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ΠΕΡΙΛΗΨΗ 
 

Το σκάκι αποτελεί το πιο συχνά χρησιμοποιούμενο παιχνίδι στο πεδίο της τεχνητής 

νοημοσύνης και της μηχανικής μάθησης. Πολλές προσεγγίσεις έχουν προταθεί όπου οι 

υλοποιήσεις επιχειρούν να αντικαταστήσουν μέρη ή και ολόκληρη τη λειτουργικότητα των 

σκακιστικών μηχανών. Σε αυτή την εργασία προτείνουμε μία μέθοδο για την εύρεση της 

αξιολόγησης μιας σκακιστικής θέσης χωρίς να γίνεται χρήση αλγορίθμου αναζήτησης 

δέντρου και εξέταση κάθε πιθανής κίνησης ξεχωριστά, όπως θα έκανε μια σκακιστική 

μηχανή. Αντί για την επεξεργασία του δέντρου αναζήτησης ώστε να εξεταστεί η θέση σε 

βάθος αρκετών κινήσεων, προτείνουμε τη χρήση προβλέψεων ενός κατάλληλα 

εκπαιδευμένου νευρωνικού δικτύου, που εξασφαλίζει πολύ μεγαλύτερη ταχύτητα και 

μικρότερες απαιτήσεις σε επεξεργαστική ισχύ. Το βασικό πλεονέκτημα αυτής της 

προσέγγισης είναι η λήψη πρόβλεψης της αξιολόγησης μιας σκακιστικής θέσης σε χρόνους 

της τάξης των χιλιοστών του δευτερολέπτου ενώ μια σκακιστική μηχανή θα χρειαζόταν εώς 

και μερικά λεπτά για να επιτύχει το αντίστοιχο αποτέλεσμα. Η προτεινόμενη προσέγγιση 

περιλαμβάνει ένα νέο σύνολο χαρακτηριστικών ως μεταβλητές εισόδου, σε συνδυασμό με 

μοντέλα νευρωνικών δικτύων βασισμένα στην αρχιτεκτονική συνάρτησης ακτινικής βάσης 

(RBF) τα οποία εκπαιδεύονται με τον αλγόριθμο fuzzy means. Δύο διαφορετικές μέθοδοι 

εκπαίδευσης νευρωνικών δικτύων επίσης εξετάστηκαν και συγκρίθηκαν, οι οποίες αφορούν 

την αρχιτεκτονική perceptron πολλαπλών στιβάδων. Όλες οι μέθοδοι βασίστηκαν στο ίδιο 

σύνολο δεδομένων το οποίο προέκυψε μετά από επεξεργασία περισσότερων από 1500 

παρτίδων παικτών κορυφαίου επιπέδου. Για το σκοπό αυτό αναπτύχθηκε μια εφαρμογή σε 

γλώσσα Java για την εξαγωγή συγκεκριμένων χαρακτηριστικών από την κάθε σκακιστική 

θέση στις παρτίδες αυτές, ώστε να γίνει η κατασκευή του συνόλου των δεδομένων 

εκπαίδευσης, το οποίο περιείχε δεδομένα από 81967 θέσεις. Πολλαπλά νευρωνικά δίκτυα 

εκπαιδεύτηκαν με σκοπό την εξέταση διαφορετικών εκδοχών της κάθε μεθόδου, σχετικά με 

την επιλογή μεταβλητών εισόδου καθώς και φιλτραρίσματος των δεδομένων. Τα 

αποτελέσματα της διαδικασίας έδειξαν πως η προσέγγιση με την αρχιτεκτονική RBF ήταν η 

καλύτερη σε απόδοση. Τα μοντέλα που παράχθηκαν με την προτεινόμενη προσέγγιση είναι 

κατάλληλα για ενσωμάτωση σε δομές λήψης αποφάσεων που βασίζονται σε μοντέλα, π.χ. σε 

μεθοδολογίες ‘model predictive control’ (MPC), οι οποίες μπορούν να γίνουν η βάση για την 

ανάπτυξη ενός ολοκληρωμένου σκακιστικού λογισμικού.  

 

ΛΕΞΕΙΣ – ΚΛΕΙΔΙΑ: αλγόριθμος fuzzy means, αξιολόγηση σκακιστικής θέσης, νευρωνικά 

δίκτυα, σκακιστική μηχανή, συνάρτηση ακτινικής βάσης, perceptron πολλαπλών στιβάδων 
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ABSTRACT 
 

The game of chess is the most widely examined game in the field of artificial intelligence and 

machine learning. There are many approaches where implementations attempt to substitute 

parts, or the whole functionality of a chess engine. In this Thesis we propose a method for 

obtaining the evaluation of a chess position without using tree search and examining each 

candidate move separately, like a chess engine does. Instead of exploring the search tree in 

order to look several moves ahead, we propose to use the much faster and less 

computationally demanding predictions of a properly trained neural network. Such an 

approach offers the benefit of having a prediction for the position evaluation in a matter of 

milliseconds, while a chess engine may need even minutes to achieve the same result. The 

proposed approach introduces a novel set of input features, in conjunction with models which 

are based on the radial basis function (RBF) neural network architecture and trained with the 

fuzzy means algorithm; two different methods of network training are also examined and 

compared, involving the multilayer perceptron (MLP) network architecture. All methods were 

based upon the same dataset which was derived by a collection of over 1500 top-level chess 

games. A Java application was developed for processing the games and extracting certain 

features from the arising positions in order to construct the training dataset, which contained 

data from 81967 positions. Various networks were trained and tested as we considered 

different variations of each method regarding input variable configurations and dataset 

filtering. Ultimately, the results indicated that the proposed approach using the RBF method 

was the best in performance. The models produced with the proposed approach are suitable 

for integration in model-based decision making frameworks, e.g. model predictive control 

(MPC) schemes, which could form the basis for a fully fledged chess playing software.  

 

KEYWORDS: chess engine, chess position evaluation, fuzzy means, multilayer perceptron, 

neural networks, radial basis function 
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SECTION 1 

Introduction 

 

 

In this Thesis we explore the possibility of utilizing the learning capabilities of neural 

networks in order to approximate the evaluation score of a chess position. This is typically 

achieved by a chess engine which assesses a position by performing a tree search on the 

possible continuations and applying min-max and alpha-beta pruning algorithms.  

Chess is an immensely interesting and entertaining game. The intellectual challenge it offers 

resembles the one in puzzles and also involves strategic and tactical thinking which fascinates 

players and fans of the game throughout the ages. As computers evolved and the field of 

software engineering came to be, chess acquired a form of computer application in addition to 

its previous board game form. It was only a matter of time before the idea of a computer 

player was conceived and implemented and in the year 1996 the first ‘Man vs Machine’ 

match, between the chess world champion at the time, Garry Kasparov, and IBM’s Deep 

Blue, took place [1].  

Although Kasparov did win that match, the continuous improvement of computers in terms of 

processing power and the use of better and more suitable to the problem search algorithms 

have resulted in a huge rise of the capabilities of chess engines. Nowadays even top level 

grandmasters not only are no match for them but they in fact use them for their tournament 

preparation and overall training, and moreover, championships among engines are held. 

Advancements in the fields of artificial intelligence and machine learning have led to new 

ideas about engines like chess playing agents with no coding of any chess rules in them 

whatsoever and enhancements on the position evaluation algorithms with the aid of neural 

networks replacing for example the heuristic function used in the tree search. 

Many demonstrations of ideas involving the game of chess and machine learning currently 

exist. One research on the optimization of the handcrafted evaluation function has 

demonstrated the use of evolutionary algorithms for tuning the function parameters with a 

strategy named ‘dynamic boundary strategy’ [2]. A similar approach on the subject has been 

to represent the individuals in the population as virtual players, each of them using different, 

fixed parameters for their evaluation function. These players compete for advancing to the 

next generation of the algorithm, not to each other but are ranked using real top-level games 

[3]. Another example of the use of evolutionary algorithm, in combination with neural 

networks, has been a program that learned to play the game by playing against itself [4].  

The use of neural networks has also been very common in researches in this domain, as in the 

case of DeepChess, that used a neural network trained to evaluate positions using millions of 

games but no other chess-related knowledge including the rules of the game [5]. KnightCap 

also used a neural network along with custom made attack and defence tables and piece 

weights [6]. Another case is NeuroChess, a chess playing program that relies on neural 

networks and handcrafted features for evaluating positions, trained to predict the result of 

games [7]. The use of neural networks is taken one step further by the Giraffe, a chess 

program that acquired chess knowledge by self-play, that utilizes them not only to tune the 

evaluation function parameters but also to perform pattern recognition and feature extraction 
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[8]. Pattern recognition has also appeared in a research involving multilayer perceptrons and 

convolutional neural networks in order to evaluate positions by using look-ahead algorithms 

as little as possible [9]. Probably the most impressive, however, is the famous AlphaZero 

which, having no knowledge besides game rules and training solely by self-play for 24 hours, 

managed to defeat the world champion engines in the games of Chess, Shogi and Go [10]. 

Many of the aforementioned publications rely on neural networks for various purposes, 

focusing mainly on the architectures of convolutional neural networks (CNNs) and multilayer 

perceptrons (MLPs). A candidate architecture for an alternative approach could be the radial 

basis function networks (RBFs) [11] that present important advantages, especially over 

MLPs, in terms of structure, training process and optimization. 

Our goal is to train a neural network in order to approximate the absolute evaluation score of 

a chess position, without performing the kind of search chess engines do. We intend to 

investigate and propose the architecture that achieves the maximum accuracy in predicting the 

evaluation of a chess position to an acceptable degree, but without looking into specific 

moves or exploring the search tree at all. Such a method would provide predictions for several 

moves ahead but in a much shorter timeframe than a chess engine would need to achieve the 

same result. The networks will use a proposed set of chess position features, derived from the 

ones utilized by the Stockfish engine. Also, they will have no domain specific knowledge, nor 

will any kind of assisting structures, like lookup tables, be used. The examined neural 

network architectures are MLPs and RBFs. The source of our training data is a collection of 

1514 top-level chess games. All the necessary processing, including breaking the games down 

to separate positions, 81967 in number, extracting the proposed set of features from them and 

building a database to construct the training dataset, is done by a custom made Java 

application developed specifically for this purpose. All examined methods are primarily 

compared in terms of two basic indicators, the mean absolute error and the coefficient of 

determination, and secondarily in network training time. Moreover, the examination of each 

method consists of different variations in order to evaluate the effect of certain input variables 

in the training dataset and also of different filtering applied to the dataset itself. 

The remaining of this Thesis is structured as follows: in the following section an introduction 

to chess engines is made. Necessary terminology as well as basic knowledge for 

communicating with them is provided, followed by an explanation of the position evaluation 

process. At the end of the section, the basic components that compose the evaluation heuristic 

function of the Stockfish engine are briefly described. Section 3 contains a theoretical 

presentation about neural networks, the concept of learning and the existing architectural 

patterns. More specific analysis is made for the multilayer perceptron and the radial basis 

function architectures along with descriptions of the most common training algorithms. In 

section 4 the entire experimental procedure is described in detail, including the formation of 

our proposed set of position features and the description of game processing and network 

training, results are presented and discussion is provided. Finally, section 5 is the conclusion 

of the Thesis followed by references.  
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SECTION 2 

Chess Engines 

 

 

Chess is a very popular game but an extremely complicated one as well. Learning how to play 

chess, regarding rules and gameplay, is easy enough, unlike the understanding of both simple 

and sophisticated techniques and patterns, and their underlying ideas, that make the difference 

in the level of skill among players. After mastering the mechanics of the game, chess players 

initially learn to execute routine sequences of moves, following simple ideas, in specific 

situations like a king and rook endgame, which mainly consist of very few pieces. Later they 

learn to recognize various patterns in a position regarding tactical motifs, like a double attack, 

and execute them, progressively calculating longer sequences of moves that lead to them and 

studying positions with more pieces where the candidate moves are many more. In a next 

stage, basic principles and strategies are introduced in the form of guidelines that have 

derived from deep analysis that the novice player does not need to have studied, such as the 

general opening principles, or a simple plan that applies to certain types of positions, like 

putting pressure on a weak pawn along an open file. As the skill level of the player increases, 

these principles and plans are brought together by broader strategic themes that appear in 

specific openings, or middlegame and endgame situations, and by understanding them, 

obeying to the appropriate principles or choosing the correct plan, becomes less dogmatic and 

more the output of a logical process. Advanced players take this process one step further, 

where they can produce their own long-term strategic plans based on the characteristics of any 

position, that dictate what short-term plans need to be executed. This is necessary when 

having to play a complicated position deep in the middlegame, when prior analysis is highly 

unlikely to have been done and needs to be calculated on the spot. 

In essence, human players learn to recognize the characteristics and patterns appearing in a 

position and, based on their abstract evaluation of them, judge which strategic plans are more 

appropriate. Taking this to a more general point of view, players take characteristics, possible 

strategic plans and their calculation of future sequences of moves that seem more important 

according to these plans into consideration and determine if a given position is equal or better 

for either side, and to what extent. The various characteristics of a position such as material, 

mobility, king safety or control of the centre, are obviously the source of any evaluation of the 

position.  

In case of humans, these characteristics are considered in a vague, instinctive and non-

quantified manner, that form an abstract evaluation mostly based on experience and judgment, 

which is usually loosely expressed like ‘White is slightly better’ or ‘Black is winning’. A 

computer, on the other hand, needs a more concrete and quantified definition of both the 

characteristics and the evaluation, in order to be able to execute any calculations and produce 

an outcome. Programs designed to execute such processes are called chess engines. Chess 

engines process a given position internally, in the form of some kind of representation, and 

are able not only to provide an evaluation of the position but also suggest continuations of 

moves that they consider the strongest. Popular chess engines include Stockfish, Komodo, 

Houdini and Rybka. 
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2.1 Chess Engine API 

As mentioned above, in order for a chess engine to perform any kind of process on a chess 

position, it must be provided with some kind of representation of the position. Furthermore, 

chess software developed to encapsulate engines also needs a form of representation, not just 

of single positions but of whole games, which could be parsed and then analyzed. In addition 

to that, the software also needs to generate a representation of a chess game when a user 

produces one by making moves in its graphical interface. Many types of notations have been 

introduced in order to deal with these needs, the most popular being the Forsyth-Edwards 

notation (FEN), for the position representation, and the portable game notation (PGN), for the 

game representation, both specified in 1994 in the ‘Portable Game Notation Specification and 

Implementation Guide’ standard [12]. 

