Show simple item record

Δημιουργία προγνωστικών μοντέλων ατμοσφαιρικής ρύπανσης στην ευρύτερη περιοχή της πόλης του Πεκίνο, Κίνα, με την ανάπτυξη και εφαρμογή τεχνητών νευρωνικών δικτυών

dc.contributor.advisorMOUSTRIS, KONSTANTINOS
dc.contributor.advisorSpyropoulos, Georgios
dc.contributor.authorΦαζάκης, Παναγιώτης
dc.date.accessioned2024-07-26T10:21:04Z
dc.date.available2024-07-26T10:21:04Z
dc.date.issued2024-07-23
dc.identifier.urihttps://polynoe.lib.uniwa.gr/xmlui/handle/11400/7218
dc.identifier.urihttp://dx.doi.org/10.26265/polynoe-7050
dc.description.abstractΗ συνεχώς αυξανόμενη βιομηχανοποίηση ορισμένων περιοχών του πλανήτη σε συνδυασμό με την ταυτόχρονη υποβάθμιση του φυσικού περιβάλλοντος αποτελούν ανησυχητικά φαινόμενα ιδιαίτερα όσον αφορά τον τομέα της ανθρώπινης υγείας. Η συγκέντρωση σωματιδίων αεροδυναμικής διαμέτρου 2.5 μm (PM2.5) και 10 μm (PM10), τα οξείδια του Αζώτου (NOx), το μονοξείδιο του άνθρακα (CO), του διοξειδίου του θείου (SO2), αλλά και του Όζοντος (Ο3) χρήζουν συνεχούς παρακολούθησης, καθώς αποτελούν κύριες αιτίες για πληθώρα νοσημάτων. Βάσει της ύπαρξης θεσμοθετημένων ορίων, από τον Παγκόσμιο Οργανισμό Υγείας (Π.Ο.Υ.), για τη συγκέντρωση κα θενός εκ των προαναφερθέντων ρύπων στην ατμόσφαιρα κρίνεται απαραίτητη η ανάπτυξη προ γνωστικών συστημάτων που θα έχουν την ικανότητα συσχέτισης των εκάστοτε μετεωρολογικών δεδομένων με τις συγκεντρώσεις των παραπάνω ρύπων. Στην παρούσα διπλωματική εργασία γίνεται επιτυχώς η προσπάθεια πρόβλεψης των παραγόμενων αυτών ρύπων στην ευρύτερη περιοχή του Πεκίνο, στην Κίνα, με χρήση υπολογιστικών μοντέλων. Κατά την εκπόνηση της εργασίας αναπτύχθηκε σημαντικός αριθμός Τεχνητών Νευρωνικών Δικτύων , για την δημιουργία των ο ποίων αξιοποιήθηκαν “ανοιχτά-ελεύθερα” μετεωρολογικά δεδομένα και δεδομένα ατμοσφαιρικής ρύπανσης, καθώς και ποικίλες υπολογιστικές μέθοδοι για την συμπλήρωση τους, όπου αυτά ήταν ελλιπή. Τέλος γίνεται στατιστική αξιολόγηση των μοντέλων και έλεγχος σχετικά με την ορθότητα των αποτελεσμάτων.el
dc.format.extent71el
dc.language.isoelel
dc.publisherΠανεπιστήμιο Δυτικής Αττικήςel
dc.rightsΑναφορά Δημιουργού - Μη Εμπορική Χρήση - Παρόμοια Διανομή 4.0 Διεθνές*
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Διεθνές*
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Διεθνές*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectΤεχνητά νευρωνικά δίκτυαel
dc.subjectΑτμοσφαιρική ρύπανσηel
dc.subjectΜοντέλα πρόγνωσηςel
dc.subjectΠρόγνωση ρύπωνel
dc.subjectΜηχανική μάθησηel
dc.titleΔημιουργία προγνωστικών μοντέλων ατμοσφαιρικής ρύπανσης στην ευρύτερη περιοχή της πόλης του Πεκίνο, Κίνα, με την ανάπτυξη και εφαρμογή τεχνητών νευρωνικών δικτυώνel
dc.title.alternativeDevelopment of air pollution forecasting models applying artificial neural networks in the greater area of Beijing city, Chinael
dc.typeΔιπλωματική εργασίαel
dc.contributor.committeeZafirakis, Dimitrios
dc.contributor.facultyΣχολή Μηχανικώνel
dc.contributor.departmentΤμήμα Μηχανολόγων Μηχανικώνel
dc.description.abstracttranslatedThe ever-increasing industrialization of certain areas of the planet combined with the simulta neous degradation of the natural environment are alarming phenomena, especially in the field of human health. The concentration of Particulate Matter with an aerodynamic diameter of 2.5 μm (PM2.5) and 10 μm (PM10), nitrogen oxides (NOx), carbon monoxide (CO), sulfur dioxide (SO2), and ozone (O3) needs constant monitoring, as they consist the main cause of many diseases. Based on the existence of statutory limits, by the World Health Organization (WHO), for the concentra tion of each of the aforementioned pollutants in the atmosphere, it is considered necessary to de velope forecasting systems that will have the ability to correlate the current meteorological data with the concentrations of the above pollutants. In this thesis, the attempt to predict the produced pollutants in the wider area of Beijing, in China, is successfully carried using computer models. During the preparation of the work, a significant number of Artificial Neural Networks were de veloped, for the creation of which open-access meteorological data and air pollution data were used, as well as various computational methods to complete them, where these were incomplete. Finally, a statistical evaluation of the models is carried out and a check on the correctness of the results.el


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Αναφορά Δημιουργού - Μη Εμπορική Χρήση - Παρόμοια Διανομή 4.0 Διεθνές
Except where otherwise noted, this item's license is described as
Αναφορά Δημιουργού - Μη Εμπορική Χρήση - Παρόμοια Διανομή 4.0 Διεθνές