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Abstract

With this drastic increase in cancer rates and deaths because of cancer, it is essential to find new
and improved ways to prevent it as soon as possible (at early stages), especially colorectal can-
cer, which is ranked second in the cancers that cause death. Nowadays, it is occurring more and
more among young people, often at an advanced stage. As it does not have specific symptoms,
colorectal cancer is difficult to diagnose. Also, it is crucial to differentiate the benign lesions from
the malignancies. Thus, a decision-support system was developed in this study to support this
purpose. For this aim, a dataset of histopathological images with benign and malignant cases was
utilized to generate features (68 in total), and statistical analysis was performed to find the features
that can differentiate the categories. Furthermore, these features were used as input for creating
a machine-learning system. Among the classifiers that we used were the K-Nearest Neighbors
(KNN), Classification Trees (CART), and Random Forest. Recursive Feature Elimination (RFE)
was employed for feature reduction, and the evaluation was conducted using Bootstrap and K-Fold
cross-validation, focusing on accuracy, precision, and recall metrics.

Moreover, further investigation was made to differentiate the two categories by employing
some Convolutional Neural Networks (CNNs) utilizing pre-trained models, such as Vgg16, Mo-
bileNetV2, ResNet50V2, InceptionV3, and EfficientNetB0. The research proceeded by splitting
the two categories into five (healthy, benign, grades I, II, and III) and testing every combination
in pairs of two. The same steps, as described for the two, were followed for the five categories.
The top five features that were observed to distinguish the two classes were the skewness, energy
range, correlation mean, LBP6, and Gabor energy range. Also, the RF classifier using the boot-
strap evaluation method satisfactorily differentiated benign from malignant with an accuracy of
90.20%, 87.63% sensitivity, and 91.99% specificity. Lastly, the RES50 model showed the best
accuracy of 90.92% -for 100 epochs. Our system also performed adequately for the five categories
despite the reduced size of the data per class.

Keywords: CRC, benign, malignant, statistical analysis, machine learning, deep learning
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Περίληψη

Με αυτή τη δραστική αύξηση των ποσοστών καρκίνου και των θανάτων εξαιτίας του καρκί-
νου, είναι απαραίτητο να βρεθούν νέοι και βελτιωμένοι τρόποι για την πρόληψή του το συντομό-
τερο δυνατό (σε πρώιμα στάδια), ιδίως του καρκίνου του παχέος εντέρου, ο οποίος κατατάσσεται
στη δεύτερη θέση των καρκίνων που προκαλούν θάνατο. Στις μέρες μας, εμφανίζεται όλο και
περισσότερο στους νέους, συχνά σε προχωρημένο στάδιο. Καθώς δεν έχει συγκεκριμένα συμπτώ-
ματα, ο καρκίνος του παχέος εντέρου είναι δύσκολο να διαγνωστεί. Επίσης, είναι ζωτικής σημα-
σίας να διαφοροποιούνται οι καλοήθεις αλλοιώσεις από τις κακοήθεις. Έτσι, στην παρούσα μελέτη
αναπτύχθηκε ένα σύστημα υποστήριξης αποφάσεων για την επίτευξη αυτού του σκοπού. Για τον
σκοπό αυτό, χρησιμοποιήθηκε ένα σύνολο δεδομένων ιστοπαθολογικών εικόνων με καλοήθεις και
κακοήθεις περιπτώσεις για τη δημιουργία χαρακτηριστικών (68 συνολικά) και πραγματοποιήθηκε
στατιστική ανάλυση για την εύρεση των χαρακτηριστικών που μπορούν να διαφοροποιήσουν τις
κατηγορίες. Επιπλέον, αυτά τα χαρακτηριστικά χρησιμοποιήθηκαν ως είσοδος για τη δημιουργία
ενός συστήματος μηχανικής μάθησης. Μεταξύ των ταξινομητών που χρησιμοποιήσαμε ήταν οι K-
Nearest Neighbors (KNN), τα Classification Trees (CART) και το Random Forest. Για τη μείωση
των χαρακτηριστικών χρησιμοποιήθηκε η Recursive Feature Elimination (RFE) και η αξιολόγηση
πραγματοποιήθηκε με τη χρήση Bootstrap και K-Fold cross-validation, εστιάζοντας στις μετρικές
παραμέτρους της ακρίβειας, ευαισθησίας και ειδικότητας.

Επιπλέον, έγινε περαιτέρω έρευνα για τη διαφοροποίηση των δύο κατηγοριών με τη χρήση
ορισμένων συνελικτικών νευρωνικών δικτύων (CNN) που χρησιμοποιούν προεκπαιδευμένα μο-
ντέλα, όπως τα Vgg16, MobileNetV2, ResNet50V2, InceptionV3 και EfficientNetB0. Η έρευνα
προχώρησε με το διαχωρισμό των δύο κατηγοριών σε πέντε (υγιείς, καλοήθεις, βαθμοί I, II και
III) και τη δοκιμή κάθε συνδυασμού σε ζεύγη των δύο. Για τις πέντε κατηγορίες ακολουθήθηκαν
τα ίδια βήματα, όπως περιγράφηκαν για τις δύο. Τα πέντε καλύτερα χαρακτηριστικά που παρα-
τηρήθηκαν να διακρίνουν τις δύο κατηγορίες ήταν: skewness, energy range, correlation mean,
LBP6, and Gabor energy range. Επίσης, ο ταξινομητής RF χρησιμοποιώντας τη μέθοδο αξιολό-
γησης bootstrap διαφοροποίησε ικανοποιητικά την καλοήθη από την κακοήθη μορφή με ακρίβεια
90,20%, ευαισθησία 87,63% και ειδικότητα 91,99%. Τέλος, το μοντέλο RES50 παρουσίασε την
καλύτερη ακρίβεια 90,92% -για 100 εποχές. Το σύστημά μας είχε επίσης ικανοποιητικές επιδόσεις
και για τις πέντε κατηγορίες παρά το μειωμένο μέγεθος των δεδομένων ανά κατηγορία.

Keywords:CRC, καλοήθης, κακοήθης, στατιστική ανάλυση, μηχανική μάθηση, νευρωνικά δίκτυα
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Chapter 1

Introduction

1.1 Goal and purpose of this thesis

Nowadays, cancer is one of the primary diseases that affect human health, especially colorectal
cancer (CRC), which is one of the most common cancer types, with morbidity and mortality rank-
ing third and second, respectively, in the world as cited in [1]. It is found that the probability of
getting this type of cancer is higher in economically developed societies. Moreover, it is thought of
as a disease of older people, even though in the last few years, the rate of CRC in patients under 40
years old has increased immensely. It is also mentioned as a ”silent killer,” as at the early stages, it
has non-specific symptoms to no symptoms at all, which can influence the diagnosis. Thus, when
symptoms start to appear, the disease has often progressed, and early diagnosis, at a less advanced
stage, is crucial in fighting the disease and can prolong human life. In some cases, benign (pre-
cancerous) lesions can even be removed before transforming into malignant. Hence, colonoscopy
is the reference benchmark for early detection, and during its procedure, benign cases can be sam-
pled or even extracted and further examined. So, the acquired tissue is appropriately processed
and examined further by pathologists. This procedure (the evaluation of the tissue and the con-
clusions drawn) might be complicated in some cases and even prolonged. Moreover, mistakes or
misinterpretations from the doctors in detecting diseases must be considered.

However, along with the increase in the rate of cancers, we also witness promising advances
in technology and diagnostic procedures. Machine learning and deep learning (domains of AI)
are becoming a part of our lives and will definitely help us improve our lives in every aspect. In
particular, in the medical domain, the machine learning algorithms aided in interpreting medical
images and set the basis for developing CAD -Computer-aided detection/diagnosis algorithms.

Therefore, this thesis aims to analyze histopathological images of colorectal cancer using ma-
chine learning and deep learning methods. The goals that we have set are, first of all, the necessary
image processing (of the histopathological images of colorectal cancer) and feature generation.
Then, perform the statistical analysis of the generated features and encounter the features with a
significant statistical difference between the existing categories (benign and malignant). Eventu-
ally, machine learning and deep learning systems are created to differentiate benign frommalignant
cases.

1.2 Methodology and Limitations

Freely available histopathological images of patients with colorectal cancer were used for the re-
search purpose of the thesis. Firstly, patches containing the regions of interest were generated,
gathered, and proceeded for feature extraction from these dataset’s images. Then, the features
for the two classes, benign and malignant, were generated. These features were reduced by the

2
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statistical analysis (statistical tests) and the feature reduction method that was applied, and they
constitute the input for our machine learning system. Ultimately, only essential features remain
that help differentiate the two classes. Then, these patches for the two categories were used for the
deep learning procedure. After that, the results of the two procedures were compared, and conclu-
sions were drawn about the best classifiers, evaluation methods, and feature reduction methods for
the ML procedure and the best network for the DL procedure.

Furthermore, the original patches for the five classes, healthy, benign/ adenomatous, grade
I, II, and III, were used, and the same strategy (as for the two categories) was followed for five
categories as well.

Limitations

The most crucial limitation encountered during the implementation of this thesis is that the dataset
used was limited in size. In general, medical images and datasets are hard to obtain and are usually
unavailable for free use and research. Also, no augmentation was applied to expand the size of our
dataset (it was considered future work). In addition, the generated images were unequal; thus, there
was a different number of images for every category. This imbalance between the classes impacted
our process and our results. Lastly, it must be mentioned that some computational limitations were
met, as the ML procedure was intensive and time-consuming in some cases (when searching for
the best combination of features among numerous features).

1.3 Structure of this thesis

The following chapter of this thesis will briefly present the theory on which the research was
based and established to understand definitions and concepts related to the main topic. Firstly, the
second chapter presents the anatomy of the colon, then the concept of colorectal cancer (CRC), the
staging of the CRC, and the screening tests to diagnose it. Then, it discusses image processing and
analysis topics and provides a theoretical overview of all the features used. After that, it introduces
the concept of machine learning and describes some classifiers, feature reduction methods, and
evaluation methods. Also, some basic statistical concepts are introduced. Afterward, deep learning
and six networks used for this thesis are discussed. Finally, a review of related work and research
is presented.

The third chapter presents the tools and software utilized, the dataset’s characteristics, and the
methodology followed for our analysis and research. It also explains the investigation done before
starting with the actual data.

In the fourth chapter, the detailed results are displayed. Firstly, the results of our investigation,
followed by the results of applying the algorithm after splitting the dataset into two and five classes.

Finally, in the fifth chapter, the main findings are discussed, and the conclusions drawn from
the research are presented. Also, some views and ideas for further work are mentioned.



Chapter 2

Theory

This chapter presents in detail the existing literature about the topic of the thesis and what has been
done due today.

2.1 Anatomy of the colon

The digestive system breaks food and liquids into usable substances for giving energy to the body,
providing growth, and tissue repair. The wastes that the body cannot use are eliminated through
bowel movements. Several organs, such as the mouth, throat, stomach, small intestine, large in-
testine, rectum, and anus, comprise the digestive system. Additionally, the salivary glands, liver,
gallbladder, and pancreas produce digestive enzymes and juices to aid food and liquids digestion.
This system is also called the gastrointestinal system, and it can be seen in Figure 1.

Figure 1. Shows the human’s lower gastrointestinal (GI) tract. [2]

The regions or the lower part of the digestive system are the large intestine, the rectum, and the

4
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anus. Specifically, the large intestine begins with the cecum, a pouch-like form located in the right
lower abdomen. The appendix, a small finger-like projection, is attached to the cecum. The colon
follows the cecum, is the most extensive part of the large intestine (which measures approximately
5 feet in length), and consists of the following four parts. Firstly, the ascending colon travels up the
right side of the abdomen. Then the transverse colon crosses the abdomen horizontally from right
to left. Continuing, the descending colon descends on the left side of the abdomen. Finally, the
sigmoid colon is an S-shaped segment that joins the descending colon to the rectum [2]. Thereafter,
the rectum is found in the pelvis, slightly above the anus. Together with the anal canal, it forms
the large intestine’s final segment, measuring around 6-8 inches. Eventually, the anal canal ends
at the anus, which serves as the large intestine’s exit point from the body.

Figure 2. Large intestine showing histological changes: low-grade dysplasia, high-grade dysplasia,
and metastasis [3]

The structural plan of the gut wall varies region-wise to accommodate local functional differ-
ences. Four layers constitute the mature gut wall: mucosa, submucosa, muscularis external, and
serosa or adventitia [4]. The mucosa is the internal lining of certain body cavities and organs and
contains mucous glands, also known as a mucous membrane. The submucosa is a layer of tissue
adjacent to the mucosa. On the other hand, the outer lining of particular organs and body cavities
in the chest and abdomen, such as the stomach, is known as the serosa. The lymph nodes are small,
bean-shaped systems throughout the body, and they filter substances in a fluid called lymph while
also helping fight infection and disease.

2.1.1 Staging of colorectal cancer

Lung cancer is the most prevalent cancer in both males and females, accounting for 12.4% of all
cases. Breast cancer is the leading type of cancer in women, at 11.6% of cases. Prostate cancer is
the most commonly diagnosed cancer for men, accounting for 7.3% of cases according to theWorld
Health Association (WHO) [1]. However, colorectal cancer, or CRC for abbreviation, frequently



2. Theory 6

appears in both sexes and is responsible for a high annual mortality rate considering the people
dying from cancer (9.3%, which makes it second in the ranking of deadly cancers) according also
to WHO [1].

The growth of CRC can affect anyone, but specific factors increase the chance of develop-
ing the disease. Some of these are diet, obesity, the absence of physical exercise, smoking, and
moderate-to-heavy alcohol consumption, which are factors that can be controlled and changed.
Conversely, consuming more dietary fiber, green leafy vegetables, folate, and calcium can help
prevent CRC development, as mentioned in [3]. On the other hand, a family history of having col-
orectal polyps or CRC, genetic conditions like Lynch syndrome, personal history of inflammatory
bowel disease, type 2 diabetes, and racial and ethnic backgrounds are some factors that cannot be
changed.

After several research and statistics collected, it was concluded that most cases of colorectal
cancer start as polyps or adenomas and then progress to cancer. Detecting colorectal cancer accu-
rately has led to the evolution of detection at the earlier stages. However, early detection is crucial
to effectively treat the patient, as only a tiny percentage of cases are diagnosed before they have
progressed [3].

The growth of colorectal cancer occurs either in the colon or the rectum. It can be diagnosed
during a screening test or if the patient experiences several symptoms. The patient in the early
stages does not always have symptoms or has symptoms that are not immediately associated with
CRC, such as abdominal discomfort, gradual weight loss, and fatigue. However, other symptoms
appear in the later stages, such as blood in the stool, abdominal pain, nausea or vomiting, bowel
obstruction or perforation, bloating, cramps, gas pains, and severe weight loss without apparent
cause [5].

Figure 3. Stages of Colorectal cancer in the large intestine, also showing the layer of the colon
(mucosa, submucosa, muscle layers, and serosa) [6]

The stages of colon cancer determine, to a considerable extent, the chance of survival, consid-
ering if the disease has advanced. Promising chances exist as long as the diagnosis is made early
[5].

In the first stage, stage 0, abnormal cells are found in the colon or rectum’s inner layer (mu-
cosa). The abnormal cells can develop into cancer and spread to neighboring healthy tissues. The
two main options for treatment at this stage are local tumor resection or simple polypectomy and
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segmental resection for more extensive lesions that are not amenable to local resection. In stage
I, colorectal cancer has spread to the submucosa, which is a tissue near the mucosa or has spread
to the muscular layer of the colon or rectum. The treatment at this stage is surgical resection and
anastomosis.

Stage II cancer extends through the muscle layer of the skin and into the colon wall into the
serosa. It then progresses to the visceral peritoneum and finally to the adjacent organs. The cancer
has progressed to the outside of the colon at this stage. Treatment includes wide surgical resection
and anastomosis.

Stage III is divided into three parts (A, B, C). In stage IIIA, cancer through the mucosa has
spread to the submucosa or even to 1-3 adjacent lymph nodes. Continuing in stage IIIB, cancer
has spread through the muscular layer of the colonic wall to the outer layer of the wall or even
to the tissue surrounding the intestines and οrgans of the abdomen. It has affected even 4 to 6
neighboring lymph nodes. In the next stage, IIIC, cancer has spread to the inner lining of the
abdomen, has affected seven (or more) neighboring lymph nodes, and has spread to tissues near
these lymph nodes. The treatment prescribed in stage III cases is surgery for removing the piece
of the colon containing cancer (partial colectomy) and the adjacent cancerous tissue and lymph
nodes, followed by adjuvant chemotherapy.

Cancer has metastasized, in the final stage, stage IV, to other organs like the liver, lungs,
ovaries, and bones. Surgery is unlikely to cure these tumors in most cases. However, if there are
only a few small areas of cancer in the liver or lungs, they can be extracted surgically along with
colon cancer and can extend the patient’s life [5].

When it comes to rectal cancer, the innermost lining of the rectum may contain abnormal cells
in stage 0, which can potentially transform into cancer and spread to nearby healthy tissue. The
cancer in stage I has spread beyond the innermost lining of the rectum and affected the second and
third layers, as well as the inside wall of the rectum. However, it has not yet reached the outer
wall of the rectum or spread outside of it. Stage II of cancer involves the spreading of cancerous
cells beyond the rectal area, although they have not yet invaded the lymph nodes. In stage III,
nearby lymph nodes are affected by cancer, yet other parts of the body have not been affected,
which happens in stage IV [7].

2.1.2 Screening tests and microscopes

The screening tests for CRC aim to detect abnormalities or cancer in patients who have or have
not reported or observed any concerning symptoms. Are prescribed by healthcare providers for
checking the individual’s health after considering some high-risk factor such as age or the person’s
history. The screening tests are colonoscopy, sigmoidoscopy, fecal occult blood test (FOBT), decal
immunochemical test (FIT), and stool DNA test. If these examinations indicate abnormalities, then
additional tests, the diagnostic tests, are suggested. One standard diagnostic test is tissue biopsy
during colonoscopy. Furthermore, the health care provider may suggest additional X-rays, CT,
MRI, PET scans, and ultrasounds [8].

Tissue samples from the affected area are examined to obtain histopathological images of po-
tential colorectal cancer. The procedure that is followed consists of some standard steps. First,
the tissue sample, which has abnormalities, is collected from the colorectal area. This process
is achieved considering one of the various biopsy techniques, such as endoscopy, colonoscopy,
or surgical excision. The chosen technique is based on the peculiarities of each patient. Then,
the tissue sample is instantly set in a fixative solution, usually formalin. This procedure allows
the preservation of the cellular structure and stops tissue degradation. After that, the fixed tissue
sample goes through a process that prepares it for microscopic examination. These steps typically
include dehydration, clearing, and embedding. Dehydration involves replacing water in the tis-
sue with alcohol, clearing removes the alcohol and replaces it with a substance that allows better
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visualization of the cells, and embedding involves placing the tissue in a solid medium, typically
paraffin wax. Once the tissue is embedded in a paraffin block, thin slices, known as sections, are
cropped utilizing a microtome (-those are usually nearly 4-6 micrometers thick). Next, the sections
are placed on glass slides and subjected to various staining techniques to enhance the visualiza-
tion of cellular structures and specific features. The most typical stain utilized for histopathological
analysis is the hematoxylin and eosin (H&E) stain. Hematoxylin stains the nuclei blue, while eosin
stains the cytoplasm pink. Finally, a pathologist (or a histotechnologist) analyzes the stained tissue
sections under a light microscope like the one shown in figure 4.

They analyze the cellular morphology, tissue architecture, and any abnormal features to iden-
tify and classify the presence of abnormalities. The pathologist assesses various parameters, such
as tumor type, grade, stage, invasion depth, and lymph node involvement. Also, the pathologist
interprets their findings and prepares a histopathology report that documents the diagnosis and de-
scribes the characteristics of the cancer. Histopathological images of colorectal cancer are often
captured using a microscope with an attached camera or a digital slide scanner. Microscopes, such
as the one shown in Figure 4, have eyepieces and various objective lenses with different magnifi-
cation levels, allowing the observer to examine the sample. In a camera setup, a camera port might
allow light to pass through to the camera instead of or in addition to the eyepiece to capture the
images. These images can be stored digitally and reviewed by healthcare professionals for further
analysis, consultation, documentation, or digital image processing.