Moreover, the communication between a chess engine and any software, either being a 

wrapper software like a chess playing user interface or just a command line where the engine 

is run as a standalone application, needs to be defined, as any other communication, by a 

protocol. Most contemporary chess engines implement the ‘universal chess interface’ (UCI) 

communication protocol, released in 2000, which gradually replaced the older ‘chess engine 

communication protocol’ in popularity in the following years, although some engines still 

support that. It was designed by Stefan Meyer-Kahlen who was actually the author of a 

commercial chess engine called Shredder. 

2.1.1 PGN 

PGN is actually plain text in a standardized format, developed by Steven J. Edwards, readable 

by both humans and software, which is used to record moves and related data of a chess game 

[13]. It is divided into two segments, the former of which contains the game information. 

Each piece of game information is enclosed between square brackets, which are referred to as 

tags. As per standard, there are seven mandatory tags that must appear before any other 

optional tags, in a specific order: event, site, date, round, white, black, and result. The latter 

segment of the PGN format contains the movetext, i.e. the moves of the game, in ‘standard 

algebraic notation (SAN). In order for this text is to be used by software, it is encapsulated in 

a file with .pgn extension. An example of a PGN can be seen in figure 1. 

 

 

Figure 1: PGN example 
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2.1.2 FEN 

FEN is used to describe a specific position of a game. Its purpose is to encapsulate all the 

information needed in order to resume a game from a given position. It was initially 

developed by David Forsyth and later Steven J. Edwards extended it so that it would be 

usable by chess software [14].  

A FEN is a single line of text that consists of six fields separated by a space, in the following 

order:  

 Piece placement: A sequence of characters that depicts the placement of the pieces on 

the chess board. Regarded from White’s point of view, ranks are considered from the 

eighth to the first, each one expressed as a subsequence of characters representing the 

state of the squares on the rank, with respect to the order of the files on the chess 

board, A to H. Ranks are separated by forward slashes and pieces are represented with 

their respective letter, as described by the standard algebraic notation, in upper case 

letters for White and lower case letters for Black. Lastly, digits are used to indicate the 

number of consecutive unoccupied squares among pieces in a rank. 

 Active color: A lower case letter, either ‘w’ or ‘b’ for White or Black respectively, 

indicating the side to move next. 

 Castling availability: A string that describes the castling rights for both sides. This 

may contain the letters K, Q, k and q that correspond to the kingside and queenside 

castling for White and Black respectively, or a dash when any castling is no longer 

available. The relevant letter is removed of the string only when a move that 

permanently loses rights for the specific castling has been made. In positions where a 

castling is temporarily not allowed the relevant letter is not removed, as rights have 

not been permanently lost. 

 En passant target: The square on which a pawn will arrive if it was to perform an en 

passant move on the next move, regardless of whether such a move is available. If no 

such square exists, i.e. no two-square pawn move was made in the previous move, a 

dash is used instead.  

 Halfmove clock: The number of consecutive plies (moves counted separately for each 

side) where no capture has occurred and no pawn has moved.  

 Fullmove clock: The sequence number of full moves. A full move is counted when 

both sides have made a move (ply). 

According to the description above, the FEN for the initial position of a chess game would be: 

 

rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq - 0 1 

 

where all the black pieces and pawns are on the eighth and seventh rank, the sixth to third 

rank contain only unoccupied squares, all the white pieces and pawns are on the first and 

second ranks, White is to move next, all castling rights stand, no en passant target is available, 

no half moves have been played and the first full move is being played. An example of a 

position after the moves 1.e4 e5 2.Nf3 Nc6 3.Bc4 can be seen in figure 2. 
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Figure 2: Position example 

 

In this case, the FEN for the position would be: 

 

r1bqkbnr/pppp1ppp/2n5/4p3/2B1P3/5N2/PPPP1PPP/RNBQK2R b KQkq - 3 3 

2.1.3 UCI protocol 

The UCI protocol specification [15], as described by Stefan Meyer-Kahlen, defines valid 

commands for communicating with a chess engine, and the expected responses sent from the 

engine back to the caller.  

The necessary commands for basic communication with an engine would be the following: 

 uci: Informs the engine that communication will be based on the UCI protocol. This 

must be the first command sent in a chess engine session. 

 isready: Used for synchronization between the engine and the calling software. The 

engine will respond to this command if it is still alive and has finished any previously 

requested processing. 

 setoption name [optionName] value [optionValue]: Sets the internal parameters of the 

engine. The available options and values depend on the engine version. 

 position [fen]: Sets the internal board of the engine to the position described by the 

FEN string. The default keyword ‘startpos’ can be used instead of FEN to initialize the 

board at the starting position. 

 go [settings]: Initiates the search process of the engine on the position that has been set 

at the internal board. Various optional search settings can be used with this command, 

the most important being ‘depth x’ that indicate searching for x plies (half-moves), 

‘movetime x’ for searching for x milliseconds and ‘infinite’ for searching until the 

stop command has been received. 

 stop: Stops the searching process. 

 quit: Terminates the chess engine process. 

The most important responses the engine sends back to the caller are: 

 uciok: Acknowledges the communication via the UCI protocol. 

 readyok: Indicates the engine is ready to receive commands, after it has been pinged 

with the isready command. 

 bestmove: Reports the best move found for the specified position, as a result of the last 

search. 
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 info: The main response for providing search results. It consists of many components, 

the most important being ‘depth’ indicating the ply count at which the search is 

currently at, ‘currmove’ indicating the move that is currently processed, ‘pv’ reporting 

the best sequence of moves found so far, and ‘score’ indicating the evaluation of the 

position at that point of the search. Such a response is sent every time any of its 

components changes, during the execution of the search process. 

Obviously, the most interesting engine output is the evaluation of the position, i.e. the score 

component of the ‘info’ response. This has four possible expressions depending on the 

specific position and the available time the engine had to process it. The main expression is 

‘cp’ which is the evaluation in ‘centi-pawns’ from the point of view of the engine. This means 

that if a position with White to move had a positive evaluation, after the best move and when 

Black would be to move, the evaluation would be the same in value but negative, indicating 

that the side to move (black) is worse by that much. Typically, chess software wrapping a 

chess engine inverse the evaluation sign when Black is to move in order for the evaluation to 

always refer to White, resulting in the more intuitive output in which positive evaluations 

indicate that White is better by that value, and negative evaluations indicate Black is better by 

that value, eliminating the impact of the side to move on the display of the evaluation. 

Also the term ‘centi-pawns’ needs some clarification, as it can be misleading. What this 

seems to imply is that each unit of evaluation corresponds to 1/100 of the value of a pawn, 

which would subsequently mean that an evaluation of +100 returned by the engine is 

translated to White being a pawn up (displayed as +1.00 at the user interface). This is not 

always the case, as it is a matter of implementation in each individual chess engine. In 

Stockfish for example, the unit of evaluation corresponds to 1/213 of the value of a pawn 

meaning the indication of Black being a pawn up in a position is in fact -213. It must also be 

noted that, in general, such an evaluation does not necessarily mean that Black actually has 

one pawn more than his opponent on the chess board but rather that, taking every aspect of 

the position into consideration, Black’s advantage is analogous to having one more pawn. 

Apart from ‘cp’, another expression of the score component is ‘mate’. This substitutes ‘cp’ 

when the engine has found a mating sequence and indicates not an evaluation but the number 

of moves (full-moves in this case, not plies) in this sequence until the mate position occurs. 

The rest of the expressions are ‘lowerbound’ and ‘upperbound’ and are used by the engine 

when the searching process for the specific depth has been stopped before determining the 

actual ‘cp’ so the engine reports that the value is either an upper or a lower bound to the actual 

evaluation.  

2.2 Evaluation 

As mentioned above, the evaluation of a chess position is depicted as a signed value that 

represents which side is better and by how much. Although chess engines calculate this value 

as an integer amount of centi-pawns, whatever a centi-pawn stands for in the context of each 

engine, the wrapping interfaces transform it to a signed decimal number with two decimal 

places, normalized to the value of a pawn in the human perspective. The calculation of the 

evaluation value is a complicated process that each chess engine implements in its own way, 

but all of them share the same general approach - a tree search. 
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2.2.1 Search 

In a practical sense, the goal of a chess engine is to provide the best move for a given 

position. In order to determine the best move, engines need to look ahead at various 

sequences of moves and evaluate the arising positions, since in general such a result cannot be 

concluded from the static information of a position [16]. The algorithms used for searching 

depend on the nature of the examined game. Chess is a two-player game that belongs to the 

family of zero-sum games with perfect information. In short, zero-sum characterizes a game 

where the amount a player is winning by is exactly equal to the amount the other player is 

losing by, or more generally, the total of gains and losses of all players is exactly zero. Perfect 

information means that any factor that affects the decision making process of a player is 

known at all times, i.e. in chess both players always know the location of all the pieces on the 

board. In these types of games, searching involves traversing a search tree (or game tree) 

using a ‘min-maxing’ algorithm. 

A search tree is a directed graph of nodes, also called states or vertices, which are linked by 

directed edges, also called arcs or state transitions. In the case of chess, each node represents a 

position on the board and each edge represents the move that resulted to the respective 

position. The root node of the tree is the position under question; the one being evaluated and 

searched for the best move. Possible transpositions of a position, resulting in cycles in the 

search tree, are eliminated by the search algorithm and are not searched again. The leaf nodes 

represent mate or statemate positions or positions at a certain depth which are assigned an 

evaluation. The evaluation of the leaf nodes is calculated based on a function of various static 

characteristics of the respective position called ‘features’. In order for the search to take place, 

the search tree needs to be constructed first so the engine starts from the given position (root 

node) and creates the next generation of nodes by making every possible move on its internal 

board structure. By repeating this process for every generated node, the tree gradually 

increases in depth. Obviously, it is not possible to construct the whole game tree except for 

positions that are close to the end of the game. 

In games like chess the algorithm used for searching the tree is the MinMax algorithm. 

Specifically in chess, an enhancement of the MinMax algorithm is used called Alpha-Beta 

algorithm or Alpha-Beta pruning. The idea of min-maxing in a two-player game is that one 

side tries to achieve the highest possible evaluation (maximizing player) and the other side 

tries for the lowest possible evaluation (minimizing player) when it is their turn to play. This 

dictates that the flow of processing is actually opposite to the construction of the search tree, 

since the evaluation of every parent node depends on the evaluation of its children nodes. In 

essence, all the leaf nodes are evaluated and then each parent node is assigned the appropriate 

value (minimum or maximum) from its children, depending on whether they are at a 

minimizing or maximizing level of the tree. This process continues all the way up to the root 

node and the value assigned to it is the evaluation of the current position. The Alpha-Beta 

pruning enhancement suggests that, due to min-maxing logic, some branches of the tree can 

be ignored (pruned) if it is certain that they cannot provide any better value to their parent 

than the one it already has been assigned. For example, if a node that exists on a minimizing 

level of the tree has been assigned the value -37 from one of its previously processed children, 

and the currently processed child node has acquired the value of +25 so far, from traversing 

its own first child hierarchy, since this node exists on a maximizing level, the value of 25 is 

the lowest it can be. Subsequently, it is not possible to offer its minimizing parent any value 

lower than -37 that it already has, since 25 is as low as it can get, thus there is no point in 

processing the rest of its children and so these branches are pruned. 
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Following this concept, the engine applies the search algorithm iteratively to the continuously 

growing search tree that it constructs. Beginning from the current position, it generates all the 

first level children nodes (depth 1) and searches the tree with these being the leaf nodes. The 

evaluation is assigned to the root node and the search at depth 1 is concluded. It then 

generates the nodes at depth 2 and applies the search algorithm again with these nodes being 

the leaf nodes and so on. It is important to note that in every iteration any previous values 

assigned to upper level nodes are disregarded since they will acquire their values from 

processing the current state of the tree, with leaf nodes at one level deeper. The search 

continues in this manner until the desired depth is reached or the available time has expired. 

When the search is terminated, a path can be formed connecting the root node to a leaf node, 

the evaluation of which is the one that has bubbled all the way up the tree. Since the edges 

between the nodes represent actual moves, this path is translated to the optimal sequence of 

moves as a continuation from the current position. In fact the engine constructs such a 

sequence for every depth level that finishes searching at. These sequences are not necessarily 

related especially for small depths, considering that the search is re-executed for every new 

depth level. What seemed as a good continuation when the position was examined at a depth 

of 2 to 4 might be refuted in a depth of 7. 

So, what a chess engine actually returns as the evaluation of the current position is in fact the 

static evaluation of a future position that is reached after optimal moves are played for both 

sides. How far in the future in terms of moves this position is, largely depends on 

computational power and available time combined with the complexity of the arising 

positions as more computation time is needed to evaluate each of them. This means that the 

value that comes up is always an approximation of the actual evaluation of the position [17]. 

If it was possible to process any position to the very end, the outcome of the search would 

indicate win, draw or loss with absolute certainty. This is actually the case with positions 

closer to the end of the game; the engine returns the number of moves until mate instead of an 

evaluation, or the value of zero indicating a drawn position, provided that the best moves are 

played for both sides. 

2.2.2 Features 

While this is the common mechanism that chess engines use to evaluate a position, the static 

evaluation function, used to evaluate every leaf node position based on its features is what 

makes the difference between them. Every engine implementation has its own logic of what 

features are taken into consideration and how they are weighted, giving more or less 

importance to each one. Moreover, the evaluation function itself differs not only in its 

definition but also in the way that it is determined, which may be from chess experience and 

collective knowledge of top-level grand masters, processing of chess game databases, use of 

machine learning techniques or, most probably, a combination of these. 

