the first time that a malware far exceeded its original (non malicious)
purpose and resulted in infecting around 10% of the internet at the time.

While in the subject of malware that run amok, in 2005 Samy Kamkar released Samy
(also known as JS.Spacehero), a worm designed specifically for the MySpace social
network that infected over 1 million users in less than 24 hours. While the intent was
also not malicious, the worm brought down MySpace for a few days, just months after
its acquisition by a major media outlet for hundreds of millions of dollars. Samy Kamkar
pleaded guilty and, after completing his sentence, is now a well regarded security
researcher. The Samy Worm was the first time the media and the general public
understood the dangers and the complexity of cybersecurity and resulted in a major
boost in research and resources allocated to the sector.

Finally, a more recent attack was the WannaCry ransomware that affected Windows
systems that were not updated or past their official end-of-life. WannaCry infected more
than 300.000 computers, including vital infrastructure like hospitals and power and
water companies in more than 150 countries in just a few hours, before Marcus
Hutchins found a kill switch. Digital forensics investigation indicated that the WannaCry
originated from North Korea, despite the Eternal Blue exploit being designed by the
NSA.

Malware Analysis: Definition and Types

Malware Analysis is the study, dissection and risk analysis of such programs. Its
purpose is to allow researchers better understand the vulnerabilities that allow malicious
actors to infect and take advantage of systems and facilitate the secure disclosure and
eventually the update of these vulnerabilities.

There are three types of Malware Analysis

Static Analysis

Static Analysis is like trying to judge a christmas present from looking at the package. A
bicycle wrapped in simple christmas paper is obviously a bicycle. Static Analysis is
doing exactly that. Looking at the outside layers of the executable files without actually
detonating the malware. In the following chapter we are going to see what information
we can extract and how to actually extract it.

Dynamic Analysis

15

In Dynamic Analysis, we closely and thoroughly observe what happens when we say
"LEEEROOOOOQOY JEEEENKINS*" and double click an armed malware file, in order to
investigate the effects and actions of the malware's binary. And while this is not the
proper scientific definition, it is the absolute and undeniable truth.

*’Leeroy Jenkins” refers to the viral video of the World of Warcraft player with this name
and yelling it indicates bold and daring behavior.

16

Static Analysis

|ldentifying File Formats

Both in Linux and in Windows systems, only a handful of file formats can be executed.
Malicious actors usually cascade the malware in order to appear as something else
than what they actually are. This was initially achieved by changing the extension (from
.exe to .jpg for example) however there are more sophisticated methods to do so now.
Thankfully, there are ways to identify whether a file is executable as well as its original
extension in both cases.

The first is a handy little tool named “file” in Linux. A similar application can be
downloaded (Last day visited - 1/2/2023) for Windows

Figure 2.3.1 - Use of the file command

Another, a bit more tricky but definitely sleeker, way to identify a file type, is through the
so called “magic numbers”. The magic numbers are the 512 first bytes of a file and are
used in order for the identification of a file. The list of magic numbers (last day visited -
31/01/2023) is long and extended, however two types are important to malware
analysts. The MZ (named after Microsoft's developer Mark Zbikowski) files with the
magic number “4D 5A” that represent executable Windows files and the ELF files with
the magic number “7F 45 4C 467, representing Unix/Linux executable files.

The identification is by using Hex Editors, tools capable of editing and displaying the
bytes of a file. Flare VM has two Hex Editors, HxD and fileinsight.

M HxD - [ChUsers\Flare VW DesktopSamplesisamplejpg]

i3] File Edit Search View Analysis Tools Window Help

* v B~ 16 || Windows (ANSI) || hex =
i samplejpg
Cffsetc(h) 00 01 02 03 04 05 O O7 OB 0% Q& OB OC OD OE OF Decoded text
Q0000000 IQD SR 890 00 03 00 00 00 04 00 Q0 OO0 FF FF 00 00 HZ V..
Q0000010 B& 00 00 OO0 00 OO0 OO0 OO0 40 OO0 00 OO0 00 Q0 00 00 L....... Boooo...

Figure 2.3.2 - Use of HxD Hex Editor
In both cases, we see that the file sample.jpg is a windows executable file.

More about the Windows executables will be examined later in this chapter, as the
Portable Executable file format deserves to be analyzed further and more in depth.

17

https://gnuwin32.sourceforge.net/packages/file.htm
https://www.garykessler.net/library/file_sigs.html

Hashing

One of the first techniques used in static analysis, especially after identifying a file and
realizing it is potentially dangerous, is usually hashing. A hashing algorithm takes as an
input a file and delivers a unique checksum. Then by comparing that said output with a
database of known malware checksums, the analyst can quickly and safely figure out if
the malware is already known and documented. Hashing is the way most anti-virus
software used to work and the way they kept the users safe was by constantly updating
their database (the procedure has changed on newer anti-malware programs with the
utilization of more modern techniques and machine learning models).

There are various hashing algorithms, with the SHA256 and SHA512 being the most
prominent ones. MD5 and SHA1 were used in the past but collisions have been found
and exploited on them and are no longer considered reliable.

There are various software solutions for Windows, Linux and MacOS users to calculate
the hash of a file. Some are cross platform and some have a Graphical User Interface.
However, since we, as analysts, want the most efficient way to deal with this, the best
way is to use the terminal.

MacOS users can do so with the shasum command available on all modern mac
computers and Linux users have a ton of options like RHash, sha256sum, MassHash
and GtkHash.

On Windows, the Get-Filehash Powershell command can provide the checksum
utilizing a variety of algorithms, including SHA256 and SHAS512. Since Flare is a
Windows machine and Windows is the most targeted operating system for malware, we
will elaborate a little more on that.

p > Get-FileHash .\sample.jpg

A264ECAFBFASCS9EEFBIA2E99815498CCDA3999341E12D =\ \Flare VM \sample.jpg

Figure 2.3.3 - Get-Filehash Use and Output

After calculating the hash of a file, we need to actually compare it to known threats. To
do that, we can use tools like virustotal.com (last day visited - 30/01/2023), enter the
hash and see the results. If we get a match, then the file is a known threat and should
be treated accordingly.

18

https://www.virustotal.com/gui/home/search

& wirustotal.com

&

54

17

X Commun ty Score W

SUMMARY

Security vendors’ analysis @

AhnLab-V3
Alibaba

AlYac

Antiy-AVL

Arcabit

Avast

AVG

Avira (no cloud)
BitDefender
BitDefenderTheta
ClamAV
CrowdStrike Falcon
Cybereason
Cylance

Cynet

Cyren

Nritiah

1|
> VIRUSTOTAL Q B8

'0) 54 security vendors and 2 sandboxes flagged this file as v g

~ malicious ~ o--o
a23efl53cecfBal
5fda%adc5f1702b
899arbeBb95107d 1.16 MB 2023-01-25 04:26:30 UTC %“
3basd1eadcdc2s Size T days ago EXE
529924
3888888 png

peexe overlay runtime-modules signed detect-debug-environment idle long-sleeps

direci-cpu-clock-access invalid-signature spreader
DETECTION DETAILS RELATIONS BEHAVIOR COMMUNITY &

Trojan/\Win32.RL_Generic. R339522

_I} TrojanBanker:Win32/Kryptik. 724fb591

Backdoor.QBot.gen
GrayWare\Win32 Kryptik ehls
1) Trojan.Agent.ERUJ

) Win32:DangerousSig [Trj]
Win32:DangerousSig [Trj]
HEUR/AGEN.1214331
Trojan.Agent. ERUJ

Malicious.5525ba

(1) Unsafe

1) Malicious (score: 100)
W32/Trojan . DZW.genlEldorado

v Troian MakBnt 10

Gen:NN.ZexaF 36212 kv1@aO @wOdpk
Win.Ransomware_Locky-9779179-0

Win/malicious_confidence_100% (W)

Figure 2.3.4 - virustotal.com output for known threats

Obviously that is a very dangerous file and should not be executed without the
necessary precautions. If there was nothing in the various databases virustotal.com has
access to, we would have something like the following:

19

< c 8 virustotalcom/gui/search/D4BC1D746F527934E0A264ECAFBFASCS9EEFB902B99015490CCD03999341E12D

Z D4BC1DT46F527934E0A264ECAFEFASCS9EEFBI02B99015490CCD03999341E12D Q T B ¢ oson EFD

@

No matches found

Are you looking for advanced malware searching capabilities? VT Intelligence can help, learn maore.

Figure 2.3.5 - virustotal.com output for not matching outcomes

Of course, this entire process is not foolproof. There are three main reasons for it to fail.
Either the database is not updated, the malware is a novelty or the malicious actor has
spent a decent amount of effort and resources in making sure its hash value is different
with each sample, a technique known as hashbusting.

In the first case, we can be relatively sure that virustotal keeps their databases updated.
If the malware is a novelty, there is little we can do in Static Analysis, we can however
analyze it dynamically, a process we will examine in later chapters.

If the malware is obfuscated, there is little we can do as standard VirusTotal users. A
paid Enterprise account can compare hashes and deliver a list of similar malware, the
percentage of similarity as well as the number of antivirus software that would detect the
malware. Without access to a paid service, we are once again left with dynamic analysis
techniques.

Analyzing Strings

After figuring out that a file is indeed executable and malware, we need to see what it
would actually do should we run it. One of the techniques we would use for it is string
analysis. Strings is a command that works both on Windows and Linux. Also, in both
cases, the handy “>” operator can redirect the output to a file for us to see and review.
On the same dangerous file we saw earlier, the strings command gives an output worth
digging into.

20

| stringsOutput.txt - Notepad - O X

File Edit Format View Help
SetHandleCount A~
GetSystemTimeAsFileTime
GlobalGetAtomMNameld
EnumSystemCodePagesh
GetNamedPipeHandleStated
CompareStringh
GetProcessAffinityMask
ReadConsoleOutputCharacteri
SetMessagelWaitingIndicator
GetProfileInth
Process32FirsthW
GetPrivateProfileSectionA
FlushConsoleInputBuffer
GetVersion
GetModuleHandleA
MultiByteToWideChar
GetVersionExW

CreatefFilelW

WriteFile
GetEnvironmentVariablel
GetSystemTime
GetCurrentProcessId
FindNextFilelW

FindClose
GetSystemTimeAdjustment
QueryPerformanceCounter
FindFirstFilel
GlobalMemoryStatus
GetCurrentThreadIld
GetlLogicalDriveStringsh
QueryPerformanceFrequency
CloseHandle
CreateProcessi
WaitForSingleObject
CreateFileMappingd
MapViewOfFile
UnmapViewOfFile
ExpandEnvironmentStringsA
GetStdHandle

GetFileType

WaitForMultipleObjects
PeraklamadPinea b4

Ln 1, Col1 100% Windows (CRLF) UTF-8

Figure 2.3.6 - strings command output

After skipping some nonsensical strings we reach a point where the executable file
clearly makes some Windows API calls. Later on, we can see some error handling and
at the end of the file, the authors and what this malware was trying to trick the Windows
Defender into thinking it was.

The Portable Executable (PE) file format

We earlier saw that all Windows executable files start with the magic numbers “4D 5A”.
And while there are various types of executables a Windows machine can run, they all
belong to the greater Portable Executable family of files. In this section we will delve in

21

depth to the Portable Executable file and observe what these extensions have in
common, from the most obvious .exe (Windows Executable), to the “weird files that all
software engineers encounter early in their career” .dll (Dynamic Link Library) and to the
incredibly subtle .src (Windows Screensaver), that can be used to run malware on the
victim’s system. Namely, a list of these extensions is this:
Windows Executable (.exe)
Dynamic Link Library (.dll)
Shortcut (.Ink)
Control Panel Item (.cpl)
Windows Screensaver (.src)
Drivers (.drv)
Multilingual User Interface (.mui)

e System (.sys)
Each of these files can be executed in its own way, whether it be as an application of its
own, as part of another application or via a legitimate Windows service.
In Flare VM, we can split the executable files and study them individually with a tool
named CFF Explorer.

w' CFF Explorer VIl - [samplejpg] - O >
File Settings 7
H sample_jpg »
-
Property Value
= 5| Rle: sample jpg . .
| 3 Dos Header File Mame Ch\Users\Flare VM Desktop' Samplesisample.jpg
= Mt Headers File Type Portable Executable 64
j gzi:':jd:;a o File Info Microsoft Visual C++ 8.0 (DLL)
= Data Directories [x] File Size 12793 KB (131002 bytes)
3 Section Headers [+ PE Sioe 96.00 KB (98304 bytes)
— |2 Import Directory
— |53 Exception Directory Created Wednesday 01 February 2023, 17.29.22
— ILDTLS Directory Modified Wednesday 01 February 2023, 17.28.59
— '-ti_-,h:l::l'ess Converter
- -31., Dependency Walker Accessed Thursday 02 February 2023, 19.55.33
—) Hex Editor MD5 E50A38BBABCAFADEF1EBDADIBEABASAT
— %, Identifier
— 9, Import Adder SHA-1 928A87085F529B58E08E5AA50316TEEDTSTSFFED
— *ﬁ,ﬂud‘ Disassembler
I Jj"’ Rebuilder Property Value
— '*1_1-, Resource Editor
Ernpty Mo additional info available

Figure 2.3.7 - CFF Explorer

As we see, the file “sample.jpg” is an executable file. We knew that from before, but
now we can see the various elements separately.

22

The PE file format consists of various sections. The first of them are discrete and
appear in all files. These sections are:

e DOS Header

e DOS Stub

e PE Header

e Section Table

e Section 1
Then there is an indefinite number of sections, according to each specific file.

The DOS header:

Before Windows became the most widely used operating system for personal
computers, Microsoft’'s flagship operating system was DOS. And Microsoft spent
considerable resources in making every Windows system compatible with the previous
ones in order to not lose the market share they had. And thus, almost 30 years after
Windows entered the modern household completely replacing and eclipsing DOS, we
still have to study the leftover section of the PE file known as the DOS header.