Figure 4. Parts of a microscope [9]

2.2 Image processing and analysis

Every medical image, irrespective of which acquisition interface imaging system it comes from, is
a 2-dimensional digital signal, x(n1,n2). This digital signal, x(n1,n2) (in case of medical images),
represents a visualization of the interior of the human body (organs, tissues), anatomy, and physiol-
ogy, and it aims to help doctors diagnose diseases and various conditions that are hard to diagnose
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[10]. In the computer’s memory, this image is stored as a two-dimensional array of numbers called
an (image) matrix. Each element of the image matrix is named a pixel and represents an amount
of light in the grayscale (for black and white grayscale images). Usually, the images include a
considerable number of pixels. Generally, it is preferred to maintain the storage space as small
as possible; thus, the values of the pixels of an image are rounded to integers between 0 and 255
(which occupy one byte in a computer’s memory) [11]. In addition, grayscale images only have
a single numerical value at each pixel location. On the other hand, true color images differ from
grayscale images by capturing the full spectrum of colors in a triplet vector format. This vector
typically consists of RGB components and is defined at every image pixel location.

Digital image processing refers to the reversible modifications at the values of the image
matrix. This phase aims to improve the image quality and extract and understand the information
from the matrix. Many techniques are used for this purpose, such as increasing contrast, filtering
with different filters, minimizing the noise (denoising), volume rendering, and cutting the image
into pieces that include the regions of interest.

Image analysis is acquiring information from digital images. ”A picture paints a thousand
words” is often encountered saying, and that is precisely the case. Most of the time, the analysis
is applied after the image processing is accomplished.

Analyzing and interpreting visual data requires the utilization of different algorithms and tech-
niques. Image analysis techniques utilize mathematical and statistical algorithms to process and
analyze the pixel-level information within an image. These algorithms can extract relevant fea-
tures, identify patterns or structures, measure characteristics, classify objects, and make decisions
based on the analyzed information. Image analysis aims to automate the process of understanding
images, helping computers to perceive and interpret visual information like humans. It contains
various tasks, including image enhancement, segmentation, feature extraction, object detection and
recognition, image classification, and image understanding.

2.3 Features generation/extraction

Feature extraction is obtaining higher-level information about an image from the color, shape, and
texture.

As Haralick et al. mentioned in [12], it is self-evident to follow the direction toward the type
of features linked to those that humans use to interpret the information coming from an image.
Three essential groups of features, that humans use for interpreting image information, are textu-
ral, spectral, and contextual. The spectral features define the average tonal variations in various
regions of the visible and/or infrared portion of an electromagnetic spectrum. In contrast, textu-
ral features include information about the spatial distribution of tonal variations within a region.
Lastly, the contextual features include information from the examined area’s region. Tone refers
to the shades of gray in an image, while the texture is directed to the spatial distribution of those
gray tones. Context, texture, and tone are always present in the image, even though sometimes one
property can dominate the others. Also, the texture is an intrinsic property of nearly all surfaces.
It includes all the knowledge about the structural configuration of surfaces and their connection to
the surroundings.

Feature generation is split into two parts: the detection and the description of the features.
Detection of features is about finding the characteristics of a particular image region or the image
itself. Nevertheless, the description of the features is the assignment of quantitative properties in
the regions where the features had been detected (that describe the valuable information of the
image).

Since the 1960s, texture examination has been a subject of study, and various methods for
distinguishing textures have been suggested. The technology of texture analysis is applied, most
of the time, after the image processing is completed. This technology generates, by taking into



2. Theory 10

consideration the distribution of image pixels, a series of quantitative textural features that are
hard or even impossible for humans (doctors in our case) to identify. The way the pixels are spread
in an area of the image defines the texture of this area. It is said that the texture is the image’s
”signature”.

The most important and generally utilized methods that are applied to acquire textural features
are statistical. These features are generated from the image histogram, the gray-level co-occurrence
matrix method (GLCM), and features from the run length matrices(RLM). There are also some ad-
ditional approaches, such as transform-based methods, which transform spatial information into
frequency and scale information; structural methods, and model-based methods, which use sophis-
ticated mathematical methods to describe the texture characteristics of images[13].

2.3.1 First-order statistics

The first-order statistics’ features refer mostly to the frequency of pixels’ gray tones that are dis-
tributed or/respectively to the numbers of the image matrices in a specific area of the image. First
of all, we have the

1. Mean value

mean =

∑
i
∑

j g(i, j)
N

(2.1)

Where the g(i,j) is the tone of gray in the grayscale of the pixel that is located at the coordi-
nates (i,j), and N is the number of pixels. Which gives us the mean value of the gray tone or
color of the image.

2. Variance (std2)

std2 =
∑

i
∑

j(g(i, j)− mean)2

N− 1
(2.2)

Variance is the main measure of variability, and by using it, we can estimate how much the
values of gray tones of the pixels are differentiated from the mean value. However, the fact
that its unit of measurement is raised on the square makes it unsuitable for analysis. So that
is the reason that standard deviation is used more frequently.

3. Standard deviation (std)

std =

√∑
i
∑

j(g(i, j)− mean)2

N− 1
(2.3)

Standard deviation is the square root of the variance and has the same unit of measure as the
measurements.

4. Skewness (s)

s =
1
N

∑
i
∑

j(g(i, j)− mean)3

std3
(2.4)

Skewness is a statistical parameter that determines the extent of asymmetry of a distribution
(positive or negative), and it is precious when the data have outliers. If its value is around
zero (0), it means that the distribution is symmetric. Negative values (negative asymmetry)
mean that the number of pixels with lower gray values in the grayscale overshadows the
mean value and drags the mean value to the left side of the distribution. On the other hand,
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respectively, positive values (positive asymmetry) mean that the number of pixels that have
higher values of gray drag the mean value to the left side of the distribution, as it is noticed
in the figure 5 (a) below [14].

5. Kurtosis (k)

k =
1
N

∑
i
∑

j(g(i, j)− mean)4

std4
(2.5)

A shape characteristic that describes the sharpness of the distribution analogized to the nor-
mal distribution and estimates the comparable peak or flatness of a distribution. Values of
kurtosis around zero (0) define the normal distribution, named Mesokurtic. The normal dis-
tribution, in general, is the norm/benchmark. Negative kurtosis values describe a Platykurtic
distribution, and positive values represent a Leptokurtic distribution. This is also noticed in
the following figure 5 (b) [14].

Figure 5. Visual representation of (a) Skewness (b) Kurtosis [14]

2.3.2 Second order statistics

Co-occurrence and Run Length
Second-order statistics do not derive from the original image matrix but from secondary matri-

ces that occur from the original image matrix. The purpose of these (textural) features is to define
the texture of the images. In images, textures estimate the gray level differences (contrast) and can
identify regions of the images in which changes or some organized structures can be found [15].
Two groups of features occur from two different secondary image matrices: the features from the
co-occurrence matrices and the features from the run length matrices. Also, it is observed that,
generally, both of them (of these two groups of features) are used for image classification.

These features store information about the image’s textural properties, such as its texture uni-
formity, linear dependencies of gray tone, the number and type of boundaries, the level of contrast,
and the intricacy of the image.

Co-occurrence matrices

The co-occurrence matrix represents or describes the frequency of two/adjoining pixels coexisting
in the exact area of the image, considering a specific direction (for example, 0°, 45°, 90°, or 135°),
with a range of 1 (nearest neighbor). Haralick et al. [12] in 1973 was the first to present the GLCM
technique, and since then, it has been excessively used, especially for medical aims (especially in
the medical field). Haralick technique is divided into two phases: first, the calculation of GLMC,
and then the computation of the textural features from the GLMC [16]. Actually, in the first phase,
four matrices are calculated for every direction of 0°, 45°, 90°, or 135°. Several features can occur
from these matrices, some of which are represented below.
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We have to take into account:

P(i, j) (2.6)

is the co-occurrence matrix (GLCM)

p(i, j) =
P(i, j)
R

(2.7)

Is the (i,j)th entry of the normalized GLCM (which is the pixel pair normalized value of the GLCM)

Px(i) =
N∑
j=1

p(i, j) (2.8)

Px(i) is an array that is calculated from the sum of the rows of the matrix, and N is the number of
the different gray tones

Py(j) =
N∑
i=1

p(i, j) (2.9)

Py(j) is an array that is calculated from the sum of the columns of the matrix, and also N is the
number of the different gray tones

Taking into consideration the above relations, the following textural features [16]:

1. Angular Second Moment (ASM) which is estimating the homogeneity of the image (mea-
sures the local uniformity of the gray levels.)

ASM =

N∑
i

N∑
j
p(i, j)2 (2.10)

2. Energy which also refers to the homogeneity of the image

Energy =
√
ASM (2.11)

3. Contrast that calculates the contrast or the gray level dissimilarities between a pixel and its
neighbor in a region of the image

CON =
N−1∑
n=0

n2(
N∑
i

N∑
j
p(i, j)) (2.12)

4. Correlationwhich estimates the linear dependency of gray level values in the co-occurrence
matrix

COR =

∑N
i
∑N

j ijp(i, j)− μxμy
σxσy

(2.13)

where the μx and μy are the mean values of the Px, Py, and the σx, σx are their standard
deviations.

5. Dissimilarity gauges the distance between pairs of objects (pixels) in the region of interest.

Dissimilarity =
∑
i

∑
j
|i− j|p(i, j) (2.14)
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6. Homogeneity is measuring how near the distribution of elements in the GLCM is to the
diagonal of GLCM. Also, the contrast of the image lessens as homogeneity increases

Homogeneity =
∑
i

∑
j

p(i, j)
1+ (i− j)2

(2.15)

7. Entropy is the degree of randomness or the degree of disorder in the image.

Entropy = −
∑
i

∑
j
p(i, j)log(p(i, j)) (2.16)

These equations apply to the occurring four co-occurrence matrices. This signifies that four
values for each equation are obtained, taking into consideration the four directions as shown in
Figure 6. Ultimately, we use the mean value and range of those four values as the image’s features.

Figure 6. The directions of the co-occurrence matrices: 0°, 45°, 90°, or 135°

Run-length matrices

Chu, Sehgal, and Greenleaf published a new pair of features in 1990, as stated in [17]. These
features reflect the distribution of gray levels in the run-length matrix. The run-length matrix is a
two-dimensional matrix showing the count of each gray level for a specific length in the image.
The run-length matrix p(i, j) is used to determine various texture features and is represented as the
number of runs with pixels of gray level i and run length j for a given image.

First, we have to consider the following:
The p(i, j) stands for the number of runs of pixels of gray level i and length j. The image

contains M levels of gray and N distinct run lengths. Also, the total number of runs in the image
is represented by nr, and the image contains np pixels in total.

1. Short Run Emphasis (SRE)[18]

SRE =
1
nr

M∑
i=1

N∑
j=1

p(i, j)
j2

(2.17)

2. Long Run Emphasis (LRE)

LRE =
1
nr

M∑
i=1

N∑
j=1

p(i, j)j2 (2.18)

3. Gray-Level Non-Uniformity (GLNU)

GLNU =
1
nr

M∑
i=1

N∑
j=1

p(i, j)2 (2.19)
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4. Run Length Non-Uniformity (RLNU)

RLNU =
1
nr

N∑
j=1

M∑
i=1

p(i, j)2 (2.20)

5. Run Percentage (RPC)
RPC =

nr
np

(2.21)

where

nr =
M∑
i=1

N∑
j=1

p(i, j) (2.22)

np =
M∑
i=1

N∑
j=1

jp(i, j) (2.23)

Also, in this case, occur four (4) RL matrices, one for every direction, so four values for each
feature are acquired.

2.3.3 Local Binary Pattern (LBP)

The LBP algorithm is a standard method for texture analysis combined with structural and statisti-
cal texture analysis. The basic LBPwas invented during David Harwood’s visit to the University of
Maryland to Oulu in 1992. The initial thought was that two-dimensional textures could be defined
by two complementary local measures: contrast and pattern. So, it was first used for completing
measurements of local image contrast.

The first approach of the LBP algorithm (according to Topi Maenpaa and Pietikainen [19])
was taking into consideration the eight neighbors of a pixel and the value of the pixel (which was
located) in the center as a threshold. Then, it multiplied the thresholded values (those above the
threshold value) with some weights given to the neighbor pixels, and the final output was the
sum of these numbers. The final result was substituting the central pixel’s value, as shown in the
figure below 7, and stored in the output LBP 2-D array. So, for each pixel of the input image,
the procedure of thresholding and saving the output value in the LBP array is followed. The final
phase is to calculate a histogram over the outcome LBP array, in which every one of its values will
be considered a feature (this way will occur ten features).

Given that the LBP method was unaffected by small and monotonic changes in grayscale, a
local contrast measure (C) was added to the algorithm. This parameter was calculated by taking
the difference between the averages of the neighbor pixels’ values above and below the threshold,
which is also shown in the figure below 7. The local contrast and the 2-D LBP’s distribution were
considered features. Thus, the LBP/C operator that was occurring had excellent discrimination
rates.
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Figure 7. Visual representation of the steps of the LBP method: thresholding and multiplication
with the weights [20]

The LBP method is considered a unifying approach to texture analysis. As mentioned before,
the texture can be separated into the statistical and the structural approach. The statistical properties
of pixels of an image are utilized to define its texture. An example of statistical texture methods
is the second-order statistics arising from the co-occurrence matrices proposed by Haralick. Simi-
larly, the LBP method can be considered a particular example of a multi-dimensional second-order
statistic measure. In this approach, the texture is the input of a two-dimensional matrix, and it is
interpreted using the occurring statistical parameters [21]. Also, it is pointed out that the relations
between the pixels are of a local kind [22]. ”The brightness level at a point in an image is highly
dependent on the brightness levels of neighboring points unless the image is simply random noise”,
mentioned Cross and Jain [23]. Furthermore, Jain and Karu [24] note that texture is described not
only by the gray levels of pixels but also by the local gray value ”patterns”.

The second approach, the structural, presents the idea of texture primitives. The definition of
complex structures with simpler primitives is the main intention.

In general, primitive-based models have been used for clarifying the human insight of textures
(Beck et al.) [25]. The LBP can also be regarded as a sample of the structural texture analysis
methods. As mentioned in [21], this approach regards texture as a local pattern that is periodically
repeated over an area. These two approaches can result in different findings when analyzing and
classifying texture. A single approach may not be enough to detect a texture’s patterns. There is
no single or proper path to analyze each texture; it always depends on the situation. The fact that
a texture includes statistical and structural features, so a unified approach was proposed and used.

Rather than trying to collect information about the texture from every pixel, local patterns
are created. Every pixel acquires a label, which is based on the neighbor pixels. Local primitives
noticed by the LBP include spots, flat areas, edges, edge ends, curves, etc. In the following figure 8,
some examples of the LBP8,R can be seen. In the figure below, the black circles represent the zeros,
and the white circles represent the ones. In conclusion, the LBP approach is rightly considered a
unifying approach that can recognize with success various textures to which individual statistical
or structural methods have been applied.
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Figure 8. Various texture local patterns noticed by the LBP method [19]

As Topi Maenpaa and Pietikainen imply in [19] and Ojala et al. in [26], the LBP technique
that is used today is different from the first approach, but the basic idea remains the same, where
the local texture can be defined by a binary code that is constructed by utilizing the gray value of
the centered (pixel) as a threshold for its neighborhood. With the first approach, capturing quite
fine details in an image was possible. However, it was not feasible to notice details at different
scales. So, the new extended LBP approach has to consider two more parameters: the P, which
is the number of points in a circular neighborhood, and the R, which is the radius of the circular
neighborhood, which permits us to consider different scales. Thus, the new extended LBP operator
is symbolized as LBPP,R. Some examples of different circular symmetric neighbor sets can be seen
in figure 9.

Image texture is considered a 2-D occurrence represented by two properties: spatial structure
(pattern) and contrast. Considering the grayscale and rotation invariant for texture characterization,
local pattern and contrast form an intriguing pair. The local pattern is affected by rotation, but
contrast is not, and on the other hand, where the grayscale influences contrast, spatial pattern is
not. Therefore, contrast (C) alone is not significant, as it depends on the grayscale [26].

In conclusion, comparing the original LBP and the extended approach yields two differences.
First, deriving rotation-invariant texture descriptors is more straightforward by indexing the neigh-
borhood in the general definition circularly. Also, the neighbors’ values that do not fit the pixels
are calculated by interpolation.

Figure 9. Three circular symmetric neighbor sets with different radius (R) and number of points
(P) of the LBP method [19]

The histogram of the responses of the LBPP,R operator (of the ”uniform” patterns) calculated
for an image or an area of the image appears to be a robust and handy texture feature.

As an elementary texture operator, the LBP is ideally suited for implementations demanding
rapid feature generation, and it is generally preferred due to its simplicity and performance.
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2.3.4 Tamura textural features

Various types of textural features for image classification have been proposed andmentioned. After
the good performance and results of Haralick’s features, which basically was an easily computable
approach, Tamura and his colleagues [27] were inspired to encounter new visual features corre-
sponding to human visual perception. Notably, in this procedure, having a set of features relevant
to human perception of visual textures is more suitable. The Tamura textural features approximat-
ing human visual perception are precious for utilization in feature selection. The following features
were calculated and assumed based on psychological tests and experiments that had been done on
humans. Six parameters, coarseness, contrast, directionality, line-likeness, regularity, and rough-
ness, were introduced by Tamura et al., from which the first three are noteworthy. Nevertheless,
all of them are essential since the last three features are highly related to the first three.

1. Coarseness (Coarse - Fine)
One of the primary features occurring from Tamura’s algorithm is coarseness. Sometimes,
when we are referring to coarseness, we are actually indicating (in the narrow sense) texture.
It is observed that in some cases, coarseness has been used as the principal clue to determine
if an image includes texture or not. The greater the coarseness value is, the more irregular the
texture is. When patterns are composed of different structures, the sizes of their components
may indicate a difference in the scale of coarseness. So, a pattern is assumed to be coarser
or, in other words, it conveys the impression of roughness when its component size is more
extensive and/or its components are less repeated.

2. Contrast (High Contrast - Low Contrast)
Contrast measures the way gray levels vary in the image, a measure that can be acquired
by the statistical analysis of the gray level distribution of its pixels. So, actually, by having
an image with patterns that vary only in their gray-level distribution, we can differentiate
the brightest from the darkest patterns of the image more efficiently, and contrast can be
measured. Some factors that may impact the contrast of two different patterns with different
textures can be the gray-level range dynamic, the ratio of the black andwhite in the image, the
frequency of intensity changes, and the sharpness of edges. Contrast, in amore limited sense,
can represent the quality of the image. Also, it must be noted that higher contrast indicates
a smaller variety of gray levels distributed along the image, which in some cases can imply
loss of information. In conclusion, higher contrast of patterns with different structures does
not always mean better diversification of those patterns. The optimum level of contrast must
be found so that useful information is not lost.

3. Directionality (Directional - Nondirectional)
Likewise, an additional global property in an image area is direction. Directionality involves
the shape of the components and the placement rule. Some images have an orientation,
several orientations, or no orientation at all. However, only the total degree of directionality
is measured, as Tamura et at. state in [27]; the orientation does not matter. Thus, patterns
differing only in orientation have the exact extent of directionality.

4. Line-likeness (Line-Like versus Blob-Like)
This feature is interested only in the shape of the texture elements. It provides additional
information to the information we obtain from the three previous essential features, mainly
when directionality cannot be used to differentiate two patterns. By using the definition of
line-likeness, we describe a component of texture that is formed of lines. Therefore, when the
direction and the adjoining (edge’s) direction for a given edge are almost equal, we consider
such a group of edge points a line.
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5. Regularity (Regular - Irregular)
For natural features, it is not that easy to estimate a degree of irregularity; details about the
size and the shape of the primitives must be known. Assume that if any feature of a texture
varies over the whole image, the image is irregular. So, regularity is associated with (the
abovementioned features) coarseness, contrast, directionality, and line-likeness. Also, it is
calculated as a sum of the standard deviation of the previous four features.

Freg = 1− r(σcrs + σcon + σdir + σlin)
where r is a normalizing factor and each σxxx stands for standard deviation of the correspond-
ing feature.

6. Roughness (Rough - Smooth)
Initially, this feature was not used for visual textures but only for tactile ones. Nevertheless,
when examining natural textures, we can compare them in terms of roughness or smoothness.
Emphasis had been given to calculating the coarseness and contrast. Hence, roughness can
be estimated as a measure that occurs by totaling the coarseness and contrast.

Frgh = Fcrs + Fcon

Generally, as mentioned earlier, the first three of Tamura’s features are used in most situations.
They are beneficial (they can come in handy) in image analysis, and they can capture high-level
perceptual characteristics of a texture.

2.3.5 Wavelet

The wavelet transform, as mentioned in [28], like the Fourier transform, pertains to the class of
integral transforms and can be seen as an addendum to the Fourier decomposition method. In a few
words, the sinusoids utilized in Fourier analysis are large waves, whereas, a wavelet represents a
small wave, which practically is an oscillation that decays fast. The scalability of wavelets is the
essential difference between the wavelet transform and the Fourier transform.