In any case, the value that is ultimately produced by the evaluation function is the result of a 

computation involving the position features. Features are value representations related to the 

actual pieces on the chess board as a means of quantifying aspects like their absolute or 

relative value, their location, mobility or their interaction with other pieces, either being as 

simple as a check or more complex, based on specific patterns. The actual method of 

calculating each one is also a matter of specific engine implementation, but a general rule is 

that specific weights are assigned based on the calculated values which differ according to the 

game phase. It should be pointed out that since each feature is calculated for each player, it is 

the difference between the respective counterparts that makes an impact on the total 



MSc Thesis, Dimitrios Kagkas, Registration Number msciot18001 20 

evaluation. Depending on its nature, each feature can be considered as a component of a 

group that represents a more abstract chess concept. The most notable among such concepts 

are material, mobility, king safety, pawn structure and piece-specific patterns.  

Material seems the most concrete and easily quantifiable concept. A predetermined value is 

assigned to each type of piece for its existence on the board, regardless of any positional 

aspects. Such a value is the absolute material value of a piece. The values are 1 for pawns, 3 

for bishops and knights, 5 for rooks and 9 for queens. Some usually used values for kings are 

10, 20, 200 and infinite as it is really a matter of personal opinion since both players can only 

have exactly one king so they both receive its value in their total and the difference is always 

zero. This is actually how a beginner human player would count material and determine 

equality for the position based on the difference.  

When it comes to more experienced players and chess engines, a more subtle idea is also 

taken into account. Additionally to its absolute value, each piece is also assigned a relative 

value depending on its placement on the board. For human players this is more of a 

conceptual estimation, characterizing their pieces as ‘good’ (well-placed) or ‘bad’ (poorly-

placed). The criteria for this estimation differ according to the phase of the game. For 

example, a rook on the opponent’s seventh rank in the middlegame or an advanced pawn in 

the endgame would be considered good pieces, resulting in estimating their total value as 

much more than their absolute material value actually is. In essence, the relative value of a 

piece could be considered as a bonus or penalty to its absolute value. Engines implement this 

idea by utilizing specific structures known as piece-square tables. This is a collection of 

arrays that consists of an array for each piece type which matches each combination of ranks 

and files (squares) to a positive or negative score. These tables are usually created and tuned 

by humans, based on chess experience and knowledge and are most probably different for 

each phase of the game. 

Mobility is related to the available legal moves for each side. This could be simply considered 

as the sum of the legal moves for each player and it is definitely valid for a human player to 

do so. In case of chess engines however, the calculation is a little more sophisticated. More 

specifically, each piece type is given a bonus or penalty based the number of legal moves at 

its disposal, with the assistance of structures similar to piece-square tables that contain this 

correspondence of values. These structures are also hand-crafted and vary among engine 

implementations and they also differ according the phases of the game. The sum of the 

bonuses/penalties for all the pieces on the board for each side is the value that is actually used 

as mobility. Different implementations apply various rules to what they count as legal moves 

like excluding moves of pinned pieces or including moves to squares that friendly pieces 

occupy, i.e. supporting them, despite not being technically legal. On top of these rules, most 

engines only consider what they call ‘safe mobility’ in which the moves to squares where the 

moving piece is in danger are excluded from the total of legal moves for a piece. As this can 

be an expensive calculation, in some cases a more simplistic method is used like excluding 

squares controlled by enemy pieces of less absolute value or just by enemy pawns.  

King safety is the most complex of all the evaluation concepts. It is composed from many 

features regarding specific aspects like the setup of the defending pawns, castling rights, the 

placement and distance of defending and attacking pieces near the king, checks and threats, 

weak squares around the king and a lot more. The actual components used to measure king 

safety are not the same across engines but they more or less follow these patterns. Ultimately, 

a weighted total of all the different features provide the main evaluation function with a value 

for king safety. As is the case for all features, the weight values have to be predefined in some 

way and definitely vary according to the game phase.  
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Pawn structure is another important factor in the position evaluation. By definition, pawn 

structure a term used to describe the position of all pawns regardless of the placement of other 

pieces but including the placement of other pawns. Features in this category represent the 

state of each individual pawn like doubled, isolated, backward, blocked, connected, passed 

etc. In a more generalized sense though, there are some features that consider more pieces 

relatively to the examined pawn in a specific manner like setups that make it a candidate 

passed pawn or a weak pawn. 

Piece-specific patterns include a wide variety of features regarding the placement of pieces in 

specific circumstances, relatively to other pieces and pawn structure. Such patterns are 

outposts, which are squares that cannot be attacked by enemy pawns, rooks on open or semi-

open files, or on the same file as the enemy queen or attacking the enemy king area, bishops 

on long diagonals, minor pieces behind friendly pawns, trapped pieces, pieces near their own 

king aiding in its protection, pawns on the same square color as a bishop, x-ray attacks, which 

are attacks on squares that would occur if an interfering piece was removed, weak pieces, 

hanging pieces, safe pieces and pawns, and many more. These features are measures by 

number of occurrences on the board and weighted accordingly. 

2.2.3 Stockfish Features 

Our proposed set of features is derived from the implementation of the Stockfish chess 

engine. Stockfish is an open source engine, licensed under the GPL v3.0 and compatible with 

the UCI protocol. It was developed by Tord Romstad, Marco Costalba, Joona Kiiski and Gary 

Linscott and it is the strongest chess engine in the world as of 2018 [18].  

Table 1 briefly presents the feature components and table 2 presents the function components 

of the tree search heuristic function that Stockfish relies on, as described in the ‘Stockfish 

evaluation guide’ [19]. It is important to notice that Stockfish does not necessarily use every 

feature mentioned in table 1 individually, but rather combines or aggregates them. Some of 

the features in the table are the actual aggregations of other features, or their calculation 

depends on the values of others. Also, Stockfish calculates most features for both sides, 

except when the feature is not side specific by its nature, but ultimately uses the difference of 

the two counterparts. 

It should be noted that the chess board segment that consists of the square occupied by the 

king along with the eight squares surrounding it, with the exclusion of the squares defended 

twice by pawns, is referred to as ‘king ring’. 

 

Table 1: Stockfish evaluation feature components 

 

Material 

Non pawn material Weighted value of (non-pawn) pieces in the middlegame  

Piece value mg Weighted value of pawns and pieces in the middlegame 

Piece value eg Weighted value of pawns and pieces in the endgame 

PSQT mg Piece square table bonuses in the middlegame 
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PSQT eg Piece square table bonuses in the endgame 

Mobility 

Mobility Number of attacked squares in mobility area 

Mobility Area Subset of all legal moves based on certain conditions 

Mobility mg Mobility-related bonus in the middlegame 

Mobility eg Mobility-related bonus in the endgame 

King 

Pawnless flank Penalty for king being in a pawnless flank 

Strength square Bonus/Penalty for squares being a king shelter 

Storm square Bonus/Penalty for enemy pawn stormed squares 

Shelter strength Bonus for shelter of the king position 

Shelter storm Penalty for the king position being pawn stormed 

King pawn distance Minimum distance of king to friendly pawns 

Check Number of squares where a check can be given on the 

next move, without counting the queen as blocker 

Safe check Number of safe squares on which a check can be given 

on the next move 

King attackers count Number of pieces that attack the enemy king ring 

King attackers weight Sum of weight of the pieces that attack the enemy king 

ring 

King attacks Number of attacks on squares adjacent to enemy king 

Weak squares Number of attacked squares defended only once by the 

enemy king or queen  

Weak bonus Number of weak squares in enemy king ring 

Unsafe checks Number of unsafe squares on which a check can be 

given on the next move 

Knight defender Number of squares around the king defended by a knight 

Endgame shelter Compensating endgame penalty for shelter storm  
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Blockers for king Number of pieces currently blocking checks 

Flank attack Penalty for squares in the king flank that are attacked 

once and twice 

Flank defence Number of defended squares in the king flank 

King danger Cumulative bonus/penalty involving various king attack, 

defence, storm and shelter components 

King mg King-related bonus/penalty in the middlegame 

King eg King-related bonus/penalty in the endgame 

Space 

Space Area Number of safe squares on files c to f and ranks 2-4 for 

White or 5-7 for Black 

Space Weighted bonus for Space Area 

Initiative (also Winnable) 

Initiative Bonus/Penalty for initiative aspects (e.g. passed pawns, 

piece infiltration, flank majorities etc) 

Initiative total mg Weighted bonus/penalty for Initiative in the middlegame 

Initiative total eg Weighted bonus/penalty for Initiative in the endgame 

Imbalance 

Imbalance Weighted material value of pawns and pieces as an 

imbalance component for each side 

Bishop pair Bonus for possessing the pair of bishops 

Imbalance total Weighted bonus/penalty for material imbalance 

Pieces 

Outpost Number of outposts occupied by minor pieces 

Outpost square Number of outpost squares regardless of occupancy 

Reachable outpost Number of minor pieces that can occupy an outpost in 

the next move 

Minor behind pawn Number of minor pieces exactly behind a pawn 

Bishop pawns Bonus for pawns being on the same diagonal as a bishop 
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Rook on file Bonus for rooks being on open and semi-open files 

Trapped rook Penalty for rooks trapped by their king 

Weak queen Penalty for pin or discovered attack on the queen 

King protector Bonus/Penalty for minor pieces based on the distance 

from their king 

Long diagonal bishop Bonus for bishops that are on a long diagonal and 

control both central squares 

Outpost total Bonus/penalty for outposts 

Rook on queen file Bonus for rooks being on a file any queen is on 

Bishop x-ray pawns Number of enemy pawns x-ray attacked by bishops   

Rook on king ring Number of rooks x-ray attacking the enemy king ring 

Queen infiltration Bonus for queen occupying a weak square in the enemy 

side 

Pieces mg Piece-related bonus/penalty in the middlegame 

Pieces eg Piece-related bonus/penalty in the endgame 

Pawns 

Isolated Number of pawns not having any friendly pawns on 

adjacent files 

Opposed Number of pawns having enemy pawns on the same file 

Phalanx Number of pawns having a friendly pawn on same rank 

and adjacent file 

Supported Number of times pawns are supported by other pawns 

Backward Number of pawns that are behind friendly pawns on 

adjacent files and cannot advance safely 

Doubled Number of unsupported pawns in front of a friendly 

pawn on the same file 

Connected Number of Phalanx or Supported pawns 

Connected bonus Bonus/Penalty for pawn aspects (e.g. connected, 

opposed, blocked etc) 

Weak unopposed pawn Number of not Opposed pawns that are either Isolated or 

Backward 

Weak lever Number of not Supported pawns twice attacked by 

enemy pawns 
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Blocked Bonus for blocked pawns on the ranks 5-6 for White or 

2-3 for Black 

Doubled isolated Number of pawns that are Doubled and Isolated and are 

blocked by an Isolated enemy pawn 

Pawns mg Pawn-related bonus/penalty in the middlegame 

Pawns eg Pawn-related bonus/penalty in the endgame 

Passed Pawns 

Candidate passed Number of pawns that are passed or candidate passed 

King proximity Bonus/Penalty for king distance from enemy passed 

pawns 

Passed block Bonus/Penalty for Candidate passed pawns in enemy 

side regarding the ease of their advance. 

Passed file Bonus for Candidate passed pawns based on its file 

Passed rank Bonus for Candidate passed pawns based on its rank 

Passed leverable Number of Candidate passed pawns excluding the ones 

with no pawn lever 

Passed mg Passed pawn-related bonus/penalty in the middlegame 

Passed eg Passed pawn-related bonus/penalty in the endgame 

Attack 

Knight attack Number of squares attacked by friendly knights 

Bishop x-ray attack Number of squares attacked by friendly bishops, only 

including x-ray attacks through enemy queen 

Rook x-ray attack Number of squares attacked by friendly rooks, including 

x-ray attacks through enemy queen and friendly rook 

Queen attack Number of squares attacked by friendly queen 

Pawn attack Number of squares attacked by friendly pawns 

King attack Number of squares attacked by friendly king 

Attack Number of squares attacked by friendly pieces and 

pawns 

Queen diagonal attack Number of squares diagonally attacked by friendly 

queen 

Pinned Number of pinned pieces and pawns 
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Threats 

Safe pawn Number of pawns not attacked or adequately defended 

Threat safe pawn Number of non-pawn enemy pieces attacked by Safe 

pawns 

Weak enemies Number of enemy pieces and pawns attacked and not 

adequately defended 

Minor threat Number of enemy pieces and pawns attacked by a minor 

piece 

Rook threat Number of enemy pieces and pawns attacked by a rook 

Hanging Number of enemy pieces and pawns not defended or 

non-pawn pieces attacked twice 

King threat Number of enemy pieces and pawns attacked by king 

Pawn push threat Number of pawns that can be pushed and attack a piece 

safely 

Slider on queen Number of squares where the enemy queen can be safely 

threatened by a bishop or rook 

Knight on queen Number of squares where the enemy queen can be safely 

threatened by a knight 

Restricted Number of squares that are made unsafe for enemy 

pieces 

Weak queen protector Number of Weak pieces that are only supported by the 

queen 

Threats mg Threat-related bonus/penalty in the middlegame 

Threats eg Threat-related bonus/penalty in the endgame 

 

Table 2:  Stockfish evaluation functions and helpers 

 

Main evaluation General cumulative evaluation 

Middlegame evaluation Cumulative evaluation for the middlegame 

Endgame evaluation Cumulative evaluation for the endgame 

Scale factor Scaling coefficient for the endgame evaluation 

Phase Weight value based on the non-pawn material on the 

board, indicating the phase of the game (opening, 

middlegame, endgame) 

Tempo Bonus for having the turn to move 
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SECTION 3 

Neural Networks 
 

 

Neural networks are structures that resemble the human brain in its principle of operation. 