23

w#' CFF Explorer VIl - [sample,jpg] - O X
File Settings 7
H. @ /m =
-
; Member Offset Size Value
E g'en:’l'_l';'::e:pg e_magic 00000000 Word 5A4D
[=] Mt Headers e_chlp 00000002 Word 0090
AT:T-‘;j gzi::;d;;a - ecp 00000004 Word 0003
[Z] Data Directories [«] e_crlc 00000006 Word 0000
— é ;Sr:p“:;“mt'::td;“ i e cparhdr | 00DDO00S Word 0004
— [Exception Directory e_minalloc 0000000A Word 0000
— gmdé:wma e maxalloc | 0DDDDOOC Word FFFF
- -.‘j_.: Dependency Walker £_ss 0DO0DD00E Word 0000
— :g: I*:;ﬁ‘l:“ e_sp 00000070 Word D0BS
| -L‘j_.: import Adder E_CsUm 00000012 Word 0000
— ‘%‘hd‘ Disassembler eip 000000714 Word 0000
: :‘0,: m Editor E_CS 00000016 Word 0000
e_[farlc 00000018 Word 0040
e_ovno 00000014 Word 0000
e res 0000001 C Word 0000
000D0D1E Word 0000
00000020 Word 0000
00000022 Word 0000
e_oemid 00000024 Word 0000
e_oeminfo 00000026 Word 0000
e res2 00000028 Waord 0000
000D002A Word 0000
0000002C Word 0000
000D00ZE Word 0000
00000030 Word 0000
00000032 Word 0000
00000034 Word 0000
00000036 Word 0000
00000038 Word 0000
000D003A Word 0000
e_[fanew 0000003C Dword 00000020

Figure 2.3.8 - The DOS header
The two members we are mostly interested in are the “e_magic” and the “e_ifanew”.
e_magic is the magic numbers we described earlier. e_ifanew is the last 4 bytes and

point to the PE Header (effectively skipping the DOS Stub section)

The DOS Stub

24

Just like the DOS header, the DOS stub also remained as a means for backwards
compatibility. It usually simply contains the line: “This program cannot be run in DOS
mode”. Opening a file with HxD, we can see it.

Q0000040 QE 1F

00000050 69 T3 20
00000060 T4 20 B2
QQoQoo7T0 6D &F &4

The PE Header

BA OE

fa

o

00 B4 0% CD
T2 &F &7 72
20 72 75 &E
ZE 0D 0D QA

21
6l
20
24

]

g 01
20
6E
J 0o

o

w el

o

3 6l
0 44
2 00

[I

cD

[
Lo I

o

o4
6E
53

20 00

g ..°,., .I',.Li'Th
F i=s program canno
20 t be rum in DOS

mode. ...

Figure 2.3.9 - The DOS stub

o

oy

-
T ammmmoaw

The PE header (also known as Nt header from the NT (New Technology) windows
system) starts after the offset indicated at e_ifanew. The PE is very useful for static
analysis as it provides information like the architecture the executable is built on, the
number of sections (which is fluid as stated earlier) and the characteristics tab that can
be used for even more reconnaissance.

File Settings 7

H

-

S

ws' CFF Explorer VI - [sample,pg]

= File: sample jpg

— [= Dos Header

= Nt Headers

(= File Header

=l Optional Header

= Data Directories [x]
— =] Section Headers [x]
— =) Impont Directary

— |2 Exception Directory

— () TLS Directory
'-?}_;,Mims Converter
— 2y, Dependency Walker
24, Hex Editor

4, Identifier

2, Import Adder

4, Quick Disassembler
%, Rebuilder

'-1_'}_;, Resource Editor

sample.jpg
Member Offset Size Value Meaning
Machine 00000084 Word 8664 AMDE4 (K8)
MumberOfSections | 00000036 Word 0om

TirneDateStamp 00000088 Dword 63DB11DB
PointerToSymbolTa... | 0000008C Dword 00012000
MumberQfSymbols | 00000090 Dword 000D05B8
SizeOfOptionalHea... | 00000094 Word 00FD

Characteristics 00000096 Word 0027 Click here

Figure 2.3.10 - The PE header

The Characteristics popup gives additional information. Some, like the architecture (“32
bit word machine” field) or the file type we already knew, but it is worth it for the analyst
to spend a few seconds checking it.

25

Characteristics — o

File is executable

File is a DLL

System File

Relocation info stripped from file

Line numbers stripped from file

Local symbols stripped from file

Agressively trim working set

App can handle =2gb address space

Bytes of machine word are reversed (Jow)

32 bit word machine

Debugaing info stripped from file in .DBG file

If Image is on removable media, copy and run from the swar
If Image is on Met, copy and run from the swap file
File should only be run on a UP machine

Bytes of machine word are reversed (high)

EEEEEEENEENE RN

QK Cancel

Figure 2.3.11 - The Characteristics popup

The optional header contains even more information, most importantly metadata that
can be both interesting and useful to at least view. Each field has its purpose, however
what we are mostly interested in are the following:

Magic: This field represents whether the executable is 64-bit (with value: 020B)
or 32-bit (with value: 010B).

Address Of Entry Point: This represents the memory address that the code
begins.

Major Operating System Version: This represents the minimum version of the
operating system required for the file to be executed. This specific file used in the
figures (which is actually a simple Hello World written in C) can be used in all
major Windows Systems.

Subsystem: This value represents whether the executable has a graphical user
interface (GUI) or runs in the console (CLI).

DLL Characteristics: If the is a DLL, there is crucial information like the program’s
ability to understand if it is running on a terminal, a server, as a service and most
importantly whether or not it has the ability to move within the system’s memory.

26

w' CFF Explorer VIl - [samplejpg]
File Settings 7

2§

= Fle: sample jpg

— (=] Dos Header

[Z] Mt Headers

(=l File Header

[Z] Optional Header

(=] Data Directories [«]
— (=] Section Headers [x]

— hi‘llmport Directory

— l.i'lException Directory

— [TLS Directory

— '*‘_},kﬂ'm Converter
— 4, Dependency Walker
—), Hex Editor

— 4, Identifier

— 4, Import Adder

— 4, Quick Disassembler
— %, Rebuilder

— 'Liﬁmm Editor

The Section Header

e | .
Member Offset Size Value Meaning
Magic 000000928 Word 020B PEG4
MajorLinkerVersion 0D00009A Byte 02
MinorLinkerVersion 0D0D0009B Byte 18
SizeQOfCode 0D00009C Dword 0DOOTEQD
SizeQfInitializedData 000000AD Dword 00001C00
SizeQfUninitializedData 000000A4 Dword 00000C00
AddressOfEntryPoint 000000AS Dword 00001500 text
BaseOfCode 0DDO00AC Dword 00001000
ImageBase 000000B0 Cword 0000000000400000
SectionAlignment 000000BS Dword 00001000
FileAlignment 000000BC Dword 00000200
MajorOperatingSystemVers... | 000000C0 Word 0004
MinorOperatingSystemVers...| 000000C2 Word 0000
MajorlmageVersion 000000C4 Word 0000
MinerlmageVersion 000000CE Word 0000
MajorSubsysternVersion 000000CE Word 0005
MinorSubsystemVersion 0DDODOCA Word 0002
Win32VersionValue 0D0000CC Dword 00000000
SizeQflmage 0D0000DO Dwaord 00022000
SizeQfHeaders 000000D4 Dwaord 0D00DE00
CheckSum 000000D2 Dword 00023977
Subsystem 000000DC Word 0003 Windows Console
DliCharacteristics 000000DE Word 0000 Click here
SizeQfStackReserve 0D0000ED Cword 0000000000200000
SizeQfStackCommit 0D0000ES Cword 0000000000001000
SizeOfHeapReserve 0D0000FD Cword 0000000000100000
SizeCfHeapCommit 0D0000FS Cword 0000000000001000
LoaderFlags 00000100 Dword 00000000
MNumberOffvafndSizes 00000104 Dword 00000010

Figure 2.3.12 - The Optional Header tab

As discussed before there can be an indefinite number of sections in the PE file format.
The Section Header can be a valuable resource because it mostly consists of the same
parts. An experienced analyst can identify sections that indicate an attempt to obfuscate

code.
The standard parts are:

e _text: contains the code.

27

e .rdata: contains data that is read-only, for example strings
e _data: contains mutable data
e .rsrc: contains various resources like images, sounds, icons and other assets.
e .idata: contains the Imports Address Table, that we will see soon.
w CFF Explorer VIl - [totallyNetMalware.png] - m} X
File Settings 7
H @ totallyNotMalware. png x
-
MName Virtual Size Virtual Address | Raw Size Raw Address Reloc Address | Linenumbers | Relocations M... | Linenumbers ... | Characteristics
=] File: totallyNot Malware png
— (& Dos Header
(= Nt Headers Byte[8] Dword Dword Dword Dword Dword Dword Word ‘Word Dword
AT_*?:] File Header et 0010718C 00001000 00107200 00000400 00000000 00000000 0000 0000 60000020
(= Optional Header
(=) Dats Directories [x] relata 0000105 00109000 00000200 00107600 00000000 00000000 0000 0000 40000040
[3 Section Headers k] data 00005124 0D10A000 00005200 00107800 0000000 00000000 0000 0000 0000040
— |2 Import Directory
|— 2 Resource Directory 2 0000AQS7 00110000 000DAADO 0010CA00 00000000 00000000 0000 0000 CO000020
— % Address Converter rsrc 00011004 00118000 00011200 00117400 00000000 00000000 0000 0000 40000040
— "j_-,[)eperﬂency Walker
— %, Hex Editor
— %, Identifier
— 4, Import Adder
— *‘j_,Qunk Disassembler
— i, Rebuilder
— '-‘ﬁ_-,REsoum Editor o
L—) UPX Unility B B = P =
Offzet 0 1 2 3 4 5 6 7 & 9 & B C D E F | hscii
00000000 | 4D S& 90 00 03 00 00 00 04 00 00 00 FF FF 00 00 |WZ 0 .0 ¥y
00000010 | B8 00 00 00 00 00 00 DO 40 00 00 00 00 00 00 00 |, @ ...
00000020 [00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
00000030 | 00 00 00 00 00 00 00 00 00 00 00 00 80 00 00 00 | 1
00000040 | OE 1F EBi OE 00 B4 09 CD 21 B 01 4C CD 21 54 66 |0 20.°.11,0L1ITh
00000050 | 69 73 20 70 72 6F 67 72 61 6D 20 63 61 GE 6E 6F | is.program canno
00000060 | 74 20 62 65 20 72 75 6E 20 69 6E 20 44 4F 53 20 |t be.run.in.DOS.
00000070 | 6D &F 64 65 2E OD OD D& 24 00 00 00 00 00 00 00 |mode. .. .$
v

Figure 2.3.13 - The Section Table
The section “r2” is definitely not standard. Maybe a malicious actor used some sort of
packer to bypass outdated antivirus software.

The Import Access Table
The Import Access Table, also referred to as Import Directory, allows us to inspect the

number of functions that get imported. As we saw earlier, at the Analyzing Strings
section, malware often make API calls and take advantage of built-in Windows features.
On the IAT there is a list of all these calls, classified under the correspondent dll. Then,
simply visiting Microsoft’s official documentation, we can get a rough idea of the data
this program collects and what it does with it. Of course, these calls are not nefarious by
themselves, but some of them (HTTP requests, file enumeration, keystroke control,
socket opening just to name a few) should raise serious alarms. An excellent resource
for these calls is ‘A Novel Approach to Detect Malware Based on API Call Sequence
Analysis’ by Youngjoon Ki, Eunjin Kim, and Huy Kang Kim [3]
(https://journals.sagepub.com/doi/full/10.1155/2015/659101 last day visited: 14/2/2023).

28

https://journals.sagepub.com/doi/full/10.1155/2015/659101

|dentifying Packers

The main functionality of Packers is to compress and potentially encrypt data or files
into a single file. However a more sinister application is to hide an executable before it
gets unpacked. Luckily, there are tools and techniques that can help with identifying a
packed file. One of these methods we have already seen in the previous section, where
examining the Section Table and the Import Access Table can provide enough intel to
understand if this is the case.
Another way to figure out if a packer was used has to do with entropy. By definition,
entropy is the randomness and the lack of predictability of the bytes of a file. A high
amount of entropy usually indicates that a packer has been used. Flare VM does not
come with a tool to calculate the entropy of a file, however there is a handy little tool
simply named “entropy” (last day visited - 5/2/2023) that can assist us.

FLARE Sun ©2/085/2823 4:28:4¢

C:) \F1) \ ®e sample.exe

5.15 sample.exe

FLARE Sun 82/

C:\Users\Flare V

FLARE Sun ©2/@5/2823
C:! s ownl

8.88 totallyNotMalware.zip

FLARE Sun ©2/85/2023 4:30
C:\Users\Flare \Download

Figure 2.3.15 - High Entropy File

According to the documentation, values greater than 7 indicate the use of a
compression algorithm.

29

https://github.com/merces/entropy

Dynamic Analysis

Theoretical Background

There are a few major questions when it comes to dynamic analysis.
1. What does the malware do now?
2. Does it create any types of persistence in the victim’s machine?
3. Does it remain dormant and if yes, for how long?
4. Does it try to get access to the rest of the network and if yes, in what way?
5. Does it try to get elevated privileges?

Some of these questions must be answered in real time, as the malware runs while
others can be answered at a later time. In any cases, dynamic analysis is more fluid and
demanding and we often use techniques taken from the static analysis handbook.

Identifying Processes

Since we will be purposefully executing malware, we first need to understand that files
can remain dormant and harmless in a system. It is a process that we, as malware
analysts, should be careful of. Both in Windows and in Linux systems, the file, once
executed, is copied to the system’s memory (either RAM or Virtual Memory/Swap) and
then it gets executed by the operating system. So, now that we know what a process is,
we should see how to actually monitor them. In Linux systems there are obviously
numerous options to do so, with the “top” command being preinstalled and the “htop”
command that builds on top and delivers information in a more coherent way. In
Windows systems, the Task Manager can be a useful tool, however Flare VM offers
“Process Hacker” as a better alternative. In both cases, the process has an id (PID) and
we can get the file that created the process as well as the resources it consumes.
These tools are the first defense against cryptojacking malware, since they can sort the
processes according to the resources allocated to them.