So, the classical Fourier transform analysis in the time-frequency analysis of a signal was in-
sufficient because the Fourier transform of a signal did not include any regional information. The
windowed Fourier transform (a short-time Fourier transform known later as the Gabor transform)
was then presented by Dennis Gabor in 1946 to conquer this liability. After that, Meyer [29]
discovered the existing literature on wavelets. And, thereupon many outstanding mathematicians
made a noteworthy contribution to the wavelet theory. Thus, the wavelet transform is advanta-
geous when investigating and analyzing signals and images with considerable discontinuities and
it provides powerful and flexible filters to analyze images at different scales.

As it is mentioned in [30], noteworthy information is not always found in low- frequency areas
of a signal or an image(s). Therefore, a more suitable approach, to using the wavelet transform
for the detection of the textures, is to find the important frequencies and then decompose the im-
ages/signal further.

The primary step in all the wavelet transforms is convolving the signal (or image) with a fil-
ter bank to acquire helpful information about the signal/image. By applying the discrete wavelet
transform (DWT) as shown in figure 10 (a), the image is decomposed; specifically, it is separated
into four sub-bands. Every sub-band filter yields four image regions with half of the side length.
The image regions are organized by agreement, as displayed in figure 10 (a). These sub-band im-
ages are named as follows: LH1 (Low-High; the number 1 indicates the level of decomposition),
HL1 (High-Low), HH1 (High-High), and LL1(Low-Low). So, as it is mentioned in [31], an im-
age’s texture can be described using these sub-bands images, their values, or the features that can
be extracted from them. To achieve the second level decomposition, the LL1 sub-band is further
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decomposed and critically sampled, as shown in figure 10 (b). Likewise, LL2 is utilized for addi-
tional decomposition, and so on. This procedure will continue until the wanted(significant) scale
of frequency is achieved (getting, in our case, the essential information about the texture of the
images).

Figure 10. Two levels of decomposition after using the discrete wavelet transformation: (a) The
traditional pyramid-type first level (b) Second level [31]

2.3.6 Gabor features (Transform-based method)

The Gabor filter, described in 1946 and named after Dennis Gabor, is a convolutional filter rep-
resenting a combination of Gaussian and a sinusoidal term. It is generally used for generating
features that represent the texture and edges in image processing and image analysis procedures. It
has been found that Gabor filters are analogous to those of the human visual system. Also, Gabor
filters are widely used for texture feature extraction and are considered a powerful tool for texture
analysis based on signal processing.

In 1986, Turner [32] was the first to use a bank of Gabor filters to analyze texture. To extract
frequency and information for the orientation, this bank of filters at diverse scales and orienta-
tions was used, permitting multichannel filtering of an image. So, this bank could then be used to
disintegrate the image into texture features [33]. The implementation that is followed is inspired
by the one suggested by Manjunath et al. [34]. The features’ statistics, computed by filtering the
image with a bank of orientation and scale-sensitive filters in a region, are utilized to describe the
underlying texture information and details.

The Gabor function is described as follows, according to Fogel and Sagi in[35]:

G(x, y|λ, θ,ψ, σ, γ) = exp(−x′2 + γ2y′2

2σ2
)exp(i(2π

x′

λ
+ ψ)) (2.24)

where,
x′ = xcosθ + ysinθ (2.25)

y′ = −xsinθ + ycosθ (2.26)

and λ represents the wavelength(or the frequency), the θ the orientation of the filter, the ψ describes
the phase offset, the σ the standard deviation and γ symbolizes the spatial aspect ratio [35].

Let’s suppose the I(x, y) is the input element matrix andG(x, y|λ, θ,ψ, σ, γ) the Gabor operator.
We can calculate the G*I spectra for various orientations and wavelengths. This range identifies
the texture element.

Two features occur for every combination of orientation and wavelength: energy and ampli-
tude. In our approach, the mean and the range of these two features for five different directions
and frequencies/wavelengths have been calculated.
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2.4 Machine Learning

Before discussing machine learning, we need to explain what a model is and what is its connection
tomachine learning. Amodel is just a mathematical representation of the relation between different
variables. For example, a cooking recipe includes a model that correlates inputs like the number
of servings with the amount of every required ingredient [36]. The goal is to develop models
by using known data (training phase) and then to be able to predict different results regarding
a problem or an issue using new/unknown data. So basically, machine learning, as Burkov is
referring in [37], which is a subfield of Artificial intelligence, can be described as the procedure
of solving a practical problem or extracting knowledge and information by collecting data and
algorithmically assembling a model based on that data. Eventually, this model is used to solve the
practical problem or to acquire information.

Types of Machine learning (ML)

1. Supervised learning
In this type ofML, the training data given to the algorithm include their labels. Thus, training
a model on labeled data is the essence of supervised learning. Labeled data provide input
features and their respective output labels. The goal is to learn and predict the correct output
label for new input data. Supervised learning consists of two types of procedures. In the
classification process, the first of the two procedures, the output variable, is categorical, and
the model assigns input data to predefined classes or categories. In the regression procedure,
the output variable is continuous, and the model indicates a numerical value based on the
input features [20].

2. Unsupervised learning
In unsupervised learning, the training data has no label ( e.g., Clustering). Unsupervised
learning aims to identify concealed patterns, structures, or associations in the data without
explicit knowledge of the output labels. It can be arranged into two categories: clustering
and dimensionality reduction. Firstly, clustering involves grouping similar data points based
on their intrinsic characteristics without any prior information about the class labels. Sec-
ondly, dimensionality reduction methods aim to decrease the number of input features while
retaining the most suitable information. This can help visualize high-dimensional data or
improve the effectiveness of subsequent machine-learning tasks.

3. Semi-supervised learning
Lies between supervised and unsupervised learning. It addresses scenarios where a limited
amount of labeled data and more data without a label are available for training: the model
leverages labeled and labelless data to enhance performance in semi-supervised learning.
The idea is that the data without labels can provide additional information or patterns to
assist in better generalization and decision-making.

4. Reinforcement learning
It involves an agent that learns by interacting with an environment to earn a reward. The
agent’s actions in the environment are met with prizes or punishments. Developing an op-
timal procedure that instructs the agent to make the proper choices in various situations is
typically the objective. Also, it is generally utilized in various fields, such as game playing,
robotics, self-driving cars, and autonomous systems.

5. Batch and online learning
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Batch learning, also known as offline learning or batch training, involves training amachine
learning model on a whole available dataset at once at regular intervals such as weekly,
monthly, etc. In batch learning, the model is trained to utilize all the available labeled data
in a single iteration. Themodel learns the relationships and the patterns in the data to generate
predictions or classifications.

Online learning, also known as incremental learning or streaming learning, is a different
approach where the model is updated incrementally as new data arrives. In online learning,
the model learns from individual instances or smallish batches of data, one at a time, rather
than using the entire dataset at once. Online learning is beneficial when data is arriving
continuously, and there is a need for real-time learning and adaptability to changing patterns.
It is more memory and computationally efficient than batch learning since it processes data
incrementally.

Figure 11. Machine learning steps: Step-1. pre-processing of the WSI and feature generation,
Step-2. utilization of the ML algorithm [38] [39]

In Figure 11 above are displayed the typical steps for machine learning in digital histopatho-
logical image analysis, which show that different types of machine learning algorithms (like the
ones noted above) could be employed after the Whole Slide Image (WSI) is preprocessed [38].
This preprocessing procedure might include extracting local patches in various sizes (256 x 256,
96 x 96, etc.) sampled from the large histopathological images. Then, multiple features are gener-
ated from these patches, which will be the input for the ML process, where the ultimate goal is to
predict the class to which a new sample belongs [38]. Then, feature extraction and classification
between benign and malignant cancer are performed for each local patch. Feature extraction aims
to extract valuable information for machine learning tasks.

It is also necessary to comment that in a machine-learning system, two problems may occur
and must be considered so that everything will work smoothly. These problems are overfitting
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and underfitting. Overfitting, shown in Figure 12 on the right, is a situation in which the resultant
model fits too well with the training data and does not have good generalization capability, thus
providing low accuracy when used on new data [40]. On the other hand, underfitting, displayed
in Figure 12 on the left, is a situation where the model does not fit well, even on the training data.
To overcome the underfitting problem, the feature selection should be increased. Sometimes it is
even recommended to choose another model.

Thus, finding the best/”magic” number of features to be utilized as input for every model is
crucial. An example of a proper fit is shown in the middle of Figure 12.

Figure 12. Visual representation of underfitting and overfitting [41]

2.4.1 Classifiers

Classifiers are algorithms that have been designed to categorize a vector of features into one of the
Ni (i=1,2,3..) categories. The features go via a procedure of classification after their extraction. So,
practically, classifiers are a family of algorithms, which are just mathematical representations, as
has beenmentioned before, and can separate the samples into different categories. The features and
the number of different classes are the inputs that are provided to the classifiers. Also, the output
of the classifiers is usually a number that indicates the class that the sample(s) was categorized.

In supervised machine learning, there are two different types of (supervised) classifiers: the
statistical or parametric classifiers and the non-statistical or non-parametric classifiers. The sta-
tistical classifiers prerequisite statistical information and the a priori probability the samples (for
classification) have to belong to one of the classes. Two of the most common parametric classifiers
are Bayes and Minimum Distance Classifier classifiers. On the other hand, the non-statistical clas-
sifiers do not require previous training or any statistical information for the unknown data or/and
the probability of these data belonging to one of the classes.

1. Minimum Distance Classifier (Nearest Centroid)
Among several classifiers that can be found today, the minimum distance classifier (MDC)
is one of the first, actually, and one of the most simple and economical ones. The MDC
is a statistical classifier that uses all the available patterns from all the classes for training,
and its purpose is to correctly label as many unknown samples as possible. So, how does it
work? The MDC algorithm finds the centroid of every class and uses it as the only criterion
for classifying the test pattern. It measures the distance of the test/unknown pattern from
each class’s centroid, and then the test/unknown pattern is classified into the class with the
nearest centroid to it. In other words, it is selecting the class with the closest centroid to the
test pattern.
In consequence, MDC can classify efficiently without the need for additional parameters
besides the centroid of each class or specific settings, and it requires the minimum compu-
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tational need. However, all these might negatively impact the accuracy. Also, many pattern
classification applications, e.g., for disease diagnostics, are taking advantage of the MDC,
as mentioned in [42].

2. K-Neighbors Classifier

The k-neighbors classifier is also one of the most straightforward and really practical clas-
sifiers. It is a non-parametric classifier, and it is used widely in multiple applications since
it does not demand statistical information or previous training. It is also considered a lazy
algorithm that performs without a training stage but has an expensive testing phase, as noted
in [43]. Every sample is given as an input to the classifier, and it is compared to the previ-
ous instances, and it is classified into the class where the k nearest patterns belong, with k
usually representing an odd number (k=1, 3, 5...). There is no general rule for calculating
the distance between unknown and the already classified patterns. However, there are sev-
eral approaches that have a different impact on the classification results. A challenging part
is specifying the neighborhood, discovering the right k, and determining how the distance
between instances can be measured. [44]. Some of the proposed mathematical types for
calculating the distance are given beneath:

(a) Euclidean Distance

de(a, b) =

√√√√ N∑
i=1

(bi − ai)2 (2.27)

It Occurs from the Pythagorean theorem and measures the distance between two pat-
terns a, b in a space of N dimensions (hence N characteristics).

(b) City Block Distance

dcb(a, b) =
N∑
i=1

|bi − ai| (2.28)

It was used instead of the Euclidean distance formula to reduce the time of calculating
distances as it is observed that the squaring of distances does not affect the result.

(c) Maximum Distance

dm(a, b) = maxi=1:N|bi − ai| (2.29)

An extreme case where it is considered only the distance of the pattern that shows the
biggest difference.

(d) Minkowski Distance

dr(a, b) = [
N∑
i=1

|bi − ai|r]1/r (2.30)

A generalization of the three previous distance formulas where r is a parameter that
determines the r-normal distance.

3. Gaussian Naive Bayes

For machine learning, Naive Bayes is one of the most useful and valuable classifiers. It
is a probabilistic parametric classifier based on the independence assumption, i.e. assumes
that each feature is different and independent of the others. Even though, in real life, this
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assumption is seldom considered. As a parametric classifier, however, it presupposes the
existence of at least an indicative (a small) number of samples for training. The following
formula defines the generalized format of the discriminant function of the classifier:

di = ln(Pi)−
1
2
ln|Ci| −

1
2
((x− mi)

TC−1
i (x− mi)) (2.31)

where Ci is the covariance matrix of class i, mi is the mean of the features of the training
samples of class i, x is the test/unknown pattern to be classified. The Pi represents the
possibility that this pattern belongs to class i [45].

4. Linear Discriminant Analysis (LDA)

An additional supervised machine learning algorithm, LDA, is utilized for classification
purposes. Its primary purpose is to find a linear combination of the available features that
maximizes the separation between two or more categories in the dataset [46]. Instead of
utilizing one feature at a time, considering a combination of two ormore features can bemore
beneficial and contribute to the classification of the samples. A specific feature cannot be
used to decide where a sample belongs, but combining it with another feature may determine
the class it belongs to.

The discriminant analysis calculates functions from a group of known data (training data) for
which the observations class is known. The functions can then be applied to the testing data
and predict to which class they belong. The produced discriminant functions are calculated
depending on the number of categories available. For k classification groups, k-1 functions
are produced. A discriminant function has the following format:

LD = w1 ∗ x1 + w2 ∗ x2 + wi ∗ xi (2.32)

where LD is the result of the linear discrimination, wi are the rescaled weights, and xi are
the features used for the discrimination. These weights are estimated using the separation
function :

Separation =
Between group variance
Within group variance

(2.33)

The goal is to transform the data so that the ratio of between-class variance to the within-class
variance, shown above in equation (2.33), will be maximized.

The first step of the LD’s training phase is to calculate every class’s mean and scatter ma-
trix. The scatter matrices measure the data variability within each class. The next step is to
calculate the mean and scatter matrix again, but this time, consider the data across all classes.

The total separation is calculated as follows S = S(−1)W SB where S−1W is the (pooled) within-
group scatter matrix, and SB is the between-group scatter matrix.
As noted in [47], the eigenvectors and eigenvalues of the S scatter matrix are estimated,
reducing the data’s dimensionality while retaining the most essential information for clas-
sification. The eigenvectors with the highest eigenvalues correspond to the most important
directions that maximize the data separation between the classes and are used to transform
the samples onto the new subspace. Now, the data can be projected in eigenvectors’ direc-
tions to create a lower-dimensional representation of the data, which is optimal for classifi-
cation. The transformed data for the two classes problem is shown below in Figure 13. Once
the linear discriminant function and weights have been calculated, the new samples can be
projected onto the discrimination line and determine to which class they belong.
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Figure 13. Separation of the data using the LDA classifier [47]

Concluding, LDA is a famous algorithm for classification studies because it is simple and
efficient. It is also useful in some exceptional cases when the number of samples is small
in comparison to the number of features, which can lead to overfitting when using other
classification algorithms. Moreover, it has the advantage of providing interpretable results,
which can help understand the connections between the calculated features.

5. Logistic Regression

Foremost, it needs to be clarified that logistic regression is a classification algorithm, not
a regression [37]. Logistic regression estimates the possibilities for classification problems
with two possible outcomes [48]. In addition, logistic regression belongs to the parametric
category and, like the KNN, tries to indicate the class to which an unknown sample belongs.
Moreover, it attempts to compute the probability of class membership [49].

In logistic regression, it is still needed to model yi as a linear function of xi (inputs), yet, with
a binary yi (output). The linear combination of features such as wxi + b is a function that
travels from minus infinity to plus infinity, while the output yi has only two possible values
[37].

The logistic function is used to compress the outcome of a linear equation between 0 and 1
and is defined as follows:

logistic(η) =
1

1+ exp(−η)
(2.34)

As shown in Figure 14, the logistic function serves the classification problems. The output of
f(x), can be interpreted as the probability (odds) of yi being positive, having the appropriate
values of x and b. For example, if the output is higher than or equal to the threshold class of
x, is positive; differently, it is negative. The selection of the threshold differs depending on
the problem.

The logistic regression model looks as demonstrated below:

fw,b(x) =
1

1+ e−(wx+b) (2.35)
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where w is a D-dimension vector of parameters and b is a real number. The notation fw,b
means that the model f has two parameters, the w and b values.

The term (wx + b) is seen from linear regression. Also, to find the best values for the w
and b parameters in logistic regression, the Maximum Likelihood Estimation (MLE) is used
to maximize the likelihood of observing the given binary outcomes under the logistic re-
gression model [37]. Generally, in statistics, the MLE method is utilized to estimate one
model’s parameters. The regression models become ineffective when the connection be-
tween the outcome and features is nonlinear or when features interrelate [48]. All things
considered, logistic regression is a fairly straightforward parametric method, and it is em-
ployed in clinical audits [50].

Figure 14. Visual representation of the standard logistic function (diagram) [48]

6. Perceptron (Basic version)

Many scientists and researchers developedmodels based on discoveries from biological neu-
ral research to comprehend how the human brain works. Back in the days of 1960s, Frank
Rosenblatt designed a machine named the perceptron that performed like a human mind
based on these first models. Even though it did not have the brainpower or the ability to
think itself, it could learn, and this was a significant innovation that set the starting point for
the development of neural network technologies.

Thus, a perceptron is a network that achieves the imitation of associative memory. The
most fundamental perceptron architecture is formed of two layers of nodes that are strongly
connected between them, the input layer and the output layer, and each connection is given
a modifiable weight. Further, the network takes a set of inputs and is able to compute the
desired output. The ability to modify and adapt the weights as needed to yield a specific
output represents how the network is trained so that it eventually could learn. It seems that
perceptrons are among the most premature and essential models of artificial neural networks
that are still involved (and preferred) in many applications [51].
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Figure 15. A simple perceptron diagram showing the [51]

To describe how it works, we are taking into consideration the fundamental architecture that
contains two layers, where each layer is entirely connected to the other and does not exist any
connections between nodes within the same layer, as shown in Figure 15. The first layer, the
input, transmits a signal to the second layer, the output. Then, the corresponding weights of
the connections are applied to the signal, and this value is obtained and summarized by the
node of the second layer. The node releases an output signal if the sum reaches a provided
threshold. Lastly, the outputs are totaled from all the inputs a node acquires in the output
layer.

7. Multi-Layer Perceptron (MLP Classifier)

An MLP neural network works like the perceptron classifier mentioned above, with the
difference that it contains one or more hidden layers (of computation nodes) among the input
and the output layers [52]. Connections are only allowed in nodes of successive levels, not
within the same layer, and every node of a layer connects to all the nodes in the layer above
it.

The training phase is equal to choosing proper weights for all the connections such that a
preferred output is rendered for a specific input. For MLP, the procedure of learning and the
speed at which it is learning is essential.

8. Support Vector Machines (SVMs)

SVM is a robust classifier that performs well on various classification problems. One of
SVM’s essential strengths is handling high-dimensional data, which can be utilized effec-
tively in the case of datasets with many features. SVM is a general-purpose classifier that
can be applied to linear or non-linear, separable data, with or without overlapping between
the classes [53].

In the case of linearly separable and non-overlapping classes, the training phase aims to
find two parallel hyperplanes. The criteria to be satisfied are that neither of the data sam-
ples is located between those two parallel hyperplanes and the distance between them is
maximized. The area between those two parallel hyperplanes is called the margin, and the
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decision boundary is defined by the hyperplane located at an equal distance between them.
This is shown in the Figure 16 below:

Figure 16. Two linearly separable classes with the hyperplane and the parallel to it support vectors
[54]

Where the hyperplane is wx + b = 0 and the support vectors are wx + b = ±1, where +1
refers to class 2 and -1 to class 1, w is the vertical vector to the hyperplane, and b is the
threshold that describes the distance of the decision hyperplane from the beginning of the
axes which is equal to b

|w| .

When the classes cannot be separated linearly, the issue is to transform the training data from
the original feature space to a new higher-dimensional space in which the classes might be
separable. In the case of three dimensions, the decision boundary will be a plane, and in
more than three dimensions will be a higher-dimensional surface.

SVM transforms the input data into a higher-dimensional space using a kernel function to
find the optimal hyperplane. The kernel function measures the similarity between two data
points in the higher-dimensional space, making it possible to find a linear decision boundary
that separates the data. Some of the most commonly used Kernel functions are: linear kernel,
polynomial kernel, radial basis function (RBF) kernel, and sigmoid kernel.

In conclusion, SVM is a universal and robust classifier that can be used with many datasets
and handle high-dimensional data. Nevertheless, it can be computationally intensive and
may demand attentive tuning of its parameters to acquire the best outcomes. Another weak-
ness of SVM is that no probability of class membership is given; the classification outcome
is cleanly dichotomous [49].

