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Abstract

Micro propulsion systems are a very important part of modern technology. They
can be nuclear powered ones, laser-thermal, solar thermal propelled, or electric ones
and all make use of a chamber along with a nozzle. Micro-propulsion systems can be
used in medicine micro-bots, underwater vehicles, microsatellites or in the space
industry. Under the conditions met in the micro propulsion systems, the flow through
the nozzle covers the whole range of the gas collisionality and the gas behaviour
cannot be captured by the usual Navier-Stokes formulation (compressible or not).
Instead, the gas flow behaviour in these systems should be studied at the molecular
level based on the kinetic theory of gases. In this thesis, non-equilibrium transport
phenomena appearing in the flows through micro-nozzles will be studied at the
microscopic level via the Kinetic theory of gases. The stochastic method Direct
simulation Monet Carlo (DSMC) will be applied and the validity of the provided
results will be demonstrated by performing comparisons with available
theoretical/experimental data. Overall, the thesis will provide an analysis of the micro
propulsion nozzle performance paying special attention on the study of the influence
of the implicit boundary conditions. Some conclusions useful in the numerical
simulation of the micro propulsion nozzles will be drawn.

Keywords: rarefied gas, nozzles, DSMC, implicit boundary conditions, stochastic
method



Iepidnyn

Ta cvotpata PKpo-Tpo®ONoNG AmTOTEAOVY £va TOAD OMUOVTIKO UEPOG TNG
oLyypovng texvoroyiag. Mmopel va givor mopnvikd, Aélep-Oeppcd, nhokd Oepuikd
npowbovpeva 1 MAektpikd Kot Oho kdvovv yprion evog Bardpov poall pe éva
akpopVvolo. Ta cvotiuoata piKpo-mpo®ONnong umopovv va ypnoiuorombodv oe
HIKPO-pOUTTOT NG OTPIKNG, VTOPPUYleL  OynuaTo, UIKPo-00pu@dpove 1 o1
dwotnuik Prounyavio. Ynd T ovvOnkeg mov wANPOOVIOL OTOL GLGTHUOTO
piKpompomOnong, m pon HEGH® TOV OKPOPLGIOL KOAOTTEL OAO TO €VPOG 1TNG
OpOLOTOINGMNG TOV OEPIOV KO 1| CLUTEPIPOPE TOL aepiov dev Umopel vo Teptypapel
amd 1 ovvnon Bewpia Navier-Stokes (cvumieot 1 un). Avtifeta, 11 copmepipopd TG
pong aepimv og avtd ta cvotiuata Oo Tpénel va pelet el oe poplaxd eninedo pe
Baon v kvntiky Oeswpio Tov aepliov. Xe avt) T SmAGUOTIKY epyocio Oa
peAetnBodv 6€ UIKPOGKOMIKO EMIMEDO (QOIVOUEVO HETOPOPAS LN 1COPPOTING TTOV
eUEVILOVTaL 0TI POEC LEGM UIKPO-OKPOPLGIMV LE ¥PNOT TS KvNTIKNG Bewpiog Twv
aepiov. Oa gpappootel n otoyactikn pnéBodog Apeong npocsopoimong Monte Carlo
(DSMC) o1 n eykvpdmta TtV mopeydpevov amotedecpdtov o eEetacbel
TPUYUOTOTOIOVTAS OLYKPIoelS pe Oabéoua Bewpnrikd/nepopatikd  dedopéva.
2UVoMKA, N SmA®UOTIK) Oa Tapéyel o avdAvon tng amddooNS TOV GLGTNUATOV
npo®bnong divovtag Wiaitepn Eugacn otn HEAETN TNG EMIOPUONS TV OPLUKDV
ocuvOnkav. Oa e€ayxBobv YPNGUYLO GLUTEPAGLOTO Y10, TNV VTOAOYIGTIKN TPOGOUOImON
TOV 0KPOPLGI®V T®V GLGTNUATOV PIKPOTPO®ONo™G.

AéEarig Khewdrd: apaiomomuévo aépro, axpogvoto, DSMC, implicit boundary
conditions, otoyactikn uéBodog

Vi



Acknowledgements

| want to express my deep appreciation for the invaluable support and guidance
provided by Dr Christos Tantos, throughout the course of this thesis. His patience and
dedication in sharing knowledge not only contributed to enhancing my understanding
of intricate concepts, but also created a conducive environment where | could learn
and develop comfortably without feeling inadequate due to any lack of expertise.

| am grateful to Dr loannis Sarris as | owe the initiation of this thesis to him. He
showed openness in considering my thoughts and dedicated time to identify the most
suitable option for me. | would also like to acknowledge Giorgos Sofiadis for his
support and kindness. He always welcomed me with a helping hand and a friendly
demeanour, contributing to the positive atmosphere of my thesis experience.

My deepest gratitude extends to my friends who have shown remarkable
understanding, when | was unable to meet them for a prolonged duration, and being
always available despite their own challenges.

Finally, I owe an immeasurable debt of gratitude to my family whose steadfast
support formed the foundation upon which | could pursue this thesis. Their
encouragement and love have been an unending source of motivation that | deeply
appreciate.

vii



Contents

N oL = Tod RSP RU USRS %
TLEPTAMWI ettt Vi
ACKNOWIBAGEMENTS.......oiiiiieie et et nes vii
TabIE OF FIGUIES ...t re e e sre e X
1. Chapter L: INtrodUCTION........ccoueiieceeie e ae e 1
1.1 PropulSion SYSIEIMS ......ccuiiuiiieiieie et e e e 1
1.2 Fundamentals of rocket propulSion SYStems............ccooveveiereienencniseseees 2
1.3 TRESIS SCOPUS....cuiiieiiieiieie ittt bbbttt bbb 3
2. Chapter 2: KINELIC TREOIY .....ocuiiiiiiiiiiieeeee e 5
2.1 Knudsen number and flow regimes..........cccooeveiinininienisieeee s 5
2.2 Mach and Reynolds NUMDEN..........ccccoueiiiiicie e 6
2.3 BoltZMann eQUALION...........ccocieiieeie e 8
2.4 Boundary CONGITIONS .........ccceeiveiieiieiie e 9
2.5  NUumerical MEtNOGS .........coeiiiiiiiiieee e 11
3. Chapter 3: DSMC MEthOU.........cccooiiiiiiiee e 13
K 20 A {01 oo (1 o 4 o] o SRS 13
3.2 Main Steps of the DSMC AIGOrithm.........ccoeiiiiiiniiiiniieeiee s 13
3.3 Molecular DESCIIPLION ........cciierieriisiesieeieeee e 14
3.4 RaNAOM NUMDET ..ottt st sreeneas 15
3.5 COISIONS. ..ttt eneas 15
3.6 MacCroSCOPIC QUANTIIES. .....ccveiieiieiieeie et 16
3.7 Boundary CONGITIONS .........cccveiieiiiiieie et 17
3.8 Description of the model problem............c..cooooviiii i, 18
3.9  Results of the model problem and sensitivity of the method ....................... 18
4. Chapter 4: Numerical Analysis of Nozzle Performance...........ccccocevviininnnnnnnns 23
4.1  PropulSion NOZZIES..........cccooiiiiiiiiiiieie et 23
4.2 FIOW CoNFIQUIATION ......oviiiiiiiiiisieeees e 25
4.3 Implicit Boundary CONditiONS.........cccveiiiiiieiieiir e 26
4.4 Fully Developed Method ...........ccciiiiiiiiiiiecece e 27
45  Complete SOIUION........cooiiiic e 29
4.6  Parametric Study and Benchmarking...........cccccovvviviiiiici e 29
4.6.1  Parametric ANAIYSIS ......cooiiiiiiiiiieee s 29
4.6.2  Comparison with available data in literature on diverging channel...... 30
4.6.3  Comparison with available data in literature on straight channel......... 31

viii



A7  RESUIS AN DISCUSSION.....ceeeeeee ettt e et e e e e e e e e e e reeens 32

471 MaSS FIOW FaLE....ccueiviiiiiecie s 32
4.7.2  Thrust and Impulse factor.........ccccocvieiiiii i 34
4.7.3  Contours of Dimensionless Density, Temperature and Velocity............ 37
4.7.4  Axial Distributions of Density, Temperature and Velocity ................... 42
4.7.5  Distributions of Density, Temperature and Velocity along the y-axis .. 46
4.7.6 Mach, Knudsen and Reynolds NUMDBErS..........ccccoeiiiiiiniieiesieneens 50

5. Chapter 5: Conclusions and Future Work ...........cccocevveviiieiecie e 53
5.1 CONCIUSIONS ...ttt bbb bbb ere s 53
5.2 FULUIE WOIK .. .ottt et 53
6.  BIblIOGraphy .......coiiiiiicce s 54
T APPENAIX ottt bbb 58
7.1 Appendix A: Complete Solution With DVM..........cccocviviiiiiiiiiins 58



Table of Figures

Figure 2.1: Flow regimes and equations [12]. ........cccociiiiiiniininieieeeese e 6
Figure 3.1: The standard DSMC procedure [30]. .....cccoooeririniniinieieiese e 14
Figure 3.2: Model problem SEt UP. .......cccoiiiiiiiiiiee s 18
Figure 3.3: Graphs of heat flux vs time for different values of Ax.........c..cccccevvennnne 20
Figure 3.4: Graphs of heat flux vs time for different values of particles. .................. 21
Figure 3.5: Diagram of heat flux to time for 6=1.5, p=0.5, particles=8000 and
cells=400 for different tiIMeSLEP. ....c.ovveie i e 22
Figure 4.1: Flow configuration SEt UP. ......cceiveiierieiie e 26

Figure 4.2:Density contours for PR = 0.1 (a, b, ¢, d, e, f, g, h) and PR = 0.5 (i, J, Kk,
I,mn, o, p),fors§=1(, b,c,d I jk l)and =10 (e f, g, h,m n,o,p), for
LHin=5 (a, c, e, g, 1, k, m, 0) and LHin = 10 (b, d, f, h, j, I, n, p), for HoutHin = 2
(@ b,e f,i,j,m n)and HoutHin = (¢, d, g, h, K, [, 0, P).eeveriiiiiiiiiiiireiiee 39
Figure 4.3: Temperature contours for PR = 0.1 (a, b, ¢, d, e, f, g, h) and PR = 0.5 (i,
jyk, I,mn,o,p),ford =1(,b,cd I j,k l)and s =10 (e f, g, h, m, n, o, p), for
L/Hi=5(a, c, e, g, 1, k, mo)and LHin = 10 (b, d, f, h, j, I, n, p), for HoutHin = 2
(@ b,e f,i,j,m,n)and HoutHin =5 (¢, d, g, h, K, 1,0, ). eovvrvveiiiiieiceeeee 40
Figure 4.4: Velocity contours for PR = 0.1 (a, b, ¢, d, e, f, g, h) and PR = 0.5 (i, J, Kk,
I, mn o, p),for6§=1(,b,c,d I ],k I)and d =10 (e, f, g, h, m n, o, p), for
LHin=5(a,c,e g, ik, mo)and LHin = 10 (b, d, f, h, j, I, n, p), for HoutHin = 2
(@ b,e f,i,j,m,n)and HoutHin =5 (¢, d, g, h, K, 1,0, ). eovrieiiiiiirceieee 41
Figure 4.5: Axial distributions of density for PR = 0.1 (a, b, ¢, d) and PR = 0.5 (e, f,
g, h), for LHin = 10 (a, b, e, f) and LHin = 10 (c, d, g, h), for HoutHin = 2 (a, c,
e,0)and HoutHin =5 (b, d, f, D)oo 43
Figure 4.6: Axial distributions of temperature for PR = 0.1 (a, b, ¢, d) and PR = 0.5
(e,f,g,h), for LHin=5(a, b, e, f)and LHin = 10 (c, d, g, h), for HoutHin = 2 (a,
c,e,0)and HoutHin =5 (b, d, f, N). oo 44
Figure 4.7: Axial distributions of velocity for PR = 0.1 (a, b, ¢, d) and PR = 0.5 (e,
f, g, h), for LHin =5 (a, b, e, f) and LHin = 10 (c, d, g, h), for HoutHin = 2 (a, C,
e,0) and HoutHin =5 (B, d, T, N)eeerrriieeeee e 45
Figure 4.8: Perpendicular distributions of density for PR = 0.1 (a, b, ¢, d) and PR =
0.5 (e, f,g, h), for LHin =5 (a, b, e, f)and LHin = 10 (c, d, g, h), for HoutHin = 2
(@ c,e,g)and HoutHin =5 (b, d, f, D)oo 47
Figure 4.9: Perpendicular distributions of velocity for PR = 0.1 (a, b, ¢, d) and PR =
0.5 (e, f, g, h), for LHin =5 (a, b, e, f) and LHin = 10 (c, d, g, h), for HoutHin = 2
(@ c,e,g)and HoutHin=5 (b, d, f, D). cccooeiieeeee e 48
Figure 4.10: Perpendicular distributions of temperature for PR = 0.1 (a, b, ¢, d) and
PR=05 (e, f, g, h), for LHin=5 (a, b, e, f) and LHin = 10 (c, d, g, h), for
HoutHin =2 (a, ¢, e, g) and HoutHin =5 (b, d, f, h). oo, 49