Analyzing Packets

In order to analyze the packets we use Wireshark on the Kali VM and set the filter

ip.src == 192.168.42.140
to get all traffic originating from Flare VM. If we have blocked Flare’s access to the
internet, as the filter we should use

ip.src == 192.168.42.140 and udp.port != 53

to drop dns requests that tend to overwhelm the workspace.

30

& *eth0

File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

AODA® R BEB @ « > n « > B

N [ip-src==192.168.42.140]

Protocol Length Info
TCP
ICMP)
MSS5=1460 WS=256 SACK_PERM

» Frame 9: 66 b

» Ether 11,

» Internet Protocol Version 4, W b
(@ Transmission Control Protocol, Src Port: 25018,

® E wireshark_ethOQIW7Z1.pcapng Packets: 45 - Displayed: 4 (8.9%) Profile: Default

Figure 2.4.1 - Wireshark

The destination field is the important one since most modern malware will try to contact
a Command and Control server. This server will probably be a computer that the
hackers have access to and route their traffic through it. Once we have this information,
we can use the nslookup command to find the domain the IP corresponds to. In this
case it is a legitimate github page (and it is accurate since | just refreshed a browser tab
for demonstration purposes), but a proper malware will try to connect to a weirder
address.

E

kali@kali: ~

File Actions Edit View Help

— | -

14@

name = lb-140-82-121-4-fra.github.com.

Authoritative answers can be found from:

Figure 2.4.2 - nslookup

Privilege Escalation

There are two major ways for the hacker to get administrator rights. The first and most
common is the use of Mimikatz[4], a tool that was ironically developed to display the
security flaws of Windows security services but ended up being misused on a standard
basis from hackers to achieve privilege escalation. And while the stock Windows

31

Defender has become good in detecting and stopping Mimikatz specifically, the overall
security flaws still exist. And they are utilized without raising the alarms like Mimikatz
does.

In the following figure, we display how every user, malicious or not, can create a file
containing NTLM hashes. NTLM is the hashing algorithm used for passwords on a
Windows system and has been found to have critical vulnerabilities. By selecting
“Create dump file” a user can get that file and exploit one of these vulnerabilities to get
all passwords, even administrative ones. Note that | said “user”. All users have access
to this feature, legitimate or not.

1% Task Manager — O >
File Options View
Processes Performance App history Startup Users Details Services
1% 20% 0%
MName Status CPU Memory Disk M
[55] Windows Security Health Service 0% 1.7 MB 0 MB/s -
Windows processes (75)
[85] Client Server Runtime Process 0% 0.7 MB 0 MB/s
[85] Client Server Runtime Process 0% 0.8 MB 0 ME/=
BEX Console Window Host 0% 0.2 MB 0 MB/s
[55] Desktop Window Manager 0% 29.0 MB 0 MB/s
v [#=] Local Security Authority Process (3) 0% 4.4 MB 0 MEB/s
Collapse
. CMNG Key Isolation End task
~. Credential Manager Recource values :
. Security Accounts Manager Provide feedback
LocalServiceMoMetworkFirewall (2)] 0% 6.4 MB 0 MB/s
Create dump file
[5=] Registry 0% 3.6 MB 0 MB/s
Go to details
Service Host: Application Informatic Open file location 0% 0.6 MB 0 MB/s
Service Host: Clipboard User Service Search online 0% 1.6 MB 0 MB/s
. v
" Properties 5
Fewer details End task

Figure 2.4.3 - The Local Security Authority Subsystem Process (LSASS.exe)

Network Enumeration

Once an attacker has a hold of a system and has administrator privileges, they can use
a wide array of networking tools to scan the rest of the network and decide whether or
not it is worth their time to exploit it further. Note that these tools are, once again,
legitimate and are used by network engineers to setup, control and test the
communication capabilities of a network. There are various tools for this with the most

32

common one being nmap, a tool present in Windows (and most Linux) systems. Nmap
is a Command Line Interface tool and most hackers learn about it early on in their
career.

Starting Nmap 7.70 (https://nmap.org) at 283 11:16 Pacific Standard Time
MNmap scan report for od .42.1

Host is up (8.08s later

Mot shown:

:F® (QEMU wirtuwal NIC)

68.42.141

Host is up (8.08s later
All 1888 scanned ports on 192.168.42.141 are filtered
MAC Address: 52:54:808:4D:42:FB (QEMU virtual NIC)

Mmap scan report for 192.16 2.146
Host is up (©.8880812s laten
Mot shown: » closed ports

STATE SERVICE

open mMsrpc

open io

open micros

open wsdapi

IP addr (3 hosts up) scanned in 14.17 seconds

Figure 2.4.4 - Nmap

This is not a network worth attacking further, however in most organizations, the
machines communicate with each other and usually contain the same vulnerabilities.
Also, if there is an Active Directory setup, the domain controller becomes an immediate
target since they possess the credentials for all the users.

Persistence

Most malware employ some form of persistence in the victim’s machine. In Windows
machines there are several ways to achieve this. Our job is to identify and eradicate this
persistence. Before delving deeper in the persistence techniques and tools, it is worth
noting that sometimes malware will simply exist at the folder:

C:\Users\$username\AppData\Roaming\Microsoft\Windows\Start
Menu\Programs\Startup

Finding anything weird there should be promptly followed by an investigation and the
quarantine of the said application.

Task Manager

33

The trusty Task Manager, while not foolproof, can once again provide useful information.
Heading to the “Startup” tab, we will be greeted with a list of applications that have the
capability to run when the computer starts. There, we can disable any malicious
application from starting and by right-clicking and selecting “Open File Location” from
the menu, we can view the file that gets executed on startup.

While a good support tool however, it is crucial to understand that we cannot entirely
rely on the Task Manager to provide all the information we might need. That is because
there are services that can bypass our choice. And while we can also view them under
the “Services” tab, the sheer number of legitimate services running can easily drown
and hide a malicious one.

Reqistry

By opening the registry editor app (simply searching “regedit” on the start menu will
display it), we get better access to the entire system. Here, we must look for the Run
and RunOnce keys, existing under:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Run
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\RunOnce
HKEY_CURRENT_USER\SOFTWARE\Microsoft\Windows\CurrentVersion\Run
HKEY_CURRENT_USER\SOFTWARE\Microsoft\Windows\CurrentVersion\RunOnce

The first thing we can notice here is whether or not the hacker got administrative
privileges, since everything under HKEY_LOCAL_MACHINE is system wide and
everything under HKEY_CURRENT_USER is specifically for the active user.

It is worth noting that most malware will have a Run and NOT a RunOnce key, since
they want to be executed every time the computer starts. Malware with the RunOnce
key, usually contain another form of persistence after they get executed.

Task Scheduler

The Task Scheduler is another legitimate tool that can be used for nefarious purposes.
Its biggest strength when it comes to malware, is its ability to keep a file dormant and
thus, almost invisible until a certain moment in time, whether that is a specific date or
after a set amount of time has passed. This is important because most automated
malware analysis solutions scan for the first minutes the computer is on and then
happily stop consuming resources. One additional way the Task Scheduler benefits
malware is by running the malware again after a set amount of time if the process
crushes or gets disrupted by the user.

We, as analysts, can view the scheduled tasks with the command

schtasks /query /fo list /v > scheduledTasks.txt

34

This will be a long list that far exceeds the Command Prompt’s default line limit and that
is why it is better for us to redirect the output to a simple text file and review it at our
leisure. On the following figure we can see everything we can extract from each record.
Each field is pretty much self-explanatory and the amount of information present is vital
for our analysis.

HostName: DESKTOP-T7NU14Q
TaskName: \Microsoft\Windows\.NET Framework\.NET Framework NGEN v4.8.38319 64 Critical
Next Run Time: N/A
Status: Disabled
Logon Mode: Interactive/Background
Last Run Time: 11/25/2822 11:14:28 PM
Last Result: a
Author: N/A
Task To Run: COM handler
Start In: N/A
Comment: N/A
Scheduled Task State: Disabled
Idle Time: Disabled
Power Management:
Run As User: SYSTEM
Delete Task If Not Rescheduled: Disabled
Stop Task If Runs X Hours and X Mins: 82:00:00
Schedule: Scheduling data is not available in this format.
Schedule Type: At idle time
Start Time: N/A
Start Date: N/A
End Date: N/A
Days: N/A
Months: N/A
Repeat: Every: N/A
Repeat: Until: Time: N/A
Repeat: Until: Duration: N/A
Repeat: Stop If Still Running: N/a
Figure 2.4.5 - Task Scheduler record
Shortcuts

The final technique is the masquerading of shortcuts that will, once clicked by the user,
first run the malware and then run the software the user intended to. It is by far the least
elegant technique and at the same time one of the more deceptive ones for the same
reason: It requires user interaction.

It is not elegant because none can be sure that the user will actually press on the
shortcut. Even if the software is vital for their day to day life, there are always more
ways to execute a program without relying on its shortcut.

It is deceptive because there is nothing system-wise for the analyst to figure out.
Nothing on startup, nothing on the registry, no weird active services and nothing on the
task scheduler. The malware runs seemingly at random and without clear indication as
to why that happens.

Services

Services, one of the most common techniques used due to their reliability. As we saw
earlier, the Task Manager has a separate tab for services. It is cluttered however with a

35

ton of legitimate services that Windows use to operate. Just like with the Task
Scheduler, there is a powershell command capable of finding all the services and
outputting them in a file:

Get-WmiObject win32_service | select Name, DisplayName, @{Name="Path’;
Expression={$_.PathName.split("")[1]}} | Format-List > servicesOutput.txt

An example of these records is the following figure:

Name : brave
DisplayName : Brave Update Service (brave)
Path : C:\Program Files (x86)‘\BraveSoftware\Update\BravelUpdate.exe

Figure 2.4.6 - Service record

While considerably shorter, this simple line provides enough information to locate and
purge unwanted services.

Understanding Subterfuge Techniques

Malware does not want to be discovered. And malware authors can go to extreme
lengths in order to avoid detection by tools and analysts. The most basic technique
used is the avoidance of certain tools. To do so, malware scans the processes and if at
any point finds a process named under a blacklisted application, the malware either
suspends or terminates itself, until the next time it starts again under its persistence
rules that we described earlier. One of the most common ways for a malware analyst to
bypass this feature is to simply change the name of the tool they are using. Advanced
analysts can develop custom tools, but that is an unnecessary reinvention of the wheel.

Another, way more advanced, way for malware to avoid detection is process injection.
According to Ashkan Hosseini[5]
(https://www.elastic.co/blog/ten-process-injection-techniques-technical-survey-common-
and-trending-process last day visited: 14/2/2023), process injection is “a widespread
defense evasion technique employed often within malware and fileless adversary
tradecraft, and entails running custom code within the address space of another
process’. It is achieved by the use of API calls capable of creating processes, allocating
memory, copying data to the said memory, creating threads and in general, performing
all variations of nasty stuff.

Classic DLL Injection
The first process injection technique starts by enumerating the running processes. The

malware searches for a process that it can utilize and that has the desirable privilege
rights. Once it has a target, it will use the VirtualAlloc API call to extend its memory
before using WriteProcessMemory to add the path to a specific dll. Then, it will simply

36

https://www.elastic.co/blog/ten-process-injection-techniques-technical-survey-common-and-trending-process
https://www.elastic.co/blog/ten-process-injection-techniques-technical-survey-common-and-trending-process

run CreateRemoteThread giving the malicious library enough resources to get loaded
and executed.

Portable Executable Injection

The only difference PE Injection has with the Classic DLL Injection is the fact that
instead of loading a dll to the memory, it writes a completely new Portable Executable
file and runs it directly.

Thread Execution Hijacking
Also known as Suspend, Inject, Resume, the malware will first suspend the thread that

runs a process, then use VirtualAlloc to regulate the process’ memory before injecting
a diI's path into that memory location. Then, a simple use of LoadLibrary will load the
actual malicious code from that library and that code will instruct the thread to resume.

Process Hollowing
Similarly to the Thread Execution Hijacking, in Process Hollowing the malware

suspends the thread, but instead of regulating the memory with VirtualAlloc to provide
additional memory to the process, they use it to remove the process’ original code.
Then, with the WriteProcessMemory call, the malicious code will be added directly to
that area of the memory, before signaling the thread to resume. The main difference
with Thread Execution Hijacking is the fact that in Process Hollowing, the original
process gets completely wiped and only its vessel remains to execute the malware
instead of both the malware and the legitimate code running simultaneously.

Example
If we open a notepad and run the module T1055 from the Atomic Red Team

(https://github.com/redcanaryco/atomic-red-team last day visited: 14/2/2023) package,
we will see a messagebox appear at our notepad. This process hijacked a legitimate
one to run code.

s\Flare VM\Desktop\atomic-red-team-master\atomics\T1855\bin\x64\InjectView.exe"
Motepad first.

s\Flare VM\Desktop\atomic-red-team-master\atomics\T1855\bin\x64\InjectView.exe"

37

https://github.com/redcanaryco/atomic-red-team

File Edit Format View Help

MezzageBox >

Atomic Red Team

Ln 1, Col1 100% Windows (CRLF) UTF-&

Figures 2.4.7 - Process Injection

Detonating Malware

Detonating malware is a potentially dangerous issue and analysts should take additional
measures to prevent the malware from escaping, while still doing their work.

The first measure is by correctly setting up their Lab environment. Thankfully, almost all
hypervisors have a screenshot feature where the user can save the state of a system
and recall it. So, once the analysis is complete, going back to a previous state becomes
rather easy.

The second measure is also for safety and revolves around networking. By setting up
the gateway VM correctly, analysts can cut traffic to the machine used for analysis at will
in case things get out of hand.