9. Decision Tree Classifier

As noted in [48], the decision tree model, also known as CART (Classification and Regres-
sion Trees), can be used successfully in cases where the association between the features and
the output is nonlinear or in the event where the features are related to each other, whereas,
the logistic regression model performs badly (in those cases).

A decision tree model uses a tree structure to describe a set of potential decision paths and
an output for each path. The main structure of a decision tree model contains the follow-
ing components: nodes, leaves, and branches. The foremost node is called the root and is
presented at the top of the structure. The branches and leaves are located below the root
[37]. The branches deriving from the root define the potential outcomes of a decision. Each
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branching node corresponds to a feature, and the end of each branch (decision path) that
cannot be separated anymore is the leaf node (decision). These nodes and branches work
together to make predictions.

The creation of the tree model comprises the training stage, and the important phases of its
creation are the splitting phase, the stopping, and the pruning phase [55].

As the tree grows, it is necessary to find and utilize the appropriate features and conditions
for splitting the data into categories based on the values of the (input) training data. Then, it
is also crucial to understand when it is best to stop. It is meaningful to discover the proper
balance between overfitting and underfitting. Pruning will be required when the tree grows
extensively (considering many features and conditions). Some branches that do not impact
the model’s accuracy are removed/truncated to keep the decision tree simple and manage-
able.

Each branching node (asmentioned above) represents a data featurewhen building a decision
tree, as presented in Figure 17. The sample compares a specific feature F (of the feature
vector) to a specific threshold. If the value (of the instance) is above the threshold, the
sample follows the branch that satisfies the condition (in our case, if it is above the threshold,
it follows the right branch); otherwise, it follows the other branch. This process is repeated
until the model reaches the leaf node. At this point, it is decided on the class to which the
sample belongs [37].

Figure 17. A decision tree classifier using and displaying four different features [56]

Unlike the other machine learning algorithmsmentioned above, the decision tree method has
the benefit that it is not amysterious (black-box)model. Still, it can efficiently be represented
as rules and imitate the way humans think using this ”if/else-then” format, as noted in [49].
Also, the features’ importance is evident, and the conditions can be seen without much effort.
On the other hand, it does not perform well when having linear associations between the data
and the features. Moreover, they can be a little inconsistent because a totally different tree
can be produced by modifying some of the training data.

10. Random Forest Classifier
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A random forest is a classifier containing a group of N decision tree classifiers, like the ones
mentioned above. Each tree votes for the most suitable class for a given sample [57]. This
is a continuation of the basic CART method.

The training data are separated into subgroups, and each subgroup is used as input for devel-
oping a decision tree model (classifier). For every subgroup of the training data, a different
decision tree is developed; this way, a set of trees is formed, the random forest. Every tree
makes a prediction for every new sample x (votes for the most suitable class). The calculated
majority of the votes (of these predictions) is considered the final decision as to where the
sample belongs.

After the training phase of this classifier, there are N decision trees. The prediction for a
new sample x is acquired as the average of the votes in regression problems:

f(x) =
1
N

N∑
n=0

fn(x) (2.36)

Where fn(x) represents the vote given from the tree n ∈ N for the instance/input x ∈ X,
showing the probability (P(C=cj|X=x)) of x to be distributed to the class cj ∈ C and the
majority vote in classification problems, as cited in [56].

Some of the random forest’s advantages are the multiple decision trees which can help to
mark/ discover a wider range of patterns and relationships in the data. Moreover, using a
different subgroup of the training data in the training stage can lessen the correlation between
the trees, contributing to reducing overfitting. Lastly, the random forest can manage high-
dimensional data and missing values.

2.4.2 Feature Reduction Methods

Before the feature reduction, a pre-process must be followed so that the importance of the features
can be estimated correctly. This pre-process stage includes data normalization (and rescaling),
outlier removal, handling missing data, etc.

The feature reduction phase is very important when creating a classification system, consider-
ing that, most of the time, a wide variety of features are available. It is essential that the excessive
number of features will be reduced.

The goal is to choose the most essential features so that their number will decrease and simul-
taneously maintain all the possible information they have on separating the classes. Features that
provide low distinctiveness between the classes lead to poor class discrimination. On the other
hand, with the proper feature selection, the classification process becomes more efficient.

This means that the values of the features must differ a lot between different classes, but they
should be alike within the same class.

1. Significance Test ranking

When selecting features, it is essential to examine each one individually and assess its ability
to differentiate samples at a given problem.

Significance test ranking is a feature reduction method that uses statistical significance tests
to select the most relevant features for a classification problem. The concept is to test the
null assumption that the feature is unrelated to the class label and reject this hypothesis if
the p-value is below a particular threshold.

Some significance tests that can be used are ANOVA and t-test. The process of significance
test ranking typically implicates the following steps. First, the p-value for each feature is
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calculated using a significance test. Then, the features based on their p-values are ranked,
with the smallest p-value showing the most relevant feature. The last step is to select a subset
with the most relevant features. A simple way is choosing the top k features of all features
with a p-value below a certain threshold.

The significance test ranking method is simple to implement. It can be helpful when the
number of features is extensive, and the goal is to select the most relevant features for the
classification task. Yet, it is essential to mention that the method makes the assumption that
the features are independent, which may not be accurate in practice. While this approach is
not the most efficient, it allows the elimination of the obviously wrong choices quickly and
avoids computational overburdening by using more complex feature reduction techniques.

2. Correlation ranking

Correlation ranking is a feature reduction method that identifies and removes highly cor-
related features from a dataset. It is based on the understanding that highly correlated fea-
tures can introduce redundancy in the data and potentially lead to overfitting in classification
model training. The correlation between two features is a statistical measure that quantifies
their relationship.

The correlation can be positive, negative, or zero/neutral. A zero correlation indicates no
correlation between the features. The positive correlation is marked when two (or more
features) tend to change in the same direction. On the other hand, the negative correlation
indicates that the features are not changing in the same direction, that one is increasing and
the other is decreasing. The correlation coefficient between each pair of features in the
dataset is calculated. The Pearsonmethod calculates the correlation coefficients when having
normal data distribution [58]. The absolute values of these correlation coefficients are then
used to rank the features in descending order of correlation strength. Features with higher
absolute correlation coefficients above a specified threshold are considered more correlated
and potentially redundant, so they are removed.

It’s important to note that correlation ranking should be used cautiously, as the high cor-
relation between features does not necessarily imply causation or indicate the importance
of a feature for the classification task. It is always recommended to consider the specific
requirements of the classification problem before applying correlation ranking [59].

3. Mixed Criterion (correlation and ranking test)

Mixed criterion is a feature reduction method that combines significance test ranking and
correlation-based methods. It is a way to combine the strengths of both methods to obtain a
more robust feature selection.

The mixed criterion method considers both the statistical significance of the relationship
between the feature and the class label (significance test) and the strength of the relationship
(correlation coefficient). This can help avoid the problem of selecting irrelevant features,
which can happen when using significance tests or correlation-based methods alone.

4. Principal Component Analysis (PCA) ranking

PCA is a technique that helps reduce the complexity of high-dimensional data by identifying
the essential information and transforming it into a smaller set of non-correlated variables
known as principal components. This approach enables us to keep the essential features of
the original data while reducing its dimensionality. The idea is to find and show the data
in lower dimensions (the resulting principal components), dimensions that can capture the
maximum variance in the dataset.
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The PCA method follows some phases to create the final principal components. Firstly, it
is crucial to normalize the values of the features (data) so that features with larger values
(outliers) do not influence the analysis. Secondly, the covariance matrix of the normalized
data/features is calculated, which provides details about how each feature changes. Then, the
eigenvectors and eigenvalues are computed by decomposing the covariance matrix. Eigen-
vectors represent the directions along which the data varies the most, while eigenvalues
represent the amount of variance described by each eigenvector. After that, the eigenvalues
are sorted in decreasing order, effectively representing decreasing variance in the data. The
first-k eigenvectors are selected as the principal components, where k is the desired number
of dimensions or the amount of variance explained. The principal components are created by
multiplying the normalized data with the selected eigenvectors. Finally, the original feature
values are projected on the new feature space described by the selected principal compo-
nents. Through this transformation, the data is represented in a lower dimension, and the
dimensions are not correlated with each other [60].

PCA allows dimensionality reduction while preserving the essential information of the data.
It is easy to execute and has low computational requirements.

However, the user needs to define the number of principal components, which can negatively
impact the analysis. It is also worth noting that PCA is a linear transformation technique and
may not capture complicated nonlinear relationships in the data. Nonlinear extensions of
PCA, such as kernel PCA, can be used to handle such cases [60].

5. Recursive Feature Elimination (RFE)

Feature reduction algorithms commonly yield two types of outputs: a sorted list or a feature
subset. The feature sorting technique is a greedy algorithm that generates a sorted list of
features. This method can obtain the optimal subset and adjust the number of features as
needed. The RFE method is a model-based reverse search algorithm that follows a greedy
approach. It starts with all features and progressively eliminates the least essential until a
desired number of features is reached.

The process starts by choosing amachine learningmodel and training it on the entire group of
features. Then, the features are ranked or evaluated for their importance. The least essential
features are eliminated, and the model is retrained on the reduced feature group. This process
is repeated until the wished number of features is achieved or a stopping criterion is fulfilled.

RFE helps to identify the most essential features by considering their impact on the model’s
performance. By eliminating less critical features, RFE can improve the model’s efficiency
and reduce overfitting. It’s important to mention that the choice of the stopping criterion,
such as the desired number of features or a predefined threshold, is crucial in RFE, and the
user must select it cautiously [61].

2.4.3 Evaluation Methods

The final stage in designing a machine learning system is the evaluation of the classifiers, calcu-
lating the accuracy of the classification results, and the probability of error. It is crucial to evaluate
the performance of the classifiers on the testing data and on new, unknown data to see their ef-
fectiveness. Also, by evaluating the classifiers, possible problems can occur (such as overfitting
and underfitting). Catching and identifying these problems can help improve the classifiers by
changing hyperparameters or even using another algorithm. So, the evaluation phase contributes
to the comparison of different classifiers on a specific problem. This can be done by comparing
their outcomes on the same dataset and eventually selecting the one with the best results.



2. Theory 33

The evaluation process is performed using a group of a specific and different dataset from that
used in the training process. For this reason, the available data should be used appropriately for
both the training and testing phases. Some commonly used methods for evaluating classifiers are
described below.

1. Self-consistency (Resubstitution method)

Thismethod uses all the available data samples to train the classifier (just once, the first time),
and then the classifier is tested using these same data. This method reaches a relatively high
classification success rate for this data set, but the success rate on the unknown is decreased
(compared to the rate of success of the known data). This is because the classifier learns
this particular data, and no conclusion can be drawn about its behavior on unknown data.
By mathematical analysis of the method and performing the critical reviews on results using
normal distributions, it is shown that the approximation of the accuracy of the classifier is
proportional to the ratio of the number of samples to the number of features. In particular,
the results are more accurate, considering a significant number of samples and fewer features
[62].

2. Hold out

The available data set is randomly divided into two parts: One section is reserved for training
the classifier and the other for its evaluation. An advantage of this evaluation method is that
the classification is done with data that have yet to take part in the training and are therefore
considered unknown to the classifier. However, the method has two disadvantages: First,
the separation of data reduces the number of samples used for training and evaluating the
classifier (the classification system), and second, it is not (always) straightforward which
criteria should be followed for separating the data and which is the optimal size of the two
data segments (the two sections, one for training and one for testing/evaluating). It has been
found that the larger the number of train samples, the lower the probability of misclassi-
fication. However, this way, the number of samples used for evaluating the classification
system is reduced. Despite the studies and efforts being made, there is still no ideal way of
separating the available data [62].

3. Leave-one-out

For a set of N standards, this method proposes using (N-1) samples for training and then clas-
sifying the ”leftover” sample. The process is repeated N times so that each sample is clas-
sified once (by itself), and in this manner, the system’s overall accuracy is calculated. This
way, the independence of the training from the testing data is acquired. At the same time,
there is no concern about finding the optimal separation point and, in general, about han-
dling the samples, problems that exist in the hold-out method. The Leave-One-Out method
overcomes the disadvantages of the two previous evaluation methods (self-consistency and
hold-out) but requires significantly more computational time and power. With this method,
the system’s accuracy results seem to have a lower success rate than the hold-out or self-
consistency methods. However, they are more reliable and representative when generalizing
with the classification of unknown data [62].

4. K-fold cross-validation

This evaluation method was developed to manage the large number of operations required
by the leave-one-out method and is essentially a generalization of it. In the case of cross-
validation, a set of N available samples (of the data set) is randomly divided into K equal
parts/regions containing k samples, each one of these subgroups. For example [k1,k2, ...,
kK] where obviously K ∗ k = N. The classifier is trained each time with (K-1) subgroups
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from the following subsets (k1, k2, ... kK), and in the end, classifies the subset not used
in training. The process is repeated K times so that each one of the K subgroups will be
used for testing/evaluating (the training process) once. As mentioned above, this method
drastically reduces the number of operations and, thus, the high level of computation needed
while maintaining the statistical independence of the samples and, therefore, the reliability
of the results [62].

5. Bootstrap

The bootstrap evaluation method involves randomly selecting data instances from the orig-
inal dataset with replacements to create a new dataset (the bootstrap dataset). In all the
previous evaluation methods, every instance used for developing the training dataset was
used only once. In the bootstrap evaluation method, one instance of the dataset, after be-
ing selected once for creating a (bootstrap) training dataset, is placed back into the original
dataset and can be selected again. The probability of an instance chosen for the bootstrap
dataset is p = 1 − (1− 1

N)
N and if N is a really large dataset, then the p = 1 − e(−1).

This is why this method is called sampling with replacement. The process of creating new
bootstrap datasets is repeated multiple times. The average performance metric is calculated
over all the runs by training and testing the model on each bootstrap dataset. This metric
accurately estimates the model’s actual performance on unseen data. The bootstrap method
is particularly useful when the original dataset is small [62].

2.4.4 Useful statistic concepts

Confusion matrix

Is a tabular expression that outlines the performance of a classification model. It is constructed
based on the comparison between the predicted labels and the actual labels of a set of samples.

Classified at
malignant

Classified at
benign

Has malignancy
(malignant) TP (True Positive) FN (False

Negative)
No malignancy

(benign) FP (False Positive) TN (True
Negative)

Table 2. Confusion matrix definition

The confusion matrix yields several useful statistical measurements, such as sensitivity, speci-
ficity, and overall accuracy.

Sensitivity and specificity are two additional performance metrics often used in binary classi-
fication problems. Sensitivity seen in (2.37), also known as recall or true positive rate, measures
the proportion of true positive predictions out of all actual positive samples. It suggests how well
the model can correctly identify positive instances.

Sensitivity =
TP

TP+ FN
(2.37)

In simpler terms, sensitivity indicates the percentage of actual positive samples that the model
correctly identifies.

On the other hand, specificity presented in (2.38) measures the proportion of true negative
predictions out of all actual negative samples. It implies how well the model can correctly identify
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negative instances.

Specificity =
TN

TN+ FP
(2.38)

In simpler terms, specificity indicates the percentage of actual negative samples the model cor-
rectly identifies. Sensitivity and specificity provide complementary information about the model’s
performance. Both metrics are necessary depending on the specific context and goals of the classi-
fication problem. For instance, in medical diagnostics, sensitivity may bemore critical to minimize
false negatives so that a positive for a malignancy case will not be missed and the diagnosis and
treatment delayed -which might be fatal.

Overall accuracy is typically defined as the ratio of correctly predicted samples (true positives
and true negatives) to the total number of samples. The overall accuracy is calculated from the
following formula:

OverallAccuracy =
TP+ TN

TP+ TN+ FP+ FN
(2.39)

By considering sensitivity, specificity, and overall accuracy together, it is better comprehended
how the model performs in different aspects of classification accuracy, which helps make informed
decisions based on the specific requirements of the problem at hand [63].

Statistics (short introduction)

The word ”Statistics” seems to come from the Latin word ”status,” which means state and was first
used to describe a nation’s population. Alternatively, it is said that it might derive from the ancient
Greek word στατιζω, which means sort/classify/categorize. It is noted that the statistics were used
from ancient times. Even though statistics were less developed than today, they were important;
there was a need to keep demographic records to achieve the proper functioning of the state.

Nowadays, statistics have an immense role in our lives, and they can be found and applied
to every knowledge domain, such as social and human sciences, history, philology, economics,
STEM, business administration, and health sciences.

R. A. Fisher, the father of modern Statistics, in [64] defines statistics as a set of principles and
methodologies on how:

1. how to design the technique for collecting the data

2. how to briefly present them

3. how to analyze them and extract conclusions

Useful statistic terms

Population: In statistics, population refers to an aggregate of all individuals or items defined on
some common characteristics.

Variable: is a characteristic often but not always quantitatively estimated, containing two or
more values or categories that can vary from person to person, place to place, and time to time.
The values of a variable constitute the ”data.” There are various types of variables: qualitative,
quantitative, nominal, ordinal, discrete, and continuous. Data is the plural form of datum. It is
the raw material of statistics. Data stands for a collection of numbers or facts used as a basis for
making a conclusion. In other words, data are the raw, unorganized facts and figures collected
from any field of inquiry.

Probability distribution: A function in mathematics that assigns probabilities to different pos-
sible outcomes in an experiment is known as a probability distribution. In simpler terms, a proba-
bility distribution estimates the likelihood of each outcome occurring.
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Normal distribution: In normal distribution, the data are symmetrically distributed around the
mean value, and most values are gathered around a central region, with values tapering off as they
go further away from the center. The mean, mode, and median (measures of central tendency) are
identical in a normal distribution.

Frequency: is the number of times a variable is repeated in the population.
Frequency distribution: The premise of data in frequency distribution describes the basic pat-

tern the data assumes in the group. Frequency distribution provides a better picture of the data
pattern if the number of items is large enough.

Null hypothesis: A hypothesis to be tested for acceptance or rejection is termed a null hypoth-
esis. HO denotes it.

Alternative hypothesis: is a statement regarding the population parameter or parameters, which
provides an alternative to the null hypothesis H0 within the range of pertinent values of the param-
eter, i.e., if H0 is accepted, what hypothesis is to be rejected and vice versa. H1 or HA denotes the
alternative hypothesis [65].

Statistical techniques

The statistical techniques can be classified into the following categories: descriptive and inferential
statistics. The goal of descriptive statistics is the straightforward and efficient presentation of
data. This presentation shall be made using appropriate numerical and graphical methods so that
conclusions can be drawn directly for the sample set and the whole population from which the
sample set was drawn. Descriptive statistical analysis is usually the first phase of statistical research
and processing. The first stage of descriptive statistical analysis is to calculate variousmetrics (e.g.,
mean, median, variance) meant to describe the data so that the researcher can acquire insight into
these data by summarizing them into appropriate measures. The second stage includes the design
of appropriate graphs to represent the data. These graphs represent one variable at a time or the
analysis of several variables so that the researcher can investigate the existence of relations between
the variables. Some examples of those graphs used are the histogram, the boxplot, and the scatter
plot.

Histograms, tables, and other graphs can generally present a frequency distribution. A fre-
quency distribution displays how often a particular value is found in the whole dataset and is used
for both qualitative and quantitative data. It shows the number, percentage, or frequency of vari-
ous results that appear in a given dataset. Each entry in the graph or table is accompanied by the
number of times the value appears in a particular range or group. These tables or graphs provide
a structured way of presenting a summary of grouped data which is classified based on mutually
exclusive categories and the frequency of occurrence in each respective category.

Histograms are a way of visually checking whether or not a variable approaches the normal
distribution. This is particularly important considering that one of the main assumptions of many
statistical methods is the normality of the data, i.e., that the data come from the normal distribution.
The normal distribution resembles a bell curve and is thought to be the most commonly found in
nature. Many methods a researcher can use are based on the normal distribution.

If the data is derived from a normal distribution, the histogram is expected to follow a bell-
shaped pattern and appear symmetrical. It should be clear that it is unlikely to be a fully symmetric
histogram for reasons of randomness. However, if the data comes from a normal distribution, there
will be a strong indication of symmetry. The histogram is constructed as follows: On the horizontal
axis of a system of orthogonal axes, the boundaries of the classes are marked in an appropriate
scale. Consecutive rectangles are then constructed, each with a base equal to the class’s width and
a height such that the rectangle’s area is equal to that class’s frequency.

The boxplot is a graph that shows a general overview of the data as it allows us to observe the
location and variability of the data; it can also help in making comparisons between subgroups and
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populations and identify the existence of outlying observations. It is sometimes called a five-point
diagram as it gives us information about the mean or median, the two quartiles, and the minimum
and maximum values. Therefore, from a boxplot, we can see:

• Information about the location (where the median is approximately) and the variability. The
larger the box and the larger the whiskers, the greater the variability.