Xi

AQlepmUEVO GTOVG YOVELS LoV



1. Chapter 1: Introduction

1.1 Propulsion Systems

Micro-spacecrafts’ implication includes the necessity for small systems. Early
satellites, such as Explorer | and Vanguard I, were limited in size due to constraints
with early launch vehicles and lacked truly miniature systems, resulting in limited
functionality. Over time, technological advancements led to the development of more
complex satellite capabilities including pointing requirements and precise orbit
maintenance. Propulsion systems were then integrated onboard to counteract various
disturbances and gravitational effects caused by the Earth's oblateness [1].

Rocket propulsion systems can be categorized in various ways. Based on the
type of energy source there are chemical, nuclear, or solar propulsion systems. In
addition, they can be categorised based on their primary function (including booster
stage, sustainer and upper stages, attitude control, orbit station keeping). They can
also be classified according to the vehicle they propel like aircraft, missile and
assisted take off vehicles. Other ways to categorize rocket propulsion systems is by
considering their size, propellant type and construction materials. Additionally,
rockets may be classified by the number of propulsion units used in a particular
vehicle. A useful approach for categorization is considering how thrust is produced.
Most common rocket propulsion systems rely on utilizing the thermodynamic
expansion of gas in a supersonic nozzle. This process involves converting internal
energy of the propellant into exhaust kinetic energy while generating thrust from
pressure exerted on surfaces exposed to exhaust gases. The same principle and
equipment are employed across various types of propulsion systems including jet
propulsion, nuclear powered ones, laser-thermal, solar thermal propelled, and certain
varieties of electrical spacecrafts which all make use of a chamber along with a
nozzle [2].

Electric and non-electric propulsion systems are distinguished by their reliance
on electrical power. Electric propulsion systems need a continuous supply of
electricity to function, while non-electric or chemical propulsion systems may only
need small amounts of power at the beginning and end of operation[3]. Electric
propulsion has been appealing due to its relatively high performance, generating the
required amount of thrust with moderate propellant usage. However, existing
electrical power supplies limit it to relatively low thrust levels. In contrast to chemical
propulsion, electric propulsion uses energy sources (such as nuclear, solar radiation,
or batteries) that are separate from the propellant being used. To achieve substantial
increases in vehicle velocity, low thrusts must be applied for significantly longer
durations compared to chemical propulsion, sometimes lasting for months or even
years [2].

Resistojet thrusters fall under the category of electro-thermal engines, which can
function effectively at both high and low power levels, depending on their design and
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the specific requirements of the mission [4]. Resistojets function by circulating the
propellant in its gaseous form around an electric heater to elevate its temperature.
This process enables the use of a conventional convergent-divergent nozzle to propel
the propellant to supersonic speeds and generate thrust. The heating can occur
through direct contact between the heating element and the propellant, or indirectly
when surrounding elements heat the thruster case. Heating the propellant reduces gas
flow rate at a given upstream pressure and nozzle area [5].

High-power resistojets operate within a range of 0.5 to 1.5 kWatt with a
specific impulse of 300 to 350 s using propellants such as Hydrazine or Ammonia.
These engines were initially developed in the early 1960s. However, there is currently
a greater focus on low-power systems due to increased interest in smaller satellites.
Low-power systems can operate below 100 W while producing thrust up to100 mN
with a specific impulse of up to 100 s based on the propellant [5].

1.2 Fundamentals of rocket propulsion Systems

A very important factor of rocket propulsion systems is thrust. Thrust is the
force generated by the rocket's propulsion system, acting at the centre of mass of the
vehicle. It is a reactive force experienced by the structure of the vehicle due to
propellant being expelled at high speeds. Momentum, a vector quantity, is defined as
the product of an object's mass and its velocity vector. In rocket propulsion, small
amounts of propellant are expelled from within the vehicle at high velocities.

The thrust E,, (N), due to a change in momentum, is shown below in equation
1.1. The relationship between thrust and change in momentum assumes constant exit
gas velocity and uniform axial flow when there is a constant mass flow rate. Idealized
thrust can closely approximate actual thrust but only represents total propulsive force
when nozzle exit pressure equals ambient pressure.

d(Mu .
En =%=Muout (1.1)

Where M the mass flow rate and u,,,, the velocity for the outlet.

Changes in pressure due to altitude variations during flight can lead to
imbalances between the exit propellant gas pressure (p,y:) and the external
environment pressure (p.,), for a fixed nozzle geometry. In steady operation within a
uniform atmosphere, the total thrust can be demonstrated to be equal to:

Firor = Muout + (pout - pex)Hout (1-2)

Where H,,; the height of the exit.



The first component is the propulsion force created by the multiplication of the
propellant mass flow rate and its exhaust velocity in relation to the vehicle. The
following element denotes the thrust generated by pressure, resulting from the
multiplication of the cross-sectional area at the nozzle exit (where the exhaust jet
departs from the vehicle) and the difference between gas pressure and ambient fluid
pressure. In the space of vacuum p,, = 0 the total thrust becomes [2]:

Fror = Muout + PoutHout (13)

Another essential performance parameter for rocket systems is the specific
impulse (Isp). A higher Isp (s) results in lower propellant consumption and, therefore,
less propellant mass. By increasing specific impulse, it could potentially lead to an
increase in payload mass, a reduction in spacecraft mass, or a decrease in launch costs
while also extending satellite lifetime. Specific impulse determines how much mass a
propulsion system will use in its mission and is defined as [6]:

— Ftot
Mg

Igp (1.4)

Where g is the gravitational acceleration at sea level (9.81 m/s?).

Finally, another factor affecting the effectiveness of propulsion systems is the
discharge coefficient (cp). The discharge coefficient represents the ratio between
actual and theoretical discharges, with the actual discharge being the product of the
actual cross-sectional area of the jet and the actual velocity.

The above variables can be determined by analysing the flow within propulsion
nozzles and help to improve the performance of rocket propulsion systems.

1.3 Thesis Scopus

This thesis enhances the understanding of nozzle dynamics and addresses a
crucial aspect that has received limited attention in computational studies thus far.
The computational time is quite long for the considered problem using computational
techniques based on the particle nature of gases, such as DSMC. The time increases
with the increase of the computational space and with the decrease of the rarefaction
conditions. For this reason, implicit boundary conditions have been proposed. These
boundary conditions make some assumptions which allow to reduce the
computational space and consequently the time. This type of boundary conditions has
been widely used in the literature for nozzle flow studies. But given the assumptions
they are based on, they are expected to break down as the rarefaction increases. A
validation of the implicit boundary conditions is therefore required. By carefully
analysing the errors related to implicit boundary conditions in DSMC simulations,
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this thesis aims to bridge this gap and advance discussions about the precision and
dependability of such computational methods within the context of nozzle dynamics.

The main goals of the thesis can be further elaborated in three ways. Initially,
the focus is on understanding the complexities and operations inherent in the Direct
Simulation Monte Carlo code. Secondly, it involves evaluating specific methods used
to simulate numerically gas flows within micro nozzles. Lastly, the overall objective
is to offer well-informed and practical suggestions for optimizing micro nozzle
system research.

Chapter 2 discusses the kinetic theory with a strong focus on the Boltzmann
equation and various methods for its solution. It also examines important parameters
such as Knudsen, Mach, and Reynolds that characterize gas flows.

In chapter 3, there is a detailed explanation of the DSMC methodology. The
DSMC algorithm is illustrated using an example problem related to heat transfer
between parallel plates. The validation of the code takes place comparing its results to
those found in existing literature.

Chapter 4 presents a review of studies conducted on micronozzles. In this
chapter takes place the description of the main geometry of the problem and its
parameters. Also, in chapter 4 the results are presented, which are compared with
other two kinetic approaches.

Chapter 5 presents the key findings of this thesis and provides a brief overview
of potential future research areas.



2. Chapter 2: Kinetic Theory

2.1 Knudsen number and flow regimes

The rarefaction level of a gas is commonly indicated by the Knudsen number
Kn [7], which represents the ratio between the mean free path A (the average distance
that a molecule travels before colliding with another molecule) and the characteristic
dimension D

Kn = (2.1)

Ol >~

while D denotes a characteristic length of the issue or a length scale of macroscopic
gradient. For hard sphere molecules, the mean free path travelled between collisions
can be expressed as

1
A= ,
V2md?n

(22)

Where, d is the molecular diameter and n the number density. For macroscopic
quantities the mean free path is written

VT pug
_ VT HUo 2.3
y) R (2.3)

where, u is the dynamic viscosity of the gas in temperature T and P is the pressure.
The molecular velocity is described as

,Zk T
Uy = ”'i , (2.4)

with, kg the Boltzmann constant [8-10].

In addition to the Knudsen number the rarefaction parameter § is also
commonly used

viD _m 1 2.5)
2 K



The continuum regime, described by the Navier-Stokes equation, is widely
observed in many important applications due to its prevalence. In this flow regime,
particles experience frequent collisions and only travel short distances between
collisions. The distribution of the velocities of particles located in any small control
volume is naturally a normal distribution, which is referred to as a Maxwellian
distribution, centred about the mean velocity and with a variance related to the
temperature of the flow. Important deviations from these solutions occur in the slip
flow regime for 0.1 > Kn > 0.001 near solid walls, necessitating modified boundary
conditions for momentum and energy transfer at the walls. When the collision
frequency decreases, the flow becomes free molecular. The free molecular regime is
accurately and efficiently modelled through free-flight (ballistic) molecular models
when Kn > 10, due to negligible molecule-molecule interactions and dominant
molecule-wall interactions. During free molecular flow regimes around satellites and
industrial processes, collisions are relatively rare and can be neglected solving the
Boltzmann equation. However, in transitional regimes, where 10 > Kn > 0.1,
collisions become prevalent enough to invalidate the free molecular assumption
without being frequent enough to force particles to adopt Maxwellian velocity
distribution functions [8,11,12].

Kn 0 0.001 0.1 10 oo
Regime Continuum Slip flow Transition Free molecular
) I Boltzmann ICollisianIess Bﬂltzn‘lannl
Equations ——
ELI|EI| Navier-Stokes
[ NoslipBC | [ SlipBC

Figure 2.1: Flow regimes and equations [12].