This means that their functionality is to store experiential knowledge acquired from data in 

their environment through a learning process and use it to respond in similar circumstances. 

More specifically, they are mathematical tools that can imitate the behavior of a system, that 

is approximate a function, without having any source of information about it other than its 

input and output. 

The fundamental building block of a brain is a nerve cell or neuron, which is a cell that acts as 

the transmission channel for electrical signals. Each neuron communicates with other neurons 

through an interconnection point called synapse, which is a structure where the electrical 

signal causes the generation of a chemical substance that stimulates the receivers in parts of 

the next neuron called dendrites. Dendrites are the point where every neuron is connected 

with all of its previous neurons and the receiver stimulation at them generates the electrical 

signal in the neuron. Signals may be amplified or reduced with respect to the strength of the 

synapse known as synaptic weight. The magnitude of accumulated electrical signal on a 

neuron decides if the neuron will be activated and in case it does, a voltage spike is triggered 

and transmitted to the next neuron through its synapses and so on. The capabilities of a brain 

rely on the parallel structure and high connectivity of its neurons. The ability to learn derives 

from the modification of the synaptic weights so, in essence, acquired knowledge is stored in 

the synaptic weights. 

Neural networks are parallel distributed processors composed of a number of processing units 

that, as a reference to the brain, are also called neurons. A neuron is a mathematical model, 

implemented as a hardware or software structure, the main components of which are a set of 

synapses, an accumulator and an activation function [20]. A visual representation of a neuron 

model is shown in figure 3. 

 

Figure 3: Neuron mathematical model 
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Each one of the synapses is actually a signal input xj with an amplifier that represents the 

synaptic weight wkj, with the index j referring to the individual synapse and the index k to the 

individual neuron. The weights can take positive as well as negative values. The accumulator, 

or summing junction, sums the weighted signals from all the synapses and also adds an 

optional external bias bk which acts as an offset for the activation function, practically 

affecting the activation threshold. It should be noted that the indexing of the input signals xj is 

one-based since the bias bk can be considered as the signal at index zero and could as well be 

assigned a synaptic weight wk0 in order to be grouped along with the inputs. The activation 

function transforms the accumulated signal to a bounded output. More specifically, three 

types of function are most commonly used. One is the Threshold function, which evaluates to 

a specific value after a threshold t and to another before that. A usual case is the utilization of 

the Heaviside function or step function where the output values are 1 and 0 at a threshold of 0. 

Another type is the linear function which is similar except that two thresholds are defined, 

where under the lower one the output is 0 and over the higher one the output is one, while in 

between the output is a linear function of the input. The third and most frequently used type is 

the sigmoid function, an s-shaped function, an example of which being the logistic function 

described by equation 3.1: 

       
 

         

where α is called the slope parameter. For very high values of α, the function approximates 

the Heaviside function but sigmoid functions are preferred because unlike the Heaviside they 

are differentiable.  

The neuron model can be expressed by the equations 3.2 and 3.3: 

          
 
     

              

where m stands for the amount of synapses of the neuron k, uk is the sum of the weighted 

signals from the synapses, φ(∙) is the activation function and yk is the output signal. 

3.1 Learning 

The profound asset of a neural network is its ability to learn from its environment and 

improve its performance. This is achieved via a process called learning or training according 

to which the networks modify their free parameters, i.e. the synaptic weights and bias of its 

neurons, in order to adjust to the data provided by its environmental context. Learning or 

training algorithm is a chain of activities that solve this learning problem by computing the 

updated values of the parameters based on the data presented to the network. 

There is a variety of ways the adjustment of the network parameters can be preformed, each 

of them defining a different type of learning. These different types dictate different rules 

during the learning process. The most notable types are briefly mentioned below. 

 Error-correction learning is the type of learning where the synaptic weights of neurons 

are modified based on an error signal that is calculated as the difference between the 

desired output value and the value the network outputs for the given input with its 

current parameter configuration. The parameter modifications gradually bring the 

current output closer to the desired output. This evaluation is made actually not by 

minimizing the error signal itself but rather by minimizing what is called an index of 

performance (i.e. a cost function), for instance a function of the error signal named 

‘instantaneous value of the error energy’ and defined as  

       
 

 
   

     

(3.3) 

(3.2) 

(3.1) 

(3.4) 
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where ek(n) denotes the error signal of the neuron k for the nth vector of input. 

 Memory-based learning is used for classification problems and makes use of training 

data, or previous results of operation in general, by storing correspondences of input 

data to desired output value in a memory. When evaluating a new input, the output is 

determined by the ‘local neighborhood’ of that input in the memory store by applying 

specific rules as the ‘nearest neighbor’ rule which is adopting the output value of the 

stored input with the minimum distance from the input under question. An 

improvement to this rule is the ‘k-nearest neighbor’ rule where the k nearest stored 

data points are taken into account and the most frequent output value is adopted. This 

technique can eliminate errors due to outlier points, unlike the single ‘nearest 

neighbor’ rule. 

 Hebbian Learning is named after the neuropsychologist Hebb who expressed a 

learning rule in 1949. Loosely explained the rule states that the weight of a synapse 

should be increased if the two neurons this synapse connects tend to be activated at the 

same time, while in the opposite case the weight should be lessened or even the 

synapse should be eliminated at all. 

 Competitive Learning differs from other types of learning in that only one neuron is 

activated at a time, unlike other cases where many neurons of a network may be 

active, hence the term ‘competitive’. Accordingly this type of strategy is named 

‘winner-takes-all’. This type of learning is suitable for detecting statistical features in 

the input dataset. An important prerequisite is that the neuron used must be identical in 

everything but their synaptic weights which have to be assigned randomly in order to 

behave differently for various inputs. 

 Boltzmann Learning, named after Ludwig Boltzmann, is based on statistical 

mechanics and dictates a stochastic algorithm for learning. Neural networks trained by 

this type of algorithm are called Boltzmann machines. Neurons of such a network 

function in an on/off fashion and an energy function is defined that depends on the 

state and synaptic weights of each neuron. During the training process the state of 

randomly selected neurons is flipped with a probability that depends on the difference 

in the energy function value that this particular flip inflicts. Training is considered 

complete when the network reaches what is called ‘thermal equilibrium’. 

There are two major approaches to learning, also called learning paradigms, that are 

distinguished by the existence of a ‘teacher’, therefore referred to as ‘learning with a teacher’ 

or ‘supervised learning’ and ‘learning without a teacher’. In the former case, an entity called 

teacher or supervisor has full knowledge of the environment, e.g. of a system that the neural 

networks attempts to emulate. This implies that for any possible input to the system, the 

teacher is able to provide the respective desired output to the network. In fact, what is actually 

provided to the network is the error signal, which categorizes this learning paradigm as a form 

of the error-correction learning type mentioned above. Taking the various input data and their 

respective error signals into account the parameters are adjusted in an iterative manner 

resulting in a state when the network can acceptably emulate the teacher rather than the actual 

system. In this final state, the knowledge possessed by the teacher is stored to the free 

parameters of the network. Such a learning approach aims to discover the relationship 

between the input and output data and is usually used for function approximation and pattern 

recognition problems. Figure 4 depicts a block diagram of the supervised learning process: 
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Figure 4: Supervised learning block diagram 
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measures as the mean square error or the sum of squared errors. Such error functions can be 

expressed as multidimensional surfaces with the parameters of the network as coordinates. 

During the learning process, the appropriate parameter adjustments in order to successfully 

emulate the behavior of the teacher are translated to the operating point continuously moving 

towards a minimum point of the surface. This is accomplished by using the gradient of the 

surface which is a vector computed at any current operating point of the network and points 

towards the steepest descent. In this fashion the parameters are adjusted in order to reach a 

minimum point as soon as possible but without any guarantee that it will be a global 

minimum of the surface; it may as well be a local minimum. 

The ‘learning without a teacher’ approach, as the name implies, does not include a teacher 

like in the supervised learning. In other words, there is no means of providing the desired 

output value to the neural network. This approach can be sub-categorized into two categories, 

‘unsupervised learning’ and ‘reinforcement learning’. In unsupervised learning, the objective 

is not for the network to relate input to output data but to discover patterns among the input 

data. Training is based on maximizing an objective function or minimizing a loss function. 

Each neuron tries to adjust its parameters to describe input data most optimally with respect to 

that function. When the network functions on its own, after the training, usually the strategy 

‘winner-takes-all’ is applied when the only activated neuron is the one that scores best based 

on the function the network was trained with for the given input. This kind of learning falls 

under the category of competitive learning and is used for clustering problems. In 

reinforcement learning, despite the fact that there is no teacher to provide the network with 

the desired values, a continuous interaction with the environment does exist through which 

the network is rewarded or punished for its actions. This is the role of a critic. After an 

interaction of the network with the environment some new input data are produced and the 

critic computes a measure of performance and transforms it into a reinforcement signal. This 

signal is fed to the network and causes synaptic weight configurations that produce good 

results to be positively reinforced and those with bad results to be negatively reinforced. This 

kind of learning is used for dynamic programming and adaptive automated control problems. 
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3.2 Architectures 

A neuron can adjust its synaptic weights to store knowledge via a learning process. No matter 

how sophisticated this process is, a single neuron has limited capabilities. In order to have 

significant results in complicated problems, many neurons need to be put together so that the 

capabilities of learning and storing knowledge are greater, hence a network of neurons or 

neural network. In a network, neurons are organized in layers. In all types of networks there is 

an input layer of nodes that provides the input signals, which is not taken into account as an 

actual layer in any case since no computation is performed in it. The types of neurons used, 

the manner in which they are connected, as well as their arrangement are the factors that 

define the architecture of the network. This architecture determines the type of learning 

process that can be applied to the network. There are many different neural network 

architectures; some of them are specialized to the solution of specific types of problems while 

others are suitable for a variety of problems. 

There three kinds of neural network architectures, distinguished by two main characteristics; 

the existence of hidden layers and the existence of feedback loops. The first type of networks 

includes these that consist of only one layer of neurons with no feedback loops. These are 

called single-layer feed-forward networks. In this type the input layer provides the signals to 

the only existent computational layer, which is the output layer of the network. As mentioned, 

in a feed-forward network the signal is only transmitted from the input to the output and no 

part of the output is cycled back as input. Secondly, there are networks that also not include a 

feedback loop in their structure but have more than one layer. Such a network is called a 

multilayer feed-forward network. The layers other than the input and output layer are called 

hidden layers and their function is to enable the network to compute statistics of higher order 

which is useful when the input layer becomes larger, i.e. the input variables are more. In other 

words, the existence of more synapses raises the learning capabilities of the network. When 

every neuron of the network is connected all neurons of the next layer, the network is 

characterized as fully connected. If this is not the case, the network is said to be partially 

connected. These networks are used in function approximation problems as well as in pattern 

recognition problems [21]. A visual representation of a fully connected multilayer feed-

forward network is presented in figure 5. 

 

Figure 5: A fully connected multilayer feed-forward network 

 

Input layer 

of source 
nodes 

Layer of 

hidden 
neurons 

Layer of 

output 
neurons 

Layer of 

hidden 
neurons 



MSc Thesis, Dimitrios Kagkas, Registration Number msciot18001 32 

The third type of networks is the recurrent neural networks. In this case at least one feedback 

loop does exist and they could be either single-layer or multilayer. Also, feedback may or 

may not be provided by a neuron to itself (self-feedback) and hidden layers may also provide 

feedback and even do only that, without feeding any signal forward. 

3.3 MLP Networks 

One of the early implementations of a neural network was proposed in 1958 by Rosenblatt. 

His idea, the perceptron, is the plainest version of a neural network as it is only composed by 

a sole neuron which obviously classifies it under the single-layer feed-forward architecture. 

The proposed model was the first occurrence of a network to be trained according to the 

supervised learning paradigm. The structure of the neuron, as described earlier, includes a 

vector of inputs with synaptic weights and an additional bias. The activation function is a 

threshold function with upper and lower output values at +1 and -1 respectively and a 

threshold at 0, called the signum function. Since there are only two eligible output values, a 

perceptron can only be used for problems of classification between two classes. 

However, there is one more constraint in using a perceptron for classification; the two target 

classes need to be linearly separable. This means that, in order for the classification to be 

effective, it is mandatory for a linear boundary to exist, separating the n-dimensional inputs 

on an n-dimensional space, i.e. a straight line in a two-dimensional plane, a plane in three-

dimensional space and, in general, a hyperplane in n-dimensional space. This boundary, 

called decision boundary, is the means by which a perceptron can perform the classification. 

According to the general network structure, the output of the summing junction, and 

subsequently the input to the activation function, is expressed by equation 3.5. 

             
             

Since the activation function threshold is 0, the equation 3.6 

          
      

defines a hyperplane in an m-dimensional space which constitutes the decision boundary, 

where m denotes the dimensions of the input vector x. This boundary divides the input space 

in two regions that correspond to the two classes of the classification problem.  

Viewing this fact from the training perspective, the synaptic weights and bias of the 

perceptron need to be defined in such a way that the resulting boundary is positioned properly 

in order to separate the training input data so that they correspond to the appropriate target 

classes. The learning process of the perceptron is of the error-correction type so the training 

algorithm uses the instantaneous value of error energy as a criterion in its iterative process of 

adjusting the synaptic weights. More specifically, the objective of minimizing this function is 

achieved via a learning rule called Widrow-Hoff rule or delta rule. This rule dictates that the 

modification of a synaptic weight performed on the nth iteration of the algorithm (i.e. the nth 

input vector) is expressed by equation 3.7. 

                    

where η stands for the learning rate which is a positive value that defines in what proportion 

the product of the error signal and the respective component of the input vector x affects the 

modification of the corresponding synaptic weight. The updated weights are produced by 

adding the respective modification to the value the weight had in the previous iteration. It 

should be noted that the learning rate is a value that characterizes the learning process and 

remains the same across all modification calculations.  