With the lab being already set up, we are ready for the most dangerous and most
rewarding part of Malware Analysis, which is actually detonating malware.

enshRegistry and Filesystem Monitoring

In order to find what changes a malware did on our system, we need a reliable way to
know the changes that took place. Our limited human memory is obviously not the best
tool to handle such a task, but there is an old yet reliable tool that can do that for us.
That tool is Regshot and its main function is to take a screenshot of the registry and the

38

filesystem. After detonating the malware, we can run Regshot again to see what
changes appeared in our system. The major drawback Regshot has is that it cannot
possibly understand what changes were made due to the malware and what changes
were scheduled Windows tasks. The only thing we can do is to reduce to the minimum
the time between the two screenshots and do not perform any other tasks other than

detonating the malware.

ws Regshot 1.9.1 x84 Unic...

Compare logs save as:
(® Plain TXT {_JHTML document

[]5can dir 1[:dir2;dir3;. .. :dir nn]:
| C: |

Output path:
| C:\Users\Flare In'M'n,Deskb:np'|

Add comment into the log:

English w

Figure 2.4.8 - Regshot User Interface
x

sy Cllompare

Keys deleted: 0

. &stshot

Datetime: 2023-02-07 05:44:53
Computer: DESKTOP-TTNUIEAO
Username: Flare Wi

Keys: 460783

Values: 764231

Dirs: 89574

Files: 3226538

> ek 82nd shot

Datetime: 2023-02-07 05:46:34
Computer: DESKTOP-TTNUIE0

Username: Flare WM
Keys: 460789
Values: 764233
Drirs: 89574

Files: 322690

Keys added: 1

Values deleted: O

Values added: 2

Yalues modified: &

Folders deleted: 0

Folders added: O

Folders attributes changed: O
Files deleted: 0

Files added: 1

Files [attributes?] modified: 4
Total changes: 16

Figure 2.4.9 - Regshot before and after detonating the locky.exe ransomware

The locky.exe ransomware is a known and well documented threat, however it is known
to evade detection. Still, Regshot found the modifications it did in less than two minutes.
Time to restore Flare VM to a previous screenshot before proceeding.

39

Monitoring Processes

We have already seen how to identify processes. However, since we will be monitoring
processes as they are created, we need tools that can ignore the old ones and display
the recent or at least a tool that can conveniently filter them.

ProcWatch
Such a tool is ProcWatch, already implemented in Flare VM.

& Monitoring for new Processes — O x

CmdLine

11:13.05 &b C\Wlndnws\System32\SearchFlIteanst one

Figure 2.4.10 - The ProcWatch tool

As we can see, the interface is really simple and the information displayed contains the
timestamp of the process, the process ID, the user that initiated the process and the
path of the file that created the process. It is worth noting that ProcWatch needs to be
run as administrator in order to display processes not created by the active user. Since
many malware usually try to get administrator privileges before executing the malicious
part of the code, it is always better to run it as an administrator.

Getting the location of the file that created the process is the most important part of the
entire process monitoring procedure, because once we have the file we can
immediately start our reconnaissance utilizing static analysis techniques like hashing.

ProcMon

Another tool, far more sophisticated but less user-friendly is ProcMon. It needs some
setup to get working but it can deliver immense information when detonating malware. It
can monitor registry, filesystem, network, processes, threads and events. Also, it has a
very well versed filtering system that allows us to cancel the noise that can exist by
legitimate applications and services. For example, if we know that the malware is in the
form of a dll, we can only display processes with the name regsvr32.exe or rundll32.exe
and if we know that the malware is a vba script attached to a microsoft excel or a
microsoft word file Excel.exe or Word.exe respectively.

40

File Edit Event Fiter Tools Options Help

BELRD YAO|& L ./|H - 2 E W

2
Time ... Process Name PID peration Path Result Detai @
1373, W svchost axe 1964 ¥4 ReadFie C:\Windows' System32 Siate Repository . SUCCESS Offset: 690,638, L

1373, W svchost.ane 1964 %+ ReadFie C:\Windows"System32\Siate Repostory... SUCCESS Offset: 678,400, Le. B Process Monitor Filter

1373, W svchost exe 1964 74 ReadFie C:\Windows' System32\ Siate Repostory . SUCCESS Offset: 635,904, Le

1373... Wlsass.exe 664 s ReadFle C:Windows\System32easrv SUCCESS Offset: 1.598.976, .. T ST aETS

1373, 664 & ReadFile C:\Windows' System32sasrv dl SUCCESS Offset: 1,582,592,

1373, 664 ¥4 ReadFie C:\Windows' System32\lsas di SUCCESS Offset: 1,498,624, is v then | Include
1373, 664 QueryNamelrfo...C:\Users\Flare VM App DatatLocal\Te... SUCCESS Name: \Users\FLA Architect

1373, 4340 [RegQuenyKey HKLM SUCCESS Query: HandleTag Authentication ID -
1373, 4340 [y RegOpenKey HKLM\Scftware\Microsoft\lnput\Settings SUCCESS Desired Access: R. Category Add emo
1373, 4340 B RegQuenyKey HKCU SUCCESS Query: HandleTag Command Line

1373, 4940 [RegOpenKey HKCUASoftwars\Microscft\lnput\Settings NAME NOT FOUND Desired Access: R.. Company

1373 4840 [B ReqQueryKey HKLM\SOFTWARE\Microsoft\input\Se . SUCCESS Query: HandieTag Completion Time n Value Action

1373, 4840 [B RegOpenKey HKLM\SOFTWARE\Microsaft\lnput\Se. .SUCCESS Desied Access: . Date & Time Procmon.exe Exclude

1373, 4840 [RegQuenyValue HKLWM\SOFTWARE Microscft\InputSe.. SUCCESS Type: REG_DWO Description Procexp.exe Exclude

1373, 4840 [ReqCloseKey HKLM\SOFTWARE\Microsoftnput\Se...SUCCESS Detail Ao oxe Exclude

1373, 4840 [RegCloseKey HKLWM\SOFTWARE Microscft\InputSe.. SUCCESS Daration P e B

1373, 4340 [RegQueryKey HKLM SUCCESS Query: HandleTag Event Class

1373, 4840 [ReqOpenKey HKLIM\Software\Microsoft\Input Settings SUCCESS Desired Access: R Image Path Procexpbdexe Exclude

1:37:3 . [Hctimon exe 4340 [B RegQueryKey HKCU SUCCESS Query: HandieTag Integrity System Exclude

1373, [Hetfmon.zxe 4840 [ReqOpenkey HKCL\Software\Microsoft\InputSettings NAME NOT FOUND Desired Access: R Operation wih IRP_MJ_ Exclude

1373 [fctimon exe 4340 [RegQueryKey HKLM\SOFTWARE \Microscft\Input\Se. SUCCESS Query: HandleTag Parent PID

1:37:3... [Hctimon.exe 4340 [ReqOpenKey HKLM\SOFTWARE\MicrosoftlnputiSe . SUCCESS Desired Access: Q.. Path Cancel App
1373 [Hctimon exe 4340 [B RegQuenValue HKLM\SOFTWARE Microsaftinput\Se...NAME NOT FOUND Length: 144 i

1:373... [Hemon.zre 4840 [B RegCloseKey HKLM\SOFTWARE\Microsoft\lnput\Se. .SUCCESS Process Name

1373 [#ctimon exe 4340 [RegQueryKey HKLM\SOFTWARE \Microsoft\Input\Se.. SUCCESS Query: HandleTag Relative Time.

1373.. [Hctimon.exe 4840 [B RegOpenKey HKLM\SOFTWARE \Microsoft\lnput’Se...SUCCESS Desired Access: Q. Result

1373 [#ctimon exe 4840 [RegQuenyValue HKLM\SOFTWARE Microsaftinput\Se...NAME NOT FOUND Length: 144 Sequence

1373... [Hctimon.ere 4840 [RegCloseey HKLM\SOFTWARE \Microsoftlnput\Se.. SUCCESS Sestion

1373 [Hetimon.cxe 4840 [ReqQueryKey HKLM\SOFTWARE Microscft\Input\Se.. SUCCESS Query: HandleTag 5

1373 [Hctimon cxe 4840 B RegOpeniey HKLM\SOFTWARE \Microsoft\lnput\Se.. SUCCESS Desired Access: Q. Time of Day

1373, [Hetfmon.zxe 4840 [ReQuenValue HKLM\SOFTWARE Microsaft input\Se... NAME NOT FOUND Length: 144 cer

1373 [ffctimon exe 4340 [RegCloseKey HKLM\SOFTWARE \Microsoft\Input\Se. SUCCESS Version

1:373... [Hetmon.zre 4340 [B§ RegQuenValue HKLM\SOFTWARE \Microsoftinput\Se...NAME NOT FOUND Length: 144 Virtualized

1373 [Hctimon exe 4340 [RegCloseKey HKLM\SOFTWARE Microsoft\Input\Se.. SUCCESS

1:373... [Hemonzre 4840 [B§ RegQueryKey HKCU SUCCESS Query: HandeTag...

1373 [Hctimon exe 4340 [RegOpeney HKEUNSOFTWARE Microsoft\Input\Se...NAME NOT FOUND Desired Accass: Q.

1373.. [Hctimon.exe 4840 [B RegQueryKey HKLM SUCCESS Query: HandeTag. ..

1373 [#fctimon exe 4840 [RegOpenKey KL\ Software\Microsoft\lnputLocale.. SUCCESS Desired Access: R

1373.. [Hctimon.ere 4340 [RegQuenValue HKLM\SOFTWARE \Microsoftlnput\La .. SUCCESS Type: REG_DWO.

1373 [Hetimon.cxe 4840 [ReqCloseKey HKLWM\SOFTWARE Microscft\Input\Lo... SUCCESS

1373 [fctimon cxe 4840 s QueryNamelrfo...C:\Users\Flare WM \AppDataLocal\Te... SUCCESS Name: \Users\FLA,

1373, [Hetimon exe 4840 % ReadFie C:\Windows' System32\CarelJICompon. . SUCCESS Offset: 2,686,464,

1373 [ffctimon exe 4340 [RegQueryKey HKLM SUCCESS Query: HandleTag

1:373.. [Hemon.zre 4840 [B RegOpenKey HKLM\Scftware\Microsaft\input \Locale...SUCCESS Desired Access: R..

1373 [fctimon exe 4840 [B RegQuenValue HKLM\SOFTWARE \Microscft\InputLo... SUCCESS Type: REG_DWO

1:373... [Hemonzre 4840 [B RegCloseKey HKLM\SOFTWARE\Microsaft\lnput \Lo.. SUCCESS

1373 [Hctimon exe 4340 [RegQuenyKey HKEU SUCCESS Query: HandleTag

1:373... [Hemonzre 4840 [B RegOpenKey HKCU\Scftware\Microsaft\InputPersan... SUCCESS Desied Access: .

1373 [#fctimon exe 4840 [RegQuenValue HKCLNSOFTWARE Microscft\InputPer... SUCCESS Type: REG_DWO

1373.. [Hctimon.ere 4340 [Bf RegCloseKey HKCUNSOFTWARE \MicrosoftlnputPer... SUCCESS

1373 [#ctimon exe 4840 [RegQuenykey HKCL SUCCESS Query: HandleTag

1373 [#ctimon exe 4840 B ReaOpenKey HKCU\SOFTWARE Microsoft\input\Se. NAME NOT FOUND Desied Access: R v
Showing 273,218 of 554,181 events (49%) Backed by virtual memory

Monitoring Process Injection

Figure 2.4.11 - Procmon and its sophisticated filter system.

On Process Injection, as we studied them, it is obvious that the tools we have seen so
far are helpful but not reliable. There is however a tool we can use named Sysmon
(System Monitor). To install it, we should simply open the command prompt as
administrators and type

sysmon -i

monitor

tion

Figure 2.4.12 - Sysmon installation and initiation

41

Now, to monitor whether or not there was a process injection event, we need to open
the Event Viewer and go to

Applications and Service Logs\Microsoft\Windows\Sysmon\Operational

and filter for an event with ID 8. It is the log generated when CreateRemoteThread is
called. According to Microsoft’s sysmon documentation
(https://learn.microsoft.com/en-us/sysinternals/downloads/sysmon last day visited:
14/2/2023), “The CreateRemoteThread event detects when a process creates a thread
in another process.”

Monitoring Network Traffic

We already saw how to monitor traffic using wireshark at the gateway system. However,
there are use cases where we want to remain inside our FlareVM. One such case may
be that the malware is suspected of being able to move between nodes of a network. In
order to restrict such behavior, we can contain the traffic inside Flare VM and use tools
to monitor it. A tool, already included in Flare VM, that allows us to do so is
FakeNet-NG. While not the most user friendly application, it is highly efficient as it
intercepts, records and displays traffic, by creating a virtual adapter and forcing all traffic
through it.

Figure 2.4.13 - FakeNet-NG Command Line Interface

42

https://learn.microsoft.com/en-us/sysinternals/downloads/sysmon

De-Obfuscating Malware

Before starting this chapter, we must realize that there is no standard method for
de-obfuscating code. Here, we will view techniques used universally for obfuscating
code and the way to counter them, followed by some techniques used for obfuscating
powershell code. Choosing powershell because it is one of the most potent ways to
create malware and can be executed in all machines running a Windows or a Mac
Operating System. Powershell can also run out of the box on various Linux distributions
including the most popular ones (Ubuntu, CentOS, Fedora, Debian, Red Hat)

Encoding

Encoding is the most obvious first step for making the code harder to analyze, as it gets
transformed to a non-human readable language. Fortunately, encoding is not by any
means encrypted. And thus, the procedure is reversible. There are various ways to
encode, with the most common ones being:

e Base64 (and variations): Base64 is a scheme that can encode text to binary and
vice versa. An indication that something is encoded under Base64 is the fact that
the encoded string has always a number of characters divisible by 4. If needed,
the encoder itself adds the character “=” as many times as needed. Malicious
actors are known to get out of their way to ensure that there are no such symbols
in order to better avoid detection.