• Some information about asymmetry. If the data distribution is symmetric, the line inside
the box should be approximately in the middle. Also, the length of the whiskers should be
similar.

Three boxplots are shown below in Figure 18 representing the weight of some individuals.
The horizontal line in the center of every graph corresponds to the median. The box that frames
it extends from the first to the third quadrant. The whiskers, starting from the edge of the box,
extend to the minimum and maximum value, respectively. The whiskers reveal variability outside
the upper and lower quartiles. However, when some observations are considered outliers, they
are represented with symbols instead of lines. The * (star) stands for an extreme value (or a very
extreme value). In Figure 18, can be observed some extreme values in models 1 and 3.

Figure 18. Three boxplots examples showing how data of a population are distributed [66]

Moreover, the scatter plots are graphs indicating a relationship between variables. The graph
is easilymade by plotting each observation as a point in a two-dimensional diagram, the coordinates
of it being the values of the observation for two variables that correspond to the axes. The most
important conclusion that can be obtained is the presence of a connection between two variables.

Inferential statistics is a process by which logical conclusions about a population are made
based on results from a sample set drawn from that population [67]. The steps in data-driven
decision-making are the following: firstly, formulating the hypothesis, then finding the proper
test, executing the test, and lastly, making a decision. Hypothesis testing, an essential type of
inferential statistics, compares entire populations or assesses relationships between variables using
sample sets. If the statistical hypothesis determines the distribution, it is called a simple hypothesis.
Otherwise, it is named a composite hypothesis. Commonly, a hypothesis is specified beforehand—
before applying the statistical test that will help to make a decision. The term hypothesis means
the presentation of a parameter’s postulated or stipulated values. Also, some connection between
parameters is hypothesized in the circumstance of two or more populations. Hypotheses are tested
utilizing statistical tests to draw valid inferences. Therefore, based on observational data, a test
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is performed to determine whether the postulated hypothesis is accepted. This involves a certain
amount of risk, termed the significance level. The significance level is represented by ”α”, and
is often determined as 0,05 or 0,01. Level α = 0, 01 is used for high precision and α = 0, 05 for
moderate precision. It is the measure of how tolerable the possibility of denying the null hypothesis
(H0) when it is true [67].

After applying a test, a decision is taken about accepting or rejecting the null hypothesis (or
the alternative hypothesis). There is always some possibility of making an error in deciding about
the hypotheses. These errors can be of two types. Type I error: Reject null hypothesis (H0) when
true. Type II error: Accept null hypothesis (H0) when false.

There is also the p-value concept that is noteworthy to be mentioned. The p-value is the prob-
ability of rejecting or failing to reject the null hypothesis (H0). H0 is usually the hypothesis that
two groups have no difference for a specific variable. The ”p” in the p-value stands for probability
that two groups have no difference [68].

Thus, the marginal value of the level of significance α, for which the hypothesis H0 is found
to be rejected based on a random sample x, is called the p-value of the test. It is helpful to provide
the p-value of a statistical test, particularly when H0 is rejected because it indicates the degree
of dissimilarity between the null hypothesis and the data. It is typical to say that there is very
strong evidence against H0 when the p-value of the test is ≤ 0.01. When 0.01 < p ≤ 0.05, it is
said that there is strong evidence against H0, while when 0.05 < p ≤ 0.10, it is said that there
is enough evidence against H0. Very rarely is a null hypothesis with a p-value greater than 0.10
rejected. The sample size strongly influences the p-value. Thus, p-value has become a crucial
aspect of data-driven decision-making in biomedical research. The primary method employed
to detect statistically significant differences amongst groups of observations is the extended null
hypothesis significance testing. This approach involves computing a single p-value from sample
data, which is then compared against a threshold (the α), e.g., of 0.05, to evaluate the evidence
against the hypothesis of non-significant differences among groups or the null hypothesis. When
applied to datasets with a large sample size, the estimated p-value tends to decrease, rendering the
null hypothesis meaningless in such situations [69].

Concluding: The measurements of central tendency and dispersion, like mean, median, mode,
mean deviation, standard deviation, etc., and the frequency distribution are parts of descriptive
statistics. The hypothesis estimation and testing belong to inferential statistics. All the above, along
with any other statistical tools or operations for drawing inferences or making decisions based on
the data, are known as statistical analysis of data. Statistical knowledge is mainly derived from
the information obtained by considering and processing a small number of representative instances
and generalizing the result to all the available data. Statistical analysis of data is influenced by the
data’s nature and the analysis’ ultimate goal. Some crucial aspects that affect the analysis are the
type of the data (e.g., numerical, categorical, interval) and the data distribution (if the data follow a
normal distribution or not), which influences the choice of the statistical tests to be used. Another
factor that influences the statistical analysis is the sample size; the more limited the data sampling,
the larger the expected error in the result. And lastly, the computational resources and, in some
circumstances, ethical considerations [65].

Statistical Tests

Some of the available tests that are used in this thesis are the following:

1. Kolmogorov-Smirnov test

There are several procedures for testing the normality of a population of data. Data nor-
mality testing is essential to decide which statistical test to operate. For this purpose, the
Kolmogorv-Smirnov is used. The K-S is utilized to determine whether the distribution of
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the data sample simulates the normal distribution given a normal distribution as a reference.
It is also generally used to determine whether the distributions of two different data samples
are alike (look-alike) or differ from each other [65].

2. Statistical T-test (and ANOVA)

A T-test is a procedure that compares the mean values of two sample sets and pins if there is
a statistically significant difference between them. For this test to be performed, the sample
datasets must be drawn from a normal population. Another crucial assumption of this test is
that the null hypothesis states that the two means are equal, while the alternative is that they
are not equal. Some types of t-tests are the following: The one-sample t-test is preferred
when it must be clarified if the mean of a sample dataset is the same or differs from the
source of truth (known) mean value of a population. Next is the paired samples t-test, which
compares the two mean values of two related sample datasets (e.g., measuring a parameter
of a group of patients, such as blood sugar, before and after a specific treatment). The last
t-test is the independent one or the unpaired t-test that is utilized to decide if there is a statis-
tically significant difference between the mean values of two independent sample datasets.
Ultimately, there is the ANOVA test, which does what the t-test does but for two or more
groups and compares the mean values of two or more sample datasets [70].

3. Wilcoxon signed-rank test and Wilcoxon rank-sum test

These tests are used when the sample distributions are not normal or unidentified and when
the data, in addition to being continuous numerically or quantitatively, specify rank order
(ordinal), such as medium-good-very good, or are nominal, such as female-male.

The primary goal of the Wilcoxon rank-sum (Mann-Whitney U) test is to compare two inde-
pendent sample sets (from different populations) to define if there is a significant difference
between their distributions. It is important to notice that the test does not consider a normal
distribution but supposes that the two samples have similar shapes. It estimates whether the
distributions of the two groups are the same or if one tends to have higher values than the
other. After applying the test, the outcome is a U statistic and a p-value. Generally, a low
p-value implies a significant difference between the two groups.

On the other hand, the most crucial purpose of the Wilcoxon signed-rank test is to compare
two related samples or matched pairs to determine if there is a significant difference between
their distributions. For example, the related samples can occur from measuring a parameter
before and after the treatment. It is often applied when the data is not normally distributed
or when dealing with ordinal data. The same as before, the test does not assume a normal
distribution, but it does assume symmetry in the distribution of differences between paired
observations; this is the null hypothesis. Moreover, the test provides a signed rank statistic
and the p-value [65].
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2.5 Deep Learning

Figure 19. Machine learning and Deep learning [71]

Deep learning constitutes a subcategory of machine learning, as shown in Figure 19, that focuses
on creatingmeaningful representations from data. Deep learning refers to training neural networks,
like MLP (Multi-Layer Perceptron) that had been described above (classifiers 6, 7), but with more
than two non-output (more hidden) layers [37]. This approach highlights the use of consecutive
layers. The number of layers used in a network is known as the depth of the network. These neural
networks often incorporate tens or hundreds of layers, all learned automatically from the training
data. In contrast, machine learning algorithms (described previously in §2.4.1) typically focus on
one or two layers, and they are occasionally referred to as shallow learning.

2.5.1 CNN (Convolutional Neural Network)

The feed-forward neural network, known as the convolutional neural network, can extract features
from data having convolution structures. Unlike traditional methods of feature extraction, CNN
can extract features automatically without the need for manual intervention. The basic CNN con-
volutional neural network comprises the following layers: multiple convolutional layers, pooling
layers, fully connected layers, and, eventually, the final layer, which is the output. This architecture
is generally used in image classification problems.

The CNN architecture’s first, most basic, and most important component is the convolution
layer. These layers contain/include filters (kernels) that are applied to the input images, which
are 2D matrices, and implement convolutional processes. So, it convolves or multiplies the pixel
matrix generated for the given image or objects to build a feature map. Storing all the unique
features of an image while reducing the data to be processed is the primary benefit of a feature
map. After every convolutional operation, an activation function is usually utilized. The most
often activation function in CNNs is the Rectified Linear Unit (ReLU). It adds non-linearity to
the network by setting negative values to zero and leaving positive values intact. This activation
function enables the network to capture complicated associations between the input data and the
learned features. Information is lost at the edges when choosing a convolution kernel of a particular
size. This is why padding is required to increase the input with zeros and indirectly adjust the
size. Additionally, to control the convolving density, stride is used. The stride distance for each
convolution can be adjusted to control the amount of shift. If a larger stride is chosen, the output
volume will be smaller. For instance, a filter with a stride of 2 will move 2 columns after each
convolution. In order to achieve better results, smaller strides can be employed. Increasing the
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stride results in lower density. To avoid redundancy, an important step, pooling, is suggested. So,
pooling is used to reduce the feature map’s dimensions further, keeping only the essential features
while reducing the spatial invariance. This is helping in fixing the problem of overfitting. One of
themost used and preferred techniques is max pooling, which considers the highest value from each
sub-matrix of the feature map and composes an independent matrix from it. Doing this ensures that
the learnable features stay limited while preserving any image’s key features. After the pooling is
accomplished, one or more fully connected layers are typically used. These layers connect every
neuron from the previous layer to the successive layer, allowing the network to learn patterns and
make the final predictions.

This basic CNN architecture, shown in Figure 20, can be extended and modified to adjust more
complicated tasks and variations in network design.

There are multiple CNN architectures available, such as LeNet, AlexNet, VGGNet (VGG-16
and VGG-19), GoogLeNet (Inception v1, v2, v3), ResNet (ResNet-18, ResNet-34, ResNet-50,
etc.), and MobileNet (MobileNetV1, MobileNetV2, and MobileNetV3). These architectures vary
in the number of layers they contain and the sizes of their trainable parameters [12].

Figure 20. Illustration of the steps to build the CNN: 1. Padding, 2. Multiplying using a filter with
stride, 3. Max pooling [72]

Figure 21. Visual representation of a basic CNN architecture [73]
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2.5.2 VGG16

VGG16 was generated by the Visual Geometry Group of the University of Oxford in 2014 and
is a convolutional neural network. It contains 16 [convolutional] layers that have some weights,
which explains its name. Thus, it is defined as a deep neural network. This network has about 138
million parameters. As it is shown in Figure 22, the input layer is usually a 224x224x3 RGB image.
Thirteen convolutional layers, which have a fixed size (3x3), follow the input layer. Also, VGG16
contains five pooling layers that reduce the size of the feature maps by applying the max pooling
method, which takes the maximum value within a (2x2) region. The final layers are the three
fully connected layers, where the first two include 4096 hidden layers and the last 1000 hidden
layers. Furthermore, VGG16 uses a softmax layer, applied to the last fully connected layer, to
generate a probability indicating the probable class for the input image. The structure of VGG16
is a continuation of the classical convolutional network, but it extends the network’s depth by
utilizing a 3×3 convolution core flexibly, resulting in improving the network’s performance. Also,
using smaller convolution cores can decrease the number of network parameters [74]. However,
the VGG16 model also has some weaknesses, such as that the fully connected layer has numerous
parameters, which occupy much memory and require considerable computing resources [75].

Figure 22. VGG16 architecture showing the input layer, the intermediate layers, and the final layer
[75]

2.5.3 Mobilenetv2

Google has developed a range of lightweight models called MobileNets for use on embedded de-
vices and mobile phones. These models are built using depth-wise separable convolutions and
advanced techniques.

The MobileNetV2 was introduced in 2018 as an improvement over the initial iteration of the
MobileNet architecture that depended on depthwise separable convolution as its foundation. The
depthwise separable convolution splits the convolution process into two distinct procedures: the
depthwise convolution and the pointwise convolution. With this separation, there is a notable
decrease in the number of parameters and computations needs, all while keeping a high level of
accuracy.

MobileNetV2 outperforms the first version of MobileNet by introducing a new concept that
adds inverted residuals with a linear bottleneck design. The foremost component that constitutes
the MobileNet is the input layer, which is an image, commonly of size 224x224 or 128x128. Then,
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there is the initial convolution. The MobileNetV2 begins with a typical 3x3 convolutional layer
(with a stride of 2), which decreases the spatial dimensions of the input [40]. Furthermore, the most
important blocks of MobileNetV2 are the inverted residual blocks. The number of these blocks
is 19. Every one of these blocks includes a 1x1 pointwise convolution to expand the number of
channels, followed by a depthwise separable convolution, and ends with another 1x1 pointwise
convolution to reduce the channels to reach the initial number of channels. There are also skip
connections to connect the input of the block to its output which allows the original input informa-
tion to be directly connected with the output of the block. The first version, which utilizes original
residual blocks, follows a wide-narrow-wide strategy, which is also shown in Figure 23 (a). In
contrast, MobileNetV2 follows a narrow-wide-narrow strategy, which is also described as a bot-
tleneck design, as shown in Figure 23 (b). This means that the block’s intermediate layers have
fewer channels than the input and output layers.

MobileNetV2’s last component involves a global average pooling layer, trailed by a fully con-
nected layer that utilizes softmax activation to perform classification.

Figure 23. Core blocks of MNV2 architecture: (a) Residual block and (b) Inverted residual block
[76]

Figure 24. Graphical description of an MNV2 architecture [12]

Last but not least, MobileNetV2 introduces a width multiplier parameter (w) that allows man-
aging the number of channels in each layer. This parameter w is found between this range (0, 1]
and has characteristic settings of 1, 0.75, 0.5, and 0.25, where w = 1 is the baseline MobileNet
and w < 1 is the reduced MobileNets. Modifying this parameter allows the model size and com-
putational complexity to be scaled up or down. A smaller width multiplier reduces the number of
channels, resulting in a smaller and faster model [77].

Compared to traditional CNN architectures, MobileNetV2 effectively balances accuracy and
efficiency by reducing computational complexity. Hence, it is utilized in many applications, espe-
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cially when there are limited computational resources or power efficiency is a top priority, such as
in mobile devices, embedded systems, and real-time applications.

2.5.4 Resnet50

ResNet-50 is a famous convolutional neural network design widely used for diverse computer
vision tasks like image classification, object detection, and image segmentation. A member of
the ResNet group, it was created to combat the issue of degradation that arises with deep neu-
ral networks. The network’s name, which includes ”50”, denotes its number of layers. Although
Resnet-50 has 50 layers, it contains less than 23 million trainable parameters, which is compara-
tively smaller than other architectures [78].

The degradation problem refers to the phenomenon where increasing the depth of a network
leads to decreasing performance or accuracy. In traditional deep networks, as more layers are
added, the network can struggle to optimize and learn effectively. ResNet addresses this issue
by introducing skip connections, also known as residual connections or shortcuts. The critical
innovation in ResNet-50 is the residual block. A residual block consists of a series of convolutional
layers followed by an identity skip connection. The skip connection allows the network to learn
the difference, or the residual, between the block’s input and output. By adding the residual to the
output, the network can learn to focus on the changes needed to be made to the input to obtain the
desired output [75].

Typically, as it is displayed in Figure 25, a ResNet50 neural network is constructed of a con-
volutional layer, a max pooling layer, four residual blocks, a global average pooling layer, and the
fully connected layers. The 7x7 convolutional layer with stride 2 performs the initial input image
processing. After that, the max pooling layer with a 3x3 kernel and stride 2 is applied to reduce the
spatial dimensions. The 4 residual blocks contain multiple residual units. A group of convolutional
layers is included in every residual unit, which is followed by batch normalization and ReLU acti-
vation. The skip connections, also known as residual connections, avoid the convolutional layers
and combine the initial input with the block’s output. Afterward, the global average pooling layer
is applied to reduce the spatial dimensions to 1x1. This operation aggregates the features across
the spatial dimensions while preserving the channel information. Lastly, the FC layers follow the
global average pooling layer. These layers perform the final classification based on the learned
features.

Figure 25. Different ResNet architectures for various layers [79]
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Figure 26 below shows the architecture of ResNet50. The filters’ dimensions and quantity
of layers may vary within each block, but the overall architecture remains the same. The struc-
ture of ResNet-50 is unique, featuring skip connections that allow the training of deep networks
and enhance gradient flow. The skip connections help the vanishing gradient problem, allowing
ResNet-50 to achieve high accuracy even with its depth.

Figure 26. Graphical description of an RES50 architecture [80]

2.5.5 InceptionV3 (GoogLeNet)

In 2014, Google researchers created the Inception architecture, which is also called GoogLeNet.
This CNN architecture was designed to tackle the difficulty of effectively capturing spatial infor-
mation and computational efficiency in deep neural networks. Inception is based on the concept
of utilizing ”inception modules” that comprise numerous convolutional operations, each utilizing
different filter sizes in parallel. The purpose of these parallel operations is to capture features at
different spatial scales, thereby providing the network with a comprehensive set of features to learn
from. Various filter sizes within a single module enable inception to capture both intricate details
and broader contextual information simultaneously [81].

Figure 27. Visual representation of an Inception/GoogLeNet architecture [82]

The network starts with a module that performs initial preprocessing and feature extraction
on the input image. This module usually consists of several convolutional and pooling layers that
are utilized to capture low-level features. The main structure of InceptionV3 consists of multiple
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Inception modules that are stacked one after the other. Each module has several parallel con-
volutional branches of different filter sizes. The network can capture features on various scales,
including local details and broad contextual information with these branches. Inception modules
rely on a combination of various convolutions, such as 1x1, 3x3, and 5x5, and pooling opera-
tions to extract and process features in parallel. Also, throughout the network, there are reduction
modules that are usually positioned after the inception modules. These reduction modules work to-
wards decreasing the feature maps’ spatial dimensions and simultaneously expanding the number
of channels. The reduction modules usually consist of pooling operations. InceptionV3 contains
supplementary classifiers connected to the intermediate layers designed to enhance gradient flow
and provide regularization during training. While the main classifier predicts the ultimate classes,
the auxiliary classifiers play a role in preventing overfitting by contributing to the overall loss [83].
At the final stage, the network utilizes a global average pooling layer, which minimizes the spatial
dimensions of the feature maps to 1x1. Following this, the pooled features are inputted (combined
and fed) into fully connected (FC) layers, determining the conclusive classification established on
the acquired features.

Figure 28. Detailed representation of the architecture of the INCV3 network including also the
auxiliary classifiers [83]

InceptionV3 achieves high accuracy by using the power of the parallel branches in the Incep-
tion modules. It effectively captures features at different scales. The architecture’s design balances
depth and computational efficiency, making it a good fit for research and practical computer vision
applications.

2.5.6 EfficientnetB0

The EfficientNet architecture consists of a family of convolutional neural networks (Efficient-
NetB0 -EfficientNetB7), among which the EfficientNetB0 serves as the base model. The objective
of these networks is to provide high-quality results while utilizing minimal computing resources.
Among all the variants, EfficientNetB0 is the most economical in terms of computational resources
required for its implementation. EfficientNet is characterized by compound scaling, which in-
volves balancing and principled scaling of the network’s depth, width, and resolution. In line with
this approach, EfficientNetB0 has been optimized to ensure optimal performance and efficiency.

The architecture of EfficientNetB0 can be seen in Figure 29 and begins with the input image,
typically of size 224x224 or 299x299. The first layer contains a convolutional layer that processes
the input image and extracts basic features. The convolution layer follows the inverted residual
blocks that were introduced in §2.5.3. Every block consists of a combination of depthwise separa-
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ble convolutions and pointwise convolutions. These operations allow the network to notice local
and global features while lowering computational costs. EfficientNetB0 integrates compound scal-
ing to optimize its size and performance. The network’s depth, width, and resolution can be scaled
simultaneously. The depth increases by adding more inverted residual blocks, the width increases
by multiplying the number of channels in each layer, and the resolution is kept at its default value.
After the series of inverted residual blocks, EfficientNetB0 employs a global average pooling layer,
which lessens the spatial dimensions to 1x1 while maintaining the depth information. This pooling
operation allows the network to aggregate information from the entire feature map. Lastly, Effi-
cientNetB0 has an FC layer with softmax activation to accomplish the classification, which is also
the final layer.