(3.5) (3.6) 

(3.7) 

(3.5) 
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The external bias is incorporated into the set of the synaptic weights by considering it a 

weight itself that is always stimulated by an input of unity. In the beginning of training, the 

weights (and bias) are initialized with random value between 0 and 1. The training is 

terminated when the network current output value for all training inputs matches the desired 

output value for that input, essentially when the calculated modifications for all synaptic 

weights is zero. If the classes are indeed linearly separable, the training algorithm of the 

perceptron is proven to always converge according to the perceptron convergence theorem. It 

is worth mentioning that even though the perceptron is able to solve a classification problem 

with only two target classes, since it can produce only one decision boundary, the idea can be 

generalized and many perceptrons can be used in single-layer architecture in order to expand 

the capabilities of the network to solving classification problems involving more linearly 

separable classes by combining the decision boundaries each of the them can produce. 

Nevertheless, many classes are inherently not linearly separable. Moreover, a whole other 

division of problems, function approximation dictates, in its generality, that the ability to 

emulate non-linear functions is necessary. This fact led to the development of neural networks 

of the multilayer feed-forward architecture, trained via supervised learning, where the 

existence of hidden layers provides such capabilities. The perceptron model is used for each 

neuron of these networks with a difference in the form of the activation function where the 

threshold function is substituted by a function that introduces a smooth non-linearity, along 

with the benefits of differentiability. In most cases, the sigmoid logistic function is used with 

unity as a slope parameter value. 

Such networks constitute the most well known and commonly used forms of feed-forward 

neural networks; the multilayer perceptrons or MLPs. The main features of an MLP network, 

i.e. non-linearity, existence of hidden layers and high connectivity, along with the 

characterizing feature of every neural network, which is the ability of learning through 

training, are the source of the processing power it possesses. Interestingly enough, these 

features are the very reason why MLP networks are very complex to analyze on a theoretical 

basis and their learning processes very difficult to depict visually. 

According to Kolmogorov’s theorem, given enough neurons and the appropriate choice of 

synaptic weights, an MLP network with just one hidden layer is able to approximate any 

mathematical function. This fact led to characterizing the multilayer perceptrons as ‘universal 

approximators’ and subsequently means that the behavior of any unknown system can be 

emulated by an MLP. However, Kolmogorov’s theorem only provides the aspect of 

mathematical theory and does not take into account aspects like the complexity of 

implementation or learning time optimization of the resulting network. Furthermore, there is 

no guarantee that a training algorithm capable of computing the values of the synaptic weights 

for approximating any unknown function actually exists. 

Training an MLP utilizes the same core idea as the single perceptron. It is based on the delta 

rule and the minimization of a cumulative function of the error signal, which may be the 

generalization of the instantaneous value of the error energy of a neuron for all the neurons on 

the output layer, since an error signal can only be directly calculated on an output layer, called 

the instantaneous value of the total error energy defined by equation 3.8. 

       
 

 
    

  
       

where K is the number of neurons in the output layer and ek(n) denotes the error signal of the 

neuron k for the nth input vector. Since the input and output of the network during training are 

the predefined input and output training data, this error function is actually a function only of 

the synaptic weights of the network. This implies that such a training process can be regarded 

as an optimization problem of minimizing this function by adjusting the values of the weights. 

(3.8) 
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Assuming that every synaptic weight of the neurons in hidden layers was unmodifiable, or the 

hidden layers did not exist for that matter, and the output layer consisted only of a single 

neuron, the problem would be reduced to the training of a single perceptron and would be 

solved using the delta rule as described earlier. However, neither the output layer may 

necessarily include only one neuron nor the hidden layers would be absent in an MLP training 

problem. All the existing neurons, either output or hidden, contribute to the cumulative error 

function of the network. The arising problem is the discrimination between neurons that 

inflict a large portion of error to the outcome, and thus their synaptic weights should be 

greatly modified, and neurons that have already approached appropriate values for their 

weights. This is known as the credit assignment problem. An elegant solution to this problem 

and to the training of an MLP entirely is provided by the back propagation algorithm. 

3.3.1 Back Propagation Algorithm 

The back propagation algorithm, also referred to as error back propagation or back-prop, is a 

supervised form of learning that utilizes the error-correction rule. The main feature of the 

back propagation algorithm is that in order for the synaptic weights to be adjusted, two passes 

of signals through the network take place, one in the forward direction and one in the 

backward direction. In the former case, a training input vector is provided to the network so 

that an output according to the current synaptic weight configuration is produced. This is said 

to be the function signal as this is the way the network would normally work. At this point, no 

adjustments are made to the weights. In the latter case, this output along with the desired 

output defined in the training data, form the error signal which is propagated in the backward 

(output-to-input) direction through the network, and adjustments to the synaptic weights are 

performed in the error-correcting rule approach, i.e. the minimization of a cost function and 

more specifically the instantaneous value of the total error energy. Figure 6 dispays the 

direction of the signals. 

 

Figure 6: The directions of the input and error signals 

 

These signal ‘roundtrips’ and weight adjustments are performed for each input vector in the 

training dataset. The processing of the whole training dataset in this fashion is called an epoch 

of training.  

As mentioned, the synaptic weight modifications are calculated in an error-correction rule 

manner. The error function used as a measure of performance can be depicted as a surface in a 
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surface the current configuration of the network defines the operating point and the synaptic 

weight modification is performed according to the gradient of the error surface, which 
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indicates the rate of change of the error function. The correction rule is the steepest descent of 

the error function so, in essence, the weights must be modified in such a way that the gradient 

is negatively maximum. This is expressed by the partial derivative of the error function with 

respect to the respective synaptic weight, which is the rate of change of the error function 

when the specific weight is modified. Combining these, a generalized form of the delta rule 

can be derived, defined by equation 3.9. 

           
     

       
 

where wji(n) is the weight of the synapses connecting the i and j neurons for the nth vector of 

input, η is the learning rate and the minus sign indicates the descent of the gradient. 

By applying the chain rule of calculus on the partial derivative, it is proven that the delta rule 

is expressed by equation 3.10. 

                     

where δj(n) denotes the local gradient for the neuron j and yi(n) is the output signal of the 

previous neuron or, equivalently, the input signal of neuron j. This expression of the rule 

shows that the weight modification is proportionate to the local gradient for the neuron j. At 

this point, two specific cases are considered for the neuron j according to its location in the 

network; if it belongs on the output layer or if it belongs to a hidden layer. In the former case, 

equation 3.11 defines the local gradient. 

              
         

This equation shows that the local gradient of an output neuron is equal to the product of the 

error signal and the derivative of the activation function of that neuron. Therefore, it is the 

calculation of the error signal at the output of the neuron that leads to the computation of the 

adjustments of the synaptic weights. For the case at hand the calculation of the error signal is 

trivial, since the neuron is provided with the desired output by the training data, and 

subsequently the computation of the local gradient and the weight modifications is also 

straightforward. 

In the case of a hidden layer neuron, computations are more complicated due to the credit 

assignment problem. The aforementioned expression of the delta rule remains valid but the 

computation of the local gradient needs to also take the credit assignment into account. It is 

proven that the local gradient of the hidden neuron j is defined as follows. 

        
                      

where k denotes a connected neuron in the next layer, δk(n) is the local gradient of the k 

neuron and wkj(n) are the synaptic weights involved in this connection. Comparing equation 

3.12 to 3.11 (the respective local gradient of the output neuron), two observations can be 

made. In both cases the local gradient depends on the derivative of the activation function, 

which points out the structural contribution of any neuron to this calculation. Secondly, in 

terms of computation factors, it is the error signal of a hidden neuron that is actually 

expressed as a function of computations regarding not the neuron itself but the neurons in the 

following layer. What equation 3.12 demonstrates is that the local gradient of a hidden neuron 

is a function of the weighted sum of the local gradients of the next layer neurons, either 

hidden or output, that the examined neuron is connected with. This highlights the back-

propagating nature of the algorithm, since computation results regarding the local gradients of 

neurons located closer to the output layer are prerequisites for those located further from it. It 

is this approach, in fact, that solves the credit assignment problem since the weight 

(3.9) 

(3.10) 

(3.11) 

(3.12) 
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adjustments of a neuron depend on the already adjusted synaptic weights of neurons that it 

affects. 

Training is performed in a sequence of epochs, which is the processing of the entire training 

dataset as mentioned earlier. Usually the procedure includes presenting the network with the 

components of the training dataset, i.e. the input vectors, in a random order in each epoch in 

order to make the search of the synaptic weights more stochastic. The presentation of input 

vectors during an epoch and, more importantly, the weight adjustments can actually be 

executed in two methods; sequentially or batch. The sequential presentation of inputs, also 

called online training, has already been implicitly described. The input vectors are processed 

one by one, all the aforementioned computations are performed and the weights and biases 

are adjusted before moving on to the next. After all the vectors in the training dataset have 

been processed, training continues to the next epoch if necessary. It should be noted that 

whatever manner of presentation is used is maintained throughout the training. In other 

words, the manner of presentation characterizes the training itself and cannot differ across the 

epochs.  

On the contrary, in batch training the weights are modified only once for all the available 

training data, at the end of the epoch. For this purpose, a cost function that uses the whole 

training set is needed, rather than one component vector of it. Such a function is the average 

square error defined by equation 3.13. 

     
 

  
    

       
 
    

where the instantaneous value of the error energy is summed for all neurons in the output 

layer and all input vectors in the training set, and averaged by the amount N of these input 

vectors. According to this definition the modification of the synaptic weights take the form of 

equation 3.14. 

       
 

 
      

 
   

      

    
 

This is the adjustment made to the synaptic weight connecting the neurons i and j at the end of 

each epoch, with a learning rate η. Both methods have their merits but ultimately, in practice, 

the sequential method is more commonly used because its implementation is simpler and has 

proven to produce effective solutions to complex problems. 

In a theoretical level, the back propagation algorithm does not converge in its generality so 

there are no established theoretical criteria for a terminating condition. Some practical criteria 

could be the stabilization of the synaptic weights, a maximum number of epochs or the 

convergence of the rate of change of the index of performance, e.g. the error function, under 

an acceptable threshold, which means that from a point forward the training epoch does not 

considerably improve the error so there is no point in continuing. It is possible though that 

after fulfilling a termination condition, the weight configuration not to be optimal. This is due 

to the nature of the steepest descent method that could trap the algorithm to a local minimum 

of the error surface because if such a point is reached no weight adjustments that move the 

operation point to a higher error level would be allowed. This implies that finding the global 

minimum of the error surface largely depends on the initial position of the operation point, i.e. 

the initial values of the synaptic weights, which are randomly selected. 

The back propagation algorithm provides an efficient way of training multilayer perceptrons, 

regarding the computational complexity aspect. Even though it is does not guarantee the best 

solution for any possible problem where an MLP is used (as a universal approximator), it has 

managed to ease the major concern regarding the high complexity of the MLP networks. 

(3.13) 

(3.14) 
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3.3.2 Levenberg-Marquardt Algorithm 

A variant of the back propagation algorithm would be the Levenberg-Marquardt algorithm, 

which is an algorithm for solving multivariate non-linear least square problems, and the most 

popular algorithm for training MLP networks [22]. It was developed by Kenneth Levenberg 

in 1944 and again, independently, by Donald Marquardt in 1963, bearing both their names 

and it is generally used in software tools for curve fitting problems. Matlab in particular used 

an improved version of the Levenberg-Marquardt algorithm, enhanced with a search 

algorithm for faster convergence [23]. 

The algorithm combines the steepest descent method with the Gauss-Newton method in an 

adaptive fashion. When the currently selected parameters have not yet approached the region 

of the optimal solution the algorithm acts like the steepest descent method, moving slowly but 

steadily towards the right direction. On the contrary, when the parameter selection does 

approach the desired values the algorithm behaves like the Gauss-Newton method which is 

faster and more accurate in the region near the optimal solution. This combination of methods 

is faster to converge that if these methods were individually used. 

The decision of whether the current solution is far or close to the region of the optimal 

solution in this regard is made based on a non-negative algorithmic factor λ, which is called 

the damping parameter. Large values of the damping parameter results in a gradient descent 

operation while smaller values lead to Gauss-Newton. The parameter is initially set to a large 

value in order to made steady steps towards the optimal solution. As the current solution 

improves the λ parameter is decreased. If a specific adjustment results in a worst solution, the 

λ parameter is again increased [24]. 

3.4 RBF Networks 

An alternative feed-forward neural network implementation was proposed by Broomhead and 

Lowe in 1988. This implementation utilizes radial basis functions as activation functions and 

the resulting networks are hence called radial basis function, or RBF, networks. RBF 

networks are used for solving problems of function approximation, classification and system 

control. 

A radial basis function is a real function, the values of which depend only on a distance 

metric, typically the Euclidian distance, between the function input and a fixed point in the 

respective space, called center. In other words, radial basis functions are functions with radial 

symmetry. In more formal terms, a radial basis function is any function that satisfies the 

equation 3.15, where c denotes the center: 

               

In some cases radial basis functions are used as groups to compose a basis in a vector space, 

i.e. a set of linearly independent functions that can produce any element of the space uniquely 

as a finite linear combination of them. 

In a function approximation problem using radial basis functions, the computed function is a 

sum of radial basis functions, each having its own center and its contribution to the sum varies 

according to a weight coefficient. It is proven that by summing enough radial basis functions, 

it is possible to approximate any function. Equation 3.16 presents the general form of such a 

computation: 

                   
 
    

where xi is the center of the i-th function and wi is the respective weight. This function form is 

what an RBF network structure actually implements. 

(3.15) 

(3.16) 
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RBF networks have a structural distinctiveness in comparison to the general feed-forward 

network model, which is that they only have a single hidden layer of neurons and also the 

output layers consists only of summing junctions. In addition to this, and as already 

mentioned, the activation function of each neuron in the hidden layer is a radial basis 

function, most commonly a Gaussian function. Since any function can be approximated if 

enough radial basis functions are summed, RBF networks are, like MLPs, universal 

approximators given the appropriate amount of neurons. A visual representation of an RBF 

network with N input variables, M hidden nodes and three output variables is presented in 

figure 7. 