Variations of Base64 are Base32, Base58, Base62 and Base85, depending on

the characters the person doing the obfuscation desires.

o
— - 50

ROOPRE1PUK5ITkcgVkLFVESBTQ=

- ~n "RO9PRE1PUK5ITkcgVkLFVESBTQ="
GOODMORNING VIETNAM

Figure 2.5.1 - Encoding and decoding a string under Base64

e Hexadecimal encoding: Hex encoding is easy to recognise, considering that
there are no letters beyond the letter ‘f’ in hexadecimal notation, but remains hard
to understand. We saw hexadecimal being used when viewing the contents of a
file earlier, in Static Analysis.

43

Goodmorning Viet
nam.

Figure 2.5.2 - Encoding a string under hex

e ASCII encoding: The ASCII table is widely used in many software applications
and malware obfuscation is not an exception. There are many online tools
capable of converting text to ascii and vice versa.

Text w To ASCI w

Goodmorning Vietnam J1ITM 100 108 1M 114 N0 105 110 103 32 86 105 101
116 10 97109

Figure 2.5.3 - Converting text to ascii

Unconventional Variable and Function Naming

Unsurprisingly, a very common method used to make code harder to read is variable
and function naming that are unconventional. Almost all text editors have the ability to
mass change a name to something that does not make much sense as a way to
confuse anyone willing to look at it.

For example:
[-and il
seem extremely similar and yet, through combining the capital letter i and the lower

case L, the code becomes much less readable. Another similar method is having long
strings of random letters, each representing a different function or variable.

44

However, no matter how annoying this method of obfuscation is, it is still reversible by
the same mechanisms that the malicious actor used. A cautious and persistent analyst
will be able to de-obfuscate it.

Clutter

A common addition to the unconventional variable and function naming is the addition of
junk lines. Variables and functions that do nothing other than confuse the analyst of their
purpose. These often include variables that are set and used and functions that are
called but with neither of them affecting the outcome of the overall program whatsoever.
In some cases, clutter has been observed to be disproportionately more than the actual
payload, sometimes reaching thousands of lines of useless code. And of course, most
of the time, there are useless variables in useless functions.

Useless functions may include a long sequence of commands that always return true.
Inserting that function in an if statement will have literally zero impact on the
functionality of the malware.

String Manipulation

String manipulation almost always results in a different hash calculation, resulting in the
malware being invisible to that method of analysis. Additionally, shell code like
Powershell can have strings as execution arguments resulting in this method being both
potent and easy to perform.

There are two major ways for a hacker to manipulate strings in order to obfuscate code.

e Replacement: By injecting specific character sequences and having the malware
remove them before execution, the author of the malware manages to only run
the “useful” part of the code.

For example, if they want to open a new Command Line they can run it like this:

$qwe = “cHGVKJHVGBUKJHMHGVKJHVGBUKJHAHGVKJHVGBUKJH”
start (($qwe -Replace “HGVKJHVGBUKJH” “))

What remains as an argument is: “cmd”

e Concatenation: By breaking the string to many parts and linking them together
before execution, a similar result is achieved

For the same example:

45

top\Malware\@l. Sa
op\Malware\@l.

op\Malware\B®l. 5

Wsersy\Flare VMY -top\Malware\@l.

Figure 2.5.4 - Starting cmd by concatenating the arguments of a function

Will result in the argument (cmd.exe) and thus opening a new Command Line
window.

e Array Element Reordering: A common addition to concatenation is reordering
with the use of arrays. By splitting the name of command and placing the
resulting strings in an array in random positions, the malware authors can hide
the actual commands in plain sight. More arrays and more elements further
increase the complexity.

Backticks (Powershell Specific)

Commands in Powershell can usually be separated with the backtick character * * ’
without really disrupting the execution of the code.

‘Malware\@l. Sample > Get-FileHash .\g

lware\@l. Sample > Get™ -Fi~

pi\Malware\@]

Figure 2.5.4 - Separating Powershell Code with backticks

Whitespace (Powershell Specific)

In powershell, and any application created under the .NET framework, whitespace does
not really matter, however it does provide a potent obfuscation method when combined
with other methods. For example, along with string concatenation:

(‘New-Object’) is the same as (‘Ne’ +w-O’" + ‘b + ‘ec + 1)

Combinations

46

As we already described in each of the previous categories, it is relatively easy to
deobfuscate code when only one method has been used. It gets significantly harder to
borderline impossible when these methods get combined though, since we, as analysts,
need to find out the exact steps that the malware’s author used and reverse them in the
correct order. This mostly comes through trial and error, though an experienced analyst
could potentially understand the sequence faster.

47

Malware Analysis Workflow

We talked a lot in the entire malware analysis section about various tools that are
regularly used by analysts in order to perform their duties. It is now time to put
everything together in a workflow that will consistently yield results. This workflow can
be divided into four main parts.

Information Gathering

Before actually running the malware, we need to check it statically. If the malware is
known, we could run it for research or for practice, but in most cases the cybersecurity
community will have already done so and will have posted any findings online.

1.

We identify the type of file using the file command.

2. We calculate the hash value and compare it on the various databases available

online.

We view the strings included in the file, they may contain API calls or even
information like the malware name or the author or a list of tools that their mere
presence would disrupt the malware’s detonation.

We analyze the Portable Executable file system with CFF Explorer for anything
useful.

If nothing makes sense, we might be facing a packer. We should check the
Entropy with the appropriate tool and if it is high enough, we could try to
decompress it with various algorithms and check again. If not, we are either
facing an obfuscated thread or a novelty.

In case the malware is obfuscated, we have to try reverting it to a human-readable state
in order to further analyze it statically. Else, we will move on to Dynamic Analysis.

Detonating the Malware

1.

First, we start FakeNet-NG.

2. Secondly, we run ProcMon. We immediately pause and clear it to remove clutter.

We pause it because ProcMon captures almost anything that happens, even
useful and legitimate processes. And on our next step, RegShot is going to
create an immense amount of records. We do not want them.

We run Regshot and take the first screenshot. We should screenshot the entirety
of the System drive (assuming C: for the majority of cases). After it is done, we
can resume ProcMon.

. Now is the time to run the malware and view the FakeNet-NG generated output.

It is important to pay attention to the network connectivity, in order to capture as it

48

happens any attempts to contact a Command and Control server or download
any additional tools, libraries or files.
5. We pause ProcMon and use Regshot to take the second screenshot.

There are a few points we must keep in mind.

e Some malware have a long wait time remaining dormant specifically to avoid
detection. While some will run instantly and only need seconds, some others can
lie and wait for 30 minutes or even more, according to their sophistication level.
As a starting point, we can run malware for 3-5 minutes and, if needed, we can
reset our Virtual Machine to a previous state and let it run for more or less
according to the results.

e If a piece of malware tries to download additional files or tools, after capturing the
addresses it tries to visit, we should reset the entire process (including reverting
our Flare VM to an older state) and run the entire process again WITHOUT
starting FakeNet-NG. We do that to simulate a real world scenario where all the
malware files are present. In these cases, we should get all the traffic through the
gateway with the use of Wireshark.

e Running a simple process like notepad or calculator as administrator will give the
malware the opportunity to hijack processes with elevated privileges, so we can
study in real time its capabilities.

It is clear by now that we want to provide the malware the appropriate breeding ground,
in order for it to cause the maximum damage. While counter intuitive, malware analysts
should always assume the worst case scenario and exhaust the malware’s capabilities.

Reviewing the Results

1. We open the Regshot comparison output.
2. We apply a few filters on ProcMon in order to focus on whatever happened. The
main operations we are interested in are:
TCP and UDP Connections (TCP Connect and UDP Connect)
e Registry values set (RegSetValue)
e Processes Created (Process Create)
e Files Created (WriteFile)
e Files Deleted (SetDispositioninformationFile)
Of course, we are also interested in any process named (ProcessName) after the
malware.
3. We open the Event Viewer and study the SysMon logs (assuming we have
already installed and enabled SysMon). We look for any events with ID equal to
8, as these are the processes that indicate Process Injection

49

Neutralizing the Threats and Disclosing the Findings

The analyst probably has some kind of obligation with the organization they work on.
They need to neutralize the threat, whether that be blocking adversarial IPs at the
firewall or excluding operations from the machines. Completely setting all systems from
scratch is the safest approach, however it is not always a viable one. In these cases,
the analyst’s job revolves around securing the infected systems as to prevent the
malware from spreading before setting new policies for all the computers in the network
or the organization.

In all cases, the cybersecurity academic and professional community must be informed
of the analyst’s findings as soon as possible. Disclosing the findings is more of a legal
procedure and involves working with the appropriate organizations involved, but it is
important for the malware to be documented for the protection of everyone using any
sort of device.

50

Reverse Engineering

What is Reverse Engineering in Malware Analysis

Reverse Engineering in general is the process of analyzing the results that an existing
product produces with the goal to design and create another product that can replicate
these results.

When it comes to Malware Analysis, it boils down to figuring out the source code and
the way it interacts with the system on a more primitive level, like the way it handles
memory and the way it interacts with the processor. The ultimate goal is to isolate the
malware to a single binary file that is stripped of other legitimate operations.

In this chapter we will first establish some basic terminology before delving into the tools
used for Reverse Engineering.

The Basics

Though the Assembly language, the Stack and the Heap as well as the Memory
Management are way beyond the scope of this thesis, some basics need to be
explained in order to better understand the tools and techniques of this section.

CPU Registers

The registers are small parts of data (typically consisting of 64 bits in modern systems)
that are part of the processor and either hold data or instructions. Due to their limited
size, registers cannot possibly contain files, however are more than capable of storing
memory addresses, pointers and instructions (functions).

The important registers are:

e RSP - Stack Pointer, a pointer to the top of the stack where the next instruction to
be executed resides (more on the stack later)

e RIP - Instruction Pointer, pointing to the memory address of the next instruction
to be executed. RIP can point to the top of the stack (and thus having the same
value as RSP), however it can also have a completely different value if points to
a function call

e RAX - Accumulator, stores the results of API calls

Other typical Registers in an x64 system include:

RBX - Base, is a pointer to data that is going to be used

51

RCX - Counter, used for shifting instructions and for looping

RDX - Data, whether that be arithmetic or input/output

RBP - Base Pointer, a pointer to the base of the stack (more on the stack later)
RSI - Source Index, a pointer to source in strings

RDI - Destination Index, a pointer to destination in strings

Since we will be analyzing malware and most malware is designed to run on both 64 bit
and 32 bit processors, it is important to remember that registers starting with the letter R
indicate 64 bit architecture and with the letter E, 32 bit architecture.

Microsoft’'s documentation is a great resource on both the x64 (64 bit) and the x86 (32
bit) architectures and can be found here:

https://learn.microsoft.com/en-us/windows-hardware/drivers/debugger/x64-architecture
(last day visited - 14/2/2023)

The Stack

Stack, commonly referred to as LIFO (Last In First Out), is one of the most primitive
Data Structures. When it comes to memory management, The Stack is a continuous
block of memory. Its purpose is to store local variables and return the addresses of
various functions. It is managed through the push, pop, call and ret operations.

The Heap

Heap is a binary tree based data structure. When it comes to memory management,
The Heap’s purpose is to store global store variables created dynamically during the
execution of a program.

Assembly Instructions

There are various sets of instructions, each serving different functionality. The most
prominent ones are:

e Logic: These instructions perform operations the same way a logic gate would.
This set of instructions includes and, or, xor, not, add, etc.

e Control flow: These instructions can change the flow of execution by moving to a

different section. They are also used for comparisons. This set includes push,
call, jne, jnz, jz, jmp, etc
Data Transfer: The instruction mov is used to transfer data stored in registers.
No Operation: nop is probably the most notorious operation for a good reason, as
it has been repeatedly used to exploit memory and lead to unexpected
operations. As an instruction, it simply tells the processor to do nothing and move
to the next instruction.

52

https://learn.microsoft.com/en-us/windows-hardware/drivers/debugger/x64-architecture

Accessing the Source Code with Ghidra

Ghidra is a tool developed by United State’s National Security Agency and has become
one of the most commonly used tools both for Malware Analysis and for Reverse
Engineering. It was leaked by WikiLeaks in 2017 and was declassified and released as
open source in 2019. Ghidra can decompile, debug and provide the source code of an
executable. As with any open source tool, it is free and can be downloaded from the
official website https://www.ghidra-sre.org/ (last day visited - 14/2/2023).

In order to better display Ghidra’s capabilities, we will use a trojan horse named Lokibot.

-~ c s An An oy BB
(1) 50 security vendors and 3 sandboxes flagged this file as malicious 3 C~

Tu
=
0da81175e7d72a7{f2bch3fd93f2ba7bbed045f9cddeebc9685c7fdf6dab22a6 1.16 MB 2022-11-14 04:40:50 UTC %
sample02.bin Size 3 months ago EXE
9 pesxs runime-modules detect.debug-snvironment
¥ Community N
DETECTION DETAILS RELATIONS BEHAVIOR COMMUNITY 12+

Join the VT Community and enjoy additional community insights and crowdsourced detections

Security vendors’ analysis (0 Do you want to automate checks?

Ad-Aware ’;\;‘ Trojan.GenericKD.33379966 AhnlLab-V3 ’;\/‘ Trojan/AU3 Wacatac 51079
Alibaba Q‘/ Backdoor Win32/Predator ede9485f AlYac Q/ Trojan Agent Wacatac
Antiy-AVL (1) Trojan/Generic ASCommon 168 Arcabit (D) Trojan Generic D1FD5G7E
Avast (D) ScriptSNH-gen [Trj] AVG (D) Script:SNH-gen [Trj]

Avira (no cloud) Q/ HEUR/AGEN.1245424 BitDefender Q/ Trojan.GenerickKD.33379966

Figure 2.6.1 - The Lokibot trojan horse

Obviously, Lokibot is malicious and so all the precaution measures we talked about in
the Malware Analysis section will be met.

Initiating the Process

First of all, we need to create a new Ghidra project. Will select Non-Shared for this
occasion (A shared project enables the collaboration of many analysts in a similar way
git enables it for developers).