Figure 29. Diagram illustrating of EfficientnetB0 architecture [84]

Every following architecture is similar to its premature version. The diverse feature maps are
their single distinction as they grow the number of parameters [84]. EfficientNetB0 serves as the
baseline model of the EfficientNet architecture, providing symmetry among the model size and the
computational efficiency. Also, it demonstrates competitive performance on image classification
tasks, requiring fewer parameters and computations/calculations than other models.

2.6 Related efforts

Other researchers have addressed the topic or related topics to the present thesis in the past. Thus,
other similar studies have been noted with varying results, some of which are summarized in this
chapter. The results of these studies have helped the scientific community make discoveries about
the condition of CRC. Such research aims to gain an understanding of the condition and find new
ways to contribute to a more straightforward diagnosis and create comprehensive treatment plans.

The same dataset used for the present thesis’s purposes was also used in 2016 for ”Gland Seg-
mentation in Colon Histology Images: The GlaS Challenge Contest.” This paper presents how
different techniques and algorithms address a segmentation problem. So, the paper describes how
medical image computing specialists came together for the Gland Segmentation in Colon His-
tology Images (GlaS) challenge. The goal stood to examine the issue of gland segmentation in
digital images of tissue slides dyed with Hematoxylin and Eosin (H&E). Medical image comput-
ing specialists developed algorithms to segment glands in benign tissue and colonic malignancies.
The dataset used for the training process and ground truth annotations from an expert pathologist
were provided, which the participants used to optimize their algorithms. The algorithms were then
tested and judged based on how closely they matched the pathologist’s manual segmentation. At
this challenge, nineteen admissions were proposed, and the paper presents ten leading entries (the
best ten models) after evaluating them [85].
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In the study by Sarwinda et al. (2021) [86], which also used the same dataset as we use, the
authors explore the application of deep learning methods, explicitly employing ResNet-18 and
ResNet-50 architectures for detecting CRC through image classification. Focusing on colon gland
images, the models are trained to differentiate the benign from malignant category. Also, three dif-
ferent testing datasets are utilized to evaluate the networks. The results demonstrate that ResNet-
50 consistently exceeds ResNet-18 in the case of the evaluation metrics across all available test-
ing datasets. The classification accuracy exceeded 80%, the sensitivity 87%, and the specificity
83%. The study concludes that the deep learning approach, particularly utilizing ResNet variants,
generates highly reliable and reproducible outcomes for analyzing biomedical images of colorectal
cancer. The preprocessing stage also involves the Contrast-Limited Adaptive Histogram Equaliza-
tion (CLAHE) application to improve the image’s features by addressing low contrast in grayscale
images.

Another proposed approach, explained by Ponzio et al. [87] in 2018, explores the challenge of
colorectal cancer (CRC) diagnosis via histological image analysis. The authors try to enhance the
accuracy and efficiency of classification, considering the complexity of histological images. This
paper uses a dataset of H&E-stained whole-slide images of colorectal tissues containing healthy
tissues, adenocarcinomas, and tubulovillous adenomas. Moreover, it uses a CNN for automatic
classification, specifically the VGG16 architecture. Then, the CNN is fully trained on CRC sam-
ples and investigates transfer-learning approaches utilizing the VGG16 (pre-trained model). The
main focus is distinguishing between healthy tissue, adenocarcinoma, and tubulovillous adenoma.
The key findings are that it achieves around 90% classification accuracy when the CNN is fully
trained on the CRC dataset. Also, the transfer learning approaches, especially fine-tuning the
VGG16 after POOL3, outperform full training, reaching an accuracy of about 96% on the test
dataset. Finally, full training is computationally intensive, while transfer learning provides better
results with significantly less training time. The study highlights the potential of DL, particularly
transfer learning, in enhancing the accuracy of CRC histological image classification. The findings
suggest that pre-trained models can effectively extract features for CRC diagnosis, offering a more
efficient alternative to full training.

The paper published by Naresh Kumar et al. [88] notes the critical issue of cancer-related
deaths worldwide and underlines explicitly the need for research in biomedical health informatics
for early lung and colon cancer detection. In this study it is being compared the analysis of two
different feature generationmethodologies, the handcrafted features and the deep features extracted
using CNNs. The color, texture, shape, and structure were the bases for creating six procedures
that introduced the handcrafted features, employing classifiers such as Gradient Boosting, SVM-
RBF, Multilayer Perceptron, and Random Forest to resolve the problem of classification of lung
and colon cancer. Antithetically, the deep learning approach uses the transfer learning method
with the seven deep learning frameworks for feature generation from histopathological images.
Viewing the results indicates that the classifiers’ performance with the deep features generated
by the networks is improved compared to handcrafted features. Especially the Random Forest
classifier with features generated from the DenseNet-121 showed outstanding evaluation metrics,
reaching 98.60% accuracy and recall, 98.63% precision, 0.985 F1 score, and 0.1 ROC-AUC. It
is concluded that the spreading of color and the color (itself) in cancer cell analysis are the most
critical parameters, particularly in feature extraction. Also, the usefulness of transfer learning
is underlined, allowing for improved disease diagnosis with reduced expertise, effort, and cost.
Finally, a limitation considered is the lack of stain normalization, and it is suggested for future
work, as well as the examination of dimensionality reduction techniques for the color images.



Chapter 3

Material and Methodology

3.1 Tools and software

For the present thesis, the programming part was held on a desktop computer with a Linux operating
system, particularly Ubuntu 20.04.3 LTS version, with available 32 GB Random Access Memory
(RAM) and processor (CPU) Intel Core i7-7700 @ 3.60GHz.

Foremost, Python, a programming language, had been chosen to implement all the necessary
coding. Python is one of the most trending programming languages for scientific computing, data
science, and machine learning because it owns some essential characteristics. First of all, python is
fast and easy to learn and understand. It includes many useful open-source libraries that are perfect
for data science and, in general, for data manipulation. Some of them that have been used in this
thesis are NumPy, pandas, and scikit-learn [89].

Python programming is easier with PyCharm, an integrated development environment (IDE).
PyCharm offers a graphical debugger, an integrated unit tester, code analysis, and version control
system integration. It also supports web development using theDjango framework. It is a platform-
independent software functioning on different operating systems like Microsoft Windows, macOS,
and Linux. PyCharm has a Professional Edition and a Community Edition. The PyCharm Profes-
sional Edition, used to develop the necessary code for the present thesis, offers more features than
the Community Edition.

Themost important libraries that Python possesses andwhich have been used are the following:

1. OpenCV-Python
OpenCV is a community-produced extension (-library) that supports various programming
languages (including Python, C++, Java, etc.), is available, and can be installed on differ-
ent operating systems (Windows, Linux, Android, iOS, etc). Currently, OpenCV contains
multiple algorithms that are expanding daily, correlated to computer vision and machine
learning. In addition, it allows us to comprehend the method by which images and videos
are saved, as well as how we can alter and obtain data from them [90].

2. NumPy
NUMeric PYthon is the essential package for scientific computing in Python. This library
offers an array object that can handle multiple dimensions, along with other objects like
matrices and masked arrays. Additionally, it provides a range of functions for fast and ef-
ficient manipulation of arrays, including sorting, I/O, selecting, discrete Fourier transforms,
mathematical and logical operations, basic statistical operations, elementary linear algebra,
random simulation, and more. It is gratis, as it is an open-source library. This tool surpasses
Python lists regarding speed and efficiency for these operations. The main advantage of
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utilizing NumPy is that it requires less memory and storage space. Additionally, the per-
formance in terms of execution speed is superior. Despite this, it remains user-friendly and
convenient. Furthermore, connecting existing C code to the Python interpreter is hassle-free.

3. Pandas
It is used when operating with labeled or relational data, and it is an open-source library. It
offers a range of user-friendly operations and data structures to manipulate numerical data
and time series. It was created as an extension of the NumPy library (which constitutes a
dependency) and boasts speed and increased performance, aiming to increase user produc-
tivity. This open source has numerous advantages, including the following: It efficiently
manipulates and analyzes data quickly. It loads data from various file sources into a tabular
data structured format with labeled axes (rows and columns) which is called DataFrame. It
can effortlessly handle the absence of data, whether in floating point or non-floating point
data, expressed as NaN (Not-a-Number). DataFrames can be modified in size by inserting or
deleting columns and rows. They also allow merges, joins, reshapes, and shifts of datasets
according to the corresponding needs. Lastly, perform split-apply-combine operations on
datasets with powerful group-by functionality.

4. SciPy
Python has a library called SciPy that offers essential building blocks for modeling and tack-
ling scientific problems. SciPy features various algorithms for solving multiple problems,
such as eigenvalue problems, differential equations, algebraic equations, interpolation, and
others, and also enhances optimization (for the procedures). Additionally, it provides spe-
cialized data structures like k-dimensional trees and sparse matrices. SciPy is made on top of
NumPy, forming the base for higher-level scientific libraries such as scikit-learn. Scientists,
engineers, and people worldwide rely on SciPy [91].

When it comes to mathematical and numerical analysis, both Numpy and SciPy are com-
monly used. Numpy is particularly useful for fundamental operations like sorting and index-
ing due to its array data, while SciPy encompasses all numeric data. In terms of functionality,
Numpy provides several functions for resolving linear algebra and Fourier transforms. At
the same time, the SciPy library offers a comprehensive version of the linear algebra module
along with multiple other numerical algorithms.

5. Scikit-learn (Sklearn)
The library Sklearn is highly effective and reliable for performing machine learning tasks
in Python. Its interface in Python offers a consistent approach to statistical modeling and
efficient tools for performing diverse tasks such as regression, classification, clustering, and
dimensionality reduction. Sklearn depends on NumPy and SciPy packages. An essential
advantage is that users with various backgrounds, even those without statistics or computer
science knowledge, can easily access it. The software and web industries and fields such
as biology and physics can benefit from Sklearn’s user-friendly interface and advanced data
analysis capabilities [92]. There are various reasons why Scikit-learn stands out from other
machine-learning toolboxes used in Python. The most important is that it incorporates com-
piled code for efficiency. Also, it focuses on imperative programming (imperative program-
ming suggests how the program should achieve the result).

6. Matplotlib
Python’sMatplotlib package is ideal for visualizing data. It is community-produced, and it is
very customizable and extensible. Also, it provides a variety of plots, such as line, scattered,
bar, and radial plots, with a high degree of customization and annotation. Using the versatile
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artist module, developers can create any visualization they desire. It permits both interactive
and non-interactive plotting and provides the option to save images in various output formats
such as PNG (portable network graphics) and more. For regular use, Matplotlib has a simple
object-oriented interface called the pyplot module for easy plotting. Additionally, Matplotlib
supports an interactive interface, which is useful for creating web-based applications and a
wide range of plots. Therefore, it can operate in non-graphical environments, such as scripts,
be integrated into graphical software applications, and be utilized on websites [93].

7. Tensorflow
It is a publicly available library for quick numerical computing built and maintained by
Google. It is ideal for development, research, and production systems. TensorFlow can
operate on single CPUs, mobile devices, GPUs, and distributed systems with hundreds of
machines. Thus, TensorFlow is another powerful numerical library, and it is possible to
create deep learning models directly in TensorFlow. Also, a wrapper library (e.g., Keras)
can simplify TensorFlow’s lower-level details and complexity [94].

8. Keras
Keras is a Python library for DL intents, which operates on top of TensorFlow and is designed
for research and development purposes. It aims to simplify and expedite the evolution of
deep learning models. Additionally, it can execute flawlessly on both CPUs and GPUs,
provided that the underlying frameworks are present. Keras wraps the TensorFlow library,
abstracting its abilities and obscuring its complexity. Moreover, the minimalistic way Keras
is created permits the rapid definition of DL models. A Keras DL model can be designed,
compiled, fitted, and then evaluated or utilized to generate predictions. [94].

3.2 Dataset

The dataset chosen and downloaded is theWarwick-QU dataset, which was publicized byWarwick
University for GlaS@MICCAI’2015 [95]: Gland Segmentation Challenge Contest. Sirinukunwat-
tana and his team in [39] designed the Random Polygons Model (RPM) algorithm, a segmentation
algorithm, to extract glandular structures from colon tissue histology images, and this was the first
publication employing this particular dataset. Nevertheless, this thesis will utilize this dataset to
address classification problems. When downloading the dataset, an Excel sheet is also included
that indicates which images belong to the benign category and which to the malignant category.
Moreover, this Excel sheet has an extra column that shows that the images can be further cat-
egorized into five categories (healthy, benign/adenomatous, moderately differentiated (grade I),
moderately to poorly differentiated (grade II), and poorly differentiated (grade III)). Thus, this
dataset can classify the images into two or five categories. The dataset consists of 165 images
in total and samples for the benign and malignant categories can be seen in Figure 30. From the
entire dataset, the benign category consists of 74 images, while the malignant category consists of
91 images. Every image has a mask that annotates the gland’s area, as shown in Figure 31 below.
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Figure 30. Histopathological images from our dataset: (a) benign and (b) malignant [39]

Figure 31. The mask samples that display where exactly are located the lesions and malignancies
[39]

For the statistical analysis (extracting the features) and the creation of the classification ma-
chine learning procedure, wewanted to expand the number of images. Thus, we cropped the images
into patches. George Xenogiannopoulos implemented the cropping algorithm for his Ph.D. study.
The algorithm can accept images with their annotation masks as input and give the patches with
the regions of interest (ROIs) as output. The ROIs are the areas of significant importance for the
research and analysis. Also, it is important to mention that every patch takes the labels of its par-
ent image. Therefore, considering the masks, we took the patches from this dataset from the areas
containing the lesions and the malignancies. Using the gland annotations masks, we discarded the
patches with less than 70% mask coverage (as shown in the following Figure 32), and we ended
up with the final number of patches for our study.

After experimenting, we chose a 78x78 patch size, which is the minimum input size for most
neural networks.
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Figure 32. Patches images:(a) without applying the masks and (b) by applying the masks [39]

3.3 Implementation

3.3.1 Statistical Analysis - Feature Extraction

After gathering all the patches, the first step in our implementation was the careful feature gen-
eration from these patches. Focusing on our patches (1303 benign and 1891 malignant) from
the merged categories, we initiated the procedure of extracting the features outlined in the the-
ory and successfully counting 68 distinct features. After uploading and reading the images, using
the OpenCV library from the folders stored in our computer, we converted the colored images into
gray-colored images. This conversion of colored images into gray-colored is a standard and widely
accepted practice in image processing for various reasons. First of all, it is essential for compu-
tational reasons, as it can simplify the feature extraction process. Grayscale images have smaller
file sizes than colored ones, as they have a single intensity channel, and the latter ones hold more
information considering multiple color channels (RGB). Secondly, color conversion is necessary
because as it decreases the number of colors, the information is merged into one intensity channel,
which can minimize the noise that might be present in each color channel. Hence, it might help
reduce the noise in the images. Also, we needed grayscale images to generate the second-order
features (as mentioned in section 2.3). In addition, using grayscale images might improve the gen-
eralization as more fundamental features and patterns might be discovered. Keep in mind that the
ultimate goal is to find the features with statistically significant differences among the different
classes (benign/malignant) that will help us differentiate them. Thus, after converting the patches
with the region of interest (ROIs) into grayscale, we started to generate the features.

For every patch, we calculated the first-order statistics, four in total, using the Scipy library of
Python or the functions of Pandas’ library. After calculating these features, we saved these values in
the feature sheet (with columns as many as the features and rows as many as the patches). Moving
on to the second-order statistics, firstly using the co-occurrence matrices, we calculated the values
for the following features: contrast, dissimilarity, homogeneity, ASM, energy, and correlation. As
stated in §2.3.2, more features might occur from the co-occurrence matrices, but we focused on the
ones mentioned above. Since from every image occur four co-occurrence matrices (0°, 45°, 90°,
135°), and thus four values are calculated for each feature, which means four (4) values x six (6)
features = twenty-four (24) features for every image. However, we do not use all these features, but
according to the literature, we can compute the mean value and the range value so that every feature
will be represented by two values: the mean and the range. Hence, we end up with twelve features
(six mean and six range values). We used part of the code developed in [96] to calculate the values
of the mentioned features. We computed all four values for every feature, then we calculated the
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mean and range for every feature (contrast_mean, contrast_range, dissimilarity_mean, dissimilarity_range,
etc.) and finally stored them in the feature sheet mentioned above.

Secondly, using the run-length matrices (four for every image, a matrix for every direction
0°, 45°, 90°, and 135°) that are calculated from the patches, we computed the following features:
the short-run emphasis or SRE, the long-run emphasis or LRE, the Grey-level non-uniformity or
GLNU, the run-length non-uniformity or RLNU, and the run percentage or RP. Using part of the
code found in this source [96], we calculated the mean value and the range for every one of the
five features mentioned above from the run-length matrices exactly done like in co-occurrence
matrices. Therefore, in the end, we have ten features from the R-L matrices and save them in the
feature sheet. So far, we have calculated 26 textural features (the 1st and 2nd order characteristics).
Another group of features to add to our set of features are the LBP features (ten in number), which
we calculated using the skimage.featurelocal_binary_pattern Python’s package. The parameters
that we use, as mentioned in [97], are:

• the image=our patch (a 2-D grayscale image),

• The P=8 (Number of circularly symmetric neighbor set points ),

• The R=1 (Radius of the circle (spatial resolution of the operator),

• The method is “uniform” (Uniform pattern which is grayscale invariant and rotation invari-
ant)

So, this package calculates the LBP image, and after that, we use it to form the histogram from
which ten features will occur, as explained in the theory in §2.3.3. We have also added these ten
features to the feature sheet. Next, we estimated the Tamura features, four in total: coarseness,
contrast, directionality, and roughness. We developed our code based on the following source
[98]; we calculated the features and added their values to the feature sheet. Now, we have a total
of 40 features.

We are continuing with the calculation of the wavelet features. The wavelet transformation
(WT) uses specific low-frequency signals and, utilizing the convolution of these signals, encounters
information about them. We utilized the module dwt2 from Python’s package pywt (PyWavelets -
Wavelet Transformation in Python) [99]. This module creates four images (or four matrices):

• the LL(Low-Low pass filtering of the rows/columns)

• the LH (low-pass filtering of the rows and high-pass filtering of the columns)

• the HL (high-pass filtering of the rows and low-pass filtering of the columns)

• the HH (high-pass filtering of the rows and high-pass filtering of the columns)

The features of each of the following occurring images (LH, HL, HH) are the mean, median,
mode, max, min, range, median absolute deviation, and mean absolute deviation. Thus, we end
up with 24 features (eight from each wavelet occurring image) based on the dwt2. Lastly, we
estimated, using part of the code found in [100], the Gabor features that occur from the processing
of the images using Gabor filters and considering different angles and wavelengths (frequencies).
Two features are formed at each angle/frequency: the energy and the amplitude. Therefore, we
took the mean value and the range of a list with five different angles and a list with five different
frequencies. So, four more features have been added to our list: the Gabor energy mean, the Gabor
energy range, the Gabor amplitude mean, and the Gabor amplitude range. We conclude with a total
of 68 features, from which we will select those that are meaningful and helpful for our research.
Also, we must point out that the final feature sheet has 68 columns (as many as the features) and
rows as many as the available patches.
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3.3.2 Statistical Tests - Feature Reduction

After that, we designed the supervised machine learning system. This design consists of the fol-
lowing steps:

1. Data normalization.

2. Feature reduction (using statistical tests and other feature reduction methods)

3. Then, we choose the best/most suited features from the reduced group of features and use
them (using the feature reduction method).

4. We designed the machine learning system (select classifier and evaluation method) and eval-
uated its accuracy to find the best feature combination.

Normalization of the data is necessary because the various features that compose the data have
values whose sizes differ a lot between the features. Thus, one characteristic, such as the mean
value of the pixel intensity values of an image segment, may have values ranging between 0-255,
and a second characteristic, such as the standard deviation of the pixel intensity values, may range
between 0-7. Considering that the system is designed from a combination of several features, it is
understood that the values of the features must be normalized to participate and/or influence the
decision process of the system equally.