 

Figure 7: An RBF network representation 

 

The existence of a radial basis function implies another difference between RBFs and typical 

feed-forward networks which is that the knowledge in an RBF is stored not only in the 

synaptic weights of neurons but also in the parameters of the activation function, i.e. the radial 

basis function centers and in case of variable width functions, like Gaussian functions, the 

curve width. As a result, this fact needs to be incorporated in the network training process. In 

other words, training an RBF network consists of computing not only the synaptic weights but 

also the coordinates of the centers, the width of the curves, if needed, and also the number of 

neurons on the hidden layer [25].  

This process could be performed in an MLP way, using a method like steepest descent. 

However, the particular nature of RBF networks allows for an alternative approach, 

specifically suited for its structure. Training of an RBF can be broken down into two phases: 

the computation of the centers and widths of the radial basis functions and the computation of 

the synaptic weights. , Some training algorithms also include the computation of the optimal 

hidden layer size in their process. For those that do not, the size is manually determined and 

then can be optimized by repeating the training in trial-and error fashion. 

Computing the function centers and widths is the more challenging of the two phases. It is 

usually handled as a clustering problem, thus a clustering algorithm is utilized and depends 

only on the input data. Such an algorithm is the k-means, an unsupervised clustering 

algorithm which was actually the popular approach in studying RBF networks in their early 

days. Nevertheless, this algorithm has two major disadvantages that led to the proposal of 

many alternatives in the following years. These are the slow algorithm convergence, being an 
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iterative process, and the fact that the aforementioned trial-and-error is needed to determine 

the number of neurons on the hidden layer.  

After determining the hidden layer size and the function centers and widths in the first phase, 

the second phase is a much simpler task. Since the desired output is a weighted sum of the 

single hidden layer output, or in other words there is linear relationship between the hidden 

layer output and the network output, the synaptic weights can easily be calculated by the use 

of linear regression. A typical approach is using the linear least squares method, in matrix 

form, as displayed by equation 3.17. 

                  

where Z denotes a matrix that contains the outputs of the hidden layer for every input and Y 

denotes a vector that contains the desired output, i.e. the target values. 

3.4.1 Fuzzy Means Algorithm  

One popular training algorithm for RBF networks is the fuzzy means (FM) algorithm [26]. 

This algorithm improves upon the k-means algorithm in that it incorporates the determination 

of the hidden layer size and demands much less execution time since it is not iterative 

regarding the input data. The main idea of the algorithm is the partition of each dimension of 

the input into triangular fuzzy sets, hence creating a grid of multidimensional subspaces in the 

input space, and then the selection of certain nodes of the grid as radial basis function centers 

for the hidden layer of the network based on a specific criterion. 

More specifically, considering a case where the RBF network to be trained accepts N input 

variables, or in other words the input space has N dimensions, every dimension is partitioned 

into the same number M of triangular fuzzy sets. Given that the input is normalized, these sets 

also have the same width and can generally be described as follows. 

           ,  s = 1, ..., M 

where Am denotes the m-th fuzzy set, αm denotes the center element of the fuzzy set Am and δα 

is the half of the width of a fuzzy set. Figure 8 depicts such a partition, using five fuzzy sets 

and considering a two dimensional input for the sake of visualization. 

 

 

(3.17) 

(3.18) 
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Figure 8: A fuzzy partition on a two dimensional space 

 

Partitioning the input space in this manner produces S multidimensional fuzzy subspaces, 

through the combination of all the fuzzy sets in every dimension, equal to the amount of the 

used fuzzy sets to the power of the input dimensions. Each fuzzy subspace is denoted as A
s
, 

where s = 1, ..., S, and its center element a
s
 is defined as a vector containing the center 

elements of the respective fuzzy set in each dimension. In the above particular scenario, 5 

fuzzy sets are used for each of the two input dimensions so 25 subspaces are produced. These 

subspaces are the possible RBF centers for neurons on the hidden layer. An appropriate 

selection of these subspaces as RBF centers is the goal of the FM algorithm in order to 

construct the hidden layer in such a way that the network is both as minimal as possible and 

suited for the input data provided to it. 

The criterion based on which the algorithm determines the selection of the centers is called a 

membership function and indicates to what degree each specific input vector belongs to a 

fuzzy subspace A
s
. Equation 3.19 presents a general definition of the membership function. 

           
    

             
          

                               
  

where dr
s
(x(k)) is a distance function between the input data vector x(k) and the fuzzy 

subspace A
s
. This distance function is represented as a hyper-surface on the N-dimensional 

space of the input and constitutes a means of discriminating input vectors that get any degree 

of membership to a fuzzy subspace A
s
 from other vectors that do not. Since every dimension 

of the input space is partitioned using the same number of fuzzy sets (symmetric partition), 

the distance function hyper-surface is actually a hyper-sphere which can be defined by 

equation 3.20. 
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where N denotes the dimensionality of the input space, α
s
i is the component of the fuzzy 

subspace center element in the i-th dimension (i.e. the respective fuzzy set center element) 

and xi(k) is the input vector component in the i-th dimension of the k-th input vector. Based on 

the above, the algorithm processes the input data and determines a selection of the fuzzy 

subspaces so that every input vector receives nonzero membership in at least one of them. As 

mentioned, this is a non-iterative procedure as the input dataset is processed only once and so 

short computational times are achieved even in cases of large datasets.  

More specifically, for every vector in the input dataset the algorithm checks if it is located 

outside from all the hyper-spheres already defined by the previously selected RBF centers (of 

course none exist during the processing of the first vector). If this condition is satisfied, a new 

RBF center necessary in order to cover the current vector, otherwise it has already been 

covered by previous centers and so no more action is needed. This logic ensures that no input 

vector can be left uncovered. The algorithm then calculates the value of the membership 

function for every fuzzy set in every dimension for the current vector and the sets scoring the 

maximum value in each dimension assemble the fuzzy subspace that fits it the best, thus 

defining the new RBF center.  

After the processing of the whole input dataset, a selection of RBF centers that compose the 

hidden layer of the network has been constructed. This selection of centers, as the description 

of the algorithm process shows, only has one parameter that affects its final form, which is the 

number of fuzzy sets that all input dimensions are partitioned by. This implies that an 

optimization process can easily be applied in order to produce an RBF network with optimal 

configuration.  
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SECTION 4 

Experiment, Results and Discussion 

 

 

As mentioned in the introduction, the objective of this Thesis is to investigate an approach in 

evaluating chess positions without performing a deep tree search look-ahead as a chess engine 

does. Instead, we attempt to achieve this by the utilization of the learning capabilities of a 

neural network. Both the architectures of MLP and RBF networks have been tested in order to 

compare their performance on the task at hand. 

The goal of the experiment is to train a neural network in order to predict the evaluation score 

of a chess position at a high depth, which would take a chess engine a greater amount of time 

to calculate. This prediction is based on our proposed set of static features of the position as 

well as three low depth evaluation variables, at different depths. The existence of these 

evaluation variables in the training dataset provides the network with some dynamic 

knowledge of the position. Networks have been trained with three variants of the training 

dataset, regarding these evaluation variables, in order to examine their impact on the final 

outcome. The different variants were constructed by including all evaluation variables, by 

including only the two lesser-depth ones and by including none of them, respectively. 

4.1 Experiment Implementation 

A prerequisite for the network training is of course the creation of the training dataset. The 

output of the network, as already mentioned, will be the position evaluation score and in order 

to complete the formation of the training dataset, the input vector needs to be determined. 

Two conceptually different groups of input variables were chosen. The first group consists of 

our proposed set of features of a chess position as described later in this section. These are 

static features that describe the position at its current state and indeed the only required 

knowledge for deriving them is the current arrangement on the board, in the form of a FEN 

most probably. The second group of inputs refers to the dynamic nature of the position. These 

are actually evaluations of the position from the chess engine but at much less depth of search 

than the evaluation score we are trying to predict. These values act as a supplement to the 

feature inputs so that the temporary circumstances on the board, like the absence of a piece in 

a position occurring in-between a piece exchange sequence, are not misinterpreted by the 

network as equivalent to positions were such circumstances are permanent, e.g. a position 

with actual material imbalance, as would the sole consideration of the static features indicate. 

The creation of such a dataset required the implementation of a processing application that 

would extract the necessary information from a large number of chess positions and store it in 

a database in order to be used in the procedure that would execute the training of the neural 

network. Such an application was developed using the Java programming language and the 

database was created and managed, via select and insert queries in the Java code, using SQL. 

The outline of the operation of the application is the following: 

 A collection of chess games provided to the application in the form of PGN files are 

processed one by one. 
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 Each PGN file is processed in order to extract the move sequence of the particular 

game. 

 An internal board representation is created at the initial position and the specific 

moves are performed on the board one by one. 

 The current position FEN is checked for existence in the database. If it is found, the 

process proceeds with the next move. 

 The features are computed for the current position. 

 The phase of the current position is checked. If it is not middlegame, the position is 

ignored and the process proceeds with the next move. 

 The current position is analyzed by a chess engine and the evaluation scores, both 

those used as supplementary inputs and the actual target, are calculated.  

 The features and evaluation scores along with the corresponding FEN of the current 

position are stored in the database. 

 Arising positions are processed sequentially in this manner until the current game is 

over and the procedure is repeated until every PGN has been processed. 

The operation of the game processing application is displayed as a flow diagram in figure 9. 

 

 

Figure 9: Game processing application flow diagram 

 

Elaborating a bit more on the aforementioned procedure, a large collection of games of top-

players (1514 in number) was retrieved from online chess databases, like chessgames.com 

and 365chess.com, and was provided to the application. It should be noted that this number of 

games was not collected and processed in a single run but rather in an iterative process were 

the database increased incrementally and networks were trained using the respective datasets, 

gradually improving performance. 

As mentioned, the chess engine that was used was the open-source Stockfish engine, version 

10. This led to the decision of deriving our proposed set of position features used as training 

inputs to the neural network from the features the Stockfish relies on. In fact, as was briefly 

described in section 2, what Stockfish considers as a single feature may actually be composed 

of some other sub-calculations of simpler patterns. Moreover, while these simpler patterns are 

calculated separately for the black and white side, it is in most cases the difference between 

the two respective values that is used in the calculation. In addition to these, as displayed in 

table 2, Stockfish calculates a few intermediate, cumulative values and helper values that 

finally combine, along with the features, into one master value (referred to as ‘main 



MSc Thesis, Dimitrios Kagkas, Registration Number msciot18001 44 

evaluation’) that is actually the static evaluation of the position. Every calculated value 

involved in this process, regardless of being simple or complex, a meaningful feature or an 

intermediate value, is described in the online documentation of the engine and was also 

briefly presented, in section 2. The documentation provides snippets of code in the Javascript 

programming language about each one of them which, although not directly usable in our 

case, have provided an insight about the manner each particular value is calculated and from 

this knowledge came the implementation in Java code for our processing application.  

Regarding the network training dataset, our approach in constructing our proposed set of 

features, even though many are just linear combinations of others, was to consider the values 

of every feature and function described in tables 1 and 2, as well as the respective values for 

either side, as a separate position feature. This aims to maximize the possibility of the neural 

network discovering patterns in the feature dataset that relate to the resulting evaluation that 

may be overlooked in case of only using the aggregate values.This resulted in a total of 194 

input values. 

Another important decision that has been made is to perform the training of the network with 

data extracted only from chess middlegame positions. This is because the middlegame is the 

most complicated phase of a chess game where strategy is formed, there are usually not all 

but also not too few pieces on the board and therefore the network has the best opportunity to 

detect patterns that emerge from the features describing these positions and associate them 

with the evaluation. Apart from that, the other two phases of the game, the opening and the 

endgame, are usually handled by the engine using other means in addition to the tree search. 

In the former case the vast opening theory that already exists in chess literature is utilized by 

the engines with what are called ‘opening books’ that may guide the search accordingly. In 

the latter case, the endgame, there is a very good chance that no tree search is performed at all 

and an endgame tablebase is typically used instead. An endgame table base is an enormous 

database that contains every possible chess endgame position from a point on, already 

analyzed to the end, providing the outcome, the number of moves to reach it with best play in 

cases of a win or loss, and the best move in the position. As from the year 2012, tablebases 

contain every endgame position that includes up to seven pieces [27]. In this sense, the 

concept of an evaluation score is no longer valid as it is delegated to a value of zero in case of 

a draw, or the number of moves to reach a win or loss in the respective cases. 

Stockfish, and hence our processing application, distinguishes among the different phases of 

the game using the phase parameter which is also used in the main evaluation formula. The 

phase parameter depends on the non-pawn material on the board and takes values from 128 to 

0, where 128 corresponds to the opening, 0 to the endgame and any value in between to the 

middlegame. As mentioned, a position is analyzed by the engine and ultimately stored in the 

database only in case it is a middlegame position. 

After a position has been identified as a middlegame position, it is analyzed by the chess 

engine so that the supplementary low depth evaluations as well as the target evaluation score 

can be extracted. Stockfish is allowed to analyze a position for exactly 165 seconds (2.75 

minutes) and reach as much depth as possible in this timeframe. Of course, since the time is 

fixed, the achieved depth depends on the processing power of the computer the engine runs 

on, which in this case uses an Intel Core i7-4779 quad-core at 3.40 GHz and 8GB of RAM, 

and the configuration of the engine itself. The important points of the configuration in our 

case, set using the ‘setoption’ command as described in section 2, include occupying 3 

computational threads per engine instance, a hash table of 1024MB and using analysis mode 

with a multiple PV of two, which means analyzing the two best lines instead of one in order 

to prevent the engine from possibly overlooking a better branch in the search tree due to its 

default behavior of applying more pruning on the non-best branches.  
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Under these circumstances, and depending on the complexity of each position, the engine 

reaches at a depth of around 28 plies, i.e. half-moves (individual moves played by either side), 

as opposed to what chess defines as a full move which consists of two plies, one by White and 

one by Black. Regarding the evaluations used as inputs, three scores were decided to be used, 

at depths of 2, 4 and 8 plies, bringing the total length of the neural network input vector to 

197. For these depth values the chess engine on the particular machine can provide 

evaluations in a matter of a few milliseconds, while the processing time needed to extract the 

194 static features mentioned before is about 10 seconds. The time needed for the two types 

of database queries, for checking if a position already exists and storing it, take less than 10 

milliseconds each. These bring the whole procedure of processing a position to a total of 

about 3 minutes. In order to produce more data in the same amount of time, two instances of 

the processing application where run in parallel (in different CPU threads), each one provided 

with its own (non-overlapping) set of games to process and also running its own instance of 

Stockfish, but interacting with the same table in the database which was the single point of 

data storage. The table would then be exported as a csv file whenever the data were needed 

for network training. 