53

https://www.ghidra-sre.org/

File Edit Project Tools Help

LRERE R LIRS

Tool Chest @ Mew Project

Active Proje

_____ noll e Select Project Location P

Project Directory: |C:\Users\Flare VM\DesktopiMalware \Sample_3

Project Mame: |sample3]

Filter: n

Tree View

Running Teg

<< Back Mext == Cancel

Peleted project: sample_3 =

=

Figure 2.6.2 - Creating new Ghidra Project

Simply dragging and dropping the file in the Ghidra environment will automatically result
in us getting some information. On this occasion we immediately get notified that the file

is of the Portable Executable format and that it is a 32 bit application for Windows
systems.

54

@

File Edit Project Tools Help

LREREER LIRS

Tool Chest
o E
Active Project: sample3
----- &7 sample3
@ Import /C:/Users/Flare VM/Desktop/Malware/Sample_3/sample.bin d
Format: | Portable Executable (PE) | @
Language: x86:LE:32:default:windows
Destination Folder: |sample3:/
Program Mame: | sample.bin
Options...
Filter: = &)
Tree View Table View
Running Tools
Workspace ~
hnished cache cleanup, estimated storage used: 0 =

Figure 2.6.3 - Immediate Ghidra information

Once we click ok, Ghidra will initiate the disassembly of the executable. This process
may take a while, according to the resources an analyst has allocated to the Virtual
Machine. Once it is done, we get the summary of the procedure.

This summary goes much more in depth than what we got earlier and provides not only
the target system and the architecture but also the size and the memory the executable
will use if run.

55

@ Import Results Summary *

= |Project File Name: sample.bin

':0] Last Modified: Mon Feb 13 11:38:01 PST 2023

— [Readonly: false
Program Name: sample.bin
Language ID: x86:LE:32:default (2.13)
Compiler ID: windows
Frocessor: X846
Endian: Little
Bddress Size: 32
Minimum Address: 00400000
Maximum Address: 0052F1fF
of Bytes: 1232756
of Memory Blocks: 7
of Instructions: 0
of Defined Data: 16533
of Functicons: 274
of Symbols: 572
of Data Types: 50
of Data Type Categories: 3
Compiler: visualstudic:unknown
Created With Ghidra Version: 10.2.2
Date Created: Mon Feb 13 11:37:34 PST 2023
Executable Format: Portable Executabkle (PE)
Executable Location: /C:/Users/Flare VM/Desktop/Malware/Sample_3/sample.bin
Executable MDS: 66£33597ch£097345c51881akba51b64]1
Executable SHA256: 04a2%91175e7d72a7ff2bcb3£d93£2baTbbed045f9cddeaScl685cTEdf6da622a6
FSRL: file:///C:/Users/Flare VM/Desktop/Malware/Sample 3/sample.bin?MD5=66£3359
PE Property[Translation]: 4B00E0S
Preferred Root Namespace Category:
Relocatable: true
SectionAlignment: 4098
£ >
r Additional Information
————— Loading /C:/Users/Flare VM/Desktop/Malware/Sample_3,/sample.bin --——— ::
[sample.bin]: failed to create TerminatedCString at 00527518: Failed to resolwe data length for Terminat
Delay imports detected...
————— Loading /C:/Windows/SysWOWe4/ADVAPI3Z.DLL ————-
Delay imports detected..
Library ADVAFI32.DLL: Examining C:\Windows\SysWOW&64\ADVAPI3Z.DLL
————— Loading /C:/Windows/SysWOW64/COMCTL32.DLL ————-
Delay imports detected... adl
£ >

Figure 2.6.4 - Ghidra’s Import Results Summary

Pressing ok will return us to the main window, with many options now activated. The
first option in the Tool Chest panel is the Code Browser. Dragging and dropping the file
on this button will create a new window and will prompt us to analyze the file (If it is the
first time we opened the Code Browser for this specific file). Note that simply pressing
the button does not work, we need to drag and drop the file. Pressing the yes button will
open a new window with various options. We don’t need to change anything here since

56

all functions not in prototype state will already be included. Pressing analyze will initiate
the decompiling process. This will take a few minutes. Once done, we can start
dissecting the file.

On the top left corner we can view all the sections of the Portable Executable as we
studied them in the corresponding Malware Analysis chapter. On the middle left panel,
we have the Symbol Tree that contains all the names that are found in the malware we
are analyzing, including variables, functions and API calls. On the bottom left corner is
the Data Type Manager, a convenient area where we can view all the known built in
functions.

In the middle is the Listing, the main panel that provides us the code in Assembly.
Finally, on the right side is the Decompile window, the area where we can view the code
in C. Note that this area is not always accurate, and needs to be treated with caution in
order to understand what the malware does.

Starting Point

In order to begin actually analyzing this malware, we need to start from the beginning. In
every programming language, there is an entry function. In C and C++ it is “int main()”,
in Rust it is “fn main()”, in Java it is “public static void main(String[] args)”. When we go
deeper though, in Assembly language, we only have the entry point. And Ghidra
provides us with this entry point by simply finding the “entry” record under Functions in
the Symbol Tree.

[Foramrees FERER- IR IR G o @~ X
& & sompebin 00427dz¢ 55 PUsH EEE ~
MED =] 00427da7 £h ec Hov EBP,ESE
B e 00427023 83 3d b4 Qe dword ptr [DAT_004c3dbd], 0xl
i rdata 3d 4c 00 01
e 00427ab0 75 05 mz 143_00427007 -
R 00827a52 28 B4 23 caL __FY_scRANNER
: reloc 00 00
@ Debugata EN
e LAB_00427db7 RREF[1]: 00427db0(3)
00427ab7 ££ 75 08 FUsE dword ptr [ESE + paran 1]
00427dba <8 caLL FUN_0042alc8
00427, PUsH
00427dc4 8 ae L __criExice:
00427acs 59 roE
00427dea 59 233
Program Tree x 00427dch sa 233
00427dze €3 RET
IS
=]
&= efined _ stdcall entry(void)
B - o s & (e
b ocaleName entry EREF([2]: Encry Point(*), 00400138(*)
T 00427dcd =8 bS A0 L security_init_cookie
¥ — _inie_
=1 00 00
§ Plooip 00427042 €5 71 fe e FUN_00427¢56
e 44
§ teminate
@ Labels 00427447 cc
[ED3 Classes 00427aas cc
Sty Hamespaces 0042740 ce
o0427ada ce
00427a4p cc
= 00427dde ce
Fiter: &
Al 00427044 cc
[E0sta v vianco - x 00427dde ce
00s27dar cc
- - I CE
Data Typ
Boawwpes [l | 4 Library Funcrion - Multiple Macche
£ [LJosample.bi
&5 basetsdh
B commet trlh
B commdg.h
B otdefsh
ooty
&5 Demangler = glx
© oos
) ehdatah
B eoth

57

Figure 2.6.5 - Ghidra’s Main Interface and Entry point

Clicking this entry point will direct the Listing to the appropriate line where we can see
the immediate call of the _ security init_cookie function, a C function used for
protection against buffer overrun
(https://learn.microsoft.com/en-us/cpp/c-runtime-library/reference/security-init-cookie

last day visited - 14/2/2023). And since Assembly executes lines consecutively (unless
stated otherwise with a jump instruction), the next operation is executed. On this
particular occasion, there is a jump instruction leading to a function named
FUN_00427c56 and by double clicking on its name, the Listing view changes to display
that particular function and we can see the code decompiled to C language at the right
panel.

B~ (5 & E-x

DD
MOVZX
TEST
anz

HREF[1]: 00427c30 (3)

¢, word pur [ERE]

LAB 00427c4f ¥REF[1]: 00427c23 (3)

LAB_00427c51 HREF[1]: 0042737 (3)

00427¢52 Se EOR ESI 17 if (CONCAT3L(=
00427¢53 Sb EOR EBX 1g| fast_ex:

24| FUN_00425beb();
|_0042d5d2() 7
<0

ex

EREF[2]:

EREF[1]:
EREF[1]:
entry:00427dd2 (c) 3q ir

1 00434523 ();
= FUN_00434b1b() 5

<0

EiT(8);

XREF[1]:

PUSH DAT_004ba0bs
CALL __SEH_prologd
CALL FUN_00426208

0x2
CALL FUN_00434e3a

MOV ERX, 0xSadd

o word prr [IMAGE_DOS_HEADER_00400000],2 -
00 00 40 00 A P v

F‘mﬁ- 8 &|x

Figure 2.6.6 - Viewing the code

Here, we search for a function call with three arguments. In most cases there will be
only one and it will be located just above the exit functions, however we need to check
every function with three arguments. According to the documentation
(https://learn.microsoft.com/en-us/cpp/cpp/main-function-command-line-args last day
visited - 14/2/2023) this is the signature of a Windows application’s main function:

58

https://learn.microsoft.com/en-us/cpp/c-runtime-library/reference/security-init-cookie
https://learn.microsoft.com/en-us/cpp/cpp/main-function-command-line-args

int main(int argc, char* argv[], char* envpl]);

Double clicking on this function’s name will get us to a different section of the code
where we can view code fairly familiar with what a human would write.

Now, we can start the slow process of understanding the code. Obviously, each piece of
malware is different and there can be no universal procedure, however there are a few
techniques we can use to make our life easier.

Editing the Names and the Signatures

The first thing we can do is identify the functions and the variables and edit their name
to something we can understand better. For example, we just found the main function,
still named FUN_004047d0. By right clicking, we can select “Edit Function Signatures”
and change it to the main function’s convention we found in the documentation.

28 Edit Function at 0040470 X

undefined4 FUN_UD404?£I (undefined4 param_1, undefined4 param_2,
VARIANTARG * * param_3)

Function Attributes:

Function MName: FUN_D04047d0 [Jvarargs []InLine

Calling Convention | _ stdcall ~| | [JMoReturn []Use Custom Storage
Function Variables

Index Datatype Mame | Storage

undefined4 <RETURM = EAX:4 s

1 undefined4 param_1 Stack[0x4]:4 %
2 undefined4 param_2 Stack[0xg]:4

3 VARIANTARG * = param_3 Stack[0xc]: 4 ﬁ
Call Fixup:

-MOME- (¥

==

Figure 2.6.7.1 - Before editing the names

59

#2 Edit Function at 004047d0 *

int main (int argc, char * * argv, char * * envp)

Function Attributes:
Function Name: main [(JVarargs []InLine

Calling Convention | _ stdcall w~ [Me Return [] Use Custom Storage

Function Variables

Index Datatype Mame | Storage
int <RETURM > EAX:4 +
int argec Stack[0x4]:4 %
2 char ** argv Stadk[0x&]:4
3 char ** envp Stack[Dxc]: 4 ﬁ
Call Fizoup:
NOME- v
corce

Figure 2.6.7.2 - After editing the names

If we look at the Listing now, we will notice that the function is now named “main”. We
now need to check each function and repeat the procedure.

Using Ghidra’s Tools

There are various graphs we can use to make this process not easier, but a bit less time
consuming.

Function Call Trees

Under the Window menu, there is the option to display the Function Call Trees. This
new panel will open at the bottom of the window and display all the calls, both incoming
and outgoing, that will be made by the function we are currently in. This tool is useful for
lots of reasons, including but not limited to showing us the functions we have not yet
identified and renamed, the number of functions that will be called and more.

60

9 Function Cal Trees: main - (sample.bin) = =R x|
ncoming Calls utgoing Calls
§ Incoming References - main

§ Outgoing References - main

=8 § FUN_00427c56 =4 § FUN_004098c0
(B f entry @) f caseD_5
&) F FID_confiict:_free
=[] § VariantClear

-8 § FUN_DD4S6e7a
&) § FUN_00456e8f
& § FUN_DO405504
IsThemeActive

(G}

§ _set_new_hander
§ _set_new_mode
§ FUN_D04045fd
f
f

BRER(

FUN_00403b3a
SystemParametersInfoW/

(&

Filter: f2] [|Fiter: =

Figure 2.6.8 - The Function Call Trees Panel

Function Call Graph

The Function Call Graph is complementary to the Function Call Trees and provides a
useful and convenient way to visualize the malware’s flow. Each node is clickable and
by pressing the plus sign we can view the new function’s calls.

i Neimiew M - cnn A et R e

Figure 2.6.9 - The Function Call Graph Window

Searching for Suspicious Functionality

The main reason | specifically picked a trojan horse for this section is because we must
understand that there will be legitimate code there as part of the host software. That
code should remain intact and we should look for anything out of the ordinary. One of
the function calls that stand out in main is a function named “FUN_00403b3a”. The
reason it stands out is because it directly takes as an argument one of the three
arguments that main has. Does that mean that this call is malicious in nature? Not

really, no. But we are in the process of investigation and thus we should really check it
out.

ELIN_LILI&'.I&ﬂ:CI.{__—.__. J2Co2LC) 7
FUN_0040353a((VARIANTARG **)envp);

T s T o m, s s e s T & T T Time 050500 [a} F ITVTT T

Figure 2.6.9 - Investigating function calls

61

Double clicking on this function will navigate us to the appropriate section of the code.
As a reminder, this code could be completely legitimate. In this case though, there is an
extremely suspicious condition early on, starting in line 33 up to line 37.

33 EVarz = IsDebuggerPresent();

34 if {BVarZ !'= 0) {

35 MeasageBoxd ((HWNMD) 0x0, "This is a third-party co
36 goto LAB 00403c75;

37 }

Figure 2.6.10 - Investigating suspicious conditions

This is something we delved into before, in the Malware Analysis chapter, where we
displayed the lengths that malware authors are willing to go in order for the malware to
go unnoticed. These lines of code exist to check if a debugger is present. If there is, the
condition is not met and the rest of the program is executed normally. If there is not,
however, the condition is met and the computer is instructed to go to the label
“‘LAB_00403c75” at line 101 (of the same script). There, the function “FUN_00405904"
is called. It is safe to assume that this is the malicious section of the code and we can
edit its name to reflect so.

101|LAB 00403c75:

102 mal 00{local 30);
103 return;

1041

Figure 2.6.11 - Finding the malicious code

This might be the entire payload, but it might as well be a function that will manipulate
the memory or load another sequence of functions or even direct the flow of execution
to an entirely different section.