The features that will be used in our machine-learning system must have as poor (little) corre-
lation between the classes as possible. Having a good discriminating ability between the classes is
reasonable but optional. The statistical tests mentioned in §2.4.4 can evaluate the discriminating
ability. Firstly, we performed theKolmogorov-Smirnov for every one of these features for the two
categories (-benign and malignant) to check which features have a normal distribution (basically,
if the values of the features follow a normal distribution). Then, we perform different statistical
tests based on whether the corresponding feature values follow a normal distribution. For the fea-
tures that follow a normal distribution in both classes, we chose the T-test and theMW-Wilcoxon
test for those not following a normal distribution in one or both classes. After that, from all the
available features, we selected the features that presented statistical significance differences. These
features are the ones that would be used for our machine learning system; in other words, they are
the input for our machine learning system.

For the KS (Kolmogorov-Smirnov) test, we used the kstest method from the scipy.stats module.
As we want to test if the sample dataset (every feature) follows the normal distribution, we assume
this is the null hypothesis - the feature has a normal distribution. The level of significance we chose
is 0.05, which means that if the p-value is below this threshold, we will reject the null hypothesis.
In this case, the alternative hypothesis indicates that the samples of the particular feature (for the
two classes) do not have a normal distribution. We performed this test for every feature for both
classes and if the samples of the feature in both classes had a normal distribution, we performed
the T-test. Otherwise, we proceeded with the MW-Wilcoxon test.

For both tests, the T-test and theWilcoxon, the null hypothesis considers no difference between
the two classes (benign and malignant), stating that the distributions for these two classes for a
specific feature are the same. Also, the level of significance is set to 0.05, and a p-value under this
point means that the specific feature shows the existence of a statistically significant difference
between the classes. Then, we separate and save into another feature sheet the features that have a
discriminating ability between the two classes from those that do not. At this point, we conclude
with fewer features of the total 68 features we started, and this number ranges depending on which
classes we are examining.



3. Material and Methodology 56

3.3.3 Investigation before working with the actual dataset

After completing the statistical analysis part, we kept only the essential features that will be used
in our ML system. Thus, that phase was like a ”preprocessing” phase for our ML system. To build
the ML system, we basically will use these features to train ML classifiers, then test them and see
how well they were actually trained (how well they learned). The classifier must be trained with
different data from those used in the testing phase. After the training, we aim to select the algorithm
that best separates the benign from themalignant samples in the test data, which is the ultimate goal.
Also, we need to mention that before the training phase, we will use one more feature reduction
method to reduce the input features further. Considering that we have nine different classifiers,
two reduction methods, and four evaluation methods, we are getting 72 possible combinations
(9*2*4=72) to find which one performs the best.

Initially, we did a little investigation. The initial dataset (with the original images) can also be
divided into five categories, as mentioned in §3.2: healthy, adenomatous/benign, grade I, grade II,
and grade III. To choose among the reduction and evaluation methods available, we took a small
sample of our dataset, 300 patches from the healthy category and 300 from the Grade III category,
which we expected to be the most distinguishable. Essentially, we expect good results (acceptable
accuracy).

We first normalized our data and then generated and stored all the features. Then, we performed
our statistical analysis procedure to find the features with significant statistical differences and
consider only them for our ML system. To encounter these features, we applied the significant test
ranking procedure (regarded in theory in §2.4.2 as a feature reduction method), including applying
the Kolmogorov-Smirnov test to see if every feature follows a normal distribution. We then applied
the corresponding T-test (for those that followed the normal distribution) or MW-Wilcoxon, as
mentioned above in §3.3.2. We have set the p-value to 0.05, and if the calculated returned p-value
from the tests was less than the p-value (threshold) we set, we considered that the particular feature
could help us distinguish the two classes. From this procedure, we ended up with 34 features from
the initial 68.

Thereon, apart from the significance test ranking, which has already been applied, we also used
the other methods mentioned in the theory in §2.4.2 for further feature reduction, and these were
the correlation ranking, the mixed criterion (which combines two different reduction methods), the
PCAmethod, and RFEwrapper method. Wemainly used the PCA and RFEmethods with different
combinations of classifiers and evaluation methods. A reduced number of prioritized new PCA
features are obtained using the PCA method. Thereafter, we built the RFE wrapper method using
the RFE algorithm combined with statistical regression methods, such as RandomForestRegres-
sion, LogisticRegression, or DecisionTreeRegression, for optimal feature selection. We used from
the sklearn.decomposition module, the PCA method, for our PCA algorithm. Lastly, we imported
the RFE method from the sklearn.feature_selectionmodule for our RFE_wrapper algorithm based
on the RFE method and the LogisticRegression function needed from the sklearn.linear_model.

A subset with the best combination of features can be selected from these ranked features.
Thus, we conclude with 17 total (features) using the RFE, from which we selected the first 15 to
make our investigation and tests faster. We did the same thing with the PCA method; from the 34
new features calculated (by the PCA algorithm), we selected the first 15 for the investigation.

The extensive list of classifiers, like it is mentioned in theory in §2.4.1 contains the MDC, the
KNN, the Naive Bayers, the LDA, the logistic regression algorithm, the MLP, the linear SVM,
the CART, and the RF algorithm. We imported from sklearn.neighbors import NearestCentroid
and the KNeighborsClassifier methods, from sklearn.naive_bayes the GaussianNB method, from
sklearn. discriminant_analysis the LinearDiscriminantAnalysis, from sklearn. linear_model the
LogisticRegression and the Perceptron, from sklearn.svm the LinearSVC, from sklearn.ensemble
the RandomForestClassifier method, and from sklearn.tree the DecisionTreeClassifier method.
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We tested every classifier (MDC, KNN, etc.) for up to three feature combinations, using the
PCA and RFE methods as reduction methods for each of the following evaluation methods: LOO,
Bootstrap, Hold-out, and K-fold. We choose to run our test for up to three feature combinations to
keep computational time low. Thus, we created the following Table 4, which shows the accuracy
(%) of every test we did with every classifier. As shown in Table 4, the RFE reduction method
performed much better than the PCA, so we selected the RFE to continue with our original dataset.
As for the evaluation method, we also can notice in Table 4 that the LOO, the K-Fold, and the
Bootstrap performed the best and almost the same (they have similar mean accuracies for RFE),
with LOO taking the first place among the three. Taking into consideration that regarding the LOO
evaluation method, the procedure took more time, as it can be more computationally intensive, and
noticing that the Random Forest classifier using the bootstrap method accomplished the best accu-
racy (90.63%) across all classifiers and feature reduction methods we decided to use the bootstrap
method as an evaluation method for the rest of our research. Along with the bootstrap, we also
decided to consider the K-fold (with the K=10) evaluation method because it uses different data for
training and testing. The process is repeated k times (ten in our case) for each test set (so 10 * 10 =
100 total number of trains), and the classifier’s performance is evaluated by whether it accurately
classified the test data.

The whole procedure was executed five times, and the final accuracy score occurred from the
mean value of those five runs.

3.3.4 Two categories

After finishing with this investigation, we moved on to our actual data, the merged categories -
benign and malignant. We merged the healthy and benign/adenomatous categories into one named
benign, and grades I, II, and III were merged into a class called malignant. Thus, we ended up
with 1303 patches that belong to the benign category and 1891 patches for the malignant class.
We normalize the data, calculate all 68 features, and store their values in two feature sheets. These
sheets were the input for our statistical analysis procedure and also for the ML procedure.

For the statistical analysis, we followed the exact procedure as we did for the smaller dataset
in the investigation phase. We applied the Kolmogorov-Smirnov test to every feature to see if it
followed a normal distribution. Then, we applied the corresponding T-test (for those that followed
the normal distribution) or MW-Wilcoxon. By the end of this procedure, we conclude with 44
features from the total 68, for whomwe also created the boxplots (44 boxplots in total). We decided
to show the boxplots of the most frequent features the classifiers have specified. So, by using
the RFE wrapper reduction method (along with the logistic regressor) from the 44 features, we
concluded with the following 22 features: [mean, skewness, kurtosis, con mean, energy range,
correlation mean, correlation range, LBP6, LBP7, LBP8, RP mean, dwt2 max H1, dwt2 min H1,
dwt2 range H1, dwt2 meanAbsDev H1, dwt2 range V1, dwt2 meanAbsDev V1, Tmr coarseness,
Gabor energy mean, Gabor energy range, Gabor amplitude mean, Gabor amplitude range].

Every test we did for every classifier was for combinations of up to 5 features. Our system
checked first the combination of 2, 3, and 4 features, but the best results were seen for a combination
of 5. We did not check further for a higher number than 5 of a combination of features because the
procedure was already computationally intensive, and we wanted to avoid forcing it further. Apart
from that, it would also increase the complexity of drawing conclusions and explaining how the
features correlate.

The classifiers were evaluated during the training of our ML system using the bootstrap and
the K-fold as evaluation methods. Also, the 22 features were combined in combinations of up to 5,
and the results, the mean accuracy, specificity, and sensitivity of five runs, can be noticed in Table
5. Based on the accuracy values, the classifier that best separated the data was the Random Forest,
followed by the Cart and KNN classifiers. In Figures 33 and 34, the feature frequency histograms
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showwhich features appeared in the best results of all nine classifiers using the bootstrap evaluation
method. The five top features were the skewness, the LBP6, the Gabor energy range, the energy
range, and the correlation mean. We also created the boxplots for these features, as the following
figures are displayed in section 4.1.

By completing this phase, we encounter some promising (and satisfying) results. These results
for these two categories made us consider continuing our research. We continued in two directions:
the first was to build a deep learning system using some neural networks (for the benign/malignant
categories), and the second was to split the data into five categories.

Deep learning for two categories

We continue with our deep learning system for the two categories. Our input was the two folders
containing the patches for every class (benign and malignant). Table 3 shows 1303 benign and
1891 malignant patches. We used the CNN network and the pre-trained Vgg16, MobileNetV2,
ResNet50V2, InceptionV3, and EfficientNetB0.

Neural Networks
First of all, we imported the needed libraries (also libraries for monitoring and controlling the

training -matplotlib.pyplot). Then, we loaded the data/images using the io.imread function, and we
initialized the model. Also, we used from sklearn.model_selection the train_test_split method (to
separate the training data from those used for testing). When the model is created, we can configure
the model using the ‘model.compile()‘, train the model with ‘model.fit()‘, or use the model to make
a prognosis with ‘model.predict()‘.

When implementing a CNN, many things must be handled, like the number of layers, filter
size, padding type, and more. A solution for all of this is to use a pre-trained model for our image
classification task. Many pre-trained models exist, like Resnets, Inception, Vgg, etc.

To build the CNN for our project, we used the Keras Sequential API, and with a few lines
of code, we created and trained it. We had to add more layers after creating the model with the
following line of code: ’models.Sequential()’. We formed the convolutional base of the network,
utilizing the basic pattern of a stack of Conv2D and MaxPooling2D, which takes as input tensors
of the image’s shape and gives as an output a 3-D tensor (height, width, channels). Also, as we go
more in-depth into the network, we notice that width and height are shrinking. The first argument
for each Conv2D layer (e.g., 16, 32, 64) controls the number of output channels. To complete the
model, we have to pass/feed the last output tensor from the last layer of the convolutional base into
the Dense layer(s). The last output layer is a 3-D tensor, and because the Dense layers take as input
vectors that are 1-D, we have to convert (Flatten) our 3-D layer to 1-D. The final Dense layer must
contain the number of our output classes (2 or 5 in our implementation). After building the model,
we compile it, train it, and finally evaluate it (plot and save the accuracy/loss graph).

Moving on to the following pre-trained networks (VGG16, mobilenet, etc.), we used the transfer-
learning concept. Generally, we selected this approach when the available dataset has fewer sam-
ples. The typical transfer learning workflow implemented in Keras is the following: First, we ini-
tialize the base model we want and download and use the weights into it. The first time we ran this
model, Keras downloaded the weight files and stored them in a specific directory ( /.keras/models),
so the next time we run the model, it will automatically find the downloaded weights and use them.
Secondly, we ”freeze” all the layers in the base model by setting base_model.trainable = False”.
Then, we develop a new model built on top of the output generated by a single layer from the
original base model. Lastly, we trained the new model on our dataset. Thus, we instantiate the
base model for every one of the following models:

base_model = tf.keras.applications.MobileNetV2 (
input_shape=shape,
include_top=False,
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weights="imagenet",
)

base_model = tf.keras.models.Sequential()
base_model.add(tf.keras.applications.ResNet50V2(

include_top=False, weights="imagenet," classes=n_classes
)

)

base_model = VGG16(
weights="imagenet",
input_shape=shape,
include_top=False

)

base_model = tf.keras.applications.InceptionV3(
input_shape=shape,
include_top=False,
weights="imagenet",

)

base_model = efficientnet.tfkeras.EfficientNetB0(
input_shape=shape, include_top=False, weights="imagenet"

)

Then we set the base_model as ”base_model.trainable = False”. After that, we create a model
on top of every base_model selected, adding more layers and using the

tf.keras.layers.GlobalAveragePooling2D()

we convert the 3-D tensors (the previous layer’s output) to 1-D vectors. We also add a Dense layer,

tf.keras.layers.Dense(classes, activation=activation)

selecting for activation ”sigmoid” if we have two classes or else ”softmax.” Furthermore, we use

tf.losses.SparseCategoricalCrossentropy(from_logits=False)

to calculate the loss that we are going to use as an input in the

model.compile(optimizer=optimizer, loss=loss, weighted\_metrics=["accuracy"])

Lastly, after building the model, we compile it, train it, and evaluate its performance.
All the runs were performed with the following training parameters: epochs 20 and 100, patch

size (78, 78), test size equal to 20 % of the data, and batch size equal to 128. So, we test them for
two different numbers of epochs. The results, the mean accuracies of 5 runs, and their losses are
presented in 4.1.2 section.

3.3.5 Five categories

Accordingly, after splitting the data into five categories, from benign and malignant to healthy, be-
nign/adenomatous, moderately differentiated (grade I), moderately to poorly differentiated (grade
II), and poorly differentiated (grade III), we compared and tested the different combinations in
pairs with our ML and DL system.
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We followed the exact same process that we analyzed before for the five categories in combi-
nations of two, making this way ten combinations of datasets in total. We generated the features
and stored five more feature sheets. Also, we did the statistical analysis and reduced the features
using the RFE wrapper. We used the first 15 from the reduced features in this phase for every
combination. Thus, we needed to filter the feature sheets and consider only those 15 features.

However, in this case, we selected the best three classifiers from the previous phase, and for
these classifiers, we checked all the possible combinations. Then, we created the feature frequency
histograms for those three classifiers, only when combined with the bootstrap as an evaluation
method, to notice the most frequent features. Afterward, we chose the three networks that per-
formed the best in the previous phase (with only the two categories) and utilized them in our DL
system for the five categories. All the results can be noticed in the following subsection 4.1.3.



Chapter 4

Results

4.1 Detailed results presentation

Firstly, in Table 3 are presented, the dataset, the classes, and the number of the total patches.

Label Category Number of patches Split in two categories
Healthy Healthy 712 Benign -1303Adenomatous Benign 591

Moderately differentiated Grade I 869
Malignant -1891Moderately to poorly differentiated Grade II 414

Poorly differentiated Grade III 608
Total: 3194

Table 3. Explanation of the dataset and number of patches for every category

4.1.1 Investigation

In Table 4, are displayed the results for our little investigation. The results highlighted in green are
the best ones across all the results. The results highlighted in blue represent the second-best and
third-best accuracies.

LOO Hold-out K-Fold Bootstrap
Classifier RFE PCA RFE PCA RFE PCA RFE PCA
MDC 81.94 73.41 81.88 75.88 81.61 73.77 81.19 74.52
KNN 87.79 82.94 86.29 82.67 87.46 83.11 87.91 85.25
Bayes 80.94 82.27 80.67 83.08 81.61 82.27 79.73 82.80
LDA 83.61 83.78 83.79 83.83 83.44 84.28 83.97 83.37
LogReg 81.94 76.09 79.88 75.88 82.44 75.42 76.76 74.81
Perceptron 85.79 83.78 81.71 82.46 82.94 81.44 80.04 80.48
SVM 82.44 83.44 81.67 81.42 82.27 82.78 81.38 81.49
RF 87.46 84.62 85.00 82.71 86.97 84.11 90.63 88.72
CART 86.79 80.10 81.71 77.58 84.62 82.44 89.02 86.84
Mean accuracy 84.30 81.16 82.51 80.61 83.71 81.07 83.40 82.03

Table 4. Accuracies % - Investigation (per three combinations)

61
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4.1.2 Two categories

After doing this investigation, wemoved on to our actual data. We used the RFEwrapper for further
feature reduction and bootstrap and K-fold for evaluation methods. Table 5 shows the outcomes
of performing our ML procedure on our actual data. Here, the results highlighted in green show
which classifiers performed the best.

K-Fold Bootstrap
Classifier Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity
MDC 79.39 78.20 80.20 79.43 77.53 80.75
KNN 84.71 80.51 87.61 85.88 82.78 87.97
Bayes 79.69 75.29 82.74 79.68 73.36 84.07
LDA 81.77 72.37 88.24 81.83 72.47 88.31
LogReg 68.64 29.78 95.45 65.59 19.04 98.15
Perceptron 78.98 82.04 76.87 76.64 78.48 75.37
SVM 78.92 63.55 89.52 76.94 53.91 92.47
RF 85.03 82.50 86.77 90.20 87.63 91.99
CART 79.98 75.98 82.74 87.93 85.35 89.71

Table 5. Accuracies (%) of Benign and Malignant categories considering twenty-two (22) features

Feature Frequency Histograms
Thereafter, we can see the feature frequency histograms in Figures 33 and 34.

Figure 33. Feature Frequency Histogram, all classifiers K-Fold eval. method, RFE -feature
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Figure 34. Feature Frequency Histogram, all classifiers, Bootstrap, RFE

Below, we can see the boxplot calculated during the statistical analysis of the fivemost frequent
features encountered from the above histograms 33, 34.

Figure 35. Boxplot showing the difference between benign andmalignant for the feature: skewness
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Figure 36. Boxplot showing the difference between benign and malignant for the feature: energy
range

Figure 37. Boxplot showing the difference between benign and malignant for the feature: correla-
tion mean
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Figure 38. Boxplot showing the difference between benign and malignant for the feature: LBP6

Figure 39. Boxplot showing the difference between benign and malignant for the feature: Gabor
energy range

Table 6 presents the mean accuracies and the losses of 5 total runs of the networks we use for
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20 and 100 epochs. Again, highlighted in green are the networks that perform the best and are
chosen for the next phase with the five categories.

20 Epochs 100 Epochs
Accuracies % Loss Accuracies % Loss

CNN 84.66 0.452 86.23 1.164
VGG16 83.09 0.429 88.26 0.315
MNV2 87.79 0.311 88.42 0.294
RES50 89.52 0.267 90.92 0.254
INCV3 89.83 0.293 89.67 0.284
EFIB0 86.69 0.338 89.98 0.259

Table 6. Deep learning results for two categories: benign and malignant

4.1.3 Five categories

Moving on to the five categories, we followed the same methodology as the two categories, with
some minor adjustments. First, having five different datasets (5 classes), we need to perform our
procedure ten times to include all the combinations. Thus, we chose three of the nine classifiers
in total. Table 7 displays the number of features that remain after applying the statistical tests. It
is also important to mention that after the RFE wrapper reduces our features further, we select the
first 15.

Class 1 Class 2 Number of features
Healthy Benign/adenomatous 44
Healthy Grade I 47
Healthy Grade II 39
Healthy Grade III 52
Benign Grade I 44
Benign Grade II 35
Benign Grade III 46
Grade I Grade II 13
Grade I Grade III 39
Grade II Grade III 46

Table 7. The numbers of features with statistical significance for each combination of the five
classes

Tables 8, 9 show the accuracies of all ten combinations of the datasets using the KNN classifier
with the RFE as feature reduction method and evaluation methods the K-Fold and the bootstrap.
Again, Tables 12, 13 display the exact implementation, but for the Random Forest classifier and
10, 11 for the CART classifier.