The creation and training of the MLP networks has been facilitated by using the Matlab 

software and specifically the neural toolbox that provides implementations of various 

architectures along with an API for training and using the network for predictions. On the 

contrary, RBF networks were created and trained by using custom Matlab scripts that were 

written for this purpose. The training data were imported from the csv file as a matrix which 

was manipulated accordingly to support the training of the network. Driver scripts were 

created in order to support the preparation of the dataset, the definition of the networks, the 

execution of the training procedure and the usage of the networks for making predictions and 

measuring indicators for the various cases. The feed-forward MLP network that was trained in 

all cases had a two-hidden-layer structure, the first containing 20 neurons and the second 

containing 10 neurons, determined after a trial-and-error process. A visual representation of 

the network, as provided by Matlab, is shown in figure 10. 

 

 

Figure 10: The trained MLP neural network 

 

For the RBF network experiment we used thin plate spline (TPS) functions as activation 

functions and the network training was performed via the fuzzy means algorithm, also with 

the help of custom Matlab scripts. Equation 4.1 defines the thin plate spline function in RBF 

context. 

               

As already mentioned, when a chess engine evaluates a position, there are two possible types 

of outcome, an evaluation score or the number of moves until mate, if such a sequence is 

found. While the processing of only middlegame positions lowers the possibility of the latter 

case, positions with mating sequences may still occur. In order for these cases to be 

distinguished, and not confuse a result of 2 meaning ‘mate in 2’ with an evaluation of +2, 

(4.1) 
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before storing to the database,  a very large value was assigned to such positions as evaluation 

score for the sake of uniformity. These data were then filtered out after importing the csv file 

to Matlab and were not part of the final training dataset since they do not correspond to an 

actual evaluation score. The resulting dataset in this case consists of 80425 middlegame 

positions. 

In a second level of refinement, such filtering was alternatively performed for data having an 

evaluation score higher than 20. In a typical chess game, evaluation scores tend not to be very 

high since the game is usually more or less balanced. Values over 6, indicating an imbalance 

of two minor pieces, or even 9 that corresponds to the value of a queen are sparser than those 

closer to zero and the reason for this is that when the game is headed towards such 

circumstances, the losing player often resigns and these positions do not occur. This fact leads 

to the dataset containing much more data in the region nearer to zero and less as values get 

higher. The aforementioned filtering on values over 20 intends to examine the impact of this 

situation on the training of the neural network. The resulting dataset in this case consists of 

79874 middlegame positions. 

In addition to these, one supplementary experiment has been included. We have reproduced 

the methodology found in one of the mentioned related researches [9] using our own input 

data, in order to compare performances. This research presents two alternative board 

representations, referred to as ‘bitmap’ and ‘algebraic’, and uses these with an MLP, among 

others. We have taken their best performing case, the bitmap representation, and using our 

database of games, we produced the input dataset as described in their paper. Two MLP 

networks were trained accordingly, following the same filtering logic as outlined above. 

Specifically, the bitmap representation analyzes the board in different layers, each of them 

regarding a specific piece. There are 6 different types of pieces for each side hence 12 layers. 

Each layer consists of 64 inputs that represent the state of the 64 squares of the board 

respectively. The value of an input may be 0 indicating that no piece is currently occupying 

the respective square, 1 if the square is occupied by a white piece of the type corresponding to 

the layer and -1 if it is occupied by a black piece of the type corresponding to the layer. This 

representation results to an array of inputs that contains 768 values. 

4.2 Results & Discussion 

In order to evaluate the performance of the networks, two indicators were chosen. The first is 

the mean absolute error (MAE) of the predicted position evaluation scores compared to the 

training targets, i.e. the error of the prediction, as defined by equation 4.2: 

     
     

 
   

 
 

The second indicator is the coefficient of determination (R
2
) which is defined as follows: 

      
   

   
,              

    
   ,              

    
    

where yi is the actual target, yi
* 

is the corresponding prediction and yi
-
 is the mean value of the 

actual targets.  

Regarding the MLP networks these indicators were measured as mean values over various 

iterations of network training and predictions. In these iterations a different randomization is 

applied on initializing the synaptic weights and biases of the network, possibly starting their 

approximation from a better position in order to find a better local (or the global) minimum of 

the error surface and resulting in a better performing configuration. On the contrary, different 

randomization does not affect the training algorithm of the RBF networks, other than the 

(4.2) 

(4.3) 
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random permutation of the dataset which is kept the same in all cases anyway, since the 

synaptic weights and biases are calculated through linear regression rather that approximated. 

Consequently no iterations were executed while training RBF networks. 

No strict rule exists regarding the splitting of the input dataset to training, validation and 

testing data so a decision for 50% - 25% - 25% ratio was made. It should be noted that the 

permutation of the input dataset, in order to make each of the mentioned sets as random as 

possible, was always the same, independently from any randomization mentioned above, so 

that the same arrangement of data was kept in all iterations thus avoiding discrepancies in 

performance due to differences in the datasets. 

The results are presented in matrix form depicting the two different cases of dataset filtering 

that are described above and the different configuration regarding the low-depth evaluation 

inputs, which are denoted as scenario 1, 2 and 3. Specifically, scenario 1 includes all three of 

the evaluation inputs (for depths 8, 4 and 2 as previously described), scenario 2 includes only 

the variables for depths 4 and 2, and scenario 3 does not include any of these variables at all. 

Each MLP performance indicator value presented in the matrices is the best case value 

accompanied by the mean value with its standard deviation over the different iterations in 

parenthesis. In the case of the RBF networks, the results presented do not include any mean 

and standard deviation since no iterations were executed and are supplemented by additional 

measurements, such as the number of selected RBF centers and fuzzy sets, which specifically 

help evaluate the performance of the RBF network. 

4.2.1 RBF networks with proposed feature inputs 

The results of the RBF networks trained with the input dataset consisting of the 194 variables 

of the proposed set of features plus the 0 to 3 evaluation inputs according to each scenario, for 

both cases of dataset filtering, are presented in tables 3 and 4. These tables also include the 

computation time for network training for each scenario. It should be noted that this 

computation time is the time for training the best network after performing structure 

optimization, i.e. the training of several networks with different structures for the hidden 

layer, and selecting the best one. 

 

Table 3: Indicators of RBFs using the proposed features with mating evaluation filtering 

 

Scenario 
MAE R

2
 Fuzzy  

Sets 

No. of  

nodes 
Time (s) 

Testing Validation Testing Validation 

1 0.76 0.76 0.50 0.52 25 38219 7304 

2 0.83 0.84 0.43 0.45 21 38229 12448 

3 0.85 0.85 0.41 0.43 21 38238 5745 
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Table 4: Indicators of RBFs using the proposed features with over-20 evaluation filtering 

 

Scenario 
MAE R

2
 Fuzzy  

Sets 

No. of  

nodes 
Time (s) 

Testing Validation Testing Validation 

1 0.38 0.38 0.78 0.80 19 37983 5344 

2 0.44 0.43 0.72 0.73 23 37995 5809 

3 0.45 0.44 0.69 0.70 25 37970 8638 

 

We can see that within both filtering cases, the first scenario, that contains all three 

supplementary evaluation input variables always performs better than the rest, and also 

scenario 2 that contains only the two lower depth variables performs slightly better than 

scenario 3 that merely contains static features. 

A graphic representation of target versus predicted values for the best performance in the test 

subset for the two dataset filtering cases can be seen in figures 11 and 12. 

 

 
 

Figure 11: Target values vs Predictions of RBFs using the proposed features with mating 

evaluation filtering 
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Figure 12: Target values vs Predictions of RBFs using the proposed features with over-20 

evaluation filtering 

 

Both figures depict the ideal network performance (blue line). The lack of uniformity in the 

input dataset can be easily observed in figure 11, where it can be seen that a big part of the 

data is gathered in the area around zero. Another observation at figure 12 is that as far as very 

large evaluation values are concerned, there seem to be some groups forming at value ranges 

of 20 to 40 and -20 to -40 and some extreme values around +-70. This phenomenon may be 

due to the fact that, when constructing the input data, the engine was given a fixed amount of 

time to process each position and such extraordinarily high evaluations can dramatically 

change when the engine reaches one more level of depth, or even if it happens to find an even 

better move sequence at the same depth. In other words, these may be cases where the engine 

has not managed to converge to an evaluation in the available amount of time. If more time 

was given to the engine, some of these evaluations would remain the same, some of those 30-

like evaluations would spread to a larger range, and maybe a few of the evaluations at 70 

could actually become 90 or 150. Of course it is not possible to determine the time frame the 

engine needs in order to converge, so possibilities for such phenomena, especially for 

irregular circumstances like evaluations of 30 or 70, will always exist. Other than these, the 

overall arrangement of the data points tends to follow the expected shape of the ideal model 

line, especially those of figure 12. 

An observation in figure 11 regarding the performance of the network is that in the 

aforementioned cases where the target values are extremely large, almost every prediction is 

way off in terms of value approximation, possibly due to the inadequate quantity of data in 

these areas that results to the failing extrapolation the network attempts to perform. However, 

it is important to note that all predictions, except from two, are in the appropriate quadrant, 

meaning that winning side is still predicted correctly. Interpreting this fact in the context of 

playing the game, a position of actual evaluation of +30 that is mispredicted as +17 is still 

regarded as a clear win for the white side by the network. 

Another interesting thing to notice, which exists in both diagrams but is not clearly visible due 

to the density of data, is the behavior of the network when the target value is exactly zero. A 

portion of the diagram displayed in figure 11, focused on the area around zero can be seen in 

figure 13. 
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Figure 13: Network behavior around zero target value 

 

As we can see, the network seems much more likely to make an erroneous prediction, ranging 

to large values for that matter, if the target value is exactly zero than in cases of values very 

close to zero.  

As it has already been explained in section 2, an engine may give an arithmetic evaluation of 

a position, may detect a win or loss for the side to play (in which case it does not return an 

evaluation but the number of moves until mate), or it can detect that the position is a draw, 

which is indicated by returning the value of 0.00. Understanding what a draw indication 

means is actually a complicated matter, as there could be various reasons why that is, all 

grouped under the value of zero with no discrimination whatsoever. The most common cases 

for a draw are these of move repetition or perpetual check. These includes cases where there 

really is no other option in the position, like when there is insufficient material, or where the 

option of going for the repetition, or perpetual check is the best play for one or both sides, 

meaning that any other move sequence would result to a loss. Another case that is a bit 

trickier to comprehend is when the tree search reaches depths where the arising position can 

be found in an endgame tablebase. Endgame tablebases, mentioned in section 4, contain pre-

analyzed positions containing up to six pieces, solved to the very end. This means that even if 

the current position is a middlegame position with many pieces on the board, when the tree 

search reaches a depth of 25 or so plies with best play, piece trades may have occurred so that 

the resulting position could be one of those pre-analyzed positions in the tablebase, already 

worked out to be a draw and consecutively evaluated as 0.00. 

Many discussions have taken place in online forums about whether the value 0.00 is reserved 

only for special cases like forced draws or theoretical draws, or if such a value could also 

come up for positions that happen to be absolutely level and are truly evaluated to zero, 

without any clear conclusion on the matter. Others claim that the value of zero may also be 

interpreted not as absolute equality, but as the position being so complicated and unclear that 

the engine would need more time to search deeper in order to give a slight edge to either side. 

However, from our neural network point of view, where no tree search is performed and 

inputs are related to evaluation values, this absolute zero evaluation is in a way a problematic 

situation. Specifically, assuming two similar looking positions where the one is a clear win for 

White, say +5, while the specific arrangement of pieces on the other allows a perpetual check, 
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thus evaluated as 0.00 by the engine, a neural network trained with the first one would 

inevitably evaluate the second accordingly, leading to the phenomenon observed in figure 13. 

4.2.2 MLP networks with proposed feature inputs 

The results of the MLP networks trained with the input dataset consisting of the 194 variables 

of the proposed set of features plus the 0 to 3 evaluation inputs according to each scenario, for 

both cases of dataset filtering, are presented in tables 5 and 6. 

 

Table 5: Indicators of MLPs using the proposed features with mating evaluation filtering 

 

Scenario 
MAE R

2
 

Testing Validation Testing Validation 

1 
0.75 

(0.82±0.04) 

0.75 

(0.81±0.04) 

0.46 

(0.42±0.02) 

0.52 

(0.48±0.03) 

2 
0.93 

(1.00±0.06) 

0.93 

(1.00±0.06) 

0.36 

(0.30±0.04) 

0.38 

(0.33±0.03) 

3 
0.96 

(1.05±0.04) 

0.97 

(1.04±0.04) 

0.32 

(0.26±0.03) 

0.34 

(0.30±0.03) 

* Each cell contains the best performance in the respective dataset along with the mean value and standard 

deviation in parenthesis. 