2.2 Mach and Reynolds number

The significance of compressibility in the equations of motion can be evaluated
by examining the Mach number (Ma), which is defined as the ratio of a
representative flow speed to the speed of sound [13].

Ma = (2.6)

u
c

where u is the representative flow speed, and ¢ the speed of sound. Based on the axial
bulk velocity u, the local Ma can be defined as [14]:



Ma = (Z—) JZT:? (2.7)

Where T the local temperature, y = 5/3 for monatomic gas.
Based on the Mach number, flows can be generally categorized as follows:

e Incompressible flow: Ma = 0. In this case, fluid density remains constant
regardless of pressure within the flow field. Although the flowing fluid may
technically be a compressible gas, its density is considered to remain
unchanged.

e Subsonic flow occurs when the Mach number is between 0 and 1. Shock
waves are absent in this type of flow, and in engineering applications,
subsonic flows with Ma < 0.3 are often considered to be incompressible.

e Transonic flow refers to a range of Mach numbers from 0.8 to 1.2, where
shock waves may arise. Analysing transonic flows is challenging due to the
nonlinear nature of the governing equations and the difficulty in separating
inviscid and viscous aspects of the flow.

e Supersonic flow occurs when the Mach number is greater than 1, leading to
the presence of shock waves. Analysing a supersonic flow is often considered
easier than analysing subsonic or incompressible flows because information
propagates along specific directions known as characteristics, which greatly
aids in computing the flow field.

e Hypersonic flow corresponds to Mach greater than 3 and involves very high
speeds combined with friction or shock waves that can lead to significant
temperature increases in the fluid, causing molecular dissociation and other
chemical effects [13].

The Reynolds number holds significant importance in the field of microfluidics
as it relates the inertial forces to the viscous forces. The Reynolds number is used to
characterize the nature of flow in a channel, such as laminar, turbulent, or critical. It
also serves to compute the friction factor in the channel flow. The Reynolds number is
dependent on the gas flow rate, the diameter intake, and gas density as well as
Viscosity.

Re = — (2.8)

Where Re is the Reynolds number, u the average velocity of gas in channel, D the
inside diameter of pipe, r the gas density and u the gas viscosity.

For tubes with constant cross section laminar flow occurs when the Reynolds
number falls below around 2000 while turbulent flow occurs at values surpassing



4000. When the Reynolds numbers range between 2000 and 4000, it results in
undefined or critical flow conditions [15,16].

Based on the Ma and Re numbers, the Kn number is defined as:

Ma [ym
/ 2.9
Kn = o2 (2.9)

2.3 Boltzmann equation

Simulating gas flows from different regimes traditionally involves employing
various methods. The approaches utilized for continuum flows, such as the Navier-
Stokes equation solvers in macroscopic fluid dynamics, have been extensively
developed. However, these methods present challenges when attempting to
seamlessly link computational results across different flow regimes. Current and
future engineering developments in spaceflight projects are heavily focused on
addressing complex gas dynamic issues related to low-density flows within the
intermediate range of Knudsen numbers, particularly in rarefied transition and near-
continuum flow regimes. The Boltzmann equation accurately portrays the
evolutionary process of the molecular velocity distribution function from non-
equilibrium to equilibrium states at any given time within gases. It effectively
describes molecular transport phenomena encompassing continuum flow through
free-molecular flow regimes [17]. In 1872, L. Boltzmann [18] presented the kinetic
equation that governs the change of the distribution function for gaseous systems that
are not in equilibrium. The Boltzmann equation applies to dilute gases, in which the
existence of exclusively binary collisions between particles can be assumed. In its full
form the equation can be written as:

6f+ 0
ot d

of

f
ot =001 (2.10)

Where f the distribution function, r the molecular position, & the molecular velocity,
Q is the collision operator and F is the acceleration associated with an externally
imposed force field.

The Boltzmann equation solution yields the distribution function, which
presents the information of the position and molecular velocity of gas molecules over
time. The macroscopic properties are derived as moments of this distribution function
[9,10].

Number density n(t,r) = ffdf (2.11)



Velocity vector u(t,r) = %f Efdé (2.12)

Pressure Peer) =7 [ ¢ - wyrag (2.13)
Stress tensor P j(t,T)=m f G —w)(& —w)fdé (2.14)
Temperature T=(tr) =3 :; . f (£ —w)? fd¢ (2.15)

Heat flux vector q(t,r) = % f (& —w)2(§ — w)fdE (2.16)

Due to the complexity of the Boltzmann equation, it is difficult directly and
exactly to solve the Boltzmann equation. Numerically solving the Boltzmann
equation becomes much more manageable by replacing its collision term with
dependable kinetic models. The kinetic model equations retain the basic properties of
the Boltzmann equation, such as the H-theorem and conservation invariant conditions
[17].

The most famous kinetic model is the BGK[19] (by Bhatnagar, Gross and
Krook) model for monatomic gases. According to the BGK model, a particle relaxes
to the Maxwellian distribution after a single collision. The simplicity of the BGK
model has led to its widespread use in literature as it provides accurate results across
various Knudsen number ranges. The disadvantage of this model is that it can only be
applied to isothermal flows because it does not provides a correct Prandl value [10].

The Shakhov [20] kinetic model, a modification of the BGK model, maintains
collision invariants and accurately determines transport coefficients. While proof of
its satisfaction of the H-Theorem is limited to its linearized form, it remains widely
accepted as a dependable model, consistently yielding precise results across varying
flow configurations within different Knudsen number ranges.

Another commonly employed kinetic model is the Ellipsoidal-Statistical model
introduced by Holway. This model yields accurate values for the transport
coefficients. Nevertheless, it requires greater computational resources compared to
the BGK and S models [10].

2.4 Boundary conditions

The Boltzmann equation needs to be supplemented by boundary conditions that
characterize the interaction between molecules and solid boundaries. The definition of
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these boundary conditions serves to connect solid state physics with the kinetic theory
of gases.

The earliest gas-surface interaction model in kinetic theory was formulated by
J. C. Maxwell [21]. It accounts for two types of interactions: specular and diffuse. A
specular interaction, or reflection, occurs when a molecule collides with a solid
surface in such a way that it elastically rebounds as if hitting a flat surface. This
happens when the gas molecule collides with the peak of the solid's molecular
structure, assuming both are hard elastic spheres. The collision results in an inversion
of the surface normal component of the molecule’s velocity and no change in its
tangential component, while maintaining constant thermal energy. On the other hand,
a diffuse interaction occurs when an incident molecule attains thermal equilibrium
with the solid surface before rebounding from it according to Maxwellian velocity
distribution at local temperature. Maxwell's model assumes that some fraction a,, of
incident molecules is temporarily absorbed by the surface and then reflected diffusely.
All remaining molecules reflect specularly based on this probability a,,. The
scattering kernel for this model can be expressed as [22]:

Ky (gi; gr) =(1- aM)é(gi - gr,specular) + aMfM(gr)Igrnl (2.17)

Where fr the reflected molecular velocity, fr,specular the molecular velocity of
specular reflection, f,, the Maxwellian velocity distribution in equilibrium with the
solid surface, n local normal of solid surface.

When a stream of molecules is directed towards a surface at a particular angle
of incidence, the scattering pattern anticipated by the Maxwell model appears circular
due to diffuse reflections and includes a prominent peak resulting from specular
reflections. In cases where all molecules in the beam are traveling at identical speeds,
the peak forms as a line at the exact reflection angle. However, contrary to what is
predicted by the Maxwell model, experimental evidence from molecular beam
experiments reveals petal-shaped scattering distributions. These observed patterns are
really well explained by the Cercignani and Lampis (CLL) model because of its well-
defined interaction parameters, along with its distinct mathematical framework
known as scatter kernel construction [22,23]. The CLL model includes two adjustable
parameters, specifically the normal energy accommodation coefficient denoted as a,,
and the tangential momentum accommodation coefficient denoted as o;. The range of
a, is from 0 to 1 and it is associated with the portion of kinetic energy corresponding
to the normal velocity. Whereas, g, can vary from 0 to 2 and is linked to the
tangential momentum [23]. The scattering kernel of this model has the following
form:
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Where I, the modified Bessel function of the first kind and of zeroth order, R
particular gas constant, T,, temperature of the solid surface wall, &,, the molecular

velocity relative to surface normal vector, ft the sum of the tangential components of
velocity [22].

2.5 Numerical methods

Different methods have been developed to numerically simulate the rarefied gas
flows in nozzles. Some of them can also solve the Boltzmann equation. There are two
main techniques for solving the Boltzmann equation, Direct Simulation Monte Carlo
(DSMC) and Discrete Velocity Method (DVM). DSMC is a probabilistic method that
does not rely on the simplifications introduced by the kinetic models. The DVM is an
approximate solution and applies the kinetic models.

The DVM s a deterministic approach widely utilized in the scientific
community of rarefied gas dynamics to numerically solve the Boltzmann equation
and kinetic model equations [10]. The method involves discretizing velocity and
space variables using a selected set of discrete velocities and applying a consistent
finite difference scheme, respectively. Subsequently, the collision integral term is
approximated using an appropriate quadrature, and then the resulting system of
equations is solved iteratively. It should be noted that the number of iterations
increases rapidly as the Knudsen number decreases, although valid results are
obtained across all ranges of Knudsen numbers [9].

G. A. Bird[8] introduced the DSMC method as a stochastic or probabilistic
strategy for solving the Boltzmann equation. A DSMC simulation is conducted in a
rarefied area using numerical particles to represent numerous physical particles. The
simulation involves calculating the motions and collisions of these particles within
each time step. Initially, particle trajectories are computed based on their velocity
independent of potential intersections, followed by resolving collisions between
neighbouring particles using a stochastic approach. At each time step, particles move
based on their velocities, interact with the boundaries, and then undergo indexing. A
specific number of collision pairs are chosen in each cell using the no-time-counter
(NTC) method. This process is iterated until statistical errors meet acceptable levels.
Macroscopic properties like temperature or velocity can be derived through averaging
over multiple time steps. An accurate simulation depends on three criteria: ensuring
that the time step is shorter than the average time between particle collisions for
precise trajectory computation, maintaining spatial resolution at the scale of a
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particle’s mean free path to accurately determine collision partners, and having a
sufficiently high number of particles per cell to minimize statistical scattering (20
particles per cell). The DSMC approach has the capability to replicate non-
equilibrium and fluctuating gas flow conditions. By conducting simulations over a
significant duration, a steady-state flow field can be derived from this method
[24,25]. In general interactions between molecules and collisions with surfaces are
computed using probabilistic and phenomenological frameworks. Frequently used
collision models encompass the Hard Sphere model, the Variable Hard Sphere model,
and the Variable Soft Sphere model [9]. In classical kinetic theory the molecular
models were really complex, as approximate physical models. A simpler
mathematical model is proposed as the hard sphere model (HS). However, the HS
molecular model is not accurate as the overall collision cross-section does not rely on
the relative velocity of the particle pair engaged in the collision process. G. A. Bird
proposed the variable hard sphere (VHS model) that combines the simplicity of the
hard sphere model with an improved accuracy. The VHS model can be regarded as a
phenomenological model. The attainment of realistic transport properties at the
macroscopic level is given priority over the employment of more realistic molecular
potentials at the microscopic level [8,26]. An alternative molecular model is the
variable soft sphere model (VSS) from K. Koura and H. Matsumoto [27]. The VSS
model takes into account anisotropic scattering after collisions. Gas flow in micro-
channels is typically characterized by low velocity and operation at around
atmospheric pressure. This presents challenges when attempting to extract
macroscopic fields like temperature and velocity from DSMC simulations, as the
thermal velocities of the particles are significantly higher than the macroscopic
velocity. Consequently, recovering the macroscopic velocity becomes statistically
challenging, necessitating a large sample size to reduce errors to an acceptable level.
Simulations involving very low velocities (Ma < 0.1) may be impractical due to
exceedingly large required sample sizes [28,29].