Healthy Benign Grade I Grade II Grade III
Healthy 80.63 88.92 90.04 87.71
Benign 89.71 79.76 84.63
Grade I 72.05 74.31
Grade II 75.49
Grade III

Table 8. Accuracies (%) for five categories, using KNN classifier, K-Fold eval. method, and RFE
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Healthy Benign Grade I Grade II Grade III
Healthy 82.56 89.79 90.32 88.39
Benign 90.33 82.28 85.34
Grade I 76.67 78.09
Grade II 78.60
Grade III

Table 9. Accuracies (%) for five categories, using KNN classifier, Bootstrap eval. method, and
RFE

Healthy Benign Grade I Grade II Grade III
Healthy 80.25 88.92 89.68 87.41
Benign 89.30 80.16 83.54
Grade I 74.08 74.71
Grade II 76.57
Grade III

Table 10. Accuracies (%) for five categories, using RF classifier, K-Fold eval. method, and RFE

Healthy Benign Grade I Grade II Grade III
Healthy 84.83 90.94 91.78 90.39
Benign 90.52 87.09 90.18
Grade I 79.39 84.06
Grade II 86.82
Grade III

Table 11. Accuracies for five categories, using RF classifier, Bootstrap eval. method, and RFE

Healthy Benign Grade I Grade II Grade III
Healthy 75.86 86.19 86.29 82.93
Benign 85.59 84.95 80.53
Grade I 69.09 76.75
Grade II 69.90
Grade III

Table 12. Accuracies (%) for five categories, using CART classifier, KNN eval. method, and RFE

Healthy Benign Grade I Grade II Grade III
Healthy 84.42 89.83 90.37 88.91
Benign 90.39 89.56 87.24
Grade I 80.47 85.13
Grade II 81.78
Grade III

Table 13. Accuracies (%) for five categories, using CART classifier, Bootstrap eval. method, and
RFE

Feature Frequency Histograms
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We created the feature frequency histograms for the three classifiers but only when using the
bootstrap evaluation method. These were constructed by considering the best feature combinations
(the most frequent) across all ten class combinations. These can be viewed in the following images
41, 40, 42.

Figure 40. Feature Frequency Histogram, using CART classifier, Bootstrap, and RFE
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Figure 41. Feature Frequency Histogram, using KNN classifier, Bootstrap eval. method, and RFE

Figure 42. Feature Frequency Histogram using the RF classifier with Bootstrap and RFE

Finally, Tables 14, 15, 16 show the results for the three networks, which are the resnet, incep-
tion, and efficientnet, respectively, for 100 epochs.
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Healthy Benign Grade I Grade II Grade III
Healthy 83.14 93.69 90.71 89.77
Benign 90.07 92.54 93.33
Grade I 70.04 76.01
Grade II 73.65
Grade III

Table 14. Accuracies (%) for five categories, using the RES50 with epochs=100

Healthy Benign Grade I Grade II Grade III
Healthy 74.33 89.27 87.61 86.74
Benign 89.04 89.55 87.08
Grade I 68.48 69.93
Grade II 66.34
Grade III

Table 15. Accuracies (%) for five categories, using the INCV3 with epochs=100

Healthy Benign Grade I Grade II Grade III
Healthy 78.93 90.22 88.94 92.05
Benign 91.09 89.06 90.00
Grade I 71.98 80.74
Grade II 74.63
Grade III

Table 16. Accuracies (%) for five categories, using the EFIB0 with epochs=100

4.2 Key findings/results

Some of the main/key findings and results of our research are presented below:

• UsingBootstrap as an evaluationmethod during theML procedure, we noticed better results
than using the K-Fold for most classifiers.

• From all the available classifiers (9), the ones that perform the best (with higher accuracies)
are the KNN (85.88% - bootstrap), LDA (81.83% -bootstrap), CART (87.93% -bootstrap),
and Random Forest (90.20% -bootstrap). These classifiers performed the best using both the
bootstrap and the K-Fold evaluationmethods. Also, their values of sensitivity and specificity
are satisfactory.

• After creating the feature frequency histograms, taking into consideration the results of all
the classifiers for combinations of five features, we observed that the following features
were the most frequent: ”corr mean,” ”gabor energy range,” ”energy range,” ”LBP6”, and
”skewness.”

• By calculating the boxplot of the aforementioned features, we can also see that the two
classes differ and draw some conclusions, especially for the correlation mean, the gabor
energy range, the LBP6, and the skewness.

• During the DL procedure, we ran all the networks for 20 epochs and 100 epochs, and we
noticed a slight increase in the accuracies with the 100 epochs.
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• Also, from the total six networks, the three that achieved the best results (accuracies) were
the RES50 (90.92% -100 epochs), the INCV3 (89.70% -100 epochs), and the EFIB0 (89.90%
- 100 epochs).

• For every combination of two of the five categories, performing the statistical analysis and
applying the RFE wrapper, we reduced the initial total number of 68 features a lot. It can
be noticed in Table 7. Furthermore, it can be marked that the features that can be used to
differentiate grade I from grade II are very few, 13 in total.

• We checked every combination using three classifiers: the KNN, the CART, and the RF,
using two evaluation methods that we used for the two categories, the K-Fold, and the boot-
strap. The results showed that the bootstrap performed better as well as it did for the merged
classes (benign and malignant).

• The best results in classifying the patches into the correct category, using the first 13 features
after the feature reduction with the RFE wrapper was applied, were noticed for the CART
and the Random Forest classifiers with the bootstrap as an evaluation method.

• The accuracy of the healthy-grade III combination of classes is slightly lower than that of the
healthy-grade II combination of classes (This can be observed in the results of all three clas-
sifiers). The same peculiarity can also be observed between the benign-grade I and benign-
grade II combination of classes.

• The lowest accuracy is encountered between the grade I/II classes, with the following values:
76.67% -KNN, 79.39% -Random Forest, and 80.47% -CART.

• In the feature frequency histograms designed for those three classifiers using the bootstrap
(evaluation method), the most frequent features are the skewness, the LBP6, the correlation
mean, the mean, and the energy range (also the std and the dwt2 range H1 - these are for
CART, and energy mean -for Random Forest).

• In the DL procedure for the five classes, the best results come from the RES50 and the
EFIB0 networks for 100 epochs.

• Again, the fact that the accuracy of the healthy-grade III combination of classes is slightly
lower than that of the healthy-grade II combination of classes is observed in the results.

• In this case, the lowest accuracies are seen between the grade I-II and grade II-III categories.
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Discussion of results

5.1 Discussion and Conclusion

Now, we are going to examine the findings mentioned above. The investigation was a quick test
to show us which methods best fit our problem. So, our ultimate goal is first to find the best
combination of classifier, feature reduction, and evaluation methods and then to discover the best
(and the smallest in size) set of features that can differentiate any two classes (e.g benign/malignant,
healthy/benign, healthy/grade III, etc.).

Our ML system’s input is the features already generated from several images. In our case, we
generated a considerable number of features, totaling 68. It is understandable to have that much
variety, but the research can get more complex and complicated when we have too many features.
It is getting harder to explain their importance and their correlation to each other. Thus, we must
filter these features, discard the unimportant ones, and keep only those that bring value to our
specific problem and research.

The first step to reduce the number of features was using statistical tests and keeping only the
features with statistically significant differences. Then, by using the RFE wrapper with estimator
the LogisticRegression and with the parameter n_feature_to_select set to default, which means
selecting half the number of the initial number of features, we concluded with a total number of 22
most important features.

We utilized these twenty-two (22) features for our ML system; as a matter of fact, they were
the system’s input. The system first checks the combinations of two, three, four, and, lastly, five
features and stores the combination of features that gives the best accuracy. Regarding the two
evaluation methods that we used, the bootstrap performs slightly better than the K-Fold. As ex-
plained in theory, the K-fold method splits the dataset in K folds (10 in our case), and the model
is trained ten times. The fact that it uses different subsets for training and validation makes it
more reliable in evaluating the model’s performance. On the other hand, the bootstrap method,
which is also called sampling with replacement, selects random sample data and constructs many
bootstrap datasets, which are used both in the training and evaluation phases of the model (for ten
epochs/iterations in our case), and the results are averaged. The fact that it randomly selects sam-
ples indicates it might select some samples multiple times, which can introduce some bias in case
there are outliers in the original dataset and those are included in the bootstrap datasets/samples.
In general, both evaluation methods are preferred when the dataset is limited in size. Thus, the
K-Fold might be more objective than the bootstrap; even though we notice a slight decrease in
the accuracies for all the classifiers, we might consider choosing the K-Fold method for our future
work. The classifier with the best performance is the Random Forest, reaching 85.03% with the
K-Fold and 90.20% with the bootstrap evaluation method. Also, outstanding results demonstrated
the KNN classifier with 85.88% and the CART classifier with 87.93% -using the bootstrap.

Moreover, the sensitivity and specificity values are metrics that estimate the performance and
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effectiveness of the model, especially in binary classification problems, like in our case. The val-
ues of these two metrics are satisfactory and comparable. For our best accuracy, the sensitivity is
equal to 87.63% and the specificity 91.99% for our RF classifier (with bootstrap as the evaluation
method). In our case, where we are investigating a medical problem, sensitivity is considerably
more critical. We want to minimize the false negative cases (those that are malignant but were
classified as benign) so that we do not miss a positive for malignancy (malignant) case and delay
the diagnosis and treatment. Thus, we want our system to achieve high sensitivity, which, consid-
ering our results, happens. However, at the same time, we also want to achieve as high specificity
as possible to avoid false negatives and false alarms, which will lead a potential patient to further
unnecessary investigation. Also, the comparable values of those metrics, given that we have im-
balanced datasets, indicate a balanced performance, meaning there is no bias towards one class
(especially the numerous ones).

Continuing, we notice from the feature frequency histograms that five features were selected
the most across all classifiers: skewness, energy range, correlation mean, LBP6, and Gabor energy
range. We also noticed that these features existed in the top features selection for all the available
feature combinations up to five. The first three features describe the patches statistically. The
skewness belongs to the first-order statistics, while the energy range and correlation mean belong
to the second-order statistics derived from the patches. The LPB6 belongs to the LPB (Local
binary pattern) set of features, which are ten in total in our approach. The LBP features are trying
to collect information about the texture of the images by using local patterns rather than examining
every pixel of the image as it is done in the statistical approach (with the statistical features).
Moreover, the Gabor energy range belongs to the Gabor set of features, which use the Gabor filters
that mimic the human visual system. So we have features from almost all the different sets of
features, describing and evaluating different aspects of the images, that makes our research more
complete, holistic, and thorough.

Next, the comparison of the two boxplots can show us valuable insights into the distribution
and central tendencies of the two datasets. We can see that the boxplots are the most distinguish-
able for the skewness, given that their boxes do not overlap and that the malignant class’s median
value is higher than the median of the benign class. This higher median value for malignant cases
indicates that malignant cases tend to have higher skewness on average than benign ones. This
difference in the median value placement is also observed for the LBP6, the correlation-mean,
and the Gabor energy range. However, parts of the boxes overlap in those features, although the
overlapping is not as substantial as in the boxplots for the ”energy range” feature. It is essential to
mention that the box of the boxplot itself demonstrates the spread of the middle 50% of the dataset.
In addition to all of the above, the length of the boxes gives us an understanding of the variability
of the feature; the more extended the box, the higher the variability. In the case of the ”corre-
lation mean” and ”LBP6”, we can see a much longer box for the malignant category, implying
more increased variability. The increased variability in the malignant category suggests a greater
diversity or heterogeneity in the malignant class, which could indicate different subgroups or types
of malignant cases. Consequently, we can see from the boxplots that the features themselves can
differentiate the two classes to a certain extent (we can spot differences and draw conclusions), and
by utilizing them in combinations of two, three, four, or even all the five together, we can achieve
excellent results.

For the DL approach, we used six networks, and the results for the performance of all of them
were satisfactory. Firstly, we tested them using 20 epochs and noticed good results. Their losses
were also less than 0.5. After that, we continued with the 100 epochs to discover if the accura-
cies were improving, also considering the values of the losses. For CNN, which is trained from
scratch, although the accuracy increased, the loss number also increased, suggesting overfitting or
other problems with the learning process. On the other hand, for all the rest of the networks, we
noticed that they performed better, their accuracy increased slightly, and also, at the same time,
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their number of losses decreased. The fact that by increasing the epochs, we saw better results and
lowered losses generally means the model/network benefits from this further training (the model
continues to learn and improve its performance on the training data). Since the accuracies im-
proved slightly, we (by increasing the epochs to 100) decided not to increase the number of epochs
further. The top three are the resnet, the inception, and the efficientnet. The best for our problem
is the resnet with an accuracy of 90.92% -for 100 epochs. These results are comparable with the
results of our ML system. Thus, choosing to continue with the DL system is also a way to compare
and evaluate our results from the ML system and point out differences/ similarities.

Noticing the promising results for our twomerge classes, the benign andmalignant, we thought
we should proceed further with our research. Hence, we split the two classes into five. Moreover,
we tested all five classes in combinations of two (10 combinations in total). We followed the same
procedure as we did for the two classes. Nevertheless, in this case, after we did the statistical anal-
ysis and the further feature reduction with the RFE wrapper, we chose the first fifteen (15) features
of the remaining. It was already computationally intensive to check for all these combinations of
datasets, and we did want to become more intensive (and extensive) by choosing more than fifteen
(15) features. After all, we reviewed only up to five combinations of features, and selecting more
than fifteen (15) or a more increased number of feature combinations would not significantly affect
our results. Sacrificing that much computational resources for a slight improvement at this point
was not worth it.

An interesting finding is that we notice the least number of features (13) between grades I and
II by observing the remaining features after applying the statistical tests. That means that very few
features can be used to distinguish these two categories and that we expect to be the most challeng-
ing combination for our system to differentiate. For the ML procedure, for this part, we selected
the best three classifiers from the previous phase: the KNN, CART, and the RF. We also used both
evaluation methods, the K-Fold, and the bootstrap, and we noticed the exact same thing: using the
bootstrap, we achieved better results than using the K-Fold. As we commented previously for two
categories, the best results for the five categories were also accomplished using the RF for some
combinations of datasets and the CART for the other combination of datasets with the bootstrap
as an evaluation method. The two classifiers have no substantial differences in their results. By
observing the tables, we can also verify that the most challenging combination to distinguish is
grade I from grade II. This combination presented the lowest accuracy for all the classifiers using
the two evaluation methods. Moreover, a peculiar thing is that the accuracy of the healthy-grade
III combination of classes is slightly lower than that of the healthy-grade II combination of classes.
This thing can be observed in the results of all three classifiers. We expected the accuracy of the
healthy-grade III combination of classes to be higher than that of the healthy-grade II class com-
bination. This peculiarity can be explained since our dataset is imbalanced, and the patches in the
grade II category are fewer (414) than those in healthy (869) and grade III (608). So, it seems that
the higher accuracy for the healthy-grade II combination of classes might be due to overfitting.
The model, having limited samples, might memorize and learn certain cases and not learn the un-
derlying patterns in the data. Thus, the accuracy of the healthy-grade II class combination is not
that reliable. In contrast, the accuracy of the healthy-grade III class combination is more realistic
and reliable, even though it is slightly lower.

From the feature frequency histograms created for every classifier, we observe that the skew-
ness, LBP6, correlation mean, and energy range are again in the top (six) feature selections. The
Gabor energy range is not one of the top features. It is essential to note that the mean and std
features are also in the top selections in this phase.

Lastly, we performed the DL procedure for all five class combinations using the previous
phase’s top three networks: the RES50, INCV3, and EFIB0 -only for 100 epochs. For some com-
binations, the resnet performed better, and for others, the efficientnet. These twomodels performed
the best. We can also confirm the findings during the ML process. The accuracies are similar, and
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our conclusions about the lowest accuracy and the difference in accuracy between these two class
combinations, healthy-grade III and healthy-grade II, were proved again.

5.1.1 Conclusions

In conclusion, we developed the decision support system that can differentiate the benign and
malignant categories with success. Using the RF classifier with the bootstrap as the evaluation
method, we achieve an accuracy of 90.2%, with a sensitivity of 87.63% and 91.99% specificity.
Also, for our particular situation from the feature frequency histograms, we conclude with five
features selected the most across all classifiers: skewness, energy range, correlation mean, LBP6,
and Gabor energy range. These results were compared with those from the DL pre-trained models,
and it was confirmed that the DL models performed successfully as well, achieving 90.92% using
the INCV3 model—with 100 epochs.

Things are more complicated for the five classes, mainly due to limited data and the imbal-
anced dataset. However, using the RF classifier with the bootstrap as the evaluation method, we
achieve accuracies between 79.39% and 91.78%, across all the class combinations. The following
features also appeared the most in the feature frequency histograms: skewness, energy range, cor-
relation mean, and LBP6. Finally, regarding the DL procedure, the RES50 model performed the
most satisfactorily, achieving accuracies between 70.04% and 93.69%, again across all the class
combinations.

5.2 Future work

Some ideas and thoughts for future work are the following:

• First, we could find another more extensive dataset to test our current implementation. Also,
we could experiment with data augmentation methods to grow the size of our current dataset
(for all the different classes). This increase in size could improve the generalization of our
models.

• Moreover, we must consider and handle the problem with the imbalanced datasets. We
can add samples to the smaller-size dataset (for example, with augmentation) or take fewer
samples from the more extensive dataset to equal the minority dataset. Alternatively, even
find other ways to cope with that.

• Then, we could also examine ensemble methods to combine predictions of the models that
performed the best for both ML and DL procedures —doing that, we might encounter better
accuracies and overall performance.
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Appendix - List of Features

ID Name Abbreviation
1 Mean value mean
2 Standard Deviation std
3 Skewness skewness
4 Kurtosis kurtosis
5 Angular Second Moment Mean asm_mean
6 Angular Second Moment Range asm_range
7 Energy Mean energy_mean
8 Energy Range energy_range
9 Contrast Mean contrast_mean
10 Contrast Range contrast_range
11 Correlation Mean correlation_mean
12 Correlation Range correlation_range
13 Dissimilarity Mean dissimilarity_mean
14 Dissimilarity Range dissimilarity_range
15 Homogeneity Mean homogeneity_mean
16 Homogeneity Range homogeneity_range
17 Short Run Emphasis Mean sre_mean
18 Short Run Emphasis Range sre_range
19 Long Run Emphasis Mean lre_mean
20 Long Run Emphasis Range lre_range
21 Gray-Level Non-Uniformity Mean glnu_mean
22 Gray-Level Non-Uniformity Range glnu_range
23 Run Length Non-Uniformity Mean rlnu_mean
24 Run Length Non-Uniformity Range rlnu_range
25 Run Percentage Mean rpc_mean
26 Run Percentage Range rpc_range
27 Local binary pattern 1 LPB_1
28 Local binary pattern 2 LPB_2
29 Local binary pattern 3 LPB_3
30 Local binary pattern 4 LPB_4
31 Local binary pattern 5 LPB_5
32 Local binary pattern 6 LPB_6
33 Local binary pattern 7 LPB_7
34 Local binary pattern 8 LPB_8
35 Local binary pattern 9 LPB_9
36 Local binary pattern 10 LPB_10
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ID Name Abbreviation
37 Discrete Wavelet Transformation mean Horizontal 1 dwt2_mean_H1
38 Discrete Wavelet Transformation median Horizontal 1 dwt2_median_H1
39 Discrete Wavelet Transformation mode Horizontal dwt2_mode_H1
40 Discrete Wavelet Transformation max Horizontal dwt2_max_H1
41 Discrete Wavelet Transformation min Horizontal dwt2_min_H1
42 Discrete Wavelet Transformation range Horizontal dwt2_range_H1
43 DWT median absolute deviation Horizontal 1 dwt2_medAbsDev_H1
44 DWT mean absolute deviation Horizontal 1 dwt2_meanAbsDev_H1
45 Discrete Wavelet Transformation mean Vertical 1 dwt2_mean_V1
46 Discrete Wavelet Transformation median Vertical 1 dwt2_median_V1
47 Discrete Wavelet Transformation mode Vertical 1 dwt2_mode_V1
48 Discrete Wavelet Transformation max Vertical 1 dwt2_max_V1
49 Discrete Wavelet Transformation min Vertical 1 dwt2_min_V1
50 Discrete Wavelet Transformation range Vertical 1 dwt2_range_V1
51 DWT median absolute deviation Vertical 1 dwt2_medAbsDev_V1
52 DWT mean absolute deviation Vertical 1 dwt2_meanAbsDev_V1
53 Discrete Wavelet Transformation mean Diagonal 1 dwt2_mean_D1
54 Discrete Wavelet Transformation median Diagonal 1 dwt2_median_D1
55 Discrete Wavelet Transformation mode Diagonal 1 dwt2_mode_D1
56 Discrete Wavelet Transformation max Diagonal 1 dwt2_max_D1
57 Discrete Wavelet Transformation min Diagonal 1 dwt2_min_D1
58 Discrete Wavelet Transformation range Diagonal 1 dwt2_range_D1
59 DWT median absolute deviation Diagonal 1 dwt2_medAbsDev_D1
60 DWT mean absolute deviation Diagonal 1 dwt2_meanAbsDev_D1
61 Tamura Coarseness tmr_coarseness
62 Tamura Contrast tmr_contrast
63 Tamura Directionality tmr_directionality
64 Tamura Roughness tmr_roughness
65 Gabor energy mean Gabor_energy_mean
66 Gabor energy range Gabor_energy_range
67 Gabor amplitude mean Gabor_amplitude_mean
68 Gabor amplitude range Gabor_amplitude_range
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