 

Table 6: Indicators of MLPs using the proposed features with over-20 evaluation filtering 

 

Scenario 
MAE R

2
 

Testing Validation Testing Validation 

1 
0.44 

(0.47±0.03) 

0.44 

(0.46±0.03) 

0.72 

(0.70±0.02) 

0.73 

(0.71±0.02) 

2 
0.58 

(0.60±0.02) 

0.57 

(0.60±0.02) 

0.57 

(0.54±0.03) 

0.59 

(0.56±0.03) 

3 
0.62 

(0.64±0.02) 

0.62 

(0.64±0.02) 

0.51 

(0.48±0.02) 

0.50 

(0.48±0.02) 

* Each cell contains the best performance in the respective dataset along with the mean value and standard 

deviation in parenthesis. 

 

The computation for all iterations regarding this method took a rough 16 hours; the training 

time for each network was approximately 10.7 minutes (642 seconds). 

A graphic representation of target versus predicted values for the best performance in the test 

subset for the two dataset filtering cases are depicted in figures 14 and 15. 
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Figure 14: Target values vs Predictions of MLPs using the proposed features with mating 

evaluation filtering 

 

 

Figure 15: Target values vs Predictions of MLPs using the proposed features with over-20 

evaluation filtering 

 

These diagrams demonstrate the same pattern as the ones of the previous method in terms of 

the large value evaluation groups, the right quadrant placement of the mispredictions of large 

values, the proximity to the line of the ideal model, as well as the exact zero target value 

phenomenon. 
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4.2.3 MLP networks with bitmap representation inputs 

The results of the MLP networks trained with the input dataset consisting of the 768 variables 

as dictated by the bitmap representation, again plus the 0 to 3 evaluation inputs according to 

each scenario, for both cases of dataset filtering, are presented in tables 7 and 8. 

 

Table 7: Indicators of MLPs using bitmap representation with mating evaluation filtering 

 

Scenario 
MAE R

2
 

Testing Validation Testing Validation 

1 
0.70 

(0.78±0.06) 

0.71 

(0.79±0.06) 

0.50 

(0.47±0.02) 

0.50 

(0.48±0.02) 

2 
0.85 

(1.04±0.17) 

0.85 

(1.04±0.17) 

0.40 

(0.35±0.06) 

0.42 

(0.37±0.04) 

3 
0.94 

(1.02±0.06) 

0.95 

(1.02±0.06) 

0.35 

(0.28±0.05) 

0.35 

(0.29±0.04) 

* Each cell contains the best performance in the respective dataset along with the mean value and standard 

deviation in parenthesis. 

 

Table 8: Indicators of MLPs using bitmap representation with over-20 evaluation filtering 

 

Scenario 
MAE R

2
 

Testing Validation Testing Validation 

1 
0.42 

(0.45±0.03) 

0.43 

(0.45±0.03) 

0.76 

(0.74±0.02) 

0.76 

(0.73±0.02) 

2 
0.53 

(0.56±0.02) 

0.54 

(0.56±0.02) 

0.64 

(0.60±0.02) 

0.62 

(0.60±0.01) 

3 
0.59 

(0.61±0.02) 

0.59 

(0.61±0.02) 

0.56 

(0.54±0.01) 

0.56 

(0.54±0.01) 

* Each cell contains the best performance in the respective dataset along with the mean value and standard 

deviation in parenthesis. 

 

The computation time for the iterations for this method was approximately 79 hours, bringing 

the training time for each network at roughly 158 minutes (9480 seconds). 

A visual representation of the desired values versus the predicted values for the best 

performance in the test subset for the two dataset filtering cases can be seen in figures 16 and 

17. 
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Figure 16: Target values vs Predictions of MLPs using bitmap representation inputs with 

mating evaluation filtering 

 

 

Figure 17: Target values vs Predictions of MLPs using bitmap representation inputs with 

over-20 evaluation filtering 

 

Again, we notice the same grouping and correct quadrant effect for evaluations with large 

values and the general tendency of the data points to approximate the ideal blue line, mainly 

when the data set is filtered over 20 at figure 17. The particular situation with the exact zero 

target values is present in this experiment as well, since the source of its existence is not 

related to the type of inputs that are used, but in the actual engine evaluation. 

4.2.4 Method comparison 

In this section, the best performance results of the three examined methods for both cases of 

dataset filtering are compared and discussed. The aggregate results in tables 9 and 10 are only 

a repetition of the results already shown, presented together for easy comparison of the 

methods. Computational time for training has also been included as a comparison factor, but it 

should be noted that in the MLP cases it is a mean value over the iterations and has not been 

measured explicitly for each scenario.  

Initially, observing the results of the over-20 evaluation filtering compared to those of mating 

evaluation filtering, it is obvious that the indicators are affected by the existence of larger 
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evaluations, which are sparser in the dataset for reasons explained in section 4. Errors in such 

evaluations, being larger in value, obviously have a greater impact on the mean absolute error 

and apparently the same goes for the coefficient of determination. This also indicates a 

discrepancy in the performance of the network, which was also observed in the respective 

diagrams in figures 11, 14 and 16, as in areas away from zero the network performance is 

poorer as it mainly has to perform extrapolation in order to give a prediction. Conversely, in 

areas near zero where data is denser, the necessary interpolation is much more likely to be 

efficient. 

 

Table 9: Aggregate presentation of indicators with mating evaluation filtering 

 

Scenario Method 
MAE R

2
 

Training 

time (s) 
Testing Validation Testing Validation 

1 

RBF - proposed inputs 0.76 0.76 0.50 0.52 7304 

MLP - proposed inputs 0.75 0.75 0.46 0.52 642 

MLP - bitmap inputs 0.70 0.71 0.50 0.50 9480 

2 

RBF - proposed inputs 0.83 0.84 0.43 0.45 12448 

MLP - proposed inputs 0.93 0.93 0.36 0.38 642 

MLP - bitmap inputs 0.85 0.85 0.40 0.42 9480 

3 

RBF - proposed inputs 0.85 0.85 0.41 0.43 5745 

MLP - proposed inputs 0.96 0.97 0.32 0.34 642 

MLP - bitmap inputs 0.94 0.95 0.35 0.35 9480 

 

Table 10: Aggregate presentation of indicators with over-20 evaluation filtering 

 

Scenario Method 
MAE R

2
 

Training 

time (s) 
Testing Validation Testing Validation 

1 

RBF - proposed inputs 0.38 0.38 0.78 0.80 5344 

MLP - proposed inputs 0.44 0.44 0.72 0.73 642 

MLP - bitmap inputs 0.42 0.43 0.76 0.76 9480 

2 

RBF - proposed inputs 0.44 0.43 0.72 0.73 5809 

MLP - proposed inputs 0.58 0.57 0.57 0.59 642 

MLP - bitmap inputs 0.53 0.54 0.64 0.62 9480 

3 

RBF - proposed inputs 0.45 0.44 0.69 0.70 8638 

MLP - proposed inputs 0.62 0.62 0.51 0.50 642 

MLP - bitmap inputs 0.59 0.59 0.56 0.56 9480 
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The method using RBF architecture along with our proposed feature set appears to be the 

overall best performer in all cases. Especially for the over-20 evaluation filtering, which is 

much better scoped in terms of playing the game, the MAE achieved by the RBF method is 

comparable to the advantage that chess engines typically give to the white side just for having 

the turn to play in the beginning of a game. Moreover, the fact that the performance of the 

RBF method does not improve that much by the existence of the supplementary evaluation 

inputs is certainly an asset, making the possibility of eliminating them, quite feasible for this 

method as opposed to the two MLP methods where this would have a significant impact as 

evidently demonstrated by scenario 3. 

One minor exception to the above is the performance within mating evaluation filtering where 

the bitmap MLP network achieves a slightly better MAE than the RBF network, only in 

scenario 1. However, even then it does not surpass it regarding the R
2
 indicator and the 

amount of time needed for training the network is significantly larger. A more interesting 

observation is that in scenario 3, where no low-depth evaluation input variables are provided, 

the RBF method performs more or less the same (even slightly better in respect to R
2
) as the 

bitmap MLP does in scenario 2, where two low-depth evaluation variables assist its 

performance. Therefore, the RBF method is the one propose as the best performing and most 

promising approach. 

Generally, we may notice that within both filtering approaches, all methods perform the best 

in scenario 1, when they are aided by all the supplementary low-depth evaluation inputs, and 

then better in scenario 2, when only the two lesser depth evaluations are included, than in 

scenario 3, when no such inputs are used. Interestingly and partially mentioned before, the 

three methods seem to be affected to different extends by these additional inputs with the 

RBF method being the least dependant on them and the bitmap MLP being the most improved 

in their presence. Also, the improvement of the RBF method in scenario 2 over scenario 3 

seems almost insignificant as opposed to both the MLP methods. 

Comparing the two MLP methods, the overall results of the bitmap method are generally a bit 

better than our proposed feature method. However, the training of such a network using 768 

to 771 inputs in contrast with the one using 194 to 197 inputs takes about 15 times more 

computational time. We can observe that our proposed set of features considerably reduces 

computation time needed for network training over the bitmap representation approach, 

mostly due to the significantly lower amount of input variables. 

Finally, it should be pointed out that although the training of a neural network using our 

proposed method requires some preparation and a considerate amount of time for training, the 

resulting model is able to provide evaluation predictions for several moves ahead without 

processing any search tree as a chess engine would do. This is the practical importance and 

actual motivation of this work as these predictions are obtained in negligible amounts of time, 

compensating for the minor deficit in accuracy. In fact, the time needed for a prediction has 

been measured as an average over 10000 predictions. The average time for obtaining a 

prediction using our trained model is 6.9 milliseconds. Although this is an impressive fact in 

its own right, there is a more useful aspect to it. Regardless of the amount of training time the 

model might need, but more importantly regardless of the amount of time that is given to the 

chess engine to analyze each position during the training dataset construction, the prediction 

time would practically remain the same. This implies that in a context where time is a limiting 

factor, as in competitive play, when a chess engine would have as much position analysis 

available as the time limit would allow, a software based on such a model could practically 

obtain evaluations based on the analysis time given during its training dataset construction, 

making the actual competitive time limit irrelevant. 
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SECTION 5 

Conclusions – Future Work  

 

 

In this Thesis we attempted to approach the subject of the evaluation of a chess position by 

utilizing the learning capabilities of neural networks. The primary goal was to substitute the 

process of tree search that chess engines perform when approximating a position evaluation 

with the predictions of a neural network based on the knowledge it can obtain through 

training. The benefits of such an approach would be that even though the predictions may not 

be as accurate as the ones of a chess engine, the sustained error is compensated by the gain of 

time, processing power and memory consumption that the chess engine needs in order to 

perform the tree search. 

We considered and compared three methods, two of our own creation and a third one that had 

already been published [9]. Our considered methods involved the training of an RBF and an 

MLP network by using a proposed set of position features derived by the features described in 

the Stockfish documentation, which was the chess engine the networks competed against, as 

input variables. The already published method that we compare against also involved an 

MLP, but the input for its training was a board representation described in [9], called bitmap 

representation. 

In order for the training input dataset to be created, over 1500 top-level games where 

collected and processed by a Java application of our own development. The various inputs for 

the networks where appropriately extracted from the arising positions depending on the 

respective method, and the target values for the network training where obtained by using the 

Stockfish 10 chess engine on each position for a specific amount of time. In order to provide a 

dynamic aspect of the chess position in the training dataset, we devised three more 

supplementary input variables with the actual evaluation of Stockfish in much lower depths of 

search than the one we would ultimately try to predict by using the neural network. The result 

of this whole procedure, described in detail in the respective section of the Thesis, was a 

database of about 80000 chess positions. The Matlab neural toolbox was utilized in order to 

facilitate the training of the involved MLP networks, while the RBF network training was 

handled by custom Maltab scripts written specifically for this purpose.  

Three variations regarding the dataset, mentioned as scenarios, where examined for each 

method. In first scenario all three of the supplementary inputs were present, in the second 

scenario the input with the highest depth was removed and in the third one all three were 

removed. This gave us the opportunity to examine the impact that such inputs may have on 

the produced networks in the rivaling methods.  

An issue that we had to tackle was that the dataset had an inherent uneven distribution of data 

in regions closer to zero and further from it, as described in more detail in section 4. This 

issue derives from the evaluation scores in high level chess games typically not being very 

high as when this imbalance begins to grow, or even is just foreseen, the losing player resigns 

and the game ends. A data-related experiment that we tried in order to approach this situation 

was to filter out target values above the value of 20 before training, in order to force a more 

even distribution of data in the domain that the network has to make predictions. 
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The results for every variation of each method were presented separately in both table and 

diagram form and remarkable observations were discussed. In addition, a table of comparative 

results was provided and the three methods were compared. It is our assessment that the 

method of training an RBF network with our proposed set of features as inputs, with or 

without the additional evaluation input variables, produces the best performance and deserves 

to be further investigated. Therefore it is the solution we propose as an approach in our case. 

Furthermore, our proposed set of features significantly decreases the network training time, 

compared to existing techniques. Our entire approach, i.e. to avoid exploring the search tree 

and rely on the network predictions instead, leads to obtaining an evaluation for several 

moves ahead (about 28 moves) in about 7 milliseconds on average. 

Future work that may build upon this Thesis could include constructing a larger database of 

positions, and factoring in more hand-crafted supplementary input variables, in order to 

investigate to what extend could the MAE be minimized and the R
2
 maximized. Also, the 

composition of the proposed feature set could be revisited and examine if the number of 

variables could be decreased in an effort to reduce training computation time even more. 

Another idea could be to apply a different training algorithm to the RBF networks, such as a 

non-symmetrical fuzzy means algorithm which has been proposed as an improved version of 

the symmetrical fuzzy means [25, 26] used in our case. In terms of improving performance, 

one may also consider addressing the 0.00 phenomenon, maybe by including the utilization of 

an actual endgame tablebase in order to distinguish such circumstances. 

Besides moving towards improving the performance of the RBF network itself, another more 

ambitious course of action would be the development of a fully functional chess-playing 

application with our proposed RBF model in its core. Such an approach could utilize a control 

method called ‘model predictive control’ (MPC) [28, 29] as a decision making tool that would 

rely on our model in order to decide the next move. 
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