The primary method employed in this study was the DSMC computational
approach using the Variable Hard Sphere model.
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3. Chapter 3: DSMC Method
3.1 Introduction

This chapter offers a more detailed description of the Direct Simulation Monte
Carlo (DSMC) [8,30,31]. Unlike traditional continuum-based methods, DSMC excels
in capturing the molecular interactions and collisions that become important when gas
particles are separated by large distances. Using statistical sampling and Monte Carlo
methods, DSMC offers a powerful solution for modelling the dynamics of non-
equilibrium gases, making it an indispensable tool for the investigation of
aerodynamics, space science and various engineering applications.

3.2 Main Steps of the DSMC Algorithm

The DSMC algorithm consists of several steps. A flow chart of the DSMC
method is shown in Figure 3.1. First, the total number of particles, the time step At,
and basic parameters such as the rarefaction parameter for the given problem are
determined. The next step involves constructing the computational grid, which
includes cells and sub-cells, and initializing the particles by randomly distributing
them within the grid and assigning them the three components of the molecular
velocity ¢. If a collision with the solid walls occurs during particle movement, the
new component of the particle's velocity after the collision is calculated based on the
gas-wall interaction. The following stage involves locating and updating the particles
whose initial spatial coordinates have changed. The next step involves the calculation
of molecular collisions. In each spatial cell, the probable number of collisions that
will occur within each time step At is determined using the Non Time Counter (NTC)
[28] scheme. The number of potential particle pairs colliding depends on the number
of particles in the cell, the cell volume, and the time step At. A random pair of
particles belonging to the same cell and sub-cell is selected, and the probability of
collision is determined based on their relative speed and effective cross-section.
When particles collide, their velocities are updated according to the principles of
momentum and energy conservation. Next, the macroscopic quantities of the gas are
determined based on the microscopic properties of the particles within each cell's
geometric medium. At certain points in the process, there is doubling of the initial
particles to reduce statistical errors and aid in distinguishing between the initial and
final states. The last step of the algorithm is the termination criterion. As a
termination criterion, can be used the test of statistical variance if it is less than a
certain number or the stopping of the execution of the program at a certain point in
time. If the condition is true then the algorithm is terminated. Otherwise, it returns to
the first move of the particles. Finally, upon the verification of the convergence
condition, the program is terminated [8,26,31].
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Figure 3.1: The standard DSMC procedure [30].

3.3 Molecular Description

In DSMC a vast quantity of simulated particles is used to represent the gas.
These particles navigate through the computational space, and their interactions
mimic the actions of gas molecules. Each particle acts as a stand-in for a larger
number of gas molecules. In DSMC, the simulation typically involves a small fraction
of particles compared to the actual number of physical molecules, with each particle
representing Fy physical molecules (at least 20 physical molecules for a DSMC
particle). The scale of particles employed in simulations can be extensive, particularly
in managing large-scale systems, which renders DSMC a method requiring
significant computational resources. The key assumption made in DSMC simulations
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is that during a small-time interval, molecular motion is considered to be independent
of intermolecular collisions. Consequently, each molecule's movement over this
period is calculated taking into consideration interactions with flow boundaries.
Subsequently, the time advances by one time step and intermolecular collisions are
happening. As a result, dynamic action within a gas involves changes in the state
variables of individual particles caused by collisions, free movement, and interaction
with boundaries [8,26].

3.4 Random number

Random numbers are an important aspect of the Monte Carlo method. One must
produce a variety of distributions that deviate from the set of random numbers in
calculations. While DSMC can generate random values from a range of distributions,
it only requires one generator that produces the uniform distribution within the
interval. For instance, a random number (R;) can have values between 0 and 1 and
varies each time. Each random number generated during simulation may only be used
once. One approach for the use of random numbers is the acceptance-rejection
method.

f)

fmax

> R (3.2)

Where f,,qx 1S the maximum of distribution f. Only the values of x that satisfy this
condition are accepted [8,31].

3.5 Collisions

At each time step, the particles move freely until a potential collision event is
detected. The detection of this event relies on evaluating the positions and velocities
of the particles. When a collision is identified, the particles involved undergo a
collision event, during which their velocities are updated according to the laws of
collision dynamics. This step is fundamental for accurately simulating the molecular
interactions within a rarefied gas, setting DSMC apart from continuum methods that
neglect such microscale phenomena. The first task in the collision step is to determine
the local collision frequency. A well-used method is the No Time Counter scheme, in
which the total amount of particle pairs within a cell is selected and then evaluated to
determine if a collision will take place [8],

N(N - 1)FN (O-’fr)maxﬂt
N, = 3.2
Coll Zvce” ( )
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Where N¢,;; the number of possible collision pairs, N the current number of particles
in cell, Fy is the number of real molecules represented by one DSMC molecule,
(6& ) max 1S the maximum product of the collision cross-section and the relative
velocity, V.., is the volume of the collision cell.

The velocities of the particles after the collision are calculated based on Bird’s
relations [8]. For a monoatomic gas these are formulated as follows:

G =¢+ %Er (3.3)

1
$=8%m— Efr (3.4)

where the velocities é7 and &, are the post-collision vectors, &, is the velocity vector
of the centre of mass and &,. is the relative velocity of the particles.

3.6 Macroscopic quantities

During the DSMC simulation, statistical sampling is often performed to
calculate macroscopic quantities such as density, temperature, and velocity. The
DSMC method utilizes a particle-based approach to extract the macroscopic
properties of gas. This involves collecting data from the simulated particles to
estimate these macroscopic properties. These properties are derived from the
movement and interactions of the individual particles at the microscopic level. By
employing a cell system to sample these macroscopic attributes, they can be utilized
for engineering applications. This statistical approach allows researchers to extract
meaningful information from the vast amount of particle data generated during the
simulation. The accuracy of these sampled macroscopic properties is vital for
validating the simulation results against experimental data [32].

The calculation of the numerical density n; for each cell is defined as:

mYp-1N(ty) mNy
NA YA

cell cell

(3.5)

nszdfz

Where V., is the dimensional volume, S is the number of samples, N are the points
of the stochastic system and t is the time.

The macroscopic velocity vector is expressed as:
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The macroscopic velocities for the X, y and z direction are expressed the same.
The dimensional temperature is defined by:
. s N(ty) L s N(ty)
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Where a is the directions x,yand zand T = . The heat flux is defined as:
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(3.8)

The sampling approach plays a crucial role when considering heat flux, as it is
essential for transporting heat not only during the free motion of particles but also
throughout collision processes. | should be noted that different sampling methods can
produce slightly varied results [33].

3.7 Boundary conditions

To complete the simulation, DSMC codes must address interactions with solid
surfaces or boundaries. Appropriate boundary conditions are implemented to model
the reflection, adsorption, or other specified behaviours at these boundaries. The
accurate representation of boundary conditions is crucial for obtaining realistic
simulations that mimic the physical world. DSMC provides a framework for handling
these interactions, making it versatile for a variety of applications, from microscale
devices to aerospace engineering. In chapter 2 the two main scattering kernels for gas
surface interactions (Maxwell and CLL) were described. The DSMC algorithm used
in this thesis is based on the Maxwell diffuse model, where the velocities of
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molecules after reflection are not related to their velocities before interaction and
follow the Maxwell distribution. In practical situations, gas molecules often have a
non-zero flow velocity relative to the surface, creating non-equilibrium conditions
near it [8].

3.8 Description of the model problem

In this section, the DSMC method is used to analyse a problem of heat transfer
in two plates along one dimension. This serves as a simple example to grasp the
fundamental concepts of the DSMC method by studying a basic 1D program (a first
draft of the code was provided by C. Tantos and it was modified for the calculation of
extra moments of macroscopic quantities). The scenario under consideration involves
two parallel plates extending infinitely, separated by a distance L while the existing
space in between is occupied by fluid. The lower plate maintains a temperature of
Taown = To + AT /2 while the upper one is kept at T, = T, — AT /2 where T,
symbolizes the reference temperature. The temperature ratio between the two plates is

determined by T‘;Z—:” = (14 p)/(1 - B), where 5 represents AT /2T,.

Tup

L Gas

T(lowu

Figure 3.2: Model problem set up.

3.9 Results of the model problem and sensitivity of the method

For this model problem, a sensitivity analysis was conducted for the highest
value of § available (because as § increases the requirements become much higher),
and for different values of particles, cells and timestep. The objective is to check the
reliability of the three thumb rules: Ax < A/3, N > 20 and At < t/3 , where t =
AJug [33].

The findings of heat flux are compared to those of the complete solution with
Discrete Velocity Method (DVM) from the paper of S. Pantazis and D. Valougeorgis
[34]. The heat flux for this simplified geometry is written as:
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Below, the Table 3-1 presenting the heat flux results from the paper is shown.

Table 3-1: Non-linear dimensionless heat fluxes for different values of §

and T, /T, [34].

s Ty /Tr=1+B)/(1-)

1.01 11 1.5 3 7 10 100

0.0 5643(-3) 5.637(-2) 2.222(-1) 5.058(-1) 6.142(-1) 5.982(-1)  2.830(-1)

15(-4) 5641(-3) 5.636(-2) 2.222(-1) 5.058(-1) 6.142(-1) 5.983(-1)  2.832(-1)

15(-1) 5231(-3) 5.227(-2) 2.064(-1) 4.742(-1) 5.892(-1) 5.818(-1)  3.200(-1)

15 3571(-3)  3.569(-2) 1.414(-1) 3.324(-1) 4.383(-1) 4.485(-1)  3.675(-1)

15(+1) 9.917(-4) 9.914(-3) 3.952(-2) 9.675(-2) 1.394(-1)  1.494(-1)  1.643(-1)

15(+2) 1.220(-4) 1.218(-3) 4.864(-3) 1.203(-2) 1.773(-2) 1.920(-2)  2.237(-2)

For the initial phase of the sensitivity analysis the comparison is based on the
rule Ax < A/3. Also, standard number of 20 particles per cell and timestep t = 1e —
4 is considered. For all the cases the ratio T, /T, is considered 3. In Table 3-2 the
cases for different Ax are shown. According to the rule of thumb the minimum
acceptable number of cells for § = 150 is 500. Based on the results it is evident that
the number of cells should be at least 500 for an error value less than 5 %. When the
number of cells is less than 400 the error is increased and becomes more than 5%. For
increased values of Ax it is observed that the error becomes less than 2 %. The results
of the code are also evident in Figure 3.3.

Table 3-2: Various cases for § = 150 and 20 number of particles per cell and
timestept = 1le — 4.

. q(s. o
Cases Ax Particles Cells q Pantazis) Error (%)
1 K A/3 16000 800 0.01224 177
2 <1/3 8000 400 0.01260 4.70
0.01203 ——.——
3 >1/3 4000 200 0.01266 5.21
4 > 1/3 800 40 0.01517 26.06
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Figure 3.3: Graphs of heat flux vs time for different values of Ax.

The next parameter that will be studied is the number of particles per cell. The
cases of 20, 10, 5 and 4 particles per cell will be compared. Based on the results
above, where the best case was for 800 cells, the number of cells will be standard at
800. Also, the timestep is t = 1e — 4 and the ratio T; /T, is 3. The results are shown
in the Table 3-3 and the Figure 3.4. When values of error smaller than 5 % are
acceptable it is shown that the least number of particles per cell could be 10.

Table 3-3: Various cases for § = 150 and cells = 800 for different number of

particles per cell (part/cell).

Cases Part/cell Particles q g (S. Pantazis) Error (%)
1 20 16000  0.01224 1.80
2 10 8000  0.01231 2.37
3 5 a000 001253 001203 113
4 4 3200 0.01297 7.83
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Figure 3.4: Graphs of heat flux vs time for different values of particles.