Manipulating Return Values with XDBG

Earlier we saw a condition where the malware is utilizing the IsDebuggerPresent()
function to decide whether or not to execute the payload, according to the debugger
status on our machine. But what if we want to execute it while there is a debugger? This
is where the XDBG comes in. The x64dbg (for 64 bit applications) and the x32dbg (for
32 bit applications) are both included in Flare VM and can be run in conjunction with
Ghidra to manipulate in real time the value a function would return as well as the value
of any variables.

62

First Steps

Since Lokibot is a 32 bit malware, we will start x32dbg and open the bin file. Since we
only want custom breakpoints, we will head to Settings, under the Options menu, and
uncheck System Breakpoint and TLS Callbacks. The System Breakpoint is hardcoded
into the ntdll and will trigger once the dlls are loaded. TLS (Thread Local Storage)
Callbacks are functions that are called as soon as a new thread is created. We want
more strict control over our break points, that is why we disabled both of these. We
allow the Entry Breakpoint as a means to conveniently skip to the start of the execution
order.

% CcrU L Log

® Breakpoints 8 Memory Map [} call Stack & SEH Le| Seript & Symbals <> source ' References S Threads £| Handles i‘.‘; Trace

ES BSDOO00D call sample.AB4EST EntryPoint ~ Hide FPU
~ E9 7FFEFFFF jmp sample.AA7C56
& = EAX OOFEFC34 "Lip™ ~
<c inta EEX DOB6A00D e
C int3 ECX DOAATDCD SpE
cC int3 EDX 00AATDCD "eup”
€ int3 EBP OOFEFBES &"Tip"
cC int3 ESP OOFEFBDC "upFu"
cc int3 ESI 00AATDCD e
cC int3 L EDI 0OOAATDCD "D
57 push edi edi:"eup
30 pushilexy esi: 20 - EIP ODAATDCD <sample.EntryPo
B8B7424 10 mov esi,dword ptr ss:fesp+10{ [esp+10]: " a0l x03" - ple- ¥
B8B4C24 14 mov ecx,dword ptr ss:fesp+14] 5
8B7C24 0OC mov edi,dword ptr ss:|ffesp+C[) EGLAGE _UUUUU‘”
8BC1 mov eax,ecx ax; L "y £ ZF 1 PF 1 AF O
8ED1 mov edx,ecx edx:"BuB", ecxiTEup” OF O SF 0 DF O
03C6 add eax,esi eax:"Lup", esi:"epp CF 0O TFO IF1
3BFE cmp edi,esi edi:"eup", esi:"eup"
v 76 08 jhe sample.AAT7EOD N Lasteérror O000003F0 (ERROR_NO_TOKE
3BFB cmp edi,eax edi:"eup™, eax:"Lip LastStatus CO0OD007C (STATUS_NO_TOK
~ OFB2 68030000 jb sample.AAB168
OFBA25 FC31B400 01 | bt dword ptr ds:[B431FC],1 GS 002B FS 0053
73 07 jae sample.AA7E11 ES DDZB DS 0028
[Poesss rep movsh £< nn22 =< nn2R A
—— v E9 17030000 jmp sample.AAB128) < >
e 81F9 80000000 cmp ecx,s0 ecx: "eyp”
~ OFB2 CE010000 jb sample.AA7FEE - =
< > 1: [esp] 759EFEF9 kernel32.759EFEF ,
L 2: [esp+4] DOD8GAODD
sample. 00AB4ES7 3: [esp+8] 759EFEED <kernel3z.Base
4: [esp+C] OOFEFC44 "Tup" o
s: Fesn+1n1 77R3I7RRF "éllt.xn3"
L TEXT:00AATDCD sample.bin: $27DCD #271CD <EnTryPoints <
o 3y 759EFEF9 | return to kernel32.753EFEF9 from 777
BDump1 B4pump2 @4 Dump 3 8% Dump 4 B4 Dump 5 & Watch 1 Fe=l Locals 2 struct 0D086A000 ~
Address | Hex ASCIT ~ ;ggé;gig ’,‘,$""§132-?59EFEE”
77AD1000 |16 00 18 00|EQ_ZD ZZ|14 00 16 00|50 7 ZZ|e-..8}.w....P|.w 77B37BBE re‘éurn to ntd11.77B37BBE from 777
77. SE 77 [0E 00 10 00|C8 7E 77 L.E..w e sORE
8 TF Z7(08 00 0A 00|88 7B i w SOBASDFC
i 06 00 08 00(A8 7F Z 00000000
Q7 06 00 08 00|EQ Z 00000000
4 7 20 00 22 00(40 rd 00B6A000
f:) ZZ|RQ Z
10 S0 20 BO 77(EQ 0 77 gggggggg
Q I7|C0 57 BO 77(RO D 77| . TewP JRwAW WD 1w 00000000
0 0 77|EQ 49 BD 77|50 D 77 | &%t wal swalenPIkw v | hoe o v
> < >
Command: [Commands sze comms sepazated (Like sssssbly instructions): mov sax, sbx |oefautt ~
Paused |INT3 breakpoint "entry breakpaint™ at <sample.EntryPoint> (D0AAZDCD)! ‘T\ma Wasted Debugging: 0:00:06:06

Figure 2.6.12 - The x32dbg interface

Setting the Appropriate Breakpoints

In Ghidra we found that there is an if statement and the condition will be met if a
debugger is active. And here, a debugger is obviously active. The first thing we need to
do is find the memory address where that if statement takes place and insert a
breakpoint there. In order to do so, we must first understand that Ghidra and XDBG will
not display the same address for the same statement.

The reason for this is the Address Space Layout Randomization (ASLR), a security
feature that randomizes the base memory the application is stored in and thus greatly
reduces the capability of malware to perform a buffer overflow. However, since only the
base memory is randomized, we can find the call rather easily.

63

We first notice that in Ghidra the entry point is at the address: “00427dcd” and at xdbg
at: “O0AA7DCD”. We can immediately understand the correlation as the base address is
different but the secondary address is the same. Returning to Ghidra, we can see that
the IsDebuggerPresent() call takes place at the address: “00403b7a”. The entry function
has a difference of -2 and thus the function at hand should also have a difference of -2.
So, we should search at the address: “O0A83B7A” on xdbg. Once we find the address,
simply pressing F2 will insert a breakpoint (F2 is the default shortcut, we can always
right click and at the breakpoints menu press “Toggle”).

The second breakpoint we need to enter is during the VirtualAlloc() -call
(https://learn.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualal
loc last day visited - 14/2/2023). VirtualAlloc() is a function used to reserve memory
space while the application is already running. While VirtualAlloc() is an important
function for legitimate Windows applications, it is very often used by malware. By typing
“bp VirtualAlloc” in the command line at the bottom of xdbg, a breakpoint is immediately
created wherever this call is made.

It is worth noting that had we used “bp IsDebuggerPresent” at the command line, we
would have the exact same result, the reason | used the memory address is because |
wanted to demonstrate the manual way to do it.

B cru | 7 Log 1l Notes ® Breakpoints Memory Map [)/ call Stack &% SEH |t seript] Symbols <
Type Address | Module/Label/Exception State Disassembly
Software
00AB3IB7A| sample.bin Enabled |call dword ptr ds:[<&IsDebuggerPresent=]
759EF830 | <kernel32.d11.virtualallocs Enabled |mov edi,edi

Figure 2.6.13 - The breakpoints tab

Live Debugging

Now that we know where we need to stop the malware, we can run it from inside the
xdbg. Pressing run will execute the file and stop right before calling the
IsDebuggerPresent() function. Then, we will go one step over and check the registers.

FF15 30F3BOOO Ed11 dword ptr ds:[<AIsDebuggi . Hide FPU
BECO test eax,eadx
~ OF85 EAZG0200 jne sample.ABDZT2
Al E052B400 mov eax,dword ptr ds:[B452E0] EAX 000000OL
85C0 test eax,eax EEX 00000000
~ OF84 FOOODDO0 ie sample.AS3CE5 ECX OOFSFEDC

Figure 2.6.14.1 - Live modification of registers

As we can see, the Accumulator (EAX register) has a value of 1. This of course, is
because a debugger is present. We are now between the call of the function and the
condition check. The JNE instruction (stands for Jump Not Equal) will navigate the flow
of execution to the malware only if the Accumulator has a value of 0. We can force that
by right clicking and selecting “Modify Value”

64

https://learn.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualalloc
https://learn.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualalloc

LF Edit > |EF Edit ¥
Expression: [cooooood] | Expression: (00000000 |
Bytes: (01000000 | | Bytes: (00000000 |
Signed: (1 | | signed: [0 |
Unsigned: (1 | Unsigned: [0 |
ASCII: [-... | | asci: [.... |

Cancel Cancel

Figure 2.6.14.2 - Live modification of registers

Now, moving forward, the malware will be executed. This is where the second
breakpoint comes into effect.

By clicking “Run” once again, the malware will reach the point where VirtualAlloc() is
called and xdbg will halt operations. We will have multiple step overs here, as registers
are getting the appropriate values, but it is important to move one step at a time.

@ CPU 7 Log | 1 Notes ® Breakpoints ¥ Memory Map [Call Stack =7 S5EH |23 Seript & Sy
BBFF mov edi,edi Vvirtual
55 push ebp
BBEC mov ebp,esp
SD pop ebp
~ FF25 BC13AS7S jmp dword ptr ds:[<&8virtualAllocs] IMP . &V
et ANt

Figure 2.6.15 - Running the VirtualAlloc()

Now, we need to follow the operations untili we reach another API call named
NtAllocateVirtualMemory(). There are two major differences between these two
functions. The first has to do with the user. While in VirtualAlloc() the user is the
application, in NtAllocateVirtualMemory() the user is the kernel. The second has to do
with the way these two functions handle the address of the allocated memory. While
VirtualAlloc() stores it in the Accumulator, NtAllocateVirtualMemory() passes it as the
second argument, the one we can find at the esp+8 register. (according to the
documentation:
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntifs/nf-ntifs-ntallocatevi
rtualmemory last day visited - 14/2/2023).

65

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntifs/nf-ntifs-ntallocatevirtualmemory
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntifs/nf-ntifs-ntallocatevirtualmemory

B8 cru L4Lo 1 Notes ® Breakpoints ™8 MemoryMap () CallStack @ SEH |of Saipt % symbols <% source - References 9 Threads B Handes |
®|75E178 SBFF mov edi,edi VirtualATloc s
. 55 push ebp R AL
. 8BEC mov ebp,esp
. 51 push ecx EAX 00000000
- 51 push ecx EBX 00000000
. 3B45 0C mov eax,dword ECX 3A1F0000
™ 8945 F8 mov dword ptr EDX 047C0000
. 8B45 08 mov eax,dword EBP DOFBE7 60 &"\\ 8"
. 8945 FC mov dword ptr ESP DOOFBETS 4
56 push esi ESI 00000000
85C0 Test eax,eax EDI 0OB45310 " ass"
~ 74 0C je kernelbase,75E17844
3B05 DBOGEDTS cmp eax,dword ptr ds:[75EDOGDS] “EE1T7S
~ OF8Z S0EFO200 jb kernelbase.75E467D4 EIF SELTSEL AR T B
FF75 14 push dword ptr ebp+14]
8B45 10 mov eax,dword ptr ss:|[Jebp+10) EECRAGS ELERIEE
33F6 xor esi,esi ZE 0 EE D AF O
83E0 CO and eax,FFFFFFCO QE0D JEO DF O
50 push eax CEO0 TFO IF1
8D45 F3 1ea eax,dword ptr ss:|[febp-3J
50 push eax LastError 00000000 (ERROR_SUCCESS)
44 push esi LastStatus 00000000 (STATUS_SUCCESS)
8045 FC 1ea eax,dword ptr ss:|[febp-3
Ssg FF gﬂ?ﬁ g??FFFFF g3 poiB FS 0oe
FF15 5437ED75 €all dword ptr ds:[<&NtAllocatevirtualM EE 2233 22 EEEE
[E 1P g 85C0 test eax,eax <
~ 78 DA js kernelbase.75E1786F
8B75 FC mov esi,dword ptr ss:|Jebp-4 - 2.
8875 moyv 251, dwo v | Default (stdcall) [s][0 unke
> 1: [espt+4] 00035000
2: [esp+8] 047C0000
eax=0 3: [esp+C] DOFBETAC &"pés”
4: [esp+l0] O00AADCBS sample.O0AAOCBDS
S: [esp+l4] 00000000
.text:75E17861 kernelbase.d11:$127861 #126C61

Figure 2.6.16 - Getting the Malware’s Memory Address

As seen in the Figures 2.6.15 and 2.6.16, we can now get the memory address that the
malware was unpacked and by going to the Memory Map tab, we can see that what is
there is executable.

U BS UL | UL PRV et] —HW——
047C0000 | 00035000 PRV ERW-- ERW--
04810000 | 00001000 PRV -RW-- -RwW--

Figure 2.6.17 - Viewing the Memory Map

Dumping the Memory

Finally, by right clicking on the address we can select “Follow in Dump” and view
whatever is stored in the memory. Since the space was just allocated, it will be filled with
zeros, but that will change as soon as the malware runs.

