Εμφάνιση απλής εγγραφής

Deep learning models for timeseries forecasting using Keras library

dc.contributor.advisorΜαστοροκώστας, Πάρις
dc.contributor.advisorΚανδηλογιαννάκης, Γεώργιος
dc.contributor.authorΖέλιος, Βασίλης
dc.date.accessioned2023-03-02T10:58:26Z
dc.date.available2023-03-02T10:58:26Z
dc.date.issued2023-02-15
dc.identifier.urihttps://polynoe.lib.uniwa.gr/xmlui/handle/11400/3781
dc.identifier.urihttp://dx.doi.org/10.26265/polynoe-3621
dc.description.abstractThe current thesis aims to conduct a thorough examination of recurrent neural networks for the purpose of forecasting short-term electric load in Greece. The study is motivated by the significant energy crisis that Greece has been experiencing, which is characterized by high electricity costs. As of January 2022, Greece had the highest electricity costs in Europe, reaching 227.3 Euros per megawatt-hour. This dire situation necessitates the development of accurate forecasting methods for electric load demand by experts. Recurrent neural networks are a type of artificial neural network that have the ability to process sequential data, making them suitable for time series forecasting. The study explores the impact of different network architectures and parameters on the forecasting performance. We developed deep learning algorithms using Python and trained neural networks with historical data to generate predicted electricity load values and calculate statistical errors. The focus of the study was on using LSTM models, which have been shown to provide highly accurate forecasts for time series data due to their complexity. In conclusion, the predictions generated by the models developed in the present study were integrated into the Power BI platform, to facilitate the ease and convenience of data visualization for the end-user. Power BI is a business intelligence tool that allows for the creation of interactive visualizations and dashboards, providing a user-friendly interface for data exploration. By integrating the model predictions into Power BI, it becomes possible to present the data in an intuitive and accessible manner, enabling the end-user to gain insights and make informed decisions.el
dc.format.extent89el
dc.language.isoenel
dc.publisherΠανεπιστήμιο Δυτικής Αττικήςel
dc.publisherUniversité de Limogesel
dc.rightsΑναφορά Δημιουργού - Μη Εμπορική Χρήση - Παρόμοια Διανομή 4.0 Διεθνές*
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Διεθνές*
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Διεθνές*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectElectric load demandel
dc.subjectRecurrent neural networksel
dc.subjectDeep learningel
dc.subjectTime-series forecastingel
dc.subjectShort-term forecastel
dc.subjectAlgorithmsel
dc.subjectPythonel
dc.subjectVisualizationel
dc.titleDeep learning models for timeseries forecasting using Keras libraryel
dc.title.alternativeΜοντέλα βαθιάς μάθησης για πρόβλεψη χρονοσειρών χρησιμοποιώντας τη βιβλιοθήκη Kerasel
dc.typeΜεταπτυχιακή διπλωματική εργασίαel
dc.contributor.committeeΚεσίδης, Αναστάσιος
dc.contributor.committeeTselenti, Panagiota
dc.contributor.facultyΣχολή Μηχανικώνel
dc.contributor.departmentΤμήμα Μηχανικών Πληροφορικής και Υπολογιστώνel
dc.contributor.departmentΤμήμα Μηχανικών Τοπογραφίας και Γεωπληροφορικήςel
dc.contributor.masterΤεχνητή Νοημοσύνη και Οπτική Υπολογιστικήel


Αρχεία σε αυτό το τεκμήριο

Thumbnail
Thumbnail
Thumbnail

Αυτό το τεκμήριο εμφανίζεται στις ακόλουθες συλλογές

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού - Μη Εμπορική Χρήση - Παρόμοια Διανομή 4.0 Διεθνές
Εκτός από όπου επισημαίνεται κάτι διαφορετικό, το τεκμήριο διανέμεται με την ακόλουθη άδεια:
Αναφορά Δημιουργού - Μη Εμπορική Χρήση - Παρόμοια Διανομή 4.0 Διεθνές