In the next and final step, a comparison will be made for different time steps
(t=1e—4,t=1e—3andt = 1le — 2). The ratio T, /T, is 3. Based on the previous
results, values of particles = 16000 and cells = 800 are chosen. The results are
shown in Table 3-4 and Figure 3.5. The DSMC solution for t = le —4 and t = 1le —
3 is quite close to the DVM solution, in contrast to t = 1e — 2 which has a slightly
larger difference. In addition, as dt decreases, a larger number of iterations are needed

to bring the fluid to a steady state.

Table 3-4: Various cases for § = 150, particles = 16000 and cells = 800 for

different timestep.
Cases Timestep q g (S. Pantazis) Error (%)
1 le-4 0.01224 1.72
2 le-3 0.01180 0.01203 1.90
3 le-2 0.009115 27.28
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Figure 3.5: Diagram of heat flux to time for 6=1.5, p=0.5, particles=8000 and
cells=400 for different timestep.

Upon examination of all the results, it is evident that when the rules are
followed the code gives a smaller difference from the DVM solution of the literature
[34]. Thus, its validity is also implied. For completeness purposes in Table 3-5 a
comparison is also performed for various values of rarefaction parameter and ratio
T, /T, is 3, while the three thumb rules are followed. For either of the values of § the
error stays low.

Table 3-5. Cases for different values of 9.

Cases & q (s. Pa?n tazis) Error (%)
1 0.15 0.4741 0.4742 0.021
2 15 0.3344 0.3324 0.6
3 150 0.01224 0.01203 1.8
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4. Chapter 4: Numerical Analysis of Nozzle Performance
4.1 Propulsion Nozzles

Several nozzle designs are currently available, including the converging-
diverging nozzle, which is commonly utilized in MEMS and NEMS. Originally
invented by Swedish scientist De Laval and now known as the de Laval or
converging-diverging nozzle, it features a varying cross-section that can lead to
different rarefaction regimes in micro/nanoscale nozzles simultaneously. The shape of
the converging section has minimal impact on performance if it allows for easy
subsonic flow, while the throat contour is not highly critical to performance and
generally accepts any smooth curved shape. Under supersonic flow conditions with
certain backpressure values at the exit of the nozzle (or overall pressure differential
across the nozzle), a normal shock occurs only in the divergent part of the nozzle.
Expansion continues as subsonic flow, after becoming sonic flow at the throat and
then returning to supersonic before another shock occurs. Smooth internal wall
surfaces throughout are important in minimizing friction and heat transfer. One
commonly used design today is the conical nozzle due to its ease of fabrication [2,35—
37].

Researchers opt for kinetic-based methods, like direct simulation Monte Carlo,
to model fluid flow in small scales encompassing various rarefaction regimes.
Existing literature demonstrates extensive utilization of DSMC in forecasting the flow
behaviour within micro/nanoscale components such as channels and nozzles [35].

Nozzles play a significant role in regulating the expansion and acceleration of
gases under conditions characterized by low molecular density. These intricately
designed components have long been essential in industries such as aerospace
propulsion, vacuum technology, and manufacturing due to their notable impact on the
transition of gas from high-pressure to low-pressure regions while maintaining
efficiency. Researchers have been intrigued by the behaviour of gas molecules within
nozzles in rarefied regimes where molecular collisions are infrequent. Earlier studies,
including G. A. Bird [8], have made fundamental contributions to our understanding
of rarefied gas dynamics and laid the groundwork for further research in this field.

A research undertaken by NASA during the initial experimental phase reveals
that Reynolds numbers and gas composition have a substantial influence on the
functionality of nozzles. The study underscores the significance of boundary-layer
effects, particularly at lower Reynolds numbers. Additionally, specific nozzle shapes
are recognized as potential factors in enhancing nozzle design for high-performance
uses such as satellite propulsion. It is suggested that enhanced predictive models are
needed to improve our comprehension and capacity to optimize nozzle performance
[38].

A. A. Alexeenko and colleagues [39,40] have conducted an extensive study on
the interactions between gas and surfaces in nozzles, providing a deeper
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comprehension of wall accommodation coefficients and energy transfer mechanisms
under rarefied conditions. Their research highlights the importance of taking into
account collision processes and shock wave dynamics when designing and improving
nozzles. These observations have significantly improved our capacity to forecast
nozzle performance, especially in high-enthalpy flows.

V. A. Titarev et al. [41] investigated the behaviour of rarefied gas flow through
a tapered pipe with changing diameter into a vacuum. Their findings suggest that
enlarging the pipe diameter leads to higher flow rates regardless of the Knudsen
numbers, and it also causes non-linear flow patterns within the pipe.

M. Zhang et al. [42] conducted a study that examined the impact of rarefaction
on gas viscosity in a straight channel using the Direct Simulation Monte Carlo
method. The numerical investigation showed that variables like wall temperature,
rarefaction parameter, and aspect ratio can have a substantial effect on the
characteristics of tube flow.

V. Varade et al. [43] carried out an experimental and three-dimensional
numerical study that highlighted the importance of viscous shear force in elongated
micro-scale channels as a predominant factor contributing to pressure drop. With
increasing Knudsen number, convective effects significantly weaken, leading to an
increase in the wall friction coefficient.

In the field of nozzle research using the Direct Simulation Monte Carlo
approach, a significant number of previous studies has been conducted. Many
investigations have focused on studying gas flows within nozzles using DSMC as a
dependable simulation tool. However, the current study identifies an important area
that has not been extensively explored in existing literature. Specifically aims to
provide perspectives by examining the inherent inaccuracies associated with implicit
boundary conditions, when combined with DSMC method. Giorgos Tatsios, Dimitris
Valougeorgis, and Stefan K. Stefanov [44] conducted a study to investigate the
inaccuracies in simulations of straight channels and tubes involving implicit boundary
conditions. They obtained findings for the error in the mass flow rate while also
applying the end effect correction method. This study aims to test the implicit
boundary conditions on diverging channels and compare the results with the
literature, as well as with a 1D approach with and without end effects and with a
complete solution.

This line of investigation not only enhances understanding of nozzle dynamics
but also addresses a crucial aspect that has received limited attention in DSMC-based
studies thus far. By carefully analysing the errors related to implicit boundary
conditions in DSMC simulations, this chapter aims to bridge this gap and advance
discussions about the precision and dependability of such computational methods
within the context of nozzle dynamics.
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4.2 Flow Configuration

A diagram of the studied flow configuration is shown in Figure 4.1. The flow
set-up consists of two large reservoirs connected by a diverging channel with length
L, width W and height H(x). The height increases linearly in the flow direction. The
height of the channel at certain distance from the inlet is defined as H(x') =
[(Hpy: — Hip)/L1x" + H;y,, Where Hyy, and H,,,; are the channel height at the inlet and
outlet respectively. The width of the channel is assumed to be considerably larger
compared to its height (W > H(x")). The two reservoirs are maintained at different
pressures, P, and Py, with P, > Pz. At the two reservoirs it is assumed pure
isothermal gas flow at T,. Because of the flow symmetry, only half of the flow
domain is considered, (y" > 0). Under conditions of equilibrium, a flow is established
from the reservoir with high pressure to the one with low pressure. To present the
numerical findings more concisely, their dimensionless form is selected. The
macroscopic quantities such as the gas number density n, the gas temperature T, the
gas velocity vector v, are normalized as follows:

n(x,y) ey = T(xy) u(xy) = v(x,y)

41
Ny Ty Vo 4

p(x,y) =

where v, = /2kgT,/m is the most probable speed, kg is the Boltzmann constant and
m is the gas molecular mass. The x’ and y' coordinates are normalized as x = x'/H;,
and y = y'/H,,, respectively.

The state of the gas flow can be described by the following four dimensionless
quantities: the reference rarefaction parameter, the dimensionless channel length, the
ratio of channel height at the two channel ends and the pressure ratio. The reference
rarefaction parameter ¢, is defined as

_ PAHin

0y = s 4.2
0 UoTVg (4.2)

where u, is the gas viscosity at the reference temperature T,. The dimensionless
channel length is defined as A = L/H;,. The ratio of channel height at the two
channel ends is H,,,; /H;, and the pressure ratio Pg /P,.

The dimensional gas mass flow rate M through the channel is the computational
parameter of great importance and its dimensionless form is defined as:

Mvgm

(4.3)
PAHin
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where My = PyH;,/(V/mv,) is the dimensional mass flow rate in the case of
flow through slit (A = 0) assuming flow into vacuum (P; = 0) and free molecular
flow conditions. The normalization for the mass flow rate has been chosen in order to
facilitate comparisons with already existed data in the literature for some limit cases.

digh pressure reservoir

---------------------

I AN
T PB" To

i e

Low pressure reservoir

H, L H,
H. /2 Flow direction H 011[/2
0(0,0) x' B

Figure 4.1: Flow configuration set up.

4.3 Implicit Boundary Conditions

Microflows frequently operate under specific pressure differentials at the inlet
and outlet boundaries. Obtaining velocity distributions at the inlet is often challenging
due to experimental constraints. In this problem, implicit boundary conditions
[25,42,44-46] are applied to the incoming distributions at the ends of the nozzle. This
approach offers the benefit of a small computational domain that includes only the
nozzle, whereas achieving a complete solution would require incorporating the
reservoirs at the inlet and outlet. In this case Hy =0, Hy =0, L, =0 and Lz = 0.
Their theoretical framework presupposes that the flow is locally one-dimensional,
inviscid, and adiabatic. These models have been effectively utilized in different
scenarios. The implicit boundary conditions are obtained from the Euler equations
which describe inviscid flow and have shown to be successful when applied in
rarefied flows. This thesis uses an implicit approach for addressing low-speed
conditions at the inlet and outlet boundaries in DSMC simulations of microflows
under such operational circumstances. Specifically, the particle number fluxes and the
velocity components of entering molecules are determined locally from the
Maxwellian distribution, where the inlet velocity (i.e. x = 0) is:

PV 2YT

uinj = Uj + (44)
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The inlet number density (p;,) and temperature (t;,) are obtained from the inlet
pressure (p;,,), Where p = P /P,. The reference values are taken as:

(pin)j =1 (4.5)
(tim)j =1 (4.6)
The same treatment is also applied for the outlet boundary conditions (x = L):

Pout/Pin —DPj

poutj =p+t VT (4.7)
]
pj — Pout/Pin
Hout) =W Ty, (48)
Pout/Pin
Tout; = Pou, (4.9

Where the subscript j is some arbitrary node across the two ends of the channel
[44].

The other two boundary conditions on the walls are the maxwell diffuse
scattering and the axisymmetric conditions along the symmetry axis (y = 0).

4.4 Fully Developed method

The cases that occur with the implicit boundary conditions and the DSMC are
also analysed using an alternative fully developed approach, which allows for quick
estimation of the mass flow rate of the nozzle.

The fully developed method is an 1D approach [47]. This technique computes
the mass flow rate through a channel, and the findings will be presented in relation to
the reduced mass flow rate as defined below

G=—= /ZkBTlM (4.10)
WH;j m
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where L the channel length, m the molecular mass of the gas, kg is the Boltzmann
constant. It is assumed that the channel is sufficiently long enough to neglect the end
effects.

The second assumption involves the consideration of small pressure gradients
within any cross section of the channel.