24 pump 1 @ watch 1 2 struct

Address
047C 0000
047C0O010
047C0O020
047C0O030
047C 0040
047C 0050
047C0O060
047C0O070
047C0O080
047C 0090
047C0O0AD| 00 OO0 00 00|00 00 OO0 00|00 OO0 00 00|00 00 OO0
o47COOBO| OO0 OO0 OO OO0 |00 00 00 00|00 00 OO0 OO0(00 00 00
£ >

W% Dump 2 WY Dump 3 B4 Dump 4 2% Dump 5 [x=] Locals

Hex
oo
o0
ale}
ulu}
oo
oo
o0
o0
ulu}
o0

oo
o0
ale}
ulu}
oo
oo
o0
o0
ulu}
o0

oo
00
)
ulu}
oo
oo
00
00
ulu}
)

oo
00
o0
00
oo
oo
00
00
00
00

oo 00
00
00
0o
0o
0o
00
00
0o
0o

0o
00
00
0o
0o
0o
00
00
0o
0o

0o
00
00
00
0o
0o
00
00
00
00

oo
o0
ale}
ulu}
oo
oo
o0
o0
ulu}
o0

oo
o0
ale}
ulu}
oo
oo
o0
o0
ulu}
o0

oo
00
o0
00
oo
oo
00
00
00
00

oo
00
o0
00
oo
oo
00
00
00
00

0o
00
00
00
0o
0o
00
00
00
00

0o
00
00
0o
0o
0o
00
00
0o
0o

0o
00
00
0o
0o
0o
00
00
0o
0o

o0
00
oo
oo
00
00

o0 00 00 00|00 OO OO0 OO|00 0D 00 OO0| .c.ccvuaeannannnn

Figure 2.6.18 - Viewing the freshly Allocated Memory

And while we do want it to be unpacked, we want to be notified first. To do that, we will
add a hardware breakpoint by right clicking on the first hex location and from the

66

breakpoint menu select “Hardware, Execute”. When we press run again, the entire
block will be populated with the malware, just before execution.

1 & Dump 1 B4 Dump 2 B4 Dump 3 B4 Dump 4 @8 Dump 5 3,:: Watch 1 [x=] Locals ;5" Struct

| Address | Hex ASCIT ~
1 o47Co000|C8 10 01 00|6A DO 64 00|53 56 57 8B|55 10 31 C9|E...Jj.J.5wvW.U.1E
047C0O010| B9 C8 42 B9 |D7 F2 AE 43|43 22 CB 82|45 FO 8BS CO EI KDSHH JE.ED.A

047C0020| OF 84 DC 00|00 00 B9 00|01 00 00 88(C8 2C 01 88| ..l .. 0.s.. Eyuu
047C0030| 84 0D EF FE|FF FF E2 F3|83 65 F4 00|83 65 FC 00 1byyau.en..eu.
047C0040| 81 7D FC 00|01 00 00 7D |47 8B 45 FC|31 D2 F7 7% }u . }G. Eli1d=u
047CO050|FD 92 03 45|10 OF B 00|SB 4D FC OF B 8C 0D FO|®..E..T..M0.7. .8
D47C0O060|FE FF FF 01|C8 03 45 F4|25 FF 00 00|00 89 45 F4 byy E.EG%Y....ED
047C0O070| 8B 75 FC 8A|84 35 FD FE|FF FF 8B 7D |F4 86 84 3D .5BbYY. 10, .

047C0O080 | FO FE FF FF |88 B4 35 FO|FE FF FF FF |45 FC EB BOD abyy sabwaue
047C0090(8D 9D FO FE|FF FF 21 FF|B89 FA 39 55 |0C 76 &3 BE abyyly uau.

047C0O0AD| 85 EC FE FF|FF 40 25 FF|00 00 00 83|85 EC FE FF 1byy@%y 1py
047C00BO| EE_89 D8 03|85 EC FE FF|EE_OF B6 00|03 85 E8 FE|y.d8..1byy.7...eb w
< >

Figure 2.6.19 - Viewing the Populated Memory Block

Now, we are going to use a tool familiar from the Malware Analysis chapter, a tool
named Process Hacker. ldentifying the process is easy, since it will be listed under
xdbg.

v i x32dbg.exe 204 014 69.56 ME DESKTOP-T7..\Flare VM xbddbg
n-] sample bin 2812 878 MB DESKTOP-TY.. \FIare‘u’M

Figure 2.6.20 - Identifying the malware

By double clicking on it, a new window will appear and if we go to the memory tab we
will be able to find the address that still contains the unpacked but not executed
malware.

~ 0x47c0000 Private 212kB RWX 4 kB 4 kB
0x47c0000 Private: Commit 212kB RWX 4 kB 4 kB

Flgure 2 6. 21 The Malware S Memory Address in Process Hacker

As we can see, the permissions include the X tag, indicating that whatever is in that
memory block is executable. By double clicking on the expanded item, we can view the
contents of this memory block and confirm that it is the same content as it appears in
the xdbg panel.

67

oooooooo s
00000010 89
00000020 OF
00000030 84
00000040 81
00000050 £0
00000060 fe
00000070 &
00000080 £0
00000090 &
000000a0
000000b0
000000c0
00000040
0000000
000000£0
00000100
00000110
00000120
00000130
00000140
00000150
00000160
00000170
00000180
00000190
000001a0

AAAAATI. N

o
o

ff
ff
b5
o7
oo
ek
oo
oo
oo
na
ag
(]
oo
oo
oo
oo

LT

Re-read

10
cB
24
o0d
7d
52
£ff
75
fe
4d
ec

o
=)

It
ec

ufm)
fya]

2a

=
(=]

0o
0o
0o
0o
a0
0o
0o
0o
0o
0o

LX)

ol
449
dc
ef
fc
03
ff
fo
ff
0
fe

o
L}

25
fe
g

=]
(=)

5f
aa
aa
a0
a0
a0
aa
aa
aa
aa
aa

L)

00 g

249
ufu]
fe
oo
45
0l
2a
ff
fe
ff
03
ff
ff
0f
0d
Se
(ufu]
ufu]
oo
oo
oo
oo
(ufu]
(ufu]
(ufu]
ufu]

LT

Write

00 €a
f2 ae
00 bS
ff e2
oo oo
0f be
03 45
35 f0
84 35
ff 31
40 25
ec fe
oo oo
2a D&
0e 0f
fe ff
c9 c2
oo aao
oo oo
oo oo
oo oo
oo oo
oo oo
oo oo
oo aao
oo aao
oo oo

AA AR

Go to...

(]
43
oo
£3
7d
an
fi
fe
fo
ff
ff
ff

o
L=}

=1
=)

k&
ff
10
a0
oo
a0
oo
a0
a0
a0
a0
a0
oo

Fa¥a)

a7
oo
ff
0l
10
cB

=1
=)

=]
Y]

£t
£t

o
=)

oo
ff
bé&
£0
Sk
0o
0o
0o
oo
a0
a0
0o
0o
0o
0o

LT

sample.bin (2812) (0xd7c0000 - Cxd7F3000)

53
48
01
a3
47
&b
25
ff
fe
a9
oo
ff
a5
df
o7
b
oo
oo
oo
oo
na
ag
(]
oo
oo
oo
oo

LT

16 bytes per row

=14
29
0o
85

o
=}

44d
£ff
ff
if
fa
oo
0f
el
03
ol
75
ufu]
ufu]
oo
oo
oo
oa
oo
oo
ufu]
ufu]
oo

LX)

57
ci
oo
4
45
fc
(uJu]

=]
=}

ff
39
oo
b&
fe
bd
cl
oa
oo
oo
oo
oo
oo
(uJu]
(uJu]
oo
oo
oo
oo

L)

55
a9
0o
ff
a8
81
01
oo
oo
oo
0o
gl
ag
[uf]
oo
oo
oo
oo

LT

55
45
ca

31

o
o

01
fc
£7

o
=)

31
bd
oo 88
f4 36
45
Oc

f=1
(=)

03
ff
fe
el
de
oo
oo
oo
oo
oo
oa
oo
oo
oo
oo
oo

LT

435

o
o

el
63
fe
2B
de
ff
(ufu]
g
ufu]
ufu]
oo
oo
0o
oa
(ufu]
ufu]
ufu]
ufu]
oo

An

L=

S

Address | Hex

ASCII

047C 0000
047C00L0
047C00Z20
047C0030
047C 0040
047C0050
047C 0060
047C0070
047C00B0D
047C0020
047 C00AD
047C0O0BD

£

C8
89
OF
54
51
FO

FO

=1

8B 7

o1
42
DC
EF
FC
03

FC
FF
Fo
FE

00
89
00
FE
00
4L
o1

FF
FE
FF

6A 00 &6A 00
D7 FZ2 AE 48

00 00 B3 00
FF FF E2 F3
D1 00 00 7D

CE
B4
Bg
FF
FF
BS

03
35
B4
FF
40
EC

45
FO
35
31
25
FE

F4
FE
Fo
FF
FF
FF

53
45
o1
83
47
BB

FF
FE
89
00

56
29
00
&5
5B
40

FF
FF
FA
00

57
s
o0
F4
45
FC

8B 7

FF
339
00

55 10 31 C9
45 FO 85 CO
CB 2C 01 88
B3 65 FC 00
Fo
F4
E's
BO
BE
FF
FE

EG
00
F4
45
oc
85
03

BC
89
56
FC
7e
EC
BE

oo
45
54
EB
&3
FE
EB

E...Jj.J7.5wW.U.1E
LEI.xDEHH)E.ED. A
N | T L
.. ipyvao. ed. . el.
i .. PG EGLO=L
.E..Y..Mi

LUl . 58Py, 16, .
opyvy . LSOV VELE®
.:bpyﬁly.ﬁgﬁ.yc.
- TPVYEEY. . ..y
¥.8..7pyy. 1. .-

Figure 2.6.22 - Comparing the Contents of the Memory Block in Process Hacker (top) with xdbg (bottom)

Now, clicking “Save” on this panel will let us save the binary in its isolated form. This
stripped down version is only the malicious code and it can be further analyzed by all
the techniques discussed in the Malware Analysis chapter.

68

Ethical Concerns

We saw how to analyze malware, deobfuscate code and detonate malware in a safe
environment as well as the way to isolate a piece of malware from its carrier program. In
this chapter, we need to back off from the technical aspect of malware analysis and
reverse engineering and take a more philosophical approach. Ethics are not discussed
adequately in cybersecurity and this specific field does provide some serious issues to
be concerned about.

1.

2.

4.

Privacy: Malware analysis often involves analyzing and potentially sharing
sensitive personal or confidential information that could be contained within, or
targeted by, the malware. This raises concerns about protecting the privacy of
individuals whose information may be exposed during the analysis process. This
can include financial information, passwords, and other confidential data. To
address this concern, analysts should take care to handle and store sensitive
data in a secure and confidential manner.

Leqgal issues:There is always the chance for analysts to perform illegal activities
while trying to simply work on their occupation. This can include accessing and
analyzing systems or data without proper authorization, causing involuntary harm
to a system or even violating laws regarding the use of copyrighted material. It is
vital for analysts to be aware of the legal framework, the implications of their work
and the boundaries of the law they are subjected to and need to operate on.
Professional ethics: Analysts have a professional responsibility to conduct their
work in an ethical and responsible manner. This includes being honest and
transparent about their methods and findings, and being mindful of the potential
impact of their work on others. On the same note and part of the Professional
ethics, is the proper use of tools and techniques and this is applied to both
Malware Analysis and Reverse Engineering.

a. Malware analysis tools and techniques can be used for malicious
purposes, such as to create or disseminate malware. Analysts must be
careful to use these tools and techniques ethically and only for defensive
purposes.

b. Reverse Engineering tools and techniques can be used to understand
legitimate proprietary software and understand part of the code for use in
an unrelated manner at best or corporate espionage at worst. Analysts
should remain neutral and only reverse engineer malware for security
purposes.

Attribution: It can be difficult to determine the true origin and purpose of a piece
of malware, and attribution errors can have serious consequences. Analysts
must work along with law enforcement and be very cautious to accurately

69

attribute malware to the appropriate actor, whether that be a single individual or a
hacking group, and not make assumptions based on incomplete or biased
evidence.

. Vulnerability disclosure: Analysts who discover vulnerabilities in software as part
of their malware analysis must decide not if but how to disclose these
vulnerabilities to the affected parties. This process can be complex and must be
done with care to avoid causing harm. This is the reason major organizations
have a vulnerability disclosure program and even pay the so-called “bounty
hunters” for utilizing it.

70

The Future of Malware Analysis and Reverse
Engineering

As we progress into an even more digitalized era of human history, we can assume with
relative certainty that malware will also continue to evolve. New adversaries will replace
the departing ones and with the new generation being so technologically adept, they will
surely pose a threat, a caliber of which we have not yet faced.

What we can do, as members of the Cybersecurity community that strive for safer and
more secure utilizations of technology, is evolve with the threats. This evolution will be
led by professionals who excel in new technologies while humble enough to be
mentored by the old guard.

These new technologies revolve around Machine Learning, as with everything these
days, which is maturing to a level hardly imaginable just a few years ago. Machine
Learning algorithms can automate several tasks like identifying patterns in memory
management and code execution, detect inconsistencies in network traffic and singling
out anomalies in API calls.

Furthermore, Machine Learning algorithms can be used to deobfuscate code, provide
the source and even identify the malicious actors. In the case of malware being served
hidden in another legitimate program, some algorithms could be trained to strip and
isolate the malicious binaries while keeping the legitimate software intact.

Advanced ML algorithms could potentially streamline the entire process and produce
results in both known and novelty threats, while keeping the system safe by the use of
temporary hypervisor technology.

However, we are not there just yet. The main reason is the huge amount of data such a
sophisticated system would need to be trained on and this amount of data is not widely
available. And still, despite the challenge, Machine Learning has the potential to
revolutionize the entire Cybersecurity sector and especially the fields of Malware
Analysis and Reverse Engineering and lead to a technologically safer future.

71

Sources

[1] Jordan Spencer Cunningham, 2016, ‘Interview with Ray Tomlinson on
Creeper/Reaper’, OSNews.com, 2016/04/06

[2] John Walker, 1996, ‘The Animal Episode’, fourmilab.ch, 1996/08/21

[3] Youngjoon Ki, Eunjin Kim, and Huy Kang Kim, 2015, ‘A Novel Approach to Detect
Malware Based on API Call Sequence Analysis’, Sage Journals

[4] Benjamin 2014, ‘Passwords’, Internet Source

[5] Ashkan Hosseini, 2017, “Ten process injection techniques: A technical survey of
common and trending process injection techniques’, Internet Source

72

		2023-08-24T08:09:10+0300
	Panagiotis Giannakopoulos

		2023-08-25T14:53:04+0300
	Konstantinos Mavrommatis