&=n 5l <1 (4.11)

where X is the longitudinal coordinate in the flow direction with the origin in the first
reservoir. In such a scenario, the mass flow rate within a specific cross section is

determined as
M = HWP ,Zk 77 (~Gpép) (4.12)

where the coefficient G,, depends on the local gas rarefaction parameter 5, defined as

5= A2 HP
u(T) 2kB

(4.13)

The values of the coefficient G, = G, (&) in the case of the gas flow through a
rectangular cross section channel for different flow regimes are obtained from the
solution of the linearized BGK and S-model kinetic equations, or from the linearized
Boltzmann equation for the diffuse or diffuse/specular boundary conditions. From
equations (4.11-4.13) the differential equation is:

L /H\?
6 =5 (i

A H1> G» x(@)) (4.14)

Equation (4.14) is solved numerically using the following finite difference
scheme:

Ax P,G (Hy\?
P =Pt ey T (E)) (4.19)
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where Ax = L/N is the grid step in the x direction and 0 <i < N, P;, H; are the
pressure, and channel height in i grid point, respectively. The rarefaction parameter §;
becomes:

_ ﬂ _ P1H1 m
6; =98, P, and §; = ) /—ZkBTl (4.16)

Given the inlet pressure, it is possible to determine 6 and subsequently G, can
be determined. A random value for G is then hypothesized and the pressures at all
nodes are computed. The discovered outlet pressure will be compared with the known
pressure. If they vary, these calculations are iterated with a different G. Consequently,
upon finding the correct G, the mass flow rate can be ascertained.

A method for correcting the end effect has been suggested to expand the
applicability of the infinite channel theory, which describes flows through long
channels, to channels of moderate length. The channel's actual length is increased at
its two ends by specific increments L;, and L,,;, which are not related to the
channel's original length but depend solely on inlet and outlet gas rarefaction
parameters, &;, and &,,; respectively, with &, = 8inPoust/Pin- The length
increments AL/x have been documented based on the gas rarefaction parameter for
channel flow [34,47,48].

4.5 Complete Solution

The analysis of the nozzle was also conducted for the complete problem with
the reservoirs (Hy # 0, Hg # 0, L, # 0 and L # 0). The DVM method was used for
this solution (a more detailed description is available in the Appendix A). This extra
solution was carried out to verify the accuracy of the implicit boundary conditions. It
should be noted that if the complete problem is solved with DSMC the results will be
similar to those of the DVM solution.

4.6 Parametric Study and Benchmarking
4.6.1Parametric Analysis

A sensitivity analysis was conducted on rarefied gas flow through a linearly
diverging channel into vacuum (P = 0), considering pure isothermal conditions. Data
for the channel's geometry includes L/H;,, = 10 and H,,,;/H;, = 2. The comparisons
are conducted for the dimensionless mass flow rate M. The parameters under
examination are the values of particles, cells timestep and rarefaction parameter.
Firstly, the values of &6 =0.1 and 6§ = 10 are considered for the rarefaction
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parameter. For each one of these & the mass flow rate is studied in comparison with
the change in the other three parameters. Each time, the parametric mass flow rate
responds to decreased values of cells, particles and timestep.

Table 4-1 shows the results of the sensitivity analysis. It can be seen good
agreement between the mass flow rate before and after the change in parameters for
either of the three different parameters. Specifically, the error does not exceed the 1
percent for either of the cases.

The equation which is used for the calculation of the error is defined as:

|estimated number — actual number|
Percentage Error = x 100 (4.17)
actual number

Table 4-1: Dimensionless flow rate M vs rarefaction parameter §, for P ratio 0,
H,,:/H;, = 2 and aspect ratio L/H;, = 10.

Changed M (for the changed

d M (basic) Parameter parameter) Error (%)
cells/2 0.5236 0.099
0.1 0.5241 particles/2 0.5251 0.185
timestep/2 0.5240 0.030
cells/2 0.6874 0.178
10 0.6886 particles/2 0.6925 0.568
timestep/2 0.6885 0.020

4.6.2Comparison with available data in literature on diverging channel

In this subsection a comparison is utilised using the findings from the study by
O. Sazhin and A. Sazhin [49]. The scenario includes rarefied gas flow through a
linearly diverging channel into vacuum (P = 0), considering pure isothermal
conditions. Data for the channel's geometry includes L/H;,, = 10 and H,,;/H;,, = 2.
The comparisons are conducted for the dimensionless mass flow rate M. The results
are shown in Table 4-2. It is evident that the error is high and this defines the present
study on the applicability of implicit boundary conditions. Even though there is not
good agreement between the two methods for small values of §, as & is increased a
drastic decrease in error can be seen.
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Table 4-2: Dimensionless flow rate M vs rarefaction parameter §, for P ratio 0,
H,,.:/H;, = 2 and aspect ratio L/H;,, = 10.

o M M (A. Sazhin) Error (%)
0.1 0.524 0.402 30.473

1 0.479 0.396 20.752
10 0.689 0.593 16.149

4.6.3Comparison with available data in literature on straight channel

The comparison case in this subsection involves the flow of HS gas in a straight
channel of finite length. Pure isothermal flow is considered, while the pressure ratio is
0. The rarefaction parameter § takes values of 0.1, 1, 10, and 20. Furthermore, data
for the channel's geometry includes L/H;, =1 and L/H;, = 5. The comparison is
conducted for the dimensionless mass flow rate M.

Table 4-3 shows the comparison between the solution with the implicit
boundary conditions and the results from Stylianos Varoutis, Christian Day and Felix
Sharipov [14]. Comparing the results for low values of L/H;, and & significant
differences from the existing literature are noted. On the other hand, it seems that
with an increase in these parameters the differences decrease rapidly. When & is 10
the error is decreased more than 50 percent when the ratio increases from L/H;,, = 1
to L/H;, = 5. Considering these results, it would be more efficient to use larger
values for these parameters, which could be achieved for the aspect ratio. On the
contrary, § values larger than 10 could not be used because of the computational time
at hand.

Table 4-3: Dimensionless flow rate M vs rarefaction parameter 6, P ratio and aspect

ratio L/H;,,.
Pratio L/H;, o M M (S. Varoutis) Error (%)
0.1 1.322 0.698 89.394
1 1.331 0.767 73.582
! 10 1514 1.04 45.549
0 20 1.627 1.15 41.461
0.1 0.450 0.357 26.150
. 1 0.426 0.358 18.967
10 0.551 0.49 12.526
20 0.709 0.626 13.278
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4.7 Results and Discussion

4.7.1Mass flow rate

Firstly, the results of the dimensionless mass flow rate for L/H;, values of 5
and 10, for H,,;/H;, 2 and 5, for § 1 and 10 and for pressure ratios 0.1 and 0.5 will
be commented. Below are the Tables 4-4, 4-5 and 4-6 with the results with implicit
boundary conditions in DSMC, fully developed 1D method as in Graur [47] and with
the complete solution DVM. Also, the deviations between them have been calculated.

A comparison between the results obtained from using the complete solution
and the 1D approach, with and without end effects (as shown in Table 4.4 and Table
4.5 objectively), reveals that when the & is increased the error is also increased for
most of the cases. Additionally, a noticeable decrease in error occurs when end effects
are included. The inclusion of end effects leads to more accurate results, explaining
the observed differences in errors.

The following analysis entails a comparison between the results obtained using
implicit boundaries and the complete solution (as shown in Table 4.6). The complete
solution is regarded as the most thorough and precise method when compared to the
other two approaches. Upon examination, it is apparent that values obtained with
implicit boundaries are larger than those produced by the complete solution.
Therefore, it can be stated that the implicit boundaries overestimate the mass flow
rate. Moreover, for the vast majority of the results it is observed that the mass flow
rate error for these two cases decreases when & is larger, and is characterized by
larger Reynolds numbers which is in accordance to the theoretical basis of the
implicit boundary conditions. Additionally, a noticeable increase in error occurs with
an increase in H,,;/H;,. Because the nozzle becomes wider and the end effects are
more noticeable. Also, when the L/H;, ratio increases it is observed that the error
decreases due to the reduction of end effects.

In general, when considering the results within the implicit boundaries, it is
clear that the mass flow rate increases as & grows. This can be easily explained by the
fact that a higher § corresponds to greater gas density which results to an increase of
the particle-particle collisions and finally to the alignment of particle flow direction
with the macroscopic direction of the flow. In addition, an increase in pressure ratio
leads to a decrease in mass flow rate across all anticipated scenarios. As the L/H;,
ratio moves from 2 to 5, there is a consistent reduction in mass flow rate for both
pressure ratios due to changes in the nozzle dimensions (elongation and narrowing)
leading to decreased flow rates. An examination of the H,,;/H;, ratio reveals that an
increase in this ratio is associated with an elevation in mass flow rate, which aligns
with expectations since wider nozzles result from this change. Similar observations
are found across the other methods, confirming their validity for the qualitative
behaviour of the mass flow rate. In general, the increase in the L/H;, and in
rarefaction parameter leads to decrease of the observed error.
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Table 4-4: Dimensionless mass flow rate for complete solution and fully developed
approach without end effects.

Dimensionless mass flow rate

ralzio L/Hw  Hou/Hin 3 C;%rlrsﬁilg'rt]e Witﬁguiiardoigfgcts Error (%)
1 0.571 1.019 78.459

2 10 0.894 1.489 66.555

> . 1 0.928 2.491 168.427

01 10 1.350 4179 209.556
) 1 0.366 0.509 39.071

10 10 0.579 0.744 28.497

c 1 0.705 1.245 76.596

10 1.128 2.090 85.284

) 1 0.335 0.551 64.478

10 0.681 0.985 44.640

> 1 0.562 1.390 147.331

> 10 1.164 2.876 147.079

0 ) 1 0.209 0.275 31.579
10 10 0.409 0.493 20.538

1 0.415 0.695 67.470

> 10 0.895 1438 60.670

Table 4-5:Dimensionless mass flow rate for complete solution and fully developed
approach with end effects.

Dimensionless mass flow rate

o A Mol 5 GURER 0TI e oo

1 0.571 0.621 8.757

? 10 0.894 1.166 30.425

° 1 0.928 1.657 78.556

° 10 1.350 3.376 150.074

01 , 1 0.366 0.386 5.464
10 0.579 0.654 12.953

10 1 0.705 0.995 41.135

> 10 1.128 1.867 65.514

, 1 0.335 0.388 15.821

10 0.681 0.806 18.355

° 1 0.562 1.017 80.961

° 10 1.164 2.353 102.148

0 1 0.209 0.228 9.091
? 10 0.409 0.443 8.313

10 1 0.415 0.587 41.446

° 10 0.895 1.294 44.581
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Table 4-6:Dimensionless mass flow rate for implicit boundary conditions and
complete solution.

Dimensionless mass flow rate

Pratio L/H;, H,,/H;, b Implicit Boundaries Complete Solution  Error (%)
) 1 0.861 0.571 50.613
10 1.245 0.894 39.296
> 1 2.369 0.928 155.284
> 10 2.998 1.350 122.101
0 ) 1 0.460 0.366 25.773
10 10 0.690 0.579 19.136
1 1.195 0.705 69.532
> 10 1.929 1.128 70.970
1 0.545 0.335 62.780
2 10 1.008 0.681 48.114
> 1 1.449 0.562 157.611
> 10 2.976 1.164 155.722
05 1 0.268 0.209 28.139
g 10 0.498 0.409 21.637
10 1 0.692 0.415 66.747
> 10 1.698 0.895 89.790

4.7.2 Thrust and Impulse factor

The dimensionless (momentum and total) thrust and Impulse factor were found
based on the equations from chapter 1.

F
Dimensionless Thrust f= . (4.18)
PAHin
I
Dimensionless Impulse factor fsp = —— (4.19)
Vru,

The obtained results for the thrust are shown in Tables 4-7, 4-8 and 4-9. Firstly,
by observing the values of the momentum thrust, it can be seen that the two solution
methods show the same qualitative behaviour in all cases. With higher § there is an
increase in thrust due to an increase in velocity and mass flow rate. There is also an
increase in momentum thrust when the H,,;/H;, ratio increases. There is also a
decrease in momentum thrust in cases where the pressure and aspect ratio decreases.
It is concluded that momentum thrust exhibits exactly the same behaviour as mass
flow rate, as it was expected. Also, as in the mass flow rate the error between implicit
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boundary and complete solution decreases with increasing the 6 and aspect ratio.
Observing the results of the total thrust it appears that the implicit boundaries have
exactly the same behaviour as the momentum thrust and therefore the mass flow rate.
In contrast the complete solution shows a slight difference. For pressure ratio 0.5,
when the § is increased there is a decrease in total thrust. It is evident that for the total
thrust the values of error are increased for § = 10, which is also the opposite of mass
flow rate. This result is probably due to the influence of the outlet pressure. From the
comparison of the momentum and total thrust the percentage of momentum thrust that
is included in the total thrust can be calculated. The momentum thrust is the 10 %
(lowest value) of the total thrust for pressure ratio 0.5, L/H;,, = 10, H,;/Hin = 2
and § = 1. The momentum thrust is the 100 % (highest value) for pressure ratio 0.1 at
L/Hy, =5, Hyy:/H;, =5 and 6 = 10. Those values are based on the complete
solution.

In Table 4-10 a comparison is conducted for the impulse factor values. As §
increases, the impulse factor also increases, while an expected decrease is observed
with increasing aspect ratio based on existing literature [42]. Furthermore, it is
concluded that the impulse factor decreases as pressure ratio rises. The difference
between the implicit boundary and complete solution diminishes with higher values
of § and L/H;,, and lower H,,./H;, and pressure ratio.

Table 4-7: Momentum and total thrust with the implicit boundary conditions.

Pratio L/H;, H,,/H;, b Momentum Thrust  Total Thrust

) 0.312 0.390
10 0.595 0.695

> 1 1.138 1.225

> 10 1.881 1.943

01 1 0.121 0.147
2 10 0.258 0.294

10 1 0.359 0.382

> 10 0.884 0.925

1 0.047 0.049

2 10 0.171 0.177

> 1 0.150 0.119

> 10 0.853 0.837

05 1 0.011 0.020
2 10 0.043 0.053

10 1 0.032 0.037

> 10 0.218 0.235
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Table 4-8: Momentum and total thrust with the complete solution.

Pratio L/H;, H,,/H;, b Momentum Thrust  Total Thrust

1 0.131 0.291
° 10 0.338 0.448

> 1 0.185 0.393

° 10 0.519 0.519

04 1 0.064 0.176
2 10 0.172 0.248

10 1 0.113 0.293

° 10 0.348 0.391

1 0.016 0.104

2 10 0.075 0.105

> 1 0.020 0.119

° 10 0.102 0.104

05 1 0.007 0.063
2 10 0.027 0.053

10 1 0.011 0.091

° 10 0.057 0.072

Table 4-9: Error for thrust momentum and total thrust between implicit boundary
conditions and complete solution.

Error

Pratio L/H;, Hg,/H; & Momentum Thrust Total Thrust

1 138.73 33.88
? 10 75.99 55.22
> 1 515.37 211.87
> 10 262.33 274.61
o 1 88.09 16.18
? 10 50.32 18.37
10
1 217.82 30.09
> 10 154.11 136.24
1 185.95 52.61
? 10 129.54 68.78
° 1 644.39 0.11
> 10 739.30 705.62
05 1 74.02 67.78
? 10 56.94 0.90
10
1 193.45 58.89
> 10 286.27 226.46
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Table 4-10: Values of Impulse factor.

Pratio L/H;, H,,./H; & Implicit Boundaries Complete Solution Error (%)
0.362 0.229 58.52
: 2 10 0.478 0.379 26.16
. 1 0.480 0.199 141.06
01 10 0.628 0.385 63.02
) 1 0.263 0.176 49.57
10 0.375 0.297 26.05
10 . 1 0.301 0.160 87.49
10 0.458 0.309 48.36
) 1 0.086 0.049 75.67
10 0.170 0.110 54.87
> c 1 0.103 0.036 188.94
10 0.287 0.087 227.77
05 ) 1 0.043 0.031 35.81
10 0.085 0.066 28.99
10 1 0.046 0.026 75.98
> 10 0.129 0.063 103.33

4.7.3Contours of Dimensionless Density, Temperature and Velocity

First, the comparison will be made on the graphs of the dimensionless density
for L/H;, 5 and 10, for H,,;/H;,= 2 and 5, for § = 1 and § = 10 and for pressure
ratios 0.1 and 0.5. A comparison will also be made between the method with implicit
boundaries and the complete solution. In Figure 4.2 it is observed that the density
within the variable cross-section channel decreases as the gas is transferred from high
to low pressure, which is expected. This is observed in the results of both methods.
Thus, we can say that the qualitative behavior of both methods is the same. In the
implicit boundary conditions, it is observed that at the input of the channel the density
values are larger than those of the complete solution. This is due to the fact that with
the implicit boundaries, we regard the input and output conditions as those of the
reservoirs. While in the complete solution the conditions change at the boundaries
with the channel and the density is smaller than that of the reservoirs. On the other
hand, at the channel output it is observed that the density comparison of the two
methods is much better than that of the input. When the ratio of H,,,;/H;,, decreases
and nears the values of a straight channel, it is noted that the representation of implicit
boundary conditions at the inlet improves and shows better agreement with the
complete solution. This can be rationalized by considering that as H,,;/H;,
increases, gas flow moves closer to the limiting case through the slit where there are
sharp transitions, leading to implicit boundary conditions diverging from the
complete solution. Looking at the different pressure ratios, it seems that the behaviour
remains almost the same. At higher pressure ratio at the channel inlet the density
comparison seems to be a bit better between the two methods.
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In continuation the comparison will be made on the graphs of the dimensionless
temperature for L/H;, 5 and 10, for H,,;/H;, 2and5,ford =1 and § = 10 and
for pressure ratios 0.1 and 0.5. The graphs are shown in Figure 4.3. For the small
pressure ratio, it is observed that the temperature decreases in all cases for both
methods. Thus, the qualitative behaviour remains the same. As a consequence of the
energy conservation principle, due to the increase in velocity (which will be shown in
the next paragraph) the temperature decreases. It is observed that the implicit
boundary conditions show a larger temperature drop towards the channel exit
compared to the complete solution. It is also noted that the temperature remains
relatively constant in the centre of the nozzle and increases as the gas approaches the
walls. The increase in temperature at the walls is expected due to the collisions of the
particles with the walls. When the ratio of H,,;/H;, increases, there is a greater
decrease in temperature at the centre of the nozzle. This occurs because with an
increasing H,,;/H;, ratio, there is a reduction on the wall friction effects. At low
H,,./H;, ratios, the temperature comparison at the nozzle inlet is more consistent
between implicit boundary conditions and the complete solution.

In Figure 4.4 a comparison will be performed in terms of the dimensionless
velocity for L/H;, 5 and 10, for H,,;,/H;, 2 and 5, for § =1 and § =1 and for
pressure ratios 0.1 and 0.5 are shown. A comparison will also be made between the
method with implicit boundaries and the complete solution. The diagrams in Figure
4.4 show that as the pressure ratio increases (the pressure difference decreases), the
velocity decreases, a phenomenon also seen in straight channels. Clearly, when the
pressure difference diminishes, the flow slows down. In general, it is noted that
velocity tends to increase as the flow approaches the outlet, consistent with
observations in straight channels. It is also observed that the velocity values with the
implicit boundary conditions compared to the complete solution have a better
comparison at the beginning of the nozzle. Towards the exit the velocity appears more
increased in the implicit boundary conditions. When § increases the comparison
between the two methods becomes better. This occurs because as the § increases the
Euler assumption becomes more valid (the implicit boundary conditions are due to
Euler's assumption on inviscid flow). It has been noted that as the ratio of H,,;/H;y,
increases, there is an acceleration in flow due to a decrease in wall losses. The
velocity follows the well-known parabolic pattern with lower values near the walls
and increasing toward the centre.
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4.7.4 Axial Distributions of Density, Temperature and Velocity

In this paragraph the comparison will be made on the axial diagrams of the
dimensionless density for L/H;, 5 and 10, for H,,,;/H;, 2 and 5, for § 1 and 10 and
for pressure ratios 0.1 and 0.5 (Figure 4.5). A comparison will also be made between
the method with implicit boundaries and the complete solution. It is noted that
consistency can be observed in the axial distributions across all cases and the two
methods. As the H,,;/H;, ratio increases, the profile of the graphs becomes more
parabolic as expected for nozzles. Additionally, with increasing this ratio there is a
significant decrease in density at the start of the nozzle, followed by a smoother
decline at a slower rate. When the H,,;/H;, ratio increases, more significant
deviations between the implicit boundary conditions and the complete solution
become apparent as a result of increased influence from end effects [44] on the flow.
As the pressure ratio increases, there is improved alignment between the two
methods. It is observed that when the ratio L/H,, increases the comparison of the two
methods is improved. This is true due to the reduction in the end effects.

In continuation there are the graphs in Figure 4.6 of the dimensionless
temperature for L/H;, 5 and 10, for H,,;/H;, 2 and 5, for § 1 and 10 and for
pressure ratios 0.1 and 0.5. It is noted that the comparison of the implicit boundary
with the complete solution based on temperature shows a similar sequence to that of
the density. It is important to note that at a small H,,,;/H;, ratio the flux is nearly
isothermal close to 1. While when the ratio increases the values go below 1. The same
phenomenon is observed with the L/H;, ratio. This occurs mainly due to the increase
in velocity.

The axial diagrams of the dimensionless velocity for L/H;, 5 and 10, for
H,.:/H;, 2and5, for § 1 and 10 and for pressure ratios 0.1 and 0.5 are shown in
Figure 4.7. The illustrations indicate that both the implicit boundary and the complete
solution exhibit favourable qualitative characteristics across almost all scenarios. In
instances of low-pressure ratios and H,,;/H;, ratios, there is an observed rise in
channel velocity from the pipeline inlet to outlet. This is justified since as density
decreases in the flow direction the velocity increases in order the flow to maintain the
mass balance at each cross section. When the pressure ratio increases for small
H,,./H;, ratios, the flow velocity remains nearly constant. This is a characteristic of
linear flows under a pressure differential of 1. In this instance, although the pressure
ratio is 0.5, there is a notable contrast with a pressure ratio of 0.1. It can be noted that
at ratio P,,;/P;, = 0.5, as the H,,;/H;,, ratio rises, the inlet velocity exceeds that of
the outlet. The flow begins to exhibit characteristics typical of flow through a slit. In
general, when the H,,;/H;, ratio increases, it is observed that in the implicit
boundary and complete solution comparison the deviations increase and the
qualitative comparison starts to differ. Like previous cases, the performance of
implicit boundary behaviour improves for high L/H;,, ratios and larger § values.
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4.7.5Distributions of Density, Temperature and Velocity along the y-axis

In this paragraph the comparison will be made on the distributions along the y-
axis (at the middle of the nozzle) of the dimensionless temperature, density and
velocity for L/H;, 5 and 10, for H,,;/H;,, 2 and 5, for § 1 and 10 and for pressure
ratios 0.1 and 0.5. A comparison will also be made between the method with implicit
boundaries and the complete solution.

In Figure 4.8, it can be observed that as L/H; increases, the density distribution
becomes more uniform. This is reasonable because as the channel length increases,
the flow starts to exhibit fully developed flow characteristics. Furthermore, it is
evident that in all scenarios, the density results obtained with implicit boundary
conditions are higher than those of the complete solution. Consequently, implicit
boundaries overestimate density values and similarly do so for velocity values as
demonstrated later on. These discrepancies explain why mass flow rate values for
implicit boundary conditions surpass those of the complete solution.

In the graphs depicted in Figure 4.9, it is evident that the velocity displays the
well-known parabolic profile across all scenarios for both pressure ratios.
Furthermore, it can be discerned that even at maximum y, the velocity does not reach
zero. This is due to the fact that the methodology also takes into account the slip
effects. This means that the gas velocity differs from the zero velocity of the walls.
Additionally, an increase in the L/H;, ratio results in an accelerated growth of
velocity by a factor close to 2.

In Figure 4.10, the diagrams illustrate a decrease in temperature within the
channel from the walls to the centre. The highest temperature occurs at the walls as a
result of particle-wall interaction, while at the channel's centre, there is a reduction in
temperature due to increased fluid velocity and energy conservation purposes.
Additionally, it is notable that with higher L/H;, ratio, there is a decrease in
temperature and the flow becomes more isothermal across the y axis which is in
consistency with the fully developed flow characteristics.
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4.7.6Mach, Knudsen and Reynolds numbers

The Mach, Knudsen and Reynolds numbers are also evaluated for a better
understanding of the fluid flow inside the nozzle. The values were calculated at the
inlet and outlet of the nozzle. The inlet values were calculated for x = 0 and y =
0.25, while the outlet values were calculated for x = 5 and x = 10 (for L/H;,, = 5
and L/H;, = 10 respectively) and for y = 0.25. They were calculated based on the
equations in chapter 2. The results are shown in Table 4-11 and Table 4-12 for the
implicit boundary conditions and the complete solution respectively.

Observing the Mach number, it appears to exhibit the same qualitative
behaviour for both the complete solution and the implicit boundary conditions. With
an increase in ¢ in all cases, there is a decrease in Mach. This behaviour is expected,
as there is an increase in velocity for larger 6. Similarly, the increase of Mach when
the H,,,;/H;, ratio increases can be explained using the same approach. Additionally,
there is a decrease in Mach when the L/H;, and pressure ratio increase, as velocity
decreases. Comparing inlet and outlet values shows an increase in Mach as the
velocity also increases. Overall, according to the values of Mach observed across the
cases with the complete solution, subsonic flow is observed.

Continuing with the Reynolds number an increase can be seen while the flow
moves to the outlet of the nozzle, because of the increased velocity and H. The values
of Reynolds are increased when the H,,;/H;, and & are increased. That is
understandable because of the higher velocity.

When examining Knudsen values at low pressure ratios, an increase is observed
as the gas moves from the inlet to the outlet of the nozzle. Although there is a rise in
H, it appears that the substantial decrease in pressure at the outlet contributes to this
increase of Knudsen. Furthermore, with a small pressure difference (P), an increase in
H towards the outlet leads to a decrease in Knudsen. Moreover, when considering an
increase in the H,,;/H;, ratio, there is a reduction of Knudsen at the outlet due to
greater H values. Based on these observations of Knudsen values, it can be inferred
that for & = 1, transition flow occurs, while for § = 10, slip and transition flow limits
are reached.

In general, across all three parameters (Ma, Kn, Re) considered here, when §
and L/H;, increase and H,,;/H;, decreases there is an observed decrease in error
(Table 4.11).
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Table 4-11: Mach, Knudsen and Reynolds numbers at the inlet and outlet of the
nozzle solved with the implicit boundary conditions.

Ma Kn Re
Pratio L/H;, Hy,/Hpn ) inlet outlet inlet outlet inlet outlet
5 1 0.272 0.864 0.887 2.266 0.496 0.617
. 10 0.408 1.199 0.088 0.193 7.473  10.054
. 1 0.736 1.227 0.887 1.016 1.344 1.954
01 10 0.942 1.808 0.088 0.090 17.246 32.606
5 1 0.147 0.602 0.887 3.132 0.268 0.311
10 10 0.229 0.906 0.088 0.285 4.183 5.144
5 1 0.377 0.718 0.887 1.349 0.687 0.861
10 0.626 1.213 0.088 0.115 11.491 17.137
5 1 0.173 0.187 0.888 0.860 0.315 0.351
5 10 0.337 0.397 0.088 0.086 6.178 7.517
5 1 0.453 0.249 0.891 0.370 0.822 1.088
05 10 0.935 0.715 0.088 0.039 17.117 29.845
9 1 0.086 0.091 0.886 0.868 0.157 0.170
10 10 0.165 0.194 0.088 0.088 3.025 3.585
. 1 0.220 0.107 0.890 0.354 0.401 0.488

10 0.553 0.316 0.088 0.036  10.137 14.415

Table 4-12:Mach, Knudsen and Reynolds numbers at the inlet and outlet of the nozzle
solved with the complete solution.

Ma Kn Re
Pratio L/H;, Hg,/H;, ) inlet outlet inlet  outlet inlet outlet
) 1 0.222 0489 1081 2191 0.332 0.361
5 10 0.345 0.890 0.104 0.218 5.380 6.591
5 1 0.448 0.448 1315 1.124 0.552 0.645
01 10 0.643 1.009 0.124 0.135 8.384  12.127
) 1 0.130 0369 0.997 2.663 0.211 0.224
10 10 0.206 0.671 0.096 0.272 3.464 3.991
5 1 0.293 0.343 1153 1.230 0.412 0.451
10 0.475 0.747 0112  0.137 6.865 8.790
5 1 0.118 0.103 0.988  0.809 0.193 0.206
5 10 0.248 0.248 0.098 0.084 4.073 4.762
5 1 0.219 0.082 1.093 0.338 0.324 0.392
10 0.497 0.218 0.114  0.035 7.078  10.055
05 ) 1 0.070 0.066 0.945 0.836 0.120 0.127
10 10 0.141 0.148 0.093  0.086 2.447 2.808
5 1 0.151 0.058 1.021  0.342 0.239 0.274

10 0.344 0.152 0.104 0.035 5.373 7.044
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Table 4-13: Error (%) for Mach, Knudsen and Reynolds numbers at the inlet and
outlet of the nozzle between the implicit boundary conditions and the complete

solution.
Ma
Pratio L/H;, Hg,/H;, o inlet  outlet inlet outlet inlet outlet
5 1 2255 7671  17.96 3.39 49.38 70.92
5 10 1837 3481 14.79 11.62 38.92 52.54
5 1 64.22 173.69 32.57 9.63 14356  202.84
01 10 46.46 79.24  28.80 33.33 105.70  168.87
5 1 1283 63.18 11.02 17.59 26.80 38.77
10 10 10.96  35.09 8.10 4.83 20.75 28.87
5 1 28,53 109.37 23.03 9.67 66.99 90.91
10 31.82 6245 21.25 16.68 67.38 94.97
5 1 46.49 8156  10.16 6.37 63.05 70.68
5 10 36.28 60.50 10.15 1.66 51.67 57.87
5 1 106.63 203.62 18.47 9.44 153.46  177.43
10 88.05 228.03 22.24 10.51 141.84  196.83
05 5 1 22.24  38.99 6.21 3.94 30.33 33.73
10 17.10 31.02 5.27 2.63 23.61 27.66
10 1 4574  84.34  12.88 3.38 67.29 78.31
S 10 60.51 107.74 14.92 1.52 88.65 104.64
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5. Chapter 5: Conclusions and Future work

5.1 Conclusions

Initially, it was demonstrated that mass flow rate results closely resembled those
of the fully developed method without end effects, but differed significantly from the
results of the complete solution. Conversely, when end effects were incorporated into
1D approach, the results aligned more closely with those of the complete solution and
logically deviated from the implicit ones. Thus, the 1D method with end effects offers
a rapid solution with reduced error.

It is important to note that although the analysis was conducted using flat plates
of varying cross-sectional shapes (to reduce computational time), it is anticipated that
the qualitative behaviour would be similar for nozzles with cylindrical cross-sections.

Generally, it is worth noting that the implicit boundary conditions and the
complete solution demonstrate comparable qualitative behaviour across most of the
cases.

Moreover, it has been noted that implicit boundary conditions show a much
closer resemblance to the complete solution when the H,,;/H;, ratio is small. This
implies that implicit boundaries work better when the geometry closely resembles a
straight channel. Also, from the findings, it can be inferred that the implicit boundary
conditions provide a more accurate approximation of flow at increased § and a large
L/H;, ratio. This aligns with the Knudsen number, where smaller Knudsen values
favour the use of implicit boundary conditions for better approximation.

These considerations are important when conducting studies on nozzles, to
minimize errors and achieve accurate results for nozzle operation and efficiency.

5.2 Future Work

In consideration of the limited computational time available for this study, the
main focus was on studying the behaviour of diverging flat nozzles in an isothermal
flow setting, specifically for monoatomic gas. Future research opportunities include
exploring flow scenarios involving gas mixtures and delving into their distinct
characteristics.

Additionally, analysing converging-diverging nozzles could offer valuable
insights into their performance and behaviour. There is also potential for a broader
research dimension that focuses on a wider range of flow characteristics, with specific
attention to various boundary conditions' influence.

Investigating these aspects would contribute to a more thorough understanding
of the intricate dynamics associated with nozzle flows, in order to enhance the
operation of micro-propulsion systems.
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7.  Appendix

7.1 Appendix A: Complete Solution with DVM

In the complete Kkinetic solution, the computational domain encompasses both
the channel region and the reservoir's area. In practical scenarios, since reservoirs can
be much larger than channels, it is common to extend the computational domain into
the reservoirs in order to minimize computational efforts. This practice continues until
a solution independent of these regions' sizes is obtained.

The computational domain is extended by H, and L, in the high-pressure
reservoir and by Hg and Ly in the low-pressure reservoir.

The flow behaviour is studied based on the Shakhov kinetic model [20]. The
Shakhov model recover both the shear viscosity and thermal conductivity
simultaneously, while it fulfils all the collision invariants. For the flow problem under
question, the Shakhov governing equations in terms of the dimensionless quantities
can be written as [50,51]:

ceaelol torgslal =ow e ] - ol &

where ¢ = (cx,cy) is the dimensionless molecular velocity vector which in

dimensional form reads as § = (cxvo,cyvo), and w is the viscosity index, with its two
limit cases being 0.5 for Hard-Sphere molecules and 1 for Maxwell molecules. The
relaxing Shakhov distribution functions hg, and g, are read as:
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where (c—u)? = (¢, —u)? + (¢, —1,)" and (e —u) = Golcy —uy) +
d,(cy — uy), the dimensionless heat flux. The macroscopic quantities of interest can
be calculated as moments of the distribution functions h, and g as:
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A complete kinetic formulation requires the definition of the boundary
conditions. In the modelling the particles enter the computational domain following
the Maxwellian model at the reservoir conditions. Also, particles enter the
computational domain along the open boundary lines in low-pressure reservoir at the
corresponding conditions. Diffuse boundary conditions are applied along the solid
walls. In addition, symmetry boundary conditions are imposed along the x-axis.

The study of the considered flow set-up involves the solution of a 4D kinetic
problem, which is 2D in the velocity space and 2D in the physical space. The system
of the two Kinetic equations is solved by applying the discrete velocity method
(DVM). Nowadays, the deterministic DVM approach is widely acknowledged among
researchers as a popular numerical method for solving kinetic equations and
representing heat, mass, and momentum transfer phenomena across the full spectrum
of gas rarefaction [52-54]. The kinetic solution in physical space is achieved with the
use of a non-uniform triangular mesh and the size of the mesh depends on the
geometrical characteristics. When the maximum relative difference of the local
number density, velocity, and temperature between two successive iteration steps is
less than 1072 it is assumed that convergence has been achieved. Once the
simulation stabilizes, the disparity between the dimensionless mass flux values at the
inlet and outlet diminishes to below 1 percent. The suitability of the numerical factors
was verified through conducting test simulations using an increased quantity of
molecular velocity points, (double the number of discrete velocity points) and denser
grids (double the number of grid elements), with the maximum deviation in mass
flow rate and other macroscopic properties being lower than 1 % [55